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Abstract

Coded caching is able to exploit accumulated cache size and hence superior to uncoded caching by distributing

different fractions of a file in different nodes. This work investigates coded caching in a large-scale small-cell

network (SCN) where the locations of small base stations (SBSs) are modeled by stochastic geometry. We first

propose a content delivery framework, where multiple SBSs that cache different coded packets of a desired file

transmit concurrently upon a user request and the user decodes the signals using successive interference cancellation

(SIC). We characterize the performance of coded caching by two performance metrics, average fractional offloaded

traffic (AFOT) and average ergodic rate (AER), for which a closed-form expression and a tractable expression are

derived, respectively, in the high signal-to-noise ratio region. We then formulate the coded cache placement problem

for AFOT maximization as a multiple-choice knapsack problem (MCKP). By utilizing the analytical properties of

AFOT, a greedy but optimal algorithm is proposed. We also consider the coded cache placement problem for AER

maximization. By converting this problem into a standard MCKP, a heuristic algorithm is proposed. Analytical and

numerical results reveal several design and performance insights of coded caching in conjunction with SIC receiver

in interference-limited SCNs.

Index Terms

Coded caching, successive interference cancellation, stochastic geometry, small-cell networks, knapsack prob-

lem.

I. INTRODUCTION

A. Motivation and Related Works

The global mobile data traffic has undergone a fundamental shift from voices and messages to rich

content distributions, such as video streaming and application downloads. By prefetching popular contents

during off-peak times at the edge of wireless networks, such as small base stations (SBSs), helper nodes,

and user devices, wireless caching can alleviate peak-hour network congestion, provide traffic offloading,

and improve users’ quality of experience [2]–[4]. It thus has attracted great attention recently.

Cache-enabled wireless networks operate in two phases in general, i.e., cache placement and content

delivery [5]. Cache placement is to place or update contents in each cache-enabled node subject to the

storage size. Content delivery is to deliver contents upon user requests conditioned on cache state as well

as network channel condition. While the design of the content delivery phase can be decoupled from the

cache placement phase once the cache placement strategy is given, e.g., [6]–[8], the design of the cache

placement phase is tightly coupled with the content delivery phase in wireless networks, e.g. [9]–[15]. In

this work, we are interested in the cache-enabled small-cell networks (SCNs), where each SBS is equipped

with a local cache and can serve user requests based on its cached contents. In a deterministic SCN with

fixed connection topology, the cache placement problem is NP-hard [16]. Alternatively, the authors in

[11]–[14], [17], [18] apply tools from stochastic geometry to study the cache placement problem by

assuming that the locations of SBSs follow a homogeneous Poisson point process (HPPP) in a large-scale

SCN. In particular, the authors in [17] analyze the outage probability and the average content delivery

rate when each SBS stores the most popular contents and each user is only associated with the nearest
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SBS. The authors in [18] analyze the average ergodic rate and the outage probability with the most

popular contents caching in a three-tier heterogeneous network. The works [11]–[14] show that caching

the contents randomly with the optimized probabilities has performance improvement, e.g., the cache hit

probability, the successful offloading probability, and the average success probability of content delivery,

over caching the most popular contents since each user can be covered by multiple SBSs.

Recently, it is shown in [15], [16], [19]–[23] that partitioning each file into multiple segments and

caching different segments of a file in different SBSs can further enhance cache efficiency. This is known

as coded caching in [16]. When a user submits a file request, the file shall be delivered to the user

from multiple nearby SBSs that have cached the different segments of the file, thereby exploiting the

accumulated cache size. The work [15] proposes a combined coded/uncoded caching strategy in disjoint

cluster-centric SCN and analyzes the successful content delivery probability for a user located at the

cluster center. In the combined caching strategy, part of the cache space in each SBS is reserved for the

most popular contents and the remaining is to cache different partitions of the less popular contents. This

strategy is, however, a heuristic one and cannot fully exploit the accumulated cache size. In [16], [19],

[20], the maximum distance separable (MDS)-coded caching schemes are considered. With an (n,N)
MDS code, each file is split into n fragments and then encoded into N (> n) coded packets. Any set of n
coded packets is sufficient to recover the file. The works [16] and [19] formulate the optimal MDS-coded

cache placement problems to minimize the average file download time and the average backhaul rate,

respectively. Compared with [19], the work [20] considers a more practical scenario with heterogeneous

file and cache sizes. In [21]–[23], random linear network coding (RLNC) is applied to generate and store

coded packets in SBSs. Similar to MDS codes, when a file is split into n fragments and the coding

coefficients in RLNC are randomly selected from a large field, the file can be recovered from any n
coded packets with high probability. All these works on MDS- or RLNC-coded caching in SCNs however

assume an ideal error-free transmission with fixed connection topology in the content delivery phase. Coded

caching strategy in a realistic SCN with channel fading and inter-cell interferences remains uninvestigated.

B. Contributions

In this work, we apply stochastic geometry to model, analyze, and optimize coded caching in a cache-

enabled SCN. The locations of SBSs are assumed to follow an HPPP on a plane. Each file is first partitioned

into n fragments and then encoded using either MDS codes or RLNC into an arbitrarily large number

of coded packets, such that any set of n coded packets is enough to recover the original file. Each SBS

stores a certain number of different coded packets for each file subject to a finite cache size. When a user

requests a file, the user will be associated with a sufficient number of SBSs that have cached the coded

packets of the desired file for file downloading. The main contributions of this work are summarized as

follows.

• A content delivery framework with SIC receiver: We propose a new content delivery framework for

coded caching, where multiple SBSs that cache the different coded packets of a desired file transmit

concurrently upon a user request and the user decodes the signals successively using a successive

interference cancellation (SIC)-based receiver. The number of concurrently transmitting SBSs, or

equivalently, the number of SIC decoding layers, depends on the number of coded packets of the

desired file cached in each SBS. We also obtain a closed-form expression to tightly approximate the

success probability of each SIC decoding layer for a typical user in the high signal-to-noise ratio

(SNR) region.

• New performance metrics and analysis: We introduce and analyze two performance metrics for coded

caching in SCNs. One is the average fractional offloaded traffic (AFOT). It measures the average

fraction of each file that can be successfully delivered by the cache-enabled SBSs and hence offloaded

from the core network at a given target SIC decoding threshold. Based on the success probability of

each SIC decoding layer, we obtain a closed-form expression of AFOT. We show that the fractional

offloaded traffic (FOT) for a given file is an increasing, concave, and piece-wise arithmetic sequence
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as the number of its coded packets cached in each SBS increases. The other is the average ergodic

rate (AER), which characterizes the average ergodic data rate of a typical user achievable over the

cache-enabled SBSs. We then obtain a tractable expression for AER.

