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Primary Channel Gain Estimation for Spectrum
Sharing in Cognitive Radio Networks
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Abstract—In cognitive radio networks, the channel gain be- obtain higher spectrum utilization efficiency, both of wic

tween primary transceivers, namely, primary channel gain,is
crucial for a cognitive transmitter (CT) to control the tran smit
power and achieve spectrum sharing. Conventionally, the pr
mary channel gain is estimated in the primary system and thus
unavailable at the CT. To deal with this issue, two estimatcs
are proposed by enabling the CT to sense primary signals. In
particular, by adopting the maximum likelihood (ML) criter ion to
analyze the received primary signals, a ML estimator is firstde-
veloped. After demonstrating the high computational compéxity
of the ML estimator, a median based (MB) estimator with proved
low complexity is then proposed. Furthermore, the estimatn
accuracy of the MB estimation is theoretically characterizd. By
comparing the ML estimator and the MB estimator from the
aspects of the computational complexity as well as the estation
accuracy, both advantages and disadvantages of two estinoas
are revealed. Numerical results show that the estimation eors
of the ML estimator and the MB estimator can be as small as
0.6 dB and 0.7 dB, respectively.

Index Terms—Cognitive radio, Channel Gain, Maximum like-
lihood, Median, Estimation.

I. INTRODUCTION

Cognitive radio technique is a promising candidate to de
with the spectrum shortage problem in the wireless commu-
nication [1], [2]. By coexisting with primary users on the

under-utilized licensed spectrum, cognitive users enhdne

utilization efficiency of the spectrum meanwhile leverage t
cognitive throughput. In general, cognitive users are able

coexist with primary users in two ways. Onedpportunistic
spectrum access (OSA) [3] and the other ispectrum sharing

(SS) [4], [B]. In OSA, cognitive users are allowed to acce
the spectrum only if the spectrum is idle, and have to free t
spectrum as soon as possible once the spectrum is re-odcu
In SS, cognitive users are allowed to access the spectr

even when the spectrum is occupied, provided that the
channel interference inflicted to tharimary receiver (PR)

does not violate a maximum interference power constrai
namely, interference temperature. Therefore, compared with
OSA, SS is able to exploit more spectrum opportunities a
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boost the cognitive throughput![6].1[7].][8].

In recent years, SS has been studied extensivély[[9], [10],
[11]. In these literature, the interference temperaturahef
primary system is usually assumed to be known to dbg
nitive transmitter (CT), such that the CT is able to explicitly
control the transmit power and protect primary transmissio
However, to obtain the interference temperature, the Ctismee
a backhaul link from the primary system. Then, the primary
system can transmit the information of the interferencepem
ature to the CT. In practice, there may not exist any backhaul
link between the two systems. Thus, it is challenging for the
CT to obtain the interference temperature and achieve SS in
such a situation.

In fact, the calculation of the interference temperature
is highly related to the channel gain between primary
transceivers, namely, primary channel gain. Specifically,
within a quality of service (Qo0S) guaranteed primary system,
the primary transmitter (PT) automatically adapts its transmit
power to satisfy a targetgnal to interference plus noise ratio
(SINR or SNR) at the PR or equivalently a target transmission
rate. A large primary channel gain means that the target QoS
;ﬂ a primary transmission can be easily satisfied, even when
the transmit power of primary signals is small. Under the
maximum transmit power constraint at the PT, the primary
transmission is able to tolerate a strong interferenceasign
meanwhile achieve the target QoS by increasing the transmit
power of primary signals. This leads to a large interference
temperature and contributes to a high cognitive throughput

s(gn the contrary, if the primary channel gain is small, a large

Hgnsmit power of primary signals is required to satisfy the
Arget QoS. Then, to achieve the target QoS of the primary
Hl%nsmission, only a weak interference signal can be tidra
ven when the PT works with the maximum transmit power.

his leads to a small interference temperature and reduces
II]Iftle cognitive throughput. Therefore, the primary chanraéh g
is'very important in calculating the interference tempamat
I@he detailed mathematical calculation of the interfeeenc
temperature with the primary channel gain can be found in
Appendix A.)

Conventionally, the primary channel gain is estimated in
the primary system. In particular, the PT transmits a trajni
signal to the PR through the primary channel. The PR extracts
the information of the primary channel gain from the recdive
training signal, and calculates the interference tempesat
But, the CT cannot obtain the primary channel gain. To deal
with this issue, we propose new methods for the CT to estimate
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the primary channel gain, such that the CT is able to caleulat
the interference temperature and achieve SS. We note #rat th
exists an implicit relation between primary signals and the
primary channel gain. As a consequence, it is possible for th
CT to exploit the relation to estimate the primary channa@hga

In principle, within a QoS guaranteed primary system, prima
signals are carefully designed based on the primary channel
gain. In particular, if the primary channel gain is strongg t
PT is able to satisfy the target QoS with a low transmit power.
Otherwise, the PT needs to increase its transmit power to
compensate for the target QoS. In other words, primary &gna
contain some information of the primary channel gain. Thus,
it becomes possible for the CT to obtain the primary channel
gain. Figure 1. System model, which consists of a PT, a PR, and an@rticular,

