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Abstract—Decentralized proactive caching and coded delivery
is studied in a content delivery network, where each user is
equipped with a cache memory, not necessarily of equal capacity.
Cache memories are filled in advance during the off-peak traffic
period in a decentralized manner, i.e., without the knowledge of
the number of active users, their identities, or their particular
demands. User demands are revealed during the peak traffic
period, and are served simultaneously through an error-free
shared link. The goal is to find the minimum delivery rate during
the peak traffic period that is sufficient to satisfy all possible
demand combinations. A group-based decentralized caching and
coded delivery scheme is proposed, and it is shown to improve
upon the state-of-the-art in terms of the minimum required
delivery rate when there are more users in the system than
files. Numerical results indicate that the improvement is more
significant as the cache capacities of the users become more
skewed. A new lower bound on the delivery rate is also presented,
which provides a tighter bound than the classical cut-set bound.

Index Terms—Coded caching, decentralized caching, distinct
cache capacities, network coding, proactive caching.

I. INTRODUCTION

The ever-increasing mobile data traffic is imposing a

great challenge on the current network architectures. The

growing demand has been typically addressed by increasing

the achievable data rates; however, moving content to the

network edge has recently emerged as a promising alternative

solution as it reduces both the bandwidth requirements and

the delay. In this paper, we consider an extreme form of edge

caching, in which contents are stored directly at user terminals

in a proactive manner. Proactive caching of popular contents,

e.g., trending Youtube videos, episodes of popular TV series,

during off-peak traffic periods also helps flattening the high

temporal variability of traffic [1], [2].

In this proactive caching model [3], the placement phase

takes place during off-peak traffic hours when the resources are

abundant, without the knowledge of particular user demands.

When the user demands are revealed, the delivery phase is

performed, in which a common message is transmitted from

the server to all the users over the shared communication

channel. Each user decodes its requested file by combining the
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bits received in the delivery phase with the contents stored in

its local cache. Cache capacities are typically much lower than

the size of the whole database, and a key challenge is to decide

how to fill the cache memories without the knowledge of the

user demands in order to minimize the delivery rate, which

guarantees that all the user demands are satisfied, independent

of the specific demand combination across the users. Maddah-

Ali and Niesen showed in [3] that by storing and transmitting

coded contents, and designing the placement and delivery

phases jointly, it is possible to significantly reduce the delivery

rate compared to uncoded caching.

A centralized caching scenario is studied in [3], in which

the number and the identities of the users are known in

advance by the server. This allows coordination of the cache

contents across the users during the placement and delivery

phases, such that by carefully placing pieces of contents in

user caches a maximum number of multicasting opportunities

are created to be exploited during the delivery phase. Many

more recent works study centralized coded caching, and the

required delivery rate has been further reduced [4]–[9].

In practice, however, the number or identities of active users

that will participate in the delivery phase might not be known

in advance during the placement phase. In such a scenario,

called decentralized caching, coordination across users is

not possible during the placement phase. For this scenario

Maddah-Ali and Niesen proposed caching an equal number

of random bits of each content at each user, and showed that

one can still exploit multicasting opportunities in the delivery

phase, albeit limited compared to the centralized counterpart

[10]. Decentralized caching has been studied in various other

settings, for example, with files with different popularities

[11], [12], and distinct lengths [13], for online coded caching

[14], coded caching of files with lossy reconstruction [15],

as well as delivering contents from multiple servers over an

interference channel [16], and in the presence of a fading

delivery channel [17].

Most of the literature on coded caching assume identical

cache capacities across users. However, in practice users

access content through diverse devices, typically with very

different storage capacities. Centralized caching with distinct

cache capacities is studied in [15] and [18]. Recently, in

[19], decentralized caching is studied for heterogeneous cache

capacities; and by extending the scheme proposed in [10] to

this scenario, authors have shown that significant gains can

still be obtained compared to uncoded caching despite the

asymmetry across users. In this paper, we propose a novel

decentralized caching and delivery algorithm for users with

http://arxiv.org/abs/1611.01579v2
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distinct cache capacities. We show that the proposed scheme

requires a smaller delivery rate than the one achieved in [19]

when there are more users in the system than the number of

files in the library, while the same performance is achieved

otherwise. This scenario is relevant when a few popular video

files or software updates are downloaded by many users within

a short time period. Simulation results illustrate that the more

distinct the cache capacities of the users are, which is more

likely to happen in practice, the higher the improvement

(with respect to [19]). We also derive an information-theoretic

lower bound on the delivery rate building upon the lower

bound derived in [20] for homogeneous cache capacities. This

provides a lower bound on the delivery rate that is tighter than

the classical cut-set bound.

The rest of this paper is organized as follows. The system

model is introduced in Section II. In Section III, we present

the proposed caching scheme as well as a lower bound on

the delivery rate- cache capacity trade-off. The performance

of the proposed coded caching scheme is compared with the

state-of-the-art result analytically, and some numerical results

are presented in Section IV. We conclude the paper in Section

V. The detailed proofs are given in the Appendices.

Notations: The set of integers {i, ..., j}, where i ≤ j, is de-

noted by [i : j]. We denote the sequence Yi, Yi+1, . . . , Yj−1, Yj
shortly by Y[i:j].

(

j
i

)

represents the binomial coefficient. For

two sets Q and P , Q\P is the set of elements in Q that

do not belong to P . Notation |·| represents cardinality of a

set, or the length of a file. Notation ⊕ refers to bitwise XOR

operation, while ⊕̄ represents bitwise XOR operation where

the arguments are first zero-padded to have the same length as

the longest argument. Finally, ⌊x⌋ denotes the floor function;

and (x)
+ ∆
= max {x, 0}.

II. SYSTEM MODEL

A server with a content library of N independent files

W[1:N ] is considered. All the files in the library are assumed

to be of length F bits, and each of them is chosen uniformly

randomly over the set
[

1 : 2F
]

. There are K active users,

U[1:K], where Uk is equipped with a cache memory of capacity

MkF bits, with Mk < N , ∀k1. Data delivery is divided

into two phases. User caches are filled during the placement

phase. Let Zk denote the contents of Uk’s cache at the end

of the placement phase, which is a function of the database

W[1:N ] given by Zk = φk
(

W[1:N ]

)

, for k ∈ [1 : K]. Unlike

in centralized caching [3], cache contents of each user are

independent of the number and identities of other users in

the system. User requests are revealed after the placement

phase, where dk ∈ [1 : N ] denotes the demand of Uk,

for k ∈ [1 : K]. These requests are served simultaneously

through an error-free shared link in the delivery phase. The

RF -bit message sent over the shared link by the server

in response to the user demands d[1:K] is denoted by X ,

where X ∈ [1 : 2RF ], and it is generated by the encoding

function ψ, i.e., X = ψ
(

W[1:N ], d[1:K]

)

. Uk reconstructs its

requested file Wdk
after receiving the common message X

1If Mk ≥ N , for k ∈ [1 : K], Uk has enough memory to cache all the
database; so, Uk does not need to participate in the delivery phase.

in the delivery phase along with its cache contents Zk. The

reconstruction at Uk for the demand combination d[1:K] is

given by Ŵdk
= ρk

(

Zk, X, d[1:K]

)

, ∀k ∈ [1 : K], where ρk is

the decoding function at user Uk. For a given content delivery

network, the tuple
(

φ[1:K], ψ, ρ[1:K]

)

constitute a caching and

delivery code with delivery rate R. We are interested in

the worst-case delivery rate, that is the delivery rate that is

sufficient to satisfy all demand combinations. Accordingly, the

error probability is defined over all demand combinations as

follows.