• Optimization of coded cache placement: We formulate two coded cache placement problems for

AFOT maximization and AER maximization, respectively. The AFOT maximization problem is a

multiple-choice knapsack problem (MCKP). Utilizing the analytical properties of AFOT, we propose

a greedy-based algorithm that finds the global optimal solution efficiently. In the limiting case where

each file can be split into infinite number of fragments, we also reformulate the discrete problem for

AFOT maximization into a continuous one, which is shown to be convex. The optimal solution of the

continuous problem provides a performance upper bound for the discrete problem. It also prompts

us to propose a low-complexity algorithm with high performance for the discrete problem. To solve

the coded cache placement problem for AER maximization, we transform it into a standard MCKP,

for which a heuristic algorithm is proposed.

• Performance and design insights via numerical simulations: Extensive numerical results demonstrate

that it is good enough to split each file into not-so-large, e.g., 8, fragments for coded caching to

approach the performance upper bound of AFOT. Results also show that coded caching can well

exploit the accumulated cache size among neighboring SBSs and hence significantly offload more

traffic than uncoded caching when the decoding threshold for each SIC decoding layer is low. On

the other hand, the gain of coded caching vanishes in terms of the AER performance unless the file

popularity distribution is close to uniform.

C. Paper Organization

This paper is organized as follows. We present the network model, coded caching with SIC receiver, and

the performance metrics, namely, AFOT and AER in Section II. We analyze the proposed performance

metrics in Section III and formulate the coded cache problems into MCKP to optimize the caching vector

in Section IV. Numerical results are presented in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Model

We consider a cache-enabled SCN where the SBSs and users are spatially distributed on a plane

according to two independent HPPPs with densities λb and λu, respectively. Each SBS is equipped with

a local cache and serves mobile users with its cached contents. All SBSs and users are equipped with

single antenna. Without loss of generality, we focus on the analysis at a typical user u0. We define φk as

the k-th nearest SBS to u0 with distance denoted by rk. The network is assumed to be fully loaded so that

each SBS transmits signals all the time, which is the worst-case scenario for performance analysis. There

is also a tier of macro base stations (MBSs) in the network, which are connected to the core network via

backhaul links and communicate with users only when the user demands cannot be satisfied by SBSs.

We assume that the MBSs and SBSs operate over non-overlapping frequency bands to avoid the inter-tier

interference.
In the downlink channel, we consider both large-scale fading and small-scale fading. The large-scale

fading is modeled by a standard distance-dependent power law pathloss attenuation. For small-scale fading,

Rayleigh fading is considered. The transmission power of each SBS is P . Hence, the received signal power

at u0 from φk can be written as |hk|2r−α
k P , where hk ∼ CN (0, 1) is the complex-valued channel coefficient

from φk to u0 and α > 2 is the pathloss exponent.

B. Coded Caching Model

Consider a content library consisting of F files, denoted by W , {W1,W2, . . . ,WF}. Each file has

the same size of B bits. The popularity of Wj is denoted as pj , for j ∈ F , {1, 2, . . . , F}, satisfying

0 ≤ pj ≤ 1 and
F∑

j=1

pj = 1. Without loss of generality, we assume p1 ≥ p2 ≥ . . . ≥ pF .
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A coded caching scheme similar to [19] is adopted in this work. Each file in the content library is

split into n equal-sized fragments, for n being any positive integer. The n fragments of each file are then

encoded into an arbitrarily large number of packets. Here, we mention fragment as the original part of

a file and packet as the coded part of a file. We do not restrict to any specific coding scheme and only

require that the file can be decoded successfully from any n coded packets. In practice, this requirement

can be satisfied by using MDS codes or satisfied with high probability by using RLNC.

Each SBS has a local cache and can store up to MB bits (M < F ). In the cache placement phase,

each SBS stores mj ∈ N , {0, 1, . . . , n} different coded packets of Wj , for each j ∈ F . We refer to

m , [m1, m2, . . . , mF ] as the caching vector, which shall be optimized subject to the following cache

size constraint:

F∑

j=1

mj

n
≤ M. (1)

The specific packet storing approach depends on the coding scheme in the cache placement phase. For

example, if an (n,N) MDS code with rate n
N

is used, where n is the number of the fragments that each file

is partitioned into and N is the number of the coded packets based on the n fragments, we can use graph

coloring to store the coded packets in each SBS. In specific, we first tessellate the considered network

area into ⌈ n
mj

⌉-th order Voronoi regions, each of which is associated with ⌈ n
mj

⌉ SBSs so that any point

in this region is closer to these ⌈ n
mj

⌉ SBSs than any other SBS in the network area. Then, we construct

a graph, where each SBS is represented by a vertex and every pair of SBSs that belong to the same

⌈ n
mj

⌉-th order Voronoi region are connected with an edge. Let every distinct set of mj coded packets be

represented by a color. The maximum number of colors is
⌊

N
mj

⌋
. We then color the vertices of the graph

so that no adjacent vertices share the same color, which is clearly feasible when N is sufficiently large.

By this coloring-based packet storing approach, the ⌈ n
mj

⌉ SBSs in each Voronoi region are guaranteed to

have different coded packets. On the other hand, if RLNC is used by each SBS to encode the n fragments

with the coding coefficients independently and uniformly selected from a large field, the mj coded packets

generated and stored in each SBS are ensured to be linearly independent with high probability. In specific,

let Fq denote the finite field where the random coding coefficients are chosen from and let A denote the

event that any n coded packets collected from any ⌈ n
mj

⌉ SBSs in the network can recover the n uncoded

fragments and hence the complete file. According to [21], we have that P (A) ≥
(

1− 1
q

)n

. It is seen that

when q is large enough, P (A) is very large.

C. Content Request and Delivery Model

Each user requests for one file independently with probability according to the file popularity dis-

tribution. Consider that the typical user u0 sends a request for Wj , j ∈ F . If mj = 0, i.e., no SBS

has stored any part of Wj , u0 will be served by an MBS, which is assumed to have access to all files

through backhaul link. If mj 6= 0, u0 will be associated with the set of
⌈

n
mj

⌉
nearest SBSs, denoted as

Φj , {φ1, φ2, . . . , φ⌈ n
mj

⌉}, to retrieve enough number of coded packets for the file decoding1. The
⌈

n
mj

⌉

SBSs transmit their own cached packets concurrently over the same resource block. Users adopt SIC-based

receiver to decode the signals from multiple SBSs successively in the descending order of the average

received signal strength as in [15]. More specifically, the signal from the nearest SBS φ1 is decoded first

and, if successful, subtracted from the received signal, then the signal from the second nearest SBS φ2 is

decoded based on the residue received signal. The procedure repeats till the signals from all the SBSs in

Φj are decoded. The total number of decoding layers in the SIC-based receiver (equivalent to the total

1The work can be extended to other user association strategies by considering different practical constraints. For instance, due to the

limited SIC decoding capability, a user may only be associated with a maximum of K(< n) nearest SBSs. Likewise, due the the large signal

attenuation, a user may only be associated with the SBSs that are within a given distance.
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number of SBSs that transmit concurrently to u0) is
⌈

n
mj

⌉
. This number varies between 1 and n, depending

on the different choices of mj for Wj . Thus, the coding parameter n for content caching sets the highest

possible SIC receiver complexity.