In this paper, we develop two estimators, i.e., a highhe PT is transmitting data to the PR on a wireless channeanMile, the
complexity maximum likelihood (ML) estimator and a low- ]%I |Snstends to estimate the primary channel gain between tharfd the PR
complexitymedian based (MB) estimator, for the CT to obtain '
the primary channel gain. Numerical results show that the es
timation errors of the ML estimator and the MB estimator cagyr SS. In what follows, we will present the channel model
reach as small a&6 dB and0.7 dB, respectively. Meanwhile, and signal model in the considered system, respectively.
the ML estimator outperforms the MB estimator in terms of
the estimation error if the SNR of the received primary signa
at the CT is no smaller thahdB. Otherwise, the MB estimator A Channel Model
is superior to the ML estimator from the aspect of both the Block fading channels are considered among three users.
computational complexity and the estimation accuracy. Specifically, if we denotéy, (k1) and go (¢1) as the small-

To our best knowledge, this is the first work that considetgale block fading and the large-scale channel gain cosifigi
unknown interference temperature at the CT and estimages Between the PT and PR (CT), the channel between the PT and
primary channel gain for SS. The main contributions of thisR (CT) is hoy/g0 (h1y/g1)- On one hand|h;| (i = 0, 1)
paper are as follows: follows a Rayleigh distribution with unit mean, (: =0, 1)

¢ By enabling the CT to sense primary signals and adoptingmains constant within each block and varies indepengentl
the ML criterion to analyze the received primary signals, wemong different blocks. On the other hang,(i = 0, 1) is
develop a ML estimator for the CT to obtain the primaryletermined by the path-loss model. If we adopt the path loss
channel gain. In particular, the ML estimator is obtained byodel [14]
solving a nonlinear equation. To shed more light on the esti-
mator design, we study the property of the nonlinear equatio £(di) = 128 +37.6logyo(d;), for d; >0.035 km, (1)
and develop a bisection method to solve it. In addition, Wghered; (km) is the distance between two transceivers, the
analyze the computational complexity of the ML estimator. |arge-scale channel gaip is

e After demonstrating the high computational complexity 198 1376
of the ML estimator, we develop a MB estimator with proved 9i =1077%d;7>", for d; > 0.035 km, )

low complexity. By denotings” as the number of the received, g remains constant all the time for a given distadice
primary signals, we derive both lower and upper bounds of t\,5 the CT needs to estimate the primary channel gain
an estimation with a certain probability. In particulareth go from the PT to PR for SS. Since we focus on the sensing

probability is expressed as a functionfand monotonously phase for the CT to estimate the primary channel gain, we will
increases a#’ grows. We also study the performance limit 0Eot discuss the transmission phase in the rest of this paper.
the MB estimator wher grows to the infinity. Furthermore,

we analyze the computational complexity of the MB estimator

e By comparing the ML estimator and the MB estimatoB. Signal Model
from the aspects of the computational complexity as well as1) ggnal Model from the PT to PR: Denote z, as the
the estimation accuracy, both advantages and disadvantagémary signal with unit power, ielr,> = 1. If the PT
of two estimators are revealed. Numerical results verify ogansmits the primary signal with powgs, the received signal
theoretical analysis. at the PR in block: is

Yp(k) = ho(k)/ gopo(k)xp(k) + ny(k), ®3)

P\ﬁvherenp represents the AWGN at the PR with zero mean and
ariances?. Then, the SNR of the received primary signal at

Il. SYSTEM MODEL

Fig.[d provides the system model, which consists of a

a PR, and a CT. In particular, the PT is transmitting data ﬁe PR is
the PR on a wireless channel. Meanwhile, the CT intends 10 |ho (k)2 gopo (k)
estimate the primary channel gain between the PT and the PR Yp(k) = — 2 (4)



We further consider that the PT and PR adolgise loop B. Estimator Design
power control (CLPC) to provide QoS guaranteed wireless By removing the block index in (8) and writing [8) into
communication [[15], [16], [[17],[[18]. That means, the Pkhe form of dB, we have
automatically adjusts its transmit power to meet a certaiget

SNR ~r at the PR. Then, PT’s transmit power satisfies Ye,dB = V1,dB + 91,48 — go,aB + 10log;(¢, )
yro? where the subscript dB of a parameter is the unit of the param-
po(k) = ho(B) 290 (3)  eter, and the random variabfeis defined as) = |h1|?/|ho>.

Since¢ is a random variabley. 45 in (@) is also a random
variable. Then, theumulative density function (CDF) of v 45
can be expressed as

2) Sgnal Model from the PT to CT: In the meantime, the
received primary signal at the CT in bloékis

yc(k) = hl(k) V glp()(k)xp(k) + nc(k)a (6) FFc,dB ('YC,dB) =Pr {'YT.,dB + 91,dB — 90,dB
wheren,. is the AWGN at the CT with zero mean and variance +10log;0¢ < Ye,aB}
o2. Then, the SNR of the received primary signal at the CT Ye,dB~VT,dB~91,dB+90,dB
is :Pr{¢§10 10 }
h (k)|291p0(k) o - -9 +9
’Yc(k) _ | 1 - ) (7) =F¢ (10 c,dB T,dB10 1,dB o,dB) 7 (10)
By substituting [(5) into[(7);. (k) in (7) can be rewritten as where Fi(-) denotes the CDF af.
1 (k)2 Since|h;| (¢ = 0, 1) follows a Rayleigh distribution with
Yelk) = LI UST (8) unit mean, the CDF o = |h1|2/|ho|? is [20]
g0 |ho(k)] 8
F. = —. 11
2(0) = 15 (11)