Definition 1. The error probability of a
(

φ[1:K], ψ, ρ[1:K]

)

caching and delivery code described above is given by

Pe , max
d[1:K]∈[1:N ]K

Pr

{

K
⋃

k=1

{

Ŵdk
6=Wdk

}

}

. (1)

Definition 2. For a content delivery network with N files and

K users, we say that a cache capacity-delivery rate tuple
(

M[1:K], R
)

is achievable if, for every ε > 0, there exists

a caching and delivery code
(

φ[1:K], ψ, ρ[1:K]

)

with error

probability Pe < ε, for F large enough.

There is a trade-off between the achievable delivery rate R
and the cache capacities M[1:K], defined as

R∗
(

M[1:K]

) ∆
= min

{

R :
(

M[1:K], R
)

is achievable
}

. (2)

In this paper, we present upper and lower bounds on this trade-

off.

III. THE GROUP-BASED DECENTRALIZED CACHING

(GBD) SCHEME

Here, we present the proposed group-based decentralized

(GBD) caching scheme, first for uniform cache capacities, and

then extend it to the scenario with distinct cache capacities.

A. Uniform Cache Capacities

Here we assume that each user has the same cache capacity

of MF bits, i.e., M1 = · · · =MK =M .

Placement phase: In the placement phase, as in [10], each

user caches a random subset of MF/N bits of each file

independently. Since there are N files, each of length F bits,

this placement phase satisfies the memory constraint.

For any set V ⊂ [1 : K], Wi,V denotes the bits of file Wi

that have been exclusively cached by the users in set V , that

is, Wi,V ⊂ Zk, ∀k ∈ V , and Wi,V ∩Zk = ∅, ∀k ∈ [1 : K] \V .

For any chosen bit of a file, the probability of having been

cached by any particular user is M/N . Since the contents are

cached independently by each user, a bit of each file is cached

exclusively by the users in set V ⊂ [1 : K] (and no other user)

with probability (M/N)
|V|

(1−M/N)
K−|V|

.

Delivery phase: Without loss of generality, we order the

users such that the first K1 users, referred to as group G1,

demandW1, the nextK2 users, referred to as group G2, request

W2, and so on so forth. We define Si
∆
=

i
∑

l=1

Kl, which denotes

the total number of users in the first i groups. Hence, the user

demands are as follows:

dk = i, for i = 1, ..., N, and k = Si−1 + 1, ..., Si, (3)
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Algorithm 1 Coded Delivery Phase for Uniform Cache Ca-

pacities Scenario

1: procedure CODED DELIVERY

2: Part 1: Delivering bits that are not in the cache of any

user

3: for i = 1, . . . , N do

4: send WdSi−1+1,∅

5: end for

6: Part 2: Delivering bits that are in the cache of only

one user

7: send
N
⋃

i=1

Si−1
⋃

k=Si−1+1

(

Wi,{k} ⊕Wi,{k+1}

)

8: send
N−1
⋃

i=1

N
⋃

j=i+1

(

Sj−1
⋃

k=Sj−1+1

(

Wi,{k} ⊕Wi,{k+1}

)

,

Si−1
⋃

k=Si−1+1

(

Wj,{k} ⊕Wj,{k+1}

)

,

(

Wi,{Sj−1+1} ⊕Wj,{Si−1+1}

)

)

9: Part 3: Delivering bits that are in the cache of more

than one user

10: for V ⊂ [1 : K] : 3 ≤ |V| ≤ K do

11: send
⊕

v∈VWdv,V\{v}

12: end for

13: end procedure

14: procedure RANDOM DELIVERY [10]

15: for i = 1, . . . , N do

16: send sufficient random linear combinations (for

reliable decoding) of the bits of file Wi to the users

requesting it

17: end for

18: end procedure

where we set S0 = 0.

There are two alternative delivery procedures, called

CODED DELIVERY and RANDOM DELIVERY, presented

in Algorithm 1. The server follows the one that requires a

smaller delivery rate. We present the CODED DELIVERY

procedure of Algorithm 1 in detail, while we refer the reader

to [10] for the RANDOM DELIVERY procedure, as we use

the same procedure in [10] for the latter.

The main idea behind the CODED DELIVERY procedure

is to deliver each user the missing bits of its request that have

been cached by i user(s), ∀i ∈ [0 : K − 1]. In the first part,

the bits of each request that are not in the cache of any user

are directly delivered. Each transmitted content is destined for

all the users in a distinct group, which have the same request.

In part 2, the bits of each request that have been cached

by only one user are served. Note that, for any i ∈ [1 : N ],
each user Uk in Gi, k ∈ [Si−1 + 1 : Si], demands Wi and

has already cached Wi,{k}. Thus, having received the bits

delivered in line 7 of Algorithm 1, Uk can recover Wi,{l},

∀l ∈ [Si−1 + 1 : Si], i.e., the bits of Wi cached by all the

other users in the same group.

With the contents delivered in line 8 of Algorithm 1, each

user can decode the subfiles of its requested file, which have

been cached by users in other groups. Consider the users in

two different groups Gi and Gj , for i = 1, ..., N − 1 and

j = i + 1, ..., N . All users in Gi can recover subfile Wj,{Si}

after receiving
Si−1
⋃

k=Si−1+1

Wj,{k} ⊕Wj,{k+1}. Thus, they can

obtain all subfiles Wi,{l}, ∀l ∈ [Sj−1 + 1 : Sj], i.e., subfiles

of Wi having been cached by users in Gj , after receiving

Wi,{Sj−1+1}⊕Wj,{Si−1+1} and
Sj−1
⋃

k=Sj−1+1

Wi,{k} ⊕Wi,{k+1}.

Similarly, all users in Gj can recover Wi,{Sj} after re-

ceiving
Sj−1
⋃

k=Sj−1+1

Wi,{k} ⊕Wi,{k+1}. Hence, by receiving

Wi,{Sj−1+1}⊕Wj,{Si−1+1} and
Si−1
⋃

k=Si−1+1

Wj,{k} ⊕Wj,{k+1},

all users in Gj can recover all the subfiles Wj,{l}, ∀l ∈
[Si−1 + 1 : Si], i.e., subfiles of Wj that have been cached by

users in Gi.