Note that to decode the signal from φk, the signals from {φ1, φ2, . . . , φk−1} must be decoded and

subtracted first from the received signal, and then only the signals from φk+1 and beyond are seen as

interferences. Define Φk
O , {φi|ri ≥ rk} \ {φk} as the set of SBSs whose distances to u0 are larger than

or equal to rk , for k ∈ N+ , N \ {0}. Then, the residue received signal for decoding the signal from

φk is given by

yk = hkr
−α

2
k

√
Psk +

∑

i∈Φk
O

hir
−α

2
i

√
Psi + n0, k ∈ N+, (2)

where sk denotes the transmitted symbol from φk and is assumed independent for different k’s, and

n0 ∼ CN (0, N0) is the complex additive white Gaussian noise of power N0.

We focus on the interference-limited network where the noise can be neglected. The signal-to-interference

ratio (SIR) for decoding sk is given by

SIRk =
|hk|2r−α

k
∑

i∈Φk
O

|hi|2r−α
i

, k ∈ N+. (3)

D. Performance Metrics

In our work, we shall measure the performance of coded caching using two metrics, namely, the

average fractional offloaded traffic (AFOT) and the average ergodic rate (AER). The former characterizes

the average fraction of each file that can be successfully delivered by the cache-enabled SBSs and hence

offloaded from the core network at a given target SIC decoding threshold. The latter characterizes the

average ergodic data rate of the typical user achievable over the cache-enabled SBSs.

1) Average Fractional Offloaded Traffic (AFOT): We first define the successful transmission probability

of each decoding layer at a common SIR threshold τ . The signal from φk can only be decoded successfully

if SIRk ≥ τ after the signals from {φ1, φ2, . . . , φk−1} are all decoded and subtracted successfully. The

probability of this event is referred to as the success probability of the k-th decoding layer, denoted by

qk(τ) , Pr

[

SIRk ≥ τ

∣
∣
∣
∣

⋂

i=1,2,...,k−1

SIRi ≥ τ

]

, k ∈ N+. (4)

Otherwise, if SIRk < τ , the decoding of sk fails and the SIC process terminates. The remaining coded

packets will be acquired from an MBS for u0 to recover the complete requested file.

Consider that u0 sends a request for Wj and mj coded packets of the file are stored in each SBS. As

mentioned above, the user can only decode the mj packets from φk after all the transmissions from the

first k−1 nearest SBSs are successful. Once the decoding of the k-th layer fails, the SIC-based decoding

process terminates. Then, only (k − 1)mj coded packets of Wj can be offloaded by the SBSs. If all the
⌈

n
mj

⌉
decoding layers are successful, the entire file can be offloaded. Therefore, the fractional offloaded

traffic (FOT) for Wj , denoted as L[mj ], is given by

L[mj ] ,







0, mj = 0,
⌈

n
mj

⌉

∑

k=1

(k−1)mj

n
Pr

[

⋂

i=1,2,...,k−1

SIRi ≥ τ, SIRk < τ

]

+Pr

[

⋂

i=1,2,...,⌈ n
mj

⌉

SIRi ≥ τ

]

, mj ∈ N+.

(5)
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By averaging over all files in W , the AFOT, denoted as L, is given by

L ,

F∑

j=1

pjL[mj ]. (6)

Remark 1. We would like to highlight that the decoding threshold τ in (4) is set as a constant, independent

of the decoding layers
⌈

n
mj

⌉
in the SIC receiver. At first glance, this means that it only takes

mj

n
T0 seconds

to deliver the requested file Wj (no matter it succeeds or not) since each SBS only transmits
mj

n
B bits,

where T0 = B
W log2(1+τ)

is the target delivery time of a file of B bits in the traditional uncoded caching

scheme with channel bandwidth of W Hz. However,
⌈

n
mj

⌉
SBSs are involved in delivering Wj . The

accumulated time resource consumed by delivering Wj thus becomes
⌈

n
mj

⌉mj

n
T0, which is equal to or

slightly larger than T0. Thus, having a constant τ in (4) ensures a fair comparison between coded and

uncoded caching in terms of the total network resource consumption.

2) Average Ergodic Rate (AER): Again, consider that u0 sends a request for Wj and mj coded packets

of the file are stored in each SBS. Here, we assume that each SBS adopts a rate-adaptive transmission

strategy so that the signals transmitted from all the SBSs in Φj are always decodable using the SIC receiver

when mj ∈ N+. Since each SBS in Φj needs to transmit the same amount of
mj

n
B information bits to

u0, the actual transmission rate of each SBS is chosen according to the worst SIR among all decoding

layers in (3). Thus, the ergodic rate achievable by u0 when requesting Wj , denoted as R[mj ] bits/s/Hz,

is given by

R[mj ] ,

{
0, mj = 0,
⌈

n
mj

⌉
E

[

log
(

1 + min
(

SIR1, . . . , SIR⌈ n
mj

⌉

))]

, mj ∈ N+.
(7)

By averaging over all files in W , the AER of the typical user achievable over the cache-enabled SBSs,

denoted as R bits/s/Hz, is given by

R ,

F∑

j=1

pjR[mj ]. (8)

III. PERFORMANCE ANALYSIS

In this section, we shall analyze the performance of coded caching using the AFOT and AER defined in

the previous section. Especially, exploring the structural properties of FOT will benefit the coded caching

optimization problem for AFOT maximization in Section IV.

A. Analysis of Fractional Offloaded Traffic L[mj ]

We first obtain a closed-form expression for the success probability of the k-th decoding layer qk(τ),
defined in (4), then apply it to obtain a closed-form expression for L[mj ] defined in (5).

Lemma 1. The success probability of the k-th decoding layer with SIC receiver can be approximated as

qk(τ) =

(

1 +
2

α
τ

2
αB′

(
2

α
, 1− 2

α
,

1

1 + τ

))−k

, k ∈ N+, (9)

where B′(x, y, z) ,
∫ 1

z
ux−1(1− u)y−1du is the complementary incomplete Beta function.

Proof. Please see Appendix A.

We shall demonstrate via simulation in Section V-A that the closed-form expression in Lemma 1 is

a tight approximation of the true successful transmission probability of SBS φk after the signals from

{φ1, φ2, . . . , φk−1} are all successfully decoded and subtracted.
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TABLE I: Offloaded traffic difference table at n = 8.

mj 0 1 2 3 4 5 6 7 8
⌈

n
mj

⌉

\ 8 4 3 2 1

δj \ d8 d4,8 d3,4 d2,3 d2

With Lemma 1 and definition in (5), FOT of Wj can be obtained in the following lemma.