1. M AXIMUM LIKELIHOOD (ML) ESTIMATOR Substituting [[TL) into[{10), we have the CDF f s as

Ye,dB~YT,dB~91,dB190,dB
10

In this section, we develop a ML estimator to obtain the

primary channel gairy, between the PT and the PR. In  Fp_ . (vcaB) = 10 ety (12)
what follows, we provide the basic principle of the estimato 14+10— T ’
followed by the estimator design and analysis. By taking the derivation oft_ ,,, (Ye,az) in terms ofy. 4z,
we have theprobability density function (PDF) of y. 45 as
A. Basic Principle f (Ye.an) :M
' 0Ye,dB

As aforementioned, within a QoS guaranteed primary sys- 1010 4 2 JT-dBT91,dB~90.dB ~Ve.dB
tem, primary signals are carefully designed based on the _ 10 10 0 _ (13)
primary channel gain. In particular, if the primary channel (1 I 10VT@B”LdB;fU,dB*%dB)2
gain is strong, the PT is able to satisfy the target QoS with

a small transmit power of primary signals. Otherwise, the PT For K independent blocks, the CT is able to measHre
increases its transmit power to compensate for the targ8t Qindependent values of. 45, i.€., v.qp(k) (1 < k < K).
In other words, primary signals contain some information dthen, the joint PDF ofy. 45(k) (1 <k < K) is
the primary channel gain. Thus, the CT can obtain the primary
channel gain by sensing primary signals. f (ve,ap(1);7¢,aB(2), - Ve,an (K))

By sensing the received primary signals, the CT can obtain
the SNR of the received primary signal as shown[ih (8). s i1
From [8), each SNR of the received primary signal at the _H a1, 90,48 —Ve.dn (®) \ 2
CT is highly related to the primary channel gajn Then, it =1 <1 +10 ™ >
is possible for the CT to measure the SNR of the received o ) )
primary signal and estimatg,. However, it is difficult to  Based on the ML criterioryo ¢ can be approximated with
obtain g, directly from [8). This is because, each SNR i€ largest probability by the optimaf ;, which maximizes
@) is also affected by random small-scale fadings and sari@€ 10int PDF £ (7c.ap(1), ve,aB(2); -, ve.an(K)). Thus, we
independently among different blocks. Alternatively, 16& shall find the optimal; ;5 in the following.
can measure different SNRs of primary signals in multiple 12King the logarithm operation on both sides [ofl(14), we
blocks and utilize the distribution knowledge of the snssiale NaVve
fadings to estimatg,. We note that the ML criterion is able  logof (Ye,aB (1) ,7e,aB (2) - .-, Ye,dB (K))
to efficiently extract the common information from multiple K
data and performs well for parameter estimations [19]. Thus= Z {log10 (ln 10 x 10
we adopt the ML criterion and develop a ML estimator for k=1

rned%TRTO obtain the primary channel gajn between the PT ~2log,, (1 410

Y7,dB+91,dB ~90,dB ~Yc,d B (k)

(14)

Y7,dB191,dB~90,dB ~Ye,dB (k) >
T

(15)

Y1,dB+91,dB~90,dB ~Ye,dB (k)
10 —1



Taking the derivation of{(15) in terms @f 45, we obtain PR is in the coverage of the PT, and the maximum coverage
radiusdy = R of the PT can be substituted infd (2) to calculate
9l c.aB(1), Ve aB(2), .o, Ve.an (K L o0 ; .
{10810/ (e.d( )87 @8 (2), -, Yean(K))} 9o'dp » €4 9o = —128 — 37.6log;(R). For instance, we
90.dB suppose that the PT is a base station of a cell, the radiugof th

+ - —e, .
VT,aB+91,4B=90,dB = Ve,dB 1) cell can be known by the CT and be used to calculgtg.

K
1 10 10 —
- Z <E x 10w,ds+al,dsggo,d3fwc,ds 1 (16) On the other hand, the large-scale channel gaihlin (2) resjuir
k=1 + that the distance between two transceivers is no lessxian

Thus, we can find the optimalgs,; by solving km, g3 can be calculated by substitutingg = 0.035 km