In the last part, the same procedure as the one proposed

in [10] is performed for the missing bits of each file that

have been cached by more than one user. Consider any subset

of users V ⊂ [1 : K], such that 3 ≤ |V| ≤ K . Each user

v ∈ V can recover subfile Wdv ,V\{v} after receiving the coded

message delivered through line 11 of Algorithm 1. Hence,

together with the local cache content and the contents delivered

by the CODED DELIVERY procedure in Algorithm 1, each

user can recover its desired file.

Comparison with the state-of-the-art: Here we compare

the delivery rate of the proposed GBD scheme with that of

the scheme proposed in [10, Algorithm 1] for uniform cache

capacities scenario. The RANDOM DELIVERY procedure in

Algorithm 1 is the same as the second delivery procedure

of [10, Algorithm 1]. Thus, we focus only on the CODED

DELIVERY procedure, and compare it with the first delivery

procedure in [10, Algorithm 1]. The two procedures differ in

the first and second parts. Consider a demand combination

d[1:K] with N ′ different requests, i.e.,

dk = i, for i = 1, ..., N, and k = Si−1 + 1, ..., Si, (4)

such that Si > 0, for i = 1, ..., N ′, and Si = 0, for

i = N ′ + 1, ..., N . In the first part of CODED DELIVERY

procedure in Algorithm 1, the bits of each N ′ different

requested files, which have not been cached by any user, are

delivered. A total of N ′(1 −M/N)KF bits are delivered in

this part. On the other hand, in the first delivery procedure

in [10, Algorithm 1], a total number of K(1 − M/N)KF
bits are delivered to serve the users with the bits which are

not available in the cache of any user. From the fact that

N ′ ≤ min{N,K} for any demand combination, the required

number of bits delivered over the shared link in the first part of

the CODED DELIVERY procedure in Algorithm 1 is smaller

than or equal to that of the equivalent part in [10, Algorithm

1]. We further note that, if N < K , CODED DELIVERY

procedure in Algorithm 1 delivers strictly less bits than [10,

Algorithm 1] for this part of the delivery phase.

Next, we consider the second part of the CODED DE-
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Fig. 1. Illustration of the subfiles, each corresponding to the bits of the file cached by a different subset of users.

LIVERY procedure. It is shown in Appendix A that a to-

tal of N ′ (K − (N ′ + 1)/2) coded contents, each of length

(M/N)(1−M/N)K−1F bits, are delivered in the second part

of the CODED DELIVERY procedure of the GBD scheme,

leading to a delivery rate of

RU
GBD

∆
= N ′

(

K −
N ′ + 1

2

)(

M

N

)(

1−
M

N

)K−1

. (5)

On the other hand, the first delivery procedure in [10, Algo-

rithm 1] sends a total of
(

K
2

)

coded contents in order to serve

each user with the bits that have been cached by another user,

leading to a delivery rate of

RU
b

∆
=
K (K − 1)

2

(

M

N

)(

1−
M

N

)K−1

. (6)

Since, N ′ ≤ K , we have RU
GBD ≤ RU

b , where the equality

holds only if N ′ = K and N ′ = K − 1. Thus, for the case

N < K − 1, which results in N ′ < K − 1, we have RU
GBD <

RU
b , in which case the second part of the CODED DELIVERY

procedure of the GBD scheme requires a smaller delivery rate

than that of [10, Algorithm 1].

Remark 1. The scheme proposed in [10] treats the users

with the same demand as any other user, and it delivers the

same number of bits for any demand combination; that is,

for demand combination d[1:K], and any non-empty subset of

users V ⊂ [1 : K], it sends the coded content
⊕

v∈V
Wdv ,{V}\{v}, (7)

of length (M/N)|V|−1(1 − M/N)K−|V|+1, regardless of

the redundancy among user demands. Instead, the proposed

scheme treats the users with the same demand separately when

delivering the bits of each file, and does not deliver redundant

bits for the same demand.

B. Distinct Cache Capacities

In this section, we extend the proposed GBD scheme to

the scenario with distinct cache capacities. We start with an

illustrative example. It is then generalized to an arbitrary

network setting. A new lower bound on the delivery rate is

also obtained.

Example 1. Consider N = 2 files, W1 and W2, and K =
4 users. Let the cache capacity of Uk be given by Mk =
(1/2)

4−k
Mmax, ∀k ∈ [1 : 4].

In the placement phase, Uk caches a random subset of

MkF/2 bits of each file independently. Since there are N = 2

Fig. 2. Cache contents of users U[1:4] after the placement phase.

files in the database, a total of MkF bits are cached by Uk,

filling up its cache memory. File Wi can be represented by

Wi = (Wi,V : ∀V ⊂ [1 : 4]) , for i = 1, 2. (8)

An illustration of the subfiles, each cached by a different subset

of users, is depicted in Fig. 1, and each user’s cache content

after the placement phase is shown in Fig. 2.

When N < K , it can be shown that the worst-case demand

combination is the one when each of the N users with the

smallest cache capacities requests a different file. For this

particular example, we have M1 ≤ · · · ≤M4, and accordingly,

we have the worst-case demand combination when users U1

and U2, i.e., N = 2 users with the smallest cache capacities,

request distinct files. Hence, we can assume the worst-case

demand combination of d1 = d3 = 1 and d2 = d4 = 2.

As explained in Section III-A, the delivery phase con-

sists of three distinct parts, where the bits delivered in

part i, i = 1, 2, 3, are denoted by X(i), such that X =
(X(1), X(2), X(3)). Below, we explain the purpose of each

part in detail.

Part 1: In the first part of the delivery phase, the bits of

each requested file which have not been cached by any

user are directly delivered. For the example above, the

following contents are delivered: X(1) =
(

W1,∅,W2,∅

)

.

Part 2: The bits of the requested files, which have been

cached exclusively by a single user (other than the

requester) are sent in the second part of the delivery
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Fig. 3. Illustration of the coded contents delivered in parts 1 and 2 of the
delivery phase for demand combination d1 = d3 = 1 and d2 = d4 = 2,
where the cached contents are shown in Fig. 2.

phase. The server first delivers each user the bits of

its requested file which are exclusively in the cache

of one user with the same request. Then, each user

receives the bits of its requested file which are only in

the cache of a single user with a different request. In

our example, with the following bits transmitted over the

shared link, Uk can recover all the bits of its request Wdk
,

which have been cached exclusively by Ul, for l 6= k,

k, l ∈ [1 : 4]: X(2) =
(

W1,{3}⊕̄W1,{1},W2,{4}⊕̄W2,{2} ,

W1,{4}⊕̄W1,{2}, W2,{3}⊕̄W2,{1}, W1,{2}⊕̄W2,{1}

)

. The

coded content delivered in parts 1 and 2 of the delivery

phase have been illustrated in Fig. 3.