Lemma 2. The fractional offloaded traffic of Wj with caching parameter mj is given by

L[mj ] =







0, mj = 0,

mj

n

⌈
n
mj

⌉

∑

k=1

Ck(τ) +
(

1− mj

n

⌈
n
mj

⌉)

C⌈ n
mj

⌉(τ), mj ∈ N+,
(10)

where

Ck(τ) =

(

1 +
2

α
τ

2
αB′

(
2

α
, 1− 2

α
,

1

1 + τ

))− k(k+1)
2

. (11)

Proof. Please see Appendix B.

By substituting (10) into (6), a closed-form expression of AFOT for any given caching vector m is

readily obtained.

Now we analyze the properties of L[mj ], which will be essential for cache placement optimization in

the next section.

Lemma 3. L[mj ] is a piece-wise arithmetic sequence, for mj ∈ N .

Proof. Define an integer set Mt , {m|n
t
≤ m < n

t−1
, m ∈ N

+}, ∀t ∈ Tn , {t|t =
⌈

n
mj

⌉
, ∀mj ∈ N+}\{1}

and M1 , {n}. For example, M2 = {4, 5, 6, 7} and M3 = {3} when n = 8. Then, we have
⌈

n
mj

⌉
= t,

∀mj ∈ Mt. Thus, for all mj’s such that {mj, mj − 1} ⊆ Mt, the first difference of L[mj ] is given by

dt , L[mj ]− L[mj − 1] =
1

n

(
t∑

k=1

Ck(τ)− tCt(τ)

)

. (12)

Equation (12) indicates that when multiple mj’s all belong to Mt, the difference of L[mj ], i.e., dt, is

same and thus L[mj ] is an arithmetic sequence. If mj ∈ Mt but mj−1 ∈ Mt′ , for t′ 6= t, then we denote

the first difference as dt,t′ , L[mj ] − L[mj − 1]. Thus, L[mj ] is a piece-wise arithmetic sequence with

first difference given by dt when {mj , mj − 1} ∈ Mt or dt,t′ when mj ∈ Mt and mj − 1 ∈ Mt′ . The

Lemma is thus proven.

By Lemma 3 and its proof, we can construct a difference table of L[mj ], for mj ∈ N , termed as the

offloaded traffic difference table. An example with n = 8 is shown in TABLE I. Here, δj = L[mj ] −
L[mj − 1]. For any given n, an offloaded traffic difference table can be constructed. We shall use this

table to design a greedy-based optimal algorithm and a low-complexity algorithm with high performance

for the cache placement problem for AFOT maximization in the next section. The total number of distinct

δj’s for general n, denoted as Nn, depends on the size of set Tn, i.e., the number of piece-wise regions for

mj , which is usually much smaller than n. For example, N8 = 5, N16 = 8 and N32 = 12. When n → ∞,

Nn → 2
⌈√

n
⌉
. The proof is skipped due to the page limit.

Now, we consider the limiting case where n → ∞. That means the file size B is very large so that

each file can be split into infinite number of fragments. Define a new variable xj =
mj

n
. When n → ∞,
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The Value of mj
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Fig. 1: Fractional offloaded traffic L[mj ] with α = 4, τ = 0.1, n = 32.

xj can be relaxed as a continuous variable within [0, 1]. Then, the discrete function L[mj ] in (10) can be

relaxed as a continuous function L(xj):

L(xj) = xj

⌈
1
xj

⌉

∑

k=1

Ck(τ) +

(

1− xj

⌈
1

xj

⌉)

C⌈ 1
xj

⌉(τ). (13)

The properties of L(xj) are summarized in the following lemma.

Lemma 4. L(xj) is an increasing, concave and piece-wise linear function of xj , for 0 ≤ xj ≤ 1.

Proof. Please see Appendix C.

For any given n, L[mj ] can be viewed as the sampled function of L(xj) at sampling instance xj =
mj

n
.

Since L(xj) is increasing and concave by Lemma 4, L[mj ] is also increasing and concave. We thus have

the following corollary.

Corollary 1. L[mj ] is an increasing and concave sequence, i.e., 0 < L[mj ]− L[mj − 1] ≤ L[mj − 1]−
L[mj − 2], for mj ∈ {2, 3, . . . , n}.

Fig. 1 depicts a numerical example of L[mj ] when n = 32. Notice that dt,t+1−dt+1 =
(
1− t

mj

n

)
(Ct(τ)−

Ct+1(τ)) when t and t+ 1 both belong to Tn. Thus, d1,2 = d2 and d2,3 = d3 when n = 32. Fig. 1 clearly

demonstrates the properties in Lemma 3 and Corollary 1.

B. Analysis of Ergodic Rate R[mj ]

By using the definition in (7), the ergodic rate R[mj ] of u0 when requesting Wj can be expressed in a

tractable form below.

Lemma 5. The ergodic rate for Wj with caching parameter mj is given by

R[mj ] =

{

0, mj = 0,
⌈

n
mj

⌉ ∫∞

0
C⌈ n

mj
⌉ (2

r − 1) dr, mj ∈ N+,
(14)

where C⌈ n
mj

⌉ (2
r − 1) is given in (11) by letting k = ⌈ n

mj
⌉ and τ = 2r − 1.
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Proof. Please see Appendix D.

By substituting (14) into (8), the expression of AER for any given caching vector m can be obtained.

Unlike the expression of FOT L[mj ] in Lemma 2, which is in closed-form, the expression of ergodic rate

R[mj ] involves integral, though still tractable. It is thus difficult to analyze its properties.

IV. OPTIMIZATION OF CODED CACHING

In this section, we would like to maximize the AFOT and AER, respectively, by optimizing the caching

vector m. In the AFOT optimization, we first study the discrete optimization problem when the coding

parameter n is finite, and then study the continuous optimization problem when n → ∞. In the AER

optimization, we only consider the discrete case when n is finite.

A. Discrete Problem for AFOT Optimization

The objective is to maximize the AFOT in (6) by optimizing the caching vector m subject to the cache

size constraint (1) at a given finite n. This is formulated as follows.

Problem 1 (Discrete Coded Cache Problem for AFOT Maximization).

max
m

F∑

j=1

pjL[mj ]

s.t.
F∑

j=1

mj

n
≤ M,

mj ∈ N , ∀j ∈ F . (15)

Before solving Problem 1, we shall present a property of the optimal caching vector m∗.

Theorem 1. The optimal caching vector m
∗ of Problem 1 satisfies that m∗

1 ≥ m∗
2 ≥ · · · ≥ m∗

F , for any

given file popularities p1 ≥ p2 ≥ · · · ≥ pF .

Proof. Please see Appendix E.

Theorem 1 matches the common intuition that more cache size should be allocated to more popular

contents when the total cache size is limited.

Note that Problem 1 is a multiple-choice knapsack problem (MCKP) [24, Chapter 11], which is known

to be NP-hard. The problem can be interpreted as follows. Consider a knapsack with capacity of Mn
packets and a set of F files each containing n packets. The size of each file packet is the same but the

profit of each file packet varies according to the number of packets as well as the index of file. Based

on the properties of L[mj ] analyzed in Section III-A and the property of m∗ in Theorem 1, we design a

greedy but optimal algorithm as outlined in Algorithm 1 to solve Problem 1.