3{10&01"(%@3<1>673313§<2>=---=70de<K>>} -0, ie., into (2), i.e., g3 = —128 — 37.6log,((0.035). Similarly, if
’ another path-loss model different from (1) is adopteg);
K Y7,dB191,dB~90,dB ~Vc,dB . . . o )
1 10 10 -1 and gy’ can also be calculated with minor modifications.
Z E X 10'YT,dB+91,dBl;90,dB*7c,dB =0. (17)
k=t L ] ) Algorithm 1 Bisection Method forg; ;5.
After obtaining the optimad; , 5, we have the ML estimator ————— "
as ' Initialization
. min - gmax - gmid d the maximum tolerance erroy
=aF . 18 90,aB* 90,dB* 90,a> AN
90,48 = J0,4B (18) Iterative:
~ From [IT), the ML estimatogo qp (or the optimalg; ;5)  1: while |gg'g% — 96ip| > v do
is determined by the target SNf¥- 45 at the PR, the channel 2 gmd ITs a0 .
gain g, 45 between the PT and CT, and the SNRyp of ¢ U0dB SN
the primary signal at the CT. It is notable that 45 can & if /1 (go,dB) fl (go,dB) >0 then
be obtained by the CT through observing thedulation and 4 9odB = ggj'gB;
coding scheme (MCS) of the primary signal [13]g; 45 isa 5 else _
deterministic function of the distaneg between the PT and 6: 9odb = ggng;

CT, and thus can be calculated at the T, is measured 7: end if

at the CT and also known to the CT. Therefore, the CT is abls: end while

to solve [1¥) and obtain the ML estimatgr{18). However, it9: Return g3 ,5 = g{{jigB.
is difficult to solve [[1¥) directly, sincd_(17) is a non-limea :
equation ofgg qp. To deal with this issue, we will develop a
bisection method [21] to solvé (IL7) in the next part.

D. Complexity Analysis

C. Bisection Method to Solve (I7) From the previous parts, the computational complexity
of the ML estimator is dominated by solving _{17) with
Mhe proposed bisection method islgorithm [l Besides,

the computational complexity of the bisection method is

n max _ _min . .
%(logQM [27], [22], where v is the maximum
tolerance error of the bisection method &gorithm [1
Thus, the computational complexity of the ML estimator is

In this part, we first study the property ¢f {(17) and demo
strate that it is possible to solMe {17) with a bisection rodth
Then, we develop a bisection method to solvd (17) and obt
the optimalg ;-

To begin with, we denote

K 1 10WT,dBJrQl,dBl*DQo,dB*Vc,dB 1 0 (1 q(r)n;xB_q(r)niinB
o L — Og %) .
f1 (QO,dB)—I;<1O X 10vT,dBH],dB;Oyo,dB*“rc,dB ) 2
i o . (19) IV. MEDIAN BASED (MB) ESTIMATOR
By taking the derivation offi (go.q5) in terms ofgg 45, We

In the previous section, we have developed a ML estimator
to obtain an estimation of the primary channel gain. In
IT,dB*91,dB 90,45~ Ye,dB particular, the ML estimator requires to solve a nonlinear
, equation and is computationally complicated. In this secti

we will present a low complexity estimator. In what follows,
(20) Wwe provide the basic principle of the estimator followed by
the estimator design and performance analysis.

have

0f1(go.a8) ZK: —1In(10)10
390,dB N i 50(1 n 10WT,dBHl,dBl:)ao,dBﬂc,ds )2

which is smaller than or equal t6, i.e., w < 0.

) 090,48 =
In other words, f1(go.a5) monotonically decrgases 8.5 A Basic Principle
increases. Besides, we obseryg—oco) = 15 > 0 and . . . .
fi(+00) = —£ < 0. Therefore, [(I7) has a unique positive To begin with, we provide the definition of the median

solution and can be efficiently solved by a bisection metho8f @ random Yariabl@( as follows, _
We provide the detailed bisection methodAtgorithm [1 Definition 1: For a random variabl& with CDF Fx (z),
In particular, g, and gis are the initial values of the © € &, if 2, satisfies both
bisection method, and denote the minimum value and the 1
maximum value ofjo 45, respectively. On one hand, since the Fx(zy)=Pr{X <ai} =7 (21)



and

1— Fx(SC (22)

1
%)ZPI“{XZ!T%}:Q,
r1 is defined as the median of the random variakle
Based on Definition 1, we can obtain the medign,; 1
of the random variable. 45 by letting Fr_ ,, (7Vc,aB) in )
bel ie
21

(1070,43*77‘@3];91,dB+90,dB) _ 1 23)
By substituting [(II1) into[(23), we have
Ye,dB~YT,dB~91,dB190,dB
Fq> ( 10 )
Ye,dB~YT,dB~91,dB190,dB
10 10

:1 4 1070,43*“rT,dBl?)gl,dB*E/o,dB

1
==, (24)

After solving (24), the mediany, ;5 1 of the random
variablev. 45 can be derived as

Ye,dB,} =VT,dB + 91,dB — J0,dB- (25)

From (25), the median, 45 1 is a function of the primary
channel gaingg ¢5. Thus, if % dB,} is available to the CT,
go,ap can be directly calculated W|tlE(]25) However, ;5. 1
is unknown to the CT. Instead, we will first estimate, 5 1
and then obtain the estimation gf ;5 with (25).