Part 3: In the last part, the server delivers the users the

bits of their requested files which have been cached by

more than one other user. Accordingly, Uk, ∀k ∈ [1 : 4],
can obtain all the bits of file Wdk

, which are in the

cache of users in any set S ⊂ [1 : 4] \ {k}, where

|S| ≥ 2. For the example above, the following contents,

illustrated in Fig. 4, are transmitted over the shared link:

X(3) =
(

W1,{2,3} ⊕̄ W2,{1,3} ⊕̄ W1,{1,2}, W1,{2,4} ⊕̄
W2,{1,4} ⊕̄ W2,{1,2}, W1,{3,4} ⊕̄ W1,{1,4} ⊕̄ W2,{1,3},

W2,{3,4} ⊕̄W1,{2,4} ⊕̄W2,{2,3}, W1,{2,3,4} ⊕̄W2,{1,3,4}

⊕̄ W1,{1,2,4} ⊕̄ W2,{1,2,3}

)

.

After receiving these three parts, each user can decode all

the missing bits of its desired file. To find the delivery rate,

we first note that, for F large enough, by the law of large

numbers, the length of subfile Wk,V , for any set V ⊂ [1 : 4],
is approximately given by

|Wk,V | ≈
∏

i∈V

(

Mi

2

)

∏

j∈[1:4]\V

(

1−
Mj

2

)

F, ∀k ∈ [1 : 4] .

(9)

Note that, due to the ⊕̄ operation, the lengths of the delivered

segments, e.g., W1,{2,3} ⊕̄ W2,{1,3} ⊕̄ W1,{1,2}, are given

by the lengths of its longest arguments, i.e., |W1,{2,3} ⊕̄
W2,{1,3} ⊕̄ W1,{1,2}| = |W1,{2,3}|. The delivery rate is given

Fig. 4. Illustration of the coded contents delivered in part 3 of the delivery
phase for demand combination d1 = d3 = 1 and d2 = d4 = 2, where the
cached contents are shown in Fig. 2.

by the total rate of all the transmitted file segments listed

above. When Mmax = 1, i.e., M[1:K] = (1/8, 1/4, 1/2, 1),
the delivery rate is 1.758, while the scheme in [19] would

require a delivery rate of 2.681. The GBD scheme provides a

34.43% reduction in the delivery rate compared to [19] in this

example.

Next, we present our caching and coded delivery scheme

for the general case for arbitrary numbers of users and files,

followed by the analysis of the corresponding delivery rate.

Placement phase: In the placement phase, Uk caches a

random subset of MkF/N bits of each file independently,

for k = 1, ...,K . Since there are N files in the database,

a total of MkF bits are cached by Uk satisfying the cache

capacity constraint with equality. Since each user fills its cache

independently, a bit of each file is cached exclusively by the

users in set V ⊂ [1 : K] (and no other user) with probability
∏

i∈V
(Mi/N)

∏

j∈[1:K]\V

(1−Mj/N).

Delivery phase: We apply the same re-labeling of users

into groups based on their requests as in Section III-A. We

remind that the user demands are as follows:

dk = i, for i = 1, ..., N, and k = Si−1 + 1, ..., Si, (10)

where users Si−1, . . . , Si form group Gi. We further order

the users within a group according to their cache capacities,

and assume, without loss of generality, that MSi−1+1 ≤
MSi−1+2 ≤ · · · ≤MSi

, for i = 1, . . . , N .

The delivery phase of the proposed GBD scheme for distinct

cache capacities is presented in Algorithm 2. As in Section

III-A, it has two distinct delivery procedures, CODED DE-

LIVERY and RANDOM DELIVERY; and the server chooses

the one with the smaller delivery rate.

The CODED DELIVERY procedure in Algorithm 2 follows

the similar steps as the CODED DELIVERY procedure in

Algorithm 1, except that ⊕ is replaced with ⊕̄, due to the

asymmetry across the users’ cache capacities, and conse-

quently, the size of the cached subfiles by different users.

We remark that the correctness of the CODED DELIVERY
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Algorithm 2 Coded Delivery Phase for Distinct Cache Ca-

pacities Scenario

1: procedure CODED DELIVERY

2: Part 1: Delivering bits that are not in the cache of any

user

3: for i = 1, 2, . . . , N do

4: X(1) =
(

WdSi−1+1,∅

)

5: end for

6: Part 2: Delivering bits that are in the cache of only

one user

7: X(2, 1) =

(

N
⋃

i=1

Si−1
⋃

k=Si−1+1

(

Wi,{k}⊕̄Wi,{k+1}

)

)

8: X(2, 2) =
N−1
⋃

i=1

N
⋃

j=i+1

(

Sj−1
⋃

k=Sj−1+1

(

Wi,{k}⊕̄Wi,{k+1}

)

,

Si−1
⋃

k=Si−1+1

(

Wj,{k}⊕̄Wj,{k+1}

)

,

(

Wi,{Sj−1+1}⊕̄Wj,{Si−1+1}

)

)

9: Part 3: Delivering bits that are in the cache of more

than one user

10: for V ⊂ [1 : K] : 3 ≤ |V| ≤ K do

11: X(3) =
⊕

v∈VWdv ,V\{v}

12: end for

13: end procedure

14: procedure RANDOM DELIVERY

15: for i = 1, 2, . . . , N do

16: send enough random linear combinations of the

bits of Wi to enable the users demanding it to decode it

17: end for

18: end procedure

in Algorithm 2 follows similarly to the correctness of the

CODED DELIVERY procedure in Algorithm 1.

Remark 2. Note that Wi,{Sj−1+1}, ∀i, j ∈ [1 : N ] such

that i 6= j, is the smallest subfile of Wi cached exclu-

sively by one user in Gj . We also note that by sending any

coded content Wi,{k1}⊕̄Wj,{k2}, k1 ∈ [Sj−1 + 1 : Sj ] and

k2 ∈ [Si−1 + 1 : Si], instead of Wi,{Sj−1+1}⊕̄Wj,{Si−1+1}

in X(2, 2), for i = 1, ..., N − 1 and j = i +
1, ..., N , the user demands can still be satisfied. However,

Wi,{Sj−1+1}⊕̄Wj,{Si−1+1} has the smallest length among all

coded contents Wi,{k1}⊕̄Wj,{k2}, ∀k1 ∈ [Sj−1 + 1 : Sj ] and

∀k2 ∈ [Si−1 + 1 : Si], which results in a smaller delivery rate.

In the RANDOM DELIVERY procedure, as in the second

delivery procedure of [10, Algorithm 1], the server transmits

enough random linear combinations of the bits of file Wi to

the users in group Gi such that they can all decode this file,

for i = 1, . . . , N .

Delivery rate analysis: Consider first the case N ≥ K .