Algorithm 1 initializes the caching vector m by storing all the n packets of the M most popular files. It

then gradually updates the Mn cached packets in a greedy manner by replacing an exiting packet of a more

popular file in the knapsack with a new packet of a less popular file towards the direction of maximizing

the total profit, i.e., AFOT. More specifically, if the increased profit, i.e., pi (L[mi + 1]− L[mi]) brought

by adding one more packet from the i-th popular content into the cache is larger than the minimum of

decreased profits, i.e., minj∈{1,2,...,i−1} pj (L[mj ]− L[mj − 1]) caused by discarding one packet from any of

the previous i− 1 stored contents, the algorithm uses the new packet of Wi to replace the existing packet

with the minimum decreased profit, updates the caching vector, and continues to search new possible

replacement. The total profit monotonically increases in each update due to the monotonicity of L[mj ]
by Corollary 1. Also, each discarded packet during the replacement process will never be added again

(hence never optimal) since its weighted FOT difference is always smaller than that of any newly added
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Algorithm 1 Optimal Algorithm for Problem 1

1: initialize

• Store n packets for each of the M most popular files in each SBS, i.e., m = [n, · · · , n
︸ ︷︷ ︸

M

, 0, · · · , 0
︸ ︷︷ ︸

F−M

];

• Construct a offloaded traffic difference table for the given n;

• Set i = M + 1;

2: while i ≤ F do

3: if mi < n then

4: Find the forward FOT difference δi in the table when mi increases by one;

5: for all j ∈ {1, 2, . . . , i− 1} do

6: Find the backward FOT difference δj in the table when mj decreases by one;

7: end for

8: Let j′ = argminj∈{1,2,...,i−1} pjδj ;
9: if piδi > pj′δj′ then

10: Set mi = mi + 1, mj′ = mj′ − 1 and goto step 3;

11: else

12: When mi > 0, goto step 16;

13: When mi = 0, terminate the algorithm;

14: end if

15: end if

16: Set i = i+ 1;

17: end while

packet during subsequent processes as well as any remaining packet in the knapsack due to the concavity

of L[mj ] by Corollary 1. Thus, when the algorithm terminates, all the possible replacements are searched

and the globally optimal caching vector m∗ is obtained.
The offloaded traffic difference table constructed at the beginning of algorithm alleviates the computation

burden of the forward/backward FOT differences during the iterations. The maximum number of caching

vector updates in Algorithm 1 is min
{
(n− 1)(F −M),

∑n−1
i=1

nM
i+1

}
.

Based on Algorithm 1, we show that under certain conditions, the optimal coded caching will degenerate

to the conventional most popular caching (MPC).

Theorem 2. For n ≥ 2, when the following condition holds:

pM
pM+1

≥
∑n

k=1Ck(τ)

C1(τ)− C2(τ)
, (16)

the optimal coded caching vector m
∗ of Problem 1 is m

∗ = [n, · · · , n
︸ ︷︷ ︸

M

, 0, · · · , 0
︸ ︷︷ ︸

F−M

].

Proof. By observing Algorithm 1, it is seen that the optimal m∗ remains as the initialized value in step 1

when the algorithm terminates at step 13 with i = M+1 and mM+1 = 0. Thus, to prove this theorem, it is

equivalent to proving the condition pMδM ≥ pM+1δM+1 by step 9, i,e., pM (L[n]− L[n− 1]) ≥ pM+1L[1].
Hence, we have

pM (L[n]− L[n− 1])− pM+1L[1]

=pM

(

C1(τ)−
(

n− 1

n

2∑

k=1

Ck(τ) +

(

1− 2
n− 1

n

)

C2(τ)

))

− pM+1

(

1

n

n∑

k=1

Ck(τ)

)

=
1

n

(

pM (C1(τ)− C2(τ))− pM+1

(
n∑

k=1

Ck(τ)

))

≥ 0. (17)
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Transforming the condition (17), we can get the condition (16).

To gain more insights from Theorem 2, we take a closer look at the condition (16) and recall the

definition of Ck(τ) in (11). We then have the following corollary.

Corollary 2. For n ≥ 2 and α > 2, we obtain that

1) if pM > pM+1, there exists a decoding threshold τ0 > 0 such that the coded caching degenerates

into MPC in terms of the AFOT performance, at all τ ≥ τ0;
2) if the file popularity follows the Zipf distribution with shape parameter γ, there exists a shape

parameter γ0 > 0 such that the optimal coded caching degenerates into MPC in terms of the AFOT

performance, at all γ ≥ γ0, when τ > 0.

Proof. Please see Appendix F.

B. Continuous Problem for AFOT Optimization

In this subsection, we study the maximization of AFOT by letting n → ∞. Based on that, we then

design a low-complexity sub-optimal algorithm to solve Problem 1. The continuous cache optimization

problem for n → ∞ is formulated as follows.

Problem 2 (Continuous Coded Cache Problem for AFOT Maximization).

max
x

F∑

j=1

pjL(xj)

s.t.

F∑

j=1

xj ≤ M,

0 ≤ xj ≤ 1, ∀j ∈ F . (18)

Since L(xj) is a concave function by Lemma 4, Problem 2 is a convex problem and hence can be

solved efficiently by various methods, e.g., the interior point method. The optimal AFOT of Problem 2

provides an upper bound of that of Problem 1 for any n.

Next, we propose a low-complexity algorithm for Problem 1 based on the optimal solution of x
∗ in

Problem 2, denoted as x
∗ , [x∗

1, x
∗
2, · · · , x∗

F ]. At the initial step, let mj = ⌈nx∗
j⌉, ∀j ∈ F . Since the

problem is convex, we have
F∑

j=1

x∗
j = M . Thus, we have

F∑

j=1

mj

n
≥ M . Define the number of exceeding

packets as

Ne ,

F∑

j=1

mj −Mn. (19)

Now we refine mj by removing Ne packets from each SBS to satisfy the cache size constraint. This

process is outlined in Algorithm 2.

Algorithm 2 initializes the caching vector m to be mj = ⌈nx∗
j⌉, for all j ∈ F , which exceeds the

cache size constraint by Ne in (19). Then, it gradually decreases coded packets one by one until the

cache size constraint is satisfied. Each time only the coded packet of the file with the minimum profit,

i.e., minj∈F pjδj , will be discarded. The optimality of the algorithm cannot be guaranteed since if there

exists a file Wj whose initial mj is smaller than the global optimal m∗
j , then m∗

j can never be reached

since we only decrease packets for files. However, if each initial mj ≥ m∗
j , the solution of Algorithm 2

is optimal. Due to the monotonicity and concavity of L[mj ] in Corollary 1, the discarded packet causes

the minimum loss in weighted FOT at each caching vector update among all the packets in each SBS.