B. Estimator Design

We first give the definition of the sample medlaﬁ] of a
random variableX as follows,
Definition 2: For a random variable&X with samplesz,,
(1 <m < M), if x5 satisfies both
2
Pr{z,, <

R 1

and 1
Pr{x,, > x%} bt

can be approximated as

K+1)_ (26)

Yeap.j ¥ Jedp (T
By substituting [(Z6) into[(25), we have the MB estimator
as

K+1

§0,dB = YT,dB + 91,dB — Ye,dB (—> . (27)

2

2) For thecasethat K iseven: WhenK is even, the sample

median is betweety. 45 (4) and .45 (5 +1). Then, the
median ofy. 45 can be approximated as

% dB (12() + Ye,dB (%

+1)
’YC dB 2 *

(28)
By substituting [(2B) into[(25), we have the MB estimator
as

Ye,dB (%) + Ye,dB (% +1)

§0,dB = YT,dB + 91,dB —
(29)

Consequently, the MB estimator can be summarize ds (30)
on the top of the next page.

From [30), the MB estimator is determined by the target
SNR 77,45, the channel gai; 45 from the PT to the CT,
and the measured SNRs at the CT, all of which are available
to CT. Thus, the estimation @b 45 can be directly calculated
with 30). In other words, the computational complexity loé t
MB estimator in [(3D) isO(1).

Theorem1: The estimation in[(30) approaches.s as K
grows to the infinity, i.e., for any: > 0,

lim Pr{|do.as — g0.a8| < 1} = 1. (31)
K—oo

Proof: The detailed proof of this Theorem is provided in

Appendix C. ]

Theoreml indicates that the estimator in_(30) is consistent.
In other words, if the numbeK of the measured SNRs at
the CT is large enough, the estimation error is negligible.
However, a largegl’ means that the CT needs to measure more
primary signals. This increases the computational conitylex
of the MB estimator. Thus, a propéf is required to balance
the estimation accuracy and the computational complerity i

x9 is defined as the sample median of the random varialygactical situations.

X.

As mentioned in the previous section, f&f independent

C. Comparison between of the ML Estimator and the MB

blocks, the CT is able to measu#€ independent samplesEstimator

of vean, 1.€., veas(k) (1 < k < K). In what follows,

we approximate the mediap), ;5 1 With the sample median

v B, of theseK samples. with the approximated ;5 1
90.dB can be estimated by calculatifg25).

In this part, we compare the ML estimator and the MB
estimator from two aspects, i.e., computational compjeiid
estimation accuracy.

1) Computational complexity comparison: As mentioned

To begin with, by sorting thé samples in ascending orderabove, the computational complexity of the ML estimator

the K samples can be relabelled as.5(k) (1 < k < K),

i.6.,9c,a5(1) <7eap(j) for 1 <i < j < K. Since the sample

mediansy; B of theseK samples for odd and evei can

be dlfferent we will discuss sample medians for odd and EVeNy) Egimation error comparison:

K separately.

and the MB estimator ar® 1oggw and O(1),
respectively. Thus, the MB estimator is much simpler than
the ML estimator.

In principle, the ML esti-
mator utilizes all the available samplesof.z, i.e.,v¢,45(k)

1) For the case that K isodd: WhenK is odd, the Sample (1 < k < K) and outputs an estimation %dB This

median isy? . 1 =Te.dB (E£1). Then, the median of. 45

is different from the MB estimator, which only utilizes the



_ K+1 .
Y1,dB + 91,dB — Ve,dB (T) , for K is odd
§o,dB = - PR X (30)
5+ 5 +1 .
Yrap + g1,ap — 222 () ;c’dB (3 ), for K is even
sample median to estimatg ;5. Ideally, the more samples s ! ! —6—— ML estimator

one estimator utilizes, the more accurate the estimation is 1.4
In fact, each sample of. q4p is physically measured at the

CT and disturbed by the noise. Thus, each sample contains!=3[
both the information ofjy 4z and noise. In particular, if each 2 12k
measured SNR sample of 45 is large, i.e., the conveyed
information of each sample is much more than the contain
noise, estimators are able to extract more knowledag ok
from more samples, and obtain more accurate estimations.
Otherwise, estimators will be more confused by more sample§ 0.9
and thus output less accurate estimations. Therefore, the N
estimator is expected to outperform the MB estimation in : : : : : : :
terms of the estimation accuracy when the measured SNRSo7L . 0 o0 wio oo oo doog ot o
at the CT are large. Otherwise, the MB estimator is superior : : :
to the ML estimator. This is verified through numerical résul EXRER IR 025

| =% MB estimator

on erg_r, e(d

0.8

V. NUMERICAL RESULTS ) o o )
Figure 2. The estimation errors with different distandgsbetween the PT

In this section, we provide the numerical results to demoard CT. In particular, the distanek between the PT and PR (525 km.
strate the performance of the proposed ML estimator and MB
estimator. Here, we adopt the system model in Section II, 2
where the radius of the PT’s coveragdis= 0.5 km. Besides,
we assume that the power of the AWGNoi$ = —114 dBm, 20
and the target SNR of the PR igr 45 = 10 dB, and the
number of samples to measure a SNR at the CT within ea
block is J = 100, and the tolerance error iAlgorithm 1 is
v = 0.1. Furthermore10* Monte Carlo trails are conducted
for each curve.