It can be argued in this case that the worst-case user de-

mands happens if each file is requested by at most one

user. Hence, by re-ordering the users, for the worst-case

user demands, we have Ki = 1, for 1 ≤ i ≤ K , and

Ki = 0, otherwise. In this case, it can be shown that the

CODED DELIVERY procedure requires a lower delivery

rate than the RANDOM DELIVERY procedure; hence, the

server uses the former. In this case, it is possible to simplify

the CODED DELIVERY procedure such that, only coded

message X(2) =
N−1
⋃

i=1

N
⋃

j=i+1

Wi,{Sj−1+1}⊕̄Wj,{Si−1+1} is

transmitted in Part 2. The corresponding common message

X = (X(1), X(2), X(3)) transmitted over the CODED DE-

LIVERY procedure reduces to the delivery phase of [19,

Algorithm 2]. Thus, the GBD scheme achieves the same

delivery rate as [19, Algorithm 2] when N ≥ K .

Next, consider the case N < K . It is illustrated in Ap-

pendix B that the worst-case user demands happens when N
users with the smallest cache capacities all request different

files, i.e., they end up in different groups. The corresponding

delivery rate is presented in the following theorem, the proof

of which can also be found in Appendix B.

Theorem 1. In a decentralized content delivery network with

N files in the database, each of size F bits, and K users

with cache capacities M[1:K] satisfying M1 ≤ M2 ≤ · · · ≤
MK , the following delivery rate-cache capacity trade-off is

achievable when N < K:

RGBD

(

M[1:K]

)

= min







K
∑

i=1

i
∏

j=1

(

1−
Mj

N

)

−∆R1

(

M[1:K]

)

−∆R2

(

M[1:K]

)

,

N
∑

i=1

(

1−
Mi

N

)

}

, (11)

where

∆R1

(

M[1:K]

) ∆
=(K −N)

K
∏

l=1

(

1−
Ml

N

)

, (12a)

∆R2

(

M[1:K]

) ∆
=

[

K−N
∑

k=1

(k − 1)
Mk+N

N −Mk+N

]

K
∏

l=1

(

1−
Ml

N

)

.

(12b)

Comparison with the state-of-the-art: Here the proposed

GBD scheme for distinct cache capacities is compared with the

scheme proposed in [19]. We note that, although the scheme

presented in [19] is for N ≥ K , it can also be applied to the

case N < K , and the delivery rate given in [19, Theorem 2],

denoted here by Rb(M[1:K]), can still be achieved. Hence, in

the following, when we refer to the scheme in [19, Algorithm

2], we consider its generalization to all N and K values. When

N < K , according to [19, Theorem 2] and (11), we have

Rb

(

M[1:K]

)

−RGBD

(

M[1:K]

)

≥

∆R1

(

M[1:K]

)

+∆R2

(

M[1:K]

)

> 0. (13)

The second inequality in (13) holds as long as N < K .

Therefore, when the number of files in the database is smaller

than the number of active users in the delivery phase, the GBD

scheme achieves a strictly smaller delivery rate than the one

presented in [19].
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Fig. 5. Illustration of the normalized cache capacity distribution (normalized

by
K∑

k=1
Mk) for different α values, in a cache network of K = 50 users.

The x-axis corresponds to the user index k.

Remark 3. We note that the scheme of [19] exploits the

caching scheme of [10] when the user cache capacities are

distinct, and for any demand combination d[1:K], it delivers
⊕

v∈VWdv ,{V}\{v} to the users in any non-empty subset of

users V ⊂ [1 : K], regardless of the users with the same

demand. Thus, for the same reason explained in Remark 1 for

uniform cache capacities, the proposed scheme in this paper

outperforms the one in [19] for distinct cache capacities.

C. Lower Bound on the Delivery Rate

In the next theorem, we generalize the information theoretic

lower bound proposed in [20] to the content delivery network

with distinct cache capacities. This lower bound is tighter than

the classical cut-set bound.

Theorem 2. In a content delivery network with N files in

the database, serving K users with distinct cache capacities,

M[1:K] assorted in an ascending order, the optimal delivery

rate satisfies

R∗
(

M[1:K]

)

≥ RLB

(

M[1:K]

)

= max
s∈[1:K],

l∈[1:⌈N/s⌉]

1

l
×

{

N −
s

s+ γ

s+γ
∑

i=1

Mi −
γ(N − ls)

+

s+ γ
− (N −Kl)

+

}

, (14)

where γ
∆
= min

{

(⌊N/l⌋ − s)
+
,K − s

}

, ∀s, l.

Proof. The proof of the theorem can be found in Appendix

C.

IV. NUMERICAL RESULTS

In this section, the proposed GBD scheme for distinct

cache capacities is compared with the scheme proposed in

[19] numerically. To highlight the gains from the proposed

Mmax
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)

Fig. 6. Delivery rate versus Mmax, where the cache capacity of user k is
Mk = αK−kMmax, k = 1, . . . ,K , with α = 0.97, N = 50, and K = 70.

scheme, we also evaluate the performance of uncoded caching,

in which Uk, k ∈ [1 : K], caches the first Mk/N bits of each

file during the placement phase; and in the delivery phase the

remaining 1 −Mk/N bits of file Wdk
requested by Uk are

delivered. By a simple analysis, it can be verified that the

worst-case delivery rate is given by

Ruc

(

M[1:K]

)

=

min{N,K}
∑

i=1

(

1−
Mi

N

)

, (15)

which is equal to the delivery rate of the RANDOM DELIV-

ERY procedure in Algorithm 2.

For the numerical results, we consider an exponential

cache capacity distribution among users, such that the cache

capacity of Uk is given by Mk = αK−kMmax, where

0 ≤ α ≤ 1, for k = 1, . . . ,K , and Mmax denotes

the maximum cache capacity in the system. Thus, we have

M[1:K] =
(

αK−1Mmax, α
K−2Mmax, . . . ,Mmax

)

, which re-

sults in M1 ≤ M2 ≤ · · · ≤ MK , and the total cache capacity

across the network is given by

K
∑

k=1

Mk =Mmaxα
k 1− α

1− αK+1
. (16)

The distribution of the cache capacities normalized by the

total cache capacity available in the network, denoted by

M̄k
∆
= Mk/

K
∑

k=1

Mk, ∀k ∈ [1 : K], is demonstrated in Fig.

5 for different values of α, when K = 50. Observe that, the

smaller the value of α, the more skewed the cache capacity

distribution across the users becomes. In the special case of

α = 1, we obtain the homogeneous cache capacity model

studied in [10].