Continuing Algorithm 2, the packets with minimum loss in weighted FOT are discarded one by one.
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Algorithm 2 Low-complexity Algorithm for Problem 1

1: initialize

• Find the optimal x∗ by solving Problem 2;

• Set m = [⌈nx∗
1⌉, ⌈nx∗

2⌉, · · · , ⌈nx∗
F ⌉];

• Compute Ne as (19);

• Construct a offloaded traffic difference table for given n;

• Set i = 1;

2: while i ≤ Ne do

3: for all j ∈ F and mj 6= 0 do

4: Find the backward FOT difference δj in the table when mj decreases by one;

5: end for

6: Let j′ = argminj∈{i|mi 6=0} pjδj ;
7: Set mj′ = mj′ − 1;

8: Set i = i+ 1;

9: end while

Thus, Algorithm 2 can obtain the optimal solution with the maximum AFOT when the discarding process

terminates.

Note that the maximum possible number of caching vector updates in Algorithm 2 is F , which is

independent of n. Hence Algorithm 2 is more computationally efficient than Algorithm 1. We shall

provide more detailed comparisons with Algorithm 1 in Section V-B.

C. Discrete Problem for AER Optimization

In this subsection, we aim to maximize AER in (8) by optimizing the caching vector m subject to the

cache size constraint (1) at a given finite n. This is formulated as:

Problem 3 (Coded Cache Problem for AER Maximization).

max
m

F∑

j=1

pjR[mj ]

s.t.
F∑

j=1

mj

n
≤ M,

mj ∈ N , ∀j ∈ F . (20)

Monotonicity and concavity of R[mj ] is unknown due to the integral expression of R[mj ] in (14). Thus,

we transform it into a standard MCKP first, and then propose a heuristic algorithm to solve it.

Problem 4 (Standard MCKP for AER Maximization).

max
X

F∑

j=1

n∑

k=0

Rjkxjk

s.t.

F∑

j=1

n∑

k=0

wjkxjk ≤ M,

n∑

k=0

xjk = 1, ∀j ∈ F ,

xjk ∈ {0, 1}, ∀j ∈ F , ∀k ∈ N , (21)
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Algorithm 3 The Heuristic Algorithm for Problem 3

1: initialize

• Find the optimal x∗
j,k, j ∈ F , k ∈ N by solving the standard MCKP;

• Set mj = argmaxk∈N x∗
j,k, ∀j ∈ F ;

• Compute the total packet size as Ni =
∑F

j=1
mj

n
;

2: if Ni > M then

3: Apply the same method as Algorithm 2 to discard n(Ni −M) packets;

4: else

5: Let j′ = argmaxj∈{i|mi 6=n} pj (R[mj + 1]− R[mj ]);
6: if R[mj′ + 1]− R[mj′] < 0 then

7: Terminate the algorithm;

8: else

9: Add one packet of Wj′ in each SBS;

10: Increase Ni by 1
n

and goto step 5 unless Ni = M ;

11: end if

12: end if

where X = {xj,k, j ∈ F , k ∈ N}, Rjk = pjR[k], and wjk =
k
n

.

As mentioned in [24], we can relax the binary constraint on xjk and obtain the linear MCKP, which is

a standard linear programming and can be solved efficiently. Based on the optimal solution of the linear

MCKP, we then propose a heuristic algorithm to solve the original Problem 3 as shown in Algorithm 3.

Note that we terminate the algorithm at step 7 in advance since the AER decreases after increasing one

packet.

V. NUMERICAL RESULTS

In this section, we illustrate the performance of our proposed coded caching scheme in SCNs using

numerical examples. Throughout this section, there are F = 100 files in total and the channel pathloss

exponent is α = 4. The file popularity is modeled as the Zipf distribution with parameter γ.

A. Successful Transmission Probability

We first validate the analysis of the successful transmission probability qk(τ) with the SIC receiver in

Lemma 1 and its application in the analysis of FOT L[mj ] in Lemma 2. The simulation is conducted over

a square area of 4km × 4km with SBS density λb = 102/km2. Each simulation result is averaged over

106 independent sets of SBS locations and channel realizations. Note that the simulation results strictly

follow the definition in (4). That is, we only evaluate if the transmission of φk is successful when the

transmissions from {φ1, φ2, . . . , φk−1} are all successful. The analytical result in Lemma 1 is however

based on the assumption that the SIRk’s are independent for different k as mentioned in Appendix A.

Fig. 2 shows that the analytical results and the simulation results of qk(τ) match exactly when k = 1.

For k ≥ 2 and low SIR threshold τ , the results also match well. For large τ , the analytical results serve

as a good lower bound of the actual simulation results in most cases. It is also seen from Fig. 2 that at

large SIR thresholds, when the decoding layer k increases, the successful transmission probability drops

considerably. This indicates that the overall system performance of SIC receiver will be dominated by the

first decoding layer at large τ .

The comparison between the analytical L[mj ] in (10) and the simulated L[mj ] by definition (5) is shown

in Fig. 3. It is seen that the two sets of results match each other very well for all the considered mj and

τ . This means that ignoring the dependency among the SIRs in different SIC decoding layers has little

effects on the FOT performance, even though it can cause a visible gap on the successful transmission
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probability. This observation is mainly because the overall FOT performance is dominated by the first

two decoding layers, whose approximations are tighter than other layers as shown in Fig. 2.

B. Algorithm 1 vs. Algorithm 2 for AFOT maximization

In this subsection, we provide the comparison between Algorithm 1 and Algorithm 2 for the AFOT

maximization problem, i.e., Problem 1. Fig. 4 shows the AFOT performance at different coding parameter

n. As a performance upper bound, the optimal solution of the continuous problem, Problem 2 is also shown

and denoted as “Coded Cache-UB”. It is seen that Algorithm 2 performs almost identical to Algorithm 1

for all the considered n. When n increases, they both approach to Coded Cache-UB. Fig. 5 and Fig. 6

compare the computational complexity in terms of the number of caching vector updates at different

coding parameter n and different file number F , respectively. The complexity of solving Problem 2 in

Algorithm 2 is ignored for simplicity. Fig. 5 shows that as n increases, the complexity of Algorithm 1
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Fig. 7: The caching vector m, with γ = 0.6, τ =
−10 dB,M = 20, n = 8.

increases (still manageable), but the complexity of Algorithm 2 almost remains unchanged. Fig. 6 shows

that as F increases, the complexity of Algorithm 2 increases much slower than that of Algorithm 1.

Fig. 7 compares the solution values of the obtained caching vector m in different algorithms when n = 8,

where the optimal solution x
∗ of the continuous problem, Problem 2, is also included for comparison. It

is seen that the solution of Algorithm 2 is identical to that of Algorithm 1. Fig. 7 also shows that more

coded packets should be cached for more popular files, which justifies Theorem 1.