To begin with, we define the estimation error as

—
n
T

—
<

wn

€ = |go,aB — 9o,dB| - (32)

Average SNR at the CT %B)

Fig.[d illustrates the estimation errerwhen the distance
d, between the PT and CT grows froml km to 0.5 km.
In particular, the distancé, between the PT and PR @525
km. From this figures of the ML estimator remains at around 37 o145 02 025 03 035 04 o045 05
0.6 dB asd; grows from0.1 km to 0.35 km and increases d,(km)
from around0.6 dB to 1.45 dB asd; grows from0.35 km to
0.5 km. Meanwhile, we observe thatof the MB estimator Figure 3. Average measured _SNR at the _CT with different destad;
remains at around.68 dB for d; < 0.5 km. By comparing the tI?)JeRtV\i’segg;hlfmF.)T and CT. In particular, the distadgebetween the PT and
estimation errors of the ML estimator and the MB estimator,
the ML estimator outperforms the MB estimator fir < 0.37.

And the MB estimator is superior to the ML estimator fokm, the average transmit power of the PT remains constant
d, > 0.37. to guarantee the target SNR at the PR. &Asgrows from

Note that, the estimation error of an estimator is affected 9.1 km to 0.5 km, the channel gaig, 45 is degraded. Then,
two factors, i.e., the numbek of the measured SNRs at thethe average SNR of the measured primary signals at the CT
CT and the measure error of each SNR. SiAcén Fig.[2 is decreases from arourizb dB to around—1 dB as shown in
fixed by K = 100 asd; grows, the incurred estimation errorFig. [3. This increases the measure error of each SNR at the
by K is also fixed. Then, the variation of the estimation errd€T. By adopting these measured SNRs to estimate the primary
in this figure is caused by the measure error of each SNR. Weannel gairyg ¢z, the estimation error is increased.
analyze the variation of the estimation error as followsic8i Since the estimation error of the ML estimator for< 0.35
the distancel, between the PT and PR is fixed@&t= 0.25 km in Fig.[2 almost remains constant, the estimation error of
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Figure 4. The estimation erroes with different distancesly between the Figure 5. Average measured SNR at the CT with different destady
PT and PR. In particular, the distande between the PT and CT &1 km. between the PT and PR. In particular, the distatigebetween the PT and

PR is0.1 km.
) . 1.8 T T T T
the ML estimator caused by the measure error of each SNR is f f : : —6—— MB estimator
negligible ford; < 0.35 km, i.e., the average SNRatthe CTis | | . . . [ v __ MLestimator

accordingly no less thamdB from Fig[3. Thus, the estimation
error of the ML estimator is dominated by the the numher
of the measured SNRs at the CT when the average SNR atmé“‘{
CT is no less thais dB. Ford; > 0.35, i.e., the average SNR s
at the CT is accordingly smaller thah dB, the estimation £ !
error of the ML estimator increases ds grows. Thus, the
estimation error of the ML estimator is dominated by the thg 1
number K of the measured SNRs at the CT as well as th%
measure errors of each SNR when the average SNR at the £9.8
is smaller tharb dB. Furthermore, since the estimation error
of the MB estimator in Figl]2 remains constant thr < 0.5 0.6
km, i.e., the average SNR at the CT is accordingly no less : : : : ; .
than —1 dB from Fig.[3, the estimation error caused by the , , i i i i i i i
measure error of each SNR is negligible. Thus, the estimatio 20 40 60 80 100 120 140 160 180 200
error of the MB estimator is dominated by the numbérof Number of Blocks, K
the ,measured SNRs at the CT Wh,en the average_ SNR ",it H};%re 6. The estimation errogsof the ML estimator and the MB estimator,
CT is no less than-1 dB. Meanwhile, the MB estimator is where ML estimator denotes the estimator [of1(18) and the Mgmesor
more robust than the ML estimator respect to the measuimotes the estimator in(30).
error of each SNR. By comparing the estimation errors of
the ML estimator and the MB estimator, the ML estimator
outperforms the MB estimator when the average SNR at theerage SNR of the primary signals at the CT as shown in
CT is no less thad dB. And the MB estimator is superior toFig. [§. Based on Fid.J4 and Figl 5, the average SNR of the
the ML estimator when the average SNR at the CT is smallgrimary signals at the CT increases from arourtddB to
than4 dB. This also verified our analysis in Section IV. 35 dB. From the analysis in previous figures, the estimation
Fig.[d shows the estimation errerwhen the distance, error caused by the measure error of each SNR with the ML
between the PT and PR grows frobnl km to 0.5 km. In estimator is negligible when the average SNR of the primary
particular, the distancé, between the PT and CT &1 km. signals at the CT is no less thandB. Thus,e of the ML
From this figureg¢ of the ML estimator and the MB estimatorestimator almost remains constant in this figure. The trénd o
remain at around.6 dB and0.7 dB respectively agl, grows With the MB estimator can be similarly explained. Again from
from 0.1 km to 0.5 km. By comparing: of the ML estimator the analysis in previous figures, the estimation error whth t
and the MB estimator, the ML estimator outperforms the MBIL estimator is smaller than that with the MB estimator when
estimator. The reasons are follows: &g grows from0.1 km the average SNR of the primary signal at the CT is larger than
to 0.5 km, the primary channel gaip, 45 between the PT Or equal to4 dB. Thus, the curve of with the ML estimator
and PR decreases. To guarantee the target $Ni% at the is below that with the MB estimator in this figure.
PR, the PT increases its transmit power. This enhances thé&ig. [@ provides the estimation errerversus the number

n erro
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Figure 8. The estimation erroesof the ML estimator and the MB estimator

with imperfect information ofyr g or/andg; 4g, versus the distance;

between the PT and the CT. In particular, Case | denotes tigaefror of

Y7,4B OF 91,45 is uniformly distributed within[—3, 3] dB. Case Il denotes

that the errors of bothyr 45 and g; qp are uniformly distributed within

[—3,3] dB.