In Fig. 7, the delivery rate of the proposed scheme is

compared with the scheme in [19] and uncoded caching, as

well as the derived lower bound and the classical cut-set

bound, when N = K = 3 and α = 0.8. The delivery rate

is plotted with respect to the largest cache capacity in the
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Fig. 7. Delivery rate versus Mmax, where the cache capacity of user k is
Mk = αK−kMmax, k = 1, . . . , K , when N = K = 3 and α = 0.8.

system, Mmax. As expected, the delivery rate reduces as Mmax

increases. This figure validates that the scheme proposed in

Algorithm 2 achieves the same delivery rate as in [19] for

N ≥ K . The GBD scheme achieves a significantly lower

delivery rate compared to the uncoded scheme. It is to be

noted that, the cut-set based lower bound derived in [19] is

for the case N ≥ K; while, by ordering the users such that

M1 ≤ M2 ≤ · · · ≤ MK , it can be re-written as follows for

the general case:

RCS

(

M[1:K]

)

= max
s∈[1:min{N,K}]















s−

s
∑

i=1

Mi

⌊N/s⌋















. (17)

The proposed lower bound is also plotted in Fig. 7. Similar

to the case with identical cache sizes, the proposed lower

bound is tighter than the cut-set lower bound for medium

cache capacities. However, there remains a gap between this

improved lower bound and the achievable delivery rate for the

whole range of Mmax values.

In Fig. 6, the delivery rate RGBD(M[1:K]) is compared

with Rb(M[1:K]) and the uncoded scheme, Ruc(M[1:K]), when

N = 50, K = 70, and α = 0.97. We clearly observe that the

proposed scheme outperforms both schemes at all values of

Mmax. The improvement is particularly significant for lower

values of Mmax, and it diminishes as Mmax increases. The

proposed and the cut-set lower bounds are also included in

the figure. Although the delivery rate of the proposed scheme

meets the lower bounds when Mmax = 0, the gap in between

quickly expands with Mmax.

In order to observe the effect of the skewness of the cache

capacity distribution across users on the delivery rate, in Fig.

8, the delivery rate is plotted as a function of α ∈ [0.9, 1],
for N = 30, K = 45, and the largest cache capacity of

Mmax = 2. Again, the GBD scheme achieves a lower delivery

rate for the whole range of α values under consideration. As

α
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Fig. 8. Delivery rate versus α ∈ [0.9, 1], where Mk = αK−kMmax, for
k = 1, ...,K , and N = 30, K = 45, and Mmax = 2.

opposed to uncoded caching, the gain over the scheme studied

in [19] is more pronounced for smaller values of α, i.e., as

the distribution of cache capacities becomes more skewed. We

also observe that the gap to the lower bound is also smaller

in this regime.

In Fig. 9, the delivery rate is plotted with respect to the

number of users, K ∈ [1 : 100], for N = 60, Mmax = 5, and

α = 0.96. Observe that the improvement of the GBD scheme

is more significant when the number of users requesting

content in the delivery phase increases, whereas the gap

between the GBD scheme and uncoded caching diminishes

as K increases.

In Fig. 10, the delivery rate is plotted with respect to the

number of files, N ∈ [10 : K−1], where the other parameters

are fixed as K = 40, Mmax = 4, and α = 0.94. We

observe that, the GBD scheme requires a smaller delivery

rate compared to the state-of-the-art over the whole range

of N values; while the improvement is more pronounced for

smaller values of N . Observe also that, for relatively small

values of N , the RANDOM DELIVERY procedure presented

in Algorithm 2, which has the same performance as uncoded

caching, outperforms the CODED DELIVERY procedure, i.e.,

RRD

(

M[1:K]

)

< RCD

(

M[1:K]

)

. The performance of uncoded

caching gets worse with increasing N in this setting.

V. CONCLUSIONS

We have studied proactive content caching at user terminals

with distinct cache capacities, and proposed a novel caching

scheme in a decentralized setting that improves upon the

best known delivery rate in the literature. The improvement

is achieved by creating more multicasting opportunities for

the delivery of bits that have not been cached by any of

the users, or cached by only a single user. In particular,

the proposed scheme exploits the group-based coded caching

scheme we have introduced previously for centralized content

caching in a system with homogeneous cache capacities in
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Fig. 9. Delivery rate versus the number of users K ∈ [1 : 100], where
Mk = αK−kMmax, for k = 1, ...,K , with N = 60, Mmax = 5, and
α = 0.96.

[8]. Our numerical results show that the improvement upon

the scheme proposed in [19] becomes more pronounced as the

cache capacity distribution across users becomes more skewed,

showing that the proposed scheme is more robust against

variations across user capabilities. We have also derived a

lower bound on the delivery rate, which has been shown

numerically to be tighter than the cut-set based lower bound

studied in [19]. The gap between the lower bound and the best

achievable delivery rate remains significant, calling for more

research to tighten the gap in both directions.

APPENDIX A

DELIVERY RATE IN PART 2 OF THE GBD SCHEME

If N ′ ≤ min{N,K} distinct files are requested by the

users, without loss of generality, we order the users so that

the users in Gi request Wi, for i = 1, ..., N ′, i.e., Ki = 0,

for i = N ′ + 1, ..., N . The coded contents delivered in line

7 of Algorithm 1 enable each user to obtain the subfiles of

its requested file which are in the cache of one of the other

users in the same group. Consider, for example, the first group,

i.e., i = 1 in line 7 of Algorithm 1, which refers to the users

that demand W1. The XOR-ed contents W1,{k} ⊕W1,{k+1},

for k ∈ [1 : K1 − 1], are delivered by the server. Having

subfile W1,{k} cached, user Uk, for k ∈ [1 : K1], can decode

all the remaining subfiles W1,{j}, for j ∈ [1 : K1] \ {k}. A

total of (K1 − 1) XOR-ed contents, each of size (M/N)(1−
M/N)K−1F bits, are delivered for the users in G1. Similarly,

for the second group (i = 2 in line 7 of Algorithm 1),

consisting of the users requesting W2, the XOR-ed con-

tents W2,{k} ⊕ W2,{k+1}, for k ∈ [K1 + 1 : K1 +K2 − 1],
are sent. With subfile W2,{k} available locally at Uk, for

k ∈ [K1 + 1 : K1 +K2], Uk can obtain the missing subfiles

W2,{j}, for j ∈ [K1 + 1 : K1 +K2] \ {k}. Hence, a total of

(K2−1)(M/N)(1−M/N)K−1F bits are served for the users

in G2, and so on so forth. Accordingly, (Ki − 1)(M/N)(1 −
M/N)K−1F bits are delivered for group Gi, i = 1, ..., N ′,
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Fig. 10. Delivery rate versus N ∈ [10 : K − 1], where Mk = αK−kMmax,
for k = 1, ...,K , with K = 40, Mmax = 4, and α = 0.94.

and the total number of bits sent by the server in the second

part of the CODED DELIVERY procedure in Algorithm 1 is

(

M

N

)(

1−
M

N

)K−1

F

N ′

∑

i=1

(Ki − 1) =

(K −N ′)

(

M

N

)(

1−
M

N

)K−1

F. (18)

After receiving the coded contents delivered in line 8 of

Algorithm 1, each user in Gi, for i ∈ [1 : N ′], can recover

the missing subfiles of its request Wi, which are in the cache

of one of the users in groups j ∈ [1 : N ′] \ {i}. Consider,

for example, i = 1 and j = 2. The XOR-ed contents

W1,{k}⊕W1,{k+1}, for k ∈ [K1 + 1 : K1 +K2 − 1], i.e., the

subfiles of W1 cached by users in G2, are delivered. Next, the

XOR-ed contents W2,{k} ⊕W2,{k+1}, for k ∈ [1 : K1 − 1],
i.e., the subfiles of W2 cached by users in G1, are delivered.