Remark 2. In general, the encoding and decoding complexity of MDS codes or RLNC increases as the

total number of fragments that each file is split into, i.e., n, increases. However, the actual number of

fragments that a file is split into does not have to be n, depending on the optimized caching parameter

m∗
j . For example, we have

m∗

1

n
= 4

8
= 1

2
for file W1 from Fig. 7. Then, W1 only needs to be split into 2

fragments for encoding and each SBS stores one coded packet. Also, we have
m∗

20

n
= 2

8
= 1

4
for file W20.

Then, W20 only needs to be split into 4 fragments for encoding and each SBS stores one coded packet.

From the above results, we conclude that Algorithm 2 achieves almost the same performance as

Algorithm 1 but with much lower complexity, especially for large n and F . Nevertheless, we still use

Algorithm 1 for the AFOT maximization in the rest of this section since it obtains the globally optimal

solution with manageable complexity.
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Fig. 8: AFOT with respect to n and M , with γ = 0.6, τ = −10 dB.

C. Effects of coding parameter n

Fig. 8 depicts the AFOT performance with respect to different n when the cache size M varies. In the

special case with n = 1, the coded caching reduces to uncoded caching which only stores the M most

popular files in each SBS, namely mj = n, for j ≤ M , and mj = 0, for j > M . It is seen from Fig. 8 that

the AFOT increases dramatically when n increases from 1 to 4 but the gain diminishes quickly when n
reaches 4. When n = 8, the performance is very close to the upper bound determined the optimal solution

of Problem 2. Note that the coding parameter n is the maximum possible number of decoding layers for

SIC receiver and hence determines the maximum receiver complexity. It also affects the computational

complexity of Algorithm 1 as shown in Fig. 5. Thus, n cannot be too large in practical systems. The

results in Fig. 8 suggest that it is good enough to let n = 8. In the rest of this section, we fix n = 8 when

considering the AFOT performance.

D. Coded Caching vs. Uncoded Caching on AFOT

We show the performance of coded caching in comparison with uncoded caching on the AFOT under

different parameter settings. Two uncoded caching schemes are considered as benchmarks, namely most

popular caching (MPC) and optimal probabilistic caching (OPC).

1) Most Popular Caching (MPC): This is the special case of coded caching when n = 1. Specifically,

we store the M most popular files in each SBS. If u0 requests any of these cached files, it only connects

with the nearest SBS. If the transmission of the nearest SBS is successful, the user request is satisfied.

If not, u0 retrieves the file from an MBS. If u0 requests any of the other F − M uncached files, the

file will be transmitted directly by the MBS. Therefore, the AFOT, denoted as LM , can be calculated as

LM = q1
∑M

j=1 pj .
2) Optimal Probabilistic Caching (OPC): In the probabilistic caching strategy, each SBS caches Wj

independently with probability bj . The vector b , [b1, b2, · · · , bF ] is referred to as the caching probability

vector with constraints as
F∑

j=1

bj ≤ M . When a user submits a request for Wj , it will be associated with the

strongest SBS (in terms of the average received signal strength) that has cached the file. The probability

vector b can be optimized to maximize the AFOT. Note that this problem has been studied in [14]. We

refer readers to [14, Theorem 3].

Fig. 9 illustrates the AFOT performance with respect to cache size M . It is observed that the proposed

coded caching scheme performs significantly better than the two benchmarks. This is because coded
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Fig. 9: AFOT with respect to cache size M , with γ = 0.6, τ = −10 dB.
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Fig. 10: AFOT with respect to Zipf parameter γ, with τ = −10 dB,M = 30.

caching can fully exploit the accumulated cache size in the network. MPC, on the other hand, only enjoys

the local caching gain since the same contents are cached in each SBS. OPC improves upon MPC by

exploiting the randomness in the probabilistic caching but the gain is limited.

Fig. 10 illustrates the AFOT performance with respect to Zipf parameter γ. It is again observed that

coded caching has much better performance than MPC and OPC, especially when γ is small (γ < 1.2).
In the high γ region (γ > 1.8), most of the user requests are for the few popular files in W . Both coded

caching and OPC degenerate to MPC, which matches with the finding in Corollary 2.

In Fig. 11, we illustrate the AFOT performance with respect to the target SIR threshold τ . In the

small τ region, coded caching has much better performance due to that the accumulated cache size of

the nearest SBSs are used to store different contents. When τ increases, the performances of coded and

uncoded caching schemes all converge as expected from Corollary 2. This is because when τ is large,

the successful transmission probability for the nearest SBS in coded caching is low as shown in Fig. 2.

As a result, the chance for the SIC-based receiver to decode the second or higher order signal is much
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Fig. 11: AFOT with respect to SIR threshold τ , with γ = 0.6,M = 30.
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lower. Thus, the accumulated cache size cannot be fully exploited by coded caching. In fact, for both

coded caching and OPC, most of the cache size in each SBS is used to store the most popular contents

when the successful transmission probability for the nearest SBS has been low.

E. Coded Caching vs. MPC on AER

Finally, in Fig. 12, we illustrate the AER performance of coded caching in comparison with the

conventional MPC at different Zipf parameter γ and different cache size M . The optimal solution of

Problem 3, the coded cache problem for AER maximization, obtained via exhaustive search is also

presented for comparison. It is first seen that Algorithm 3, the proposed heuristic algorithm to solve

Problem 3, performs almost identical to the optimal solution. It is then seen that coded caching outperforms

MPC when γ → 0, i.e., the file popularity distribution is close to uniform, but the gain vanishes when

γ > 0.2. This is because the ergodic rate of each file (if cached) in coded caching is determined by the

worst SIR among all decoding layers as defined in (7) while the ergodic rate of each file (if cached) in
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MPC is always determined the nearest SBS. As such, when the Zipf parameter γ is large, the gain from

the high cache hit as a result of exploiting the accumulated cache size in coded caching is not enough to

compensate the rate loss due to SIC receiver. Thus, coded caching will degenerate to MPC when the file

popularity distribution is non-uniform.

VI. CONCLUSIONS

In this paper, we investigated the optimal coded caching in cache-enabled SCNs. We proposed a content

delivery framework for coded caching where multiple SBSs transmit concurrently upon a user request

and the user decodes independent coded packets from these SBSs with SIC-based receiver. We obtained

a closed-form expression for the success probability of each decoding layer with SIC receiver in the high

SNR region and a closed-form expression of the average fractional offloaded traffic. We also obtained a

tractable expression of the average ergodic rate. Then, a greedy-based optimal algorithm was proposed to

solve the cache placement problem for AFOT maximization. We also obtained an upper bound assuming

a limiting case that the files are split into infinite parts. Based on that, a low-complexity algorithm with

high performance was proposed for the cache placement problem. To maximize AER, we formulated

the coded cache problem as a standard MCKP and proposed a heuristic algorithm to solve it. Numerical

results showed that coded caching with SIC receiver significantly outperforms uncoded caching in terms

of AFOT performance at low SIR thresholds, even when number of segments for file splitting is small. It

was shown that coded caching degenerates to MPC in terms of AER performance unless the file popularity

distribution tends to be uniform.