of the measured SNRs at the CT, i.&, In particular, the

distancel, between the PT and PR(s25 km and the distance ) )

d, between the PT and CT @51 km. From this figures of the @MONGgo.as, V1,45, @ndgiap in (@), ¢ of both estimators

ML estimator and the MB estimator monotonically decread® the same when the error of 4 or g1.4p is uniformly

with the growth of K. This is because, a largek means distributed within[—3, 3] dB. Case Il means that the errors of

that the ML estimator can utilize more measured SNRs at tR8th V.45 @andgy 45 are uniformly distributed withif—3, 3]

CT, which provide more information of the primary channeFPlB- From this figure, the es_tlmat|0n errors of both estingtor

gain go 4. By adopting the ML criterion, the ML estimator isin €ase | and Case Il are increased by arourd8 and1.5

able to extract more information gf._4z and outputs a more dB respectively, compared with the case where boihis

accurate estimation. This leads to a smaller estimatioor erNd 91,45 are perfect. This shows that the estimation errors

with the ML estimator, and also verifies the results in Theore®f both estimators can be no larger than aroartdB, even

2. Besides, we observe thabof the ML estimator is smaller When bothyr ap and g, 45 are imperfect, demonstrating the

than that of the MB estimator. This is reasonable, since tHPustness of the proposed two estimators. Furthermore, we

average SNR of the measured primary signals is ar@draB observe that the gap of the estimation errors between both

from Fig.[3 whend, = 0.25 km andd; = 0.1 km. From the estimators is dramatically reduced when considering ifieger

analysis of both Figl2 and Figl 3, of the ML estimator is 7.5 Or/andg, qp. This indicates that the MB estimator is
smaller than that of the MB estimator when the average SNRPre robust than the ML estimator in terms of imperfect,s

at the CT is no less thahdB. Furthermore, we observe that?"/andg.as. o o

the gap ofz with two different estimators is smaller thanl Fig. 10 illustrates the estimation errerof go qp With im-

dB, which is negligible respect to the primary channel gaR€rfect information ofyr,4p or/andg i, versus the number
90.d5- K of the measured SNRs at the CT. From this figureyf

Accordingly, Fig.[7 compares the computation complexit oth estimators in Case | and Case Il is increased by around
with the ML estimator and the MB estimator. In particular, -8 dB and1.3 dB respectively, compared with the case that

smaller required time means a lower computation complexi th yr.4p and g.qp are perfect. Besides, as increases,
From this figure, the required time to obtain an estimatid in both cases decreases. This indicates that, by increasing

with the ML estimator is almost00 times of the required t e number of the measured SNRs at_ the_CT, the impacts of
perfectyr qp Of/andg; qp on the estimation of 4z can

time with the MB estimator. This shows the advantages . 3,

the MB estimator over the ML estimator from the aspect reduced. In thI.S way, we demonstrates the flexibility ef th
computational complexity and also verifies our analysithm tproposed two estimators.
previous sections.

Fig. 9 provides the estimation errerwith imperfect infor-
mation ofyr 4p or/andg; 45, versus the distanaé between In this paper, we proposed two estimators for the CT
the PT and the CT. In particular, Case | means that the ertor estimate the primary channel gain, such that the CT is
of yr.ap Or g1,4p IS uniformly distributed within[—3, 3] dB. able to calculate the interference temperature of the pyima
Since the impacts of imperfeet; 45 and imperfectg; g System and achieve SS. In particular, we enabled the CT to
on the estimation of qp are symmetrical from the relationsense primary signals and developed two estimators torpbtai

Figure 7. Comparison of the computation complexity with e estimator
and the MB estimator. In particular, a smaller required §meeans a lower
computation complexity.

VI. CONCLUSIONS
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Figure 9. The estimation errerwith imperfect information ofyr 45 or/and
91,48, versus the numbeK of the measured SNRs at the CT. In particular,
Case | denotes that the error f 45 or g1 qp is uniformly distributed
within [—3,3] dB. Case Il denotes that the errors of beth 45 and gy qp

are uniformly distributed withif—3, 3] dB.

known at the CT by observing the MCS of the primary signal
[13], and© corresponds to a specifigr and can be known
by the CT onceyr is obtained, ana? is the power of the
AWGN and is also available at the CT. Thus, the CT is able
to calculatep; with go, pmax, Y7, ©.

B. Proof of Theorem 1

When K is odd, the sample median is’ .. =
’ ’2
Ye,an (B£1). Note that, for thes& measured SNRS..a5(k)
(1 <k< K)! we have'_yc,dB(i) < '?c.,dB(j) for 1 <i<j<
K. Then, the lower bound and the upper bound:df . , can
be denoted as :

. _(K-1
tuan =7 (“5) (35)
and K+1
foan =0 (S5 1)) 39)

respectively.