Finally, by delivering W1,{K1+K2} ⊕ W2,{K1}, and having

already decoded W2,{k} (W1,{k}), Uk in G1 (G2) can re-

cover the missing subfiles of its request W1 (W2) which

are in the cache of users in G2 (G1), for k ∈ [1 : K1] (for

k ∈ [K1 + 1 : K1 +K2]). The number of coded contents

delivered in line 8 is (K2 − 1) + (K1 − 1) + 1, each of

length (M/N)(1−M/N)K−1F bits, which adds up to a total

number of (K1 +K2 − 1)(M/N)(1−M/N)K−1F bits. In a

similar manner, the subfiles can be exchanged between users

in groups Gi and Gj , for i ∈ [1 : N ′ − 1] and j ∈ [i+ 1 : N ′],
by delivering a total of (Ki+Kj−1)(M/N)(1−M/N)K−1F
bits through sending the XOR-ed contents stated in line 8 of

Algorithm 1. Hence, the total number of bits delivered in the

second part of CODED DELIVERY procedure is given by

(

M

N

)(

1−
M

N

)K−1

F

N ′−1
∑

i=1

N ′

∑

j=i+1

(Ki +Kj − 1) =

(N ′ − 1)

(

K −
N ′

2

)(

M

N

)(

1−
M

N

)K−1

F. (19)
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By summing up (18) and (19), the normalized number of

bits delivered in the second part of the CODED DELIVERY

procedure in Algorithm 1 is given by

RU
GBD = N ′

(

K −
N ′ + 1

2

)(

M

N

)(

1−
M

N

)K−1

. (20)

APPENDIX B

PROOF OF THEOREM 1

Consider first the CODED DELIVERY procedure in Algo-

rithm 2. We note that, when N < K , the difference between

the first procedure of the proposed delivery phase and the

delivery phase presented in [19, Algorithm 1] lies in the first

two parts, i.e., delivering the missing bits of the requested

files, which either have not been cached by any user, or have

been cached by only a single user. Hence, having the delivery

rate of the scheme in [19, Algorithm 1], the delivery rate of

the CODED DELIVERY procedure in Algorithm 2 can be

determined by finding the difference in the delivery rates in

these first two parts.

The delivery rate for Part 1 of the proposed CODED

DELIVERY procedure, in which the bits of each request Wdk
,

for k ∈ [1 : K], that have not been cached by any user are

directly sent to the users requesting the file, is given by

RGBD1

(

M[1:K]

)

= N

K
∏

k=1

(

1−
Mk

N

)

. (21)

We can see that the worst-case demand combination for this

part of the CODED DELIVERY procedure is when each file

is requested by at least one user, i.e., Ki ≥ 1, ∀i ∈ [1 : N ].
The corresponding delivery rate of [19, Algorithm 1] is

given by:

Rb1

(

M[1:K]

)

= K
K
∏

k=1

(

1−
Mk

N

)

. (22)

The difference between these two delivery rates is

∆R1

(

M[1:K]

) ∆
= Rb1

(

M[1:K]

)

−RGBD1

(

M[1:K]

)

= (K −N)

K
∏

k=1

(

1−
Mk

N

)

. (23)

In Part 2 of the delivery phase of the GBD scheme, we deal

with the bits of each requested file that have been cached by

only a single user Uk, i.e., Wdj ,{k}, for some k, j ∈ [1 : K].
For any request Wdj

, the normalized number of bits that have

been cached exclusively by Uk will be denoted by Qk. As

F → ∞, by the law of large numbers,Qk can be approximated

as [10]

Qk ≈

(

Mk

N

)

∏

l∈[1:K]\{k}

(

1−
Ml

N

)

=

(

Mk

N −Mk

) K
∏

l=1

(

1−
Ml

N

)

. (24)

From (24) we can see that Qi ≥ Qj , i 6= j, ∀i, j ∈ [1 : K],
if and only if Mi ≥ Mj; that is, the user with a larger cache

size stores more bits of each file for F sufficiently large.

Next, we evaluate the delivery rate for Part 2 of the CODED

DELIVERY procedure. We start with message X(2, 1). For

the users in Gi, for i = 1, ..., N , ordered in increasing cache

capacities MSi−1+1 ≤MSi−1+2 ≤ · · · ≤MSi
, a total number

of (Ki − 1) pieces, with the normalized sizes Q[Si−1+2:Si],

are delivered. Thus, the delivery rate of the common message

X(2, 1) is given by

R1
GBD2

(

M[1:K]

) ∆
=

N
∑

i=1

Si
∑

k=Si−1+2

Qk. (25)

In line 8 of Algorithm 2, (Kj − 1) pieces, each of length

Q[Sj−1+2:Sj ], and (Ki − 1) pieces, each of length Q[Si−1+2:Si]

are delivered for users in Gi and Gj , respectively, for i =
1, ..., N−1 and j = i+1, ..., N . Hence, the rate of the common

message X(2, 2) is given by

R2
GBD2

(

M[1:K]

) ∆
=

N−1
∑

i=1

N
∑

j=i+1





Sj
∑

k=Sj−1+2

Qk +

Si
∑

k=Si−1+2

Qk



.

(26)

For each i ∈ [1 : N − 1] and j ∈ [i + 1 : N ], the normalized

length of the bits delivered with the common message X(2, 3)
is max

{

QSj−1+1, QSi−1+1

}

. Thus, the rate of X(2, 3) is

found to be:

R3
GBD2

(

M[1:K]

) ∆
=

N−1
∑

i=1

N
∑

j=i+1

max
{

QSj−1+1, QSi−1+1

}

.

(27)

To simplify the presentation, without loss of generality, let us

assume that M1 ≤MS1+1 ≤ · · · ≤MSN−1+1. Then (27) can

be rewritten as

R3
GBD2

(

M[1:K]

)

=

N−1
∑

i=1

N
∑

j=i+1

QSj−1+1 =

N−1
∑

k=1

kQSk+1.

(28)

The total delivery rate for the second part of the proposed

coded delivery phase is found by summing up the rates of the

three parts, i.e.,

RGBD2

(

M[1:K]

) ∆
=

3
∑

i=1

Ri
GBD2

(

M[1:K]

)

. (29)

By substituting (25), (26), and (28) into (29), we get

RGBD2

(

M[1:K]

)

= N

N
∑

j=1

Sj
∑

k=Sj−1+2

Qk+

N−1
∑

k=1

kQSk+1. (30)

Note that, in (30), the coefficient of QSk+1 is k, for k ∈
[0 : N − 1], whereas the coefficient of all other Qjs, ∀j ∈

[1 : K]\P , where P
∆
= {1, S1 + 1, ..., SN−1 + 1}, is N .

Since N > K , the achievable rate for Part 2 of the CODED

DELIVERY procedure in Algorithm 2 is maximized (the

worst-case user demands happens) if Qk ≤ Qj , for k ∈ P
and j ∈ [1 : K] \P ; or, equivalently, if Mk ≤ Mj , for k ∈ P
and j ∈ [1 : K] \P . According to the definition of set P , the

above condition means that N users with the smallest cache

sizes, i.e., users Uk, ∀k ∈ P , will request different files, and

belong to distinct groups in the worst-case scenario.
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For simplification, without loss of generality, the users are

ordered such that M1 ≤M2 ≤ · · · ≤MK . Then, the delivery

rate of Part 2 of the CODED DELIVERY procedure is

RGBD2

(

M[1:K]

)

=

N
∑

k=1

(k − 1)Qk +N

K
∑

k=N+1

Qk. (31)

By substituting Qk in (24), we have

RGBD2

(

M[1:K]

)

=

[

N
∑

k=1

(k − 1)

(

Mk

N −Mk

)

+

N

K
∑

k=N+1

(

Mk

N −Mk

)

]

K
∏

l=1

(

1−
Ml

N

)

. (32)

Now, we derive the delivery rate for the corresponding part

in [19, Algorithm 1], i.e., when the server delivers the bits

of the file requested by Uk, having been cached only by Uj ,

∀k, j ∈ [1 : K], such that j 6= k. For this case, from [19,

Algorithm 1], when M1 ≤M2 ≤ · · · ≤MK , we have

Rb2

(

M[1:K]

)

=

[

K
∑

k=1

(k − 1)

(

Mk

N −Mk

)

]

K
∏

l=1

(

1−
Ml

N

)

.

(33)

Hence, the difference between the delivery rates for the second

part of the proposed coded delivery phase and its counterpart

in [19, Algorithm 1] is given by

∆R2

(

M[1:K]

) ∆
= Rb2

(

M[1:K]

)

−RGBD2

(

M[1:K]

)

=

[

K−N
∑

k=1

(k − 1)

(

Mk+N

N −Mk+N

)

]

K
∏

l=1

(

1−
Ml

N

)

. (34)

Part 3 of the CODED DELIVERY procedure in Algorithm

2 is the same as its counterpart in [19, Algorithm 1]; so, they

achieve the same delivery rate. Based on [19, Theorem 3],

assuming that M1 ≤ M2 ≤ · · · ≤ MK , the delivery rate for

the CODED DELIVERY procedure is

RCD

(

M[1:K]

) ∆
=

K
∑

i=1





i
∏

j=1

(

1−
Mj

N

)





−∆R1

(

M[1:K]

)

−∆R2

(

M[1:K]

)

, (35)

where ∆R1

(

M[1:K]

)

and ∆R2

(

M[1:K]

)

are as given in (23)

and (34), respectively.

Now, consider the RANDOM DELIVERY procedure in

Algorithm 2. Each delivered message in this procedure is

directly targeted for the users in a group requesting the same

file. It is assumed that the users in Gi are ordered to have

increasing cache capacities, such that MSi−1+1 ≤MSi−1+2 ≤
· · · ≤MSi

, for i = 1, ..., N . Since each user in Gi requires at

most
(

1−MSi−1+1/N
)

F bits to get its requested file, a total

number of
(

1−MSi−1+1/N
)

F bits, obtained from random

linear combinations of Wi, are sufficient to enable the users

in Gi to decode their request Wi. Hence, the delivery rate for

the RANDOM DELIVERY procedure in Algorithm 2 is

RRD

(

M[1:K]

) ∆
=

N
∑

i=1

(

1−
MSi−1+1

N

)

. (36)

Observe that the worst-case user demand combination corre-

sponding to delivery rate RRD

(

M[1:K]

)

happens (i.e., the de-

livery rate RRD

(

M[1:K]

)

is maximized) when {Mj, ∀j ∈ P}
forms the set of N smallest cache capacities, i.e., the N users

with the smallest cache capacities should request different

files, which is consistent with the worst-case user demand

combination corresponding to RCD

(

M[1:K]

)

. If the users are

labelled such that M1 ≤M2 ≤ · · · ≤MK , then we have

RRD

(

M[1:K]

)

=

N
∑

i=1

(

1−
Mi

N

)

. (37)

We emphasize here that, before starting the delivery phase,

it is assumed that each user sends its demand, dk, together with

its cache contents, Zk, to the server. With this information,

the server can perform the delivery procedure which requiers

a smaller delivery rate (by comparing (35) and (37)), and the

following delivery rate is achievable:

RGBD

(

M[1:K]

) ∆
= min

{

RCD

(

M[1:K]

)

, RRD

(

M[1:K]

)}

,
(38)

which completes the proof of Theorem 1.

APPENDIX C

PROOF OF THEOREM 2

Our lower bound follows the techniques used in [20]

to derive a lower bound for the setting with uniform

cache capacities. For s ∈ [1 : K], it is assumed that the

demands of the first s users are
(

d[1:s]
)

= (1, ..., s),
and the remaining (K − s) users have arbitrary demands

dk ∈ [1 : N ], ∀k ∈ [s+ 1 : K]. The server delivers

X1 = ψ
(

W[1:N ], 1, ..., s, d[s+1:K]

)

to serve this demand

combination. Now, consider the user demands
(

d[1:s]
)

=
(s+ 1, ..., 2s), and dk ∈ [1 : N ], ∀k ∈ [s+ 1 : K], and the

message X2 = ψ
(

W[1:N ], s+ 1, ..., 2s, d[s+1:K]

)

delivered by

the server to satisfy this demand combination. Consequently,

considering the common messages X[1:⌈N/s⌉] along with the

cache contents Z[1:s], the whole database
{

W[1:N ]

}

can be

recovered. We have

NF ≤ H
(

Z[1:s], X[1:⌈N/s⌉]

)

(39a)

= H
(

Z[1:s]

)

+H
(

X[1:⌈N/s⌉]

∣

∣Z[1:s]

)

(39b)

≤
s
∑

i=1

MiF +H
(

X[1:⌈N/s⌉]

∣

∣Z[1:s]

)

(39c)

=
s
∑

i=1

MiF +H
(

X[1:l]

∣

∣Z[1:s]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s], X[1:l]

)

(39d)

≤
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s], X[1:l]

)

(39e)

=

s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s], X[1:l],W[1:ls]

)

+ I
(

X[l+1:⌈N/s⌉];W[1:ls]

∣

∣Z[1:s], X[1:l]

)

(39f)
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≤
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s], X[1:l],W[1:ls]

)

+H
(

W[1:ls]

∣

∣Z[1:s], X[1:l]

)

(39g)

≤
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+ εlsF + 1

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s], X[1:l],W[1:ls]

)

(39h)

≤
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+ εlsF