APPENDIX A: PROOF OF LEMMA 1

In general, SIRk’s in (3) are correlated for different φk in the SIC receiver. To make the analysis more

tractable, we assume that the events {SIRk ≥ τ} are independent for all k ∈ N+ as in [25]. As shown

in Section V-A, ignoring such correlations has little effects on the system performance as in [25]. Hence,

the successful transmission probability for the k-th nearest SBS is

qk(τ) = Pr

[

SIRk ≥ τ

∣
∣
∣
∣

⋂

i=1,2,...,k−1

SIRi ≥ τ

]

(a)≈ Pr [SIRk ≥ τ ]

(b)
=

(

1 + τ
2
α

∫ ∞

τ−
2
α

1

1 + w
α
2

dw

)−k
(c)
=

(

1 + τ
2
α

∫ ∞

τ−
1
α

2t

1 + tα
dt

)−k

(d)
=

(

1 +
2

α
τ

2
α

∫ 1

1
1+τ

u
2
α
−1(1− u)−

2
αdu

)−k

=

(

1 +
2

α
τ

2
αB′

(
2

α
, 1− 2

α
,

1

1 + τ

))−k

. (22)

Here, (a) is due to the independence assumption as in [25]; (b) follows from [25, Lemma 3] by letting

τ = ηt; (c) is due to the change of variable t = w
1
2 ; and (d) is due to the change of variable u = 1

1+t−α .

Note that the changes of variables in (c) and (d) are to convert the unbounded integral in (b) to the

definite integral, which is numerically more convenient.

APPENDIX B: PROOF OF LEMMA 2

When mj = 0, there is no packet of Wj in each SBS. Therefore, FOT is equal to 0.
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When mj ∈ N+, we have FOT as follows.

L[mj ] =

⌈ n
mj

⌉
∑

k=1

(k − 1)mj

n

(

1− Pr

[

SIRk ≥ τ

∣
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⋂
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+ Pr

[

SIR⌈ n
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⋂
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⌉−1
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]

Pr

[
⋂

i=1,2,...,⌈ n
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⌈ n
mj

⌉
∑

k=1
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i=1

qi(τ) +

⌈ n
mj

⌉
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i=1

qi(τ). (23)

Substituting (9) from Lemma 1 into (23) and letting Qτ = 1 + 2
α
τ

2
αB′

(
2
α
, 1− 2

α
, 1
1+τ

)
, we have

L[mj ] =
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mj
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⌉(τ). (24)

Thus, Lemma 2 is proved.

APPENDIX C: PROOF OF LEMMA 4

When xj ∈
[

1
tx
, 1
tx−1

)

, tx ∈ {2, 3, · · · }, we have
⌈

1
xj

⌉
= tx. Hence L(xj) is a piece-wise linear function.

In each region xj ∈
(

1
tx
, 1
tx−1

)

, the derivative of L(xj) can be obtained as

dL(xj)

dxj

=

(
tx∑

i=1

Ci(τ)− txCtx(τ)

)

> 0. (25)

In (25), the last inequality holds due to the decreasing property of Ck(τ). Thus, L(xj) is an increasing

function.

We now prove the concavity of L(xj). Assuming xj ∈
(

1
tx
, 1
tx−1

)

and x′
j ∈

(
1

tx+1
, 1
tx

)

, we have that

dL(xj)

dxj

− dL(x′
j)

dx′
j

= tx (Ctx+1(τ)− Ctx(τ)) < 0. (26)

Equation (26) means that the successive slopes of L(xj) are decreasing. L(xj) is thus a concave function.

Lemma 4 is thus proved.
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APPENDIX D: PROOF OF LEMMA 5

When mj = 0, there is no packet of Wj in each SBS, thus the ergodic rate is 0.

When mj ∈ N+, we have

R[mj ] =

⌈
n

mj

⌉∫ ∞
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log
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]

dr

=

⌈
n

mj

⌉∫ ∞

0

Pr

[

min

(

SIR1, . . . , SIR⌈
n
mj

⌉

)

≥ 2r − 1

]

dr

=

⌈
n

mj

⌉∫ ∞

0

Pr

[

SIR1 ≥ 2r − 1, . . . , SIR⌈
n
mj

⌉ ≥ 2r − 1

]

dr
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n
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Here, (a) is due to the independence assumption of {SIRk} and (b) follows from (22) and by letting

τ = 2r − 1 in (11).

APPENDIX E: PROOF OF THEOREM 1

We assume that there are two files in W and file W1 is more popular than file W2, i.e., p1 > p2. However,

we assume that less packets of file W1 is stored in each SBS than that of file W2, i.e., m1 < m2, which

has maximized the AFOT performance. We have the sum of FOT for file W1 and file W2 as

L12 = p1L[m1] + p2L[m2]. (28)

Now, we try to store m2 packets of file W1 and m1 packets of file W2. Thus, the sum of FOT for file

W1 and file W2 can be calculated as

L21 = p1L[m2] + p2L[m1]. (29)

Then, we compare L12 with L21

L12 − L21 = (p1 − p2) (L[m1]− L[m2]) . (30)

We have known that L[mj ] is an increasing sequence of mj . Therefore, L[m1] < L[m2]. Then, we can

get L12 < L21. That means if we store m2 packets of file W1 and m1 packets of file W2, AFOT can be

larger. Therefore, more popular files store more packets in cache.

APPENDIX F: PROOF OF COROLLARY 2

Let x =
(

1 + 2
α
τ

2
αB′

(
2
α
, 1− 2

α
, 1
1+τ

))−1

. For τ > 0, x ∈ (0, 1) is a decreasing function of τ . Define

g(x) =
∑n

k=1 Ck(τ)

C1(τ)−C2(τ)
. We thus have

dg(x)

dx
=

n∑

k=1

x
k(k+1)

2

(
k(k+1)

2
− 1− x2

(
k(k+1)

2
− 3
))

x2 (1− x2)2
. (31)

Since x ∈ (0, 1), dg(x)
dx

> 0. Thus, g(x) is an increasing function of x. Overall,
∑n

k=1 Ck(τ)

C1(τ)−C2(τ)
∈ (1,+∞) is

a decreasing function of τ . If pM > pM+1, there must exist a τ0 > 0 such that inequality (16) satisfies

when τ ≥ τ0. The first part of the Corollary is thus proven.
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Furthermore, if the file popularity follows the Zipf distribution with shape parameter γ > 0, i.e.,

pj = j−γ/
∑F

f=1 f
−γ, j ∈ F . We then have

pM
pM+1

=

(

1 +
1

M

)γ

> 1. (32)

Equation (32) is an increasing function of γ. Hence, for any given τ > 0, there must exist a γ0 > 0 such

that inequality (16) satisfies when γ ≥ γ0. The second part of the Corollary is also proven.
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