Among the K’ measured SNR§, 45(k) (1 < k < K), the
probabilities thaty. 45 (k) is smaller than or equal t9. 45
and. qp are

the primary channel gain. Numerical results show that the K—1

estimation errors of the ML estimator and the MB estimator Pr{7cap(k) < Ye.ap} = 2 _ 11 (37)
can be as small a6 dB and0.7 dB, respectively. Besides, K 2 K

the ML estimator outperforms the MB estimator in termdnd

of the estimation error if the SNR of the sensed primary B+l 1 4 3

signal at the CT is no smaller thandB. Otherwise, the MB Pr{%cap(k) < 4cap} = QT =5t o (38)

estimator is superior to the ML estimator from the aspect

both computational complexity and estimation accuracy.

VII. APPENDIX
A. Derivation of the interference temperature with gg

?éspectively.
When K is even, the sample median 'rssdel
’ 12

~ K ~ K
tean($)+7e45($41) qhen the lower bound and the upper

bound ofy? ., . can be denoted as
’ )

Consider the scenario that the PT is transmitting data to . (K
the PR with a target SNRyr. If the PR is interfered by Ye,dB = e <§>v (39)
cognitive signals and the target SN at the PR cannot be
satisfied, even when the PT works with the maximum transrif@ K
powerp,.x, an outage of the primary transmission is claimed. Ye,dB = Ve (3 + 1) ) (40)

In general, a specifier corresponds to a certain wireless )
service in the primary system and requires a preset maximi@sPectively.

outage probability®. Thus, an interference temperatyse

Among the K’ measured SNRs, 45(k) (1 < k < K), the

is imposed on the transmit power of the CT to protect tHerobabilities thaty. qp (k) is smaller or equal toy..4s and

primary transmission. Mathematically, we havel[12]

max h 2
Pr{pigd ol” WT} — o, (33)

o® +p1

wherehg denotes the small-scale block fading coefficient arfd

|ho| follows a Rayleigh distribution with unit mean, agd is
the large-scale channel gain between the primary trarseeiv

Ye,dap are
K 1
Pri{~. k) <A =2 == 41
r{Yean(k) < Yeant = 4= =5 (41)
K

>4+1 1 1

~ < I = 2 = — —_
Pr {VC,dB(k) = VC,dB} K D) + Ka (42)

and o2 represents the power of the AWGN. From](33), th?espectively.

interference temperatugg can be calculated as

br
YT

— —Pmaxgo0 hl(l B 6) 0,2. (34)

Based on[(37)[(38)[(41), and_{42), for ahy, we have

From [34), the interference temperatysg is related to and

Pmaxs YT, O. In particular,p,, .« is a typical value of a PT and
can be known as a prior knowledge at the CT, aipdcan be

1 1 1

- __—< ~ <A <=

2 K — Pr {lycadB (k) — 707dB} — 2 (43)
1 1 1 3
_+ < ~ <4 <42
9 + K = Pr {/Yc,dB(k) ~ VC,dB} =9 + 2K7 (44)



respectively.
When K goes to the infinity, i.e. X — oo, (43) and [(44)
become

(3]
(4]

1 1
- < Ir. (Y < = 45
5 Mo = f'r, (7 ,dB) =3 (45) [5]
and 1 / 1 3
=+ po < Fr, (e,aB) < 5 + 7 o, (46)
2 2 2 6]

where y is defined asuy = lim +
K—oo

7 and is an arbitrarily
small and positive value.

(7]

Since the median, ;5 1 satisfiesFr, (%,dB.é) =1, we
have [8]
Pri{Fr, (Yeas 1) — Fr. Vean) < =1 47

{ r. (’Y ,dB,;) . (Ye.dB) HO} (47) ]
and
) 310
PF{FFC (7c,dB,%) = Fr. (Ye,aB) > 7} =1  (48) pq
respectively.
Combining [4Y) and[{48), we obtain [11]
3 .
Pr {-% < Ir, ('Yc,dB,%) = Ir, (Je,aB)
(49)

R [12]
< Fr, (%,dB,%) = Fr, (Yean) < Mo} =1

Since Fr,(v.,4p) is a continuous and monotonically in-
creasing function ofy. 45, the following inequations hold,

Fr, (7c,dB,%) — Fr. (Ye,aB)
< Fr, (’Yc,dB,%) — Fr. ('Vcs,dB,%)
< Fr, (’VC,dB,%) — Fr, (Ye,dB) -
Based on[(49) and (50), we obtain
Pr{—guo < Fr, (%,dB.,%) — Iy, (v(f,dB,%) < uo} =1.
(51)

Then, we can always find an arbitrarily positive and smdf®!
11 satisfying

[13]
[14]
[15]
(50) [16]

[17]

[19]
[20]

Pr{—ul <Ye,aB,t = Vet < Ml} =1 (52)

Based on[{52) and the relations betwegn;z and . 45
in (@), we can always find an arbitrarily positive and small 21]
satisfying

Pr{—u < goas — Jo.ap < p} =1, (53) [22]
which can be rewritten as
Pr{|go,aB — go,aB| < p} = 1. (54)

This completes the proof of Theorem 1.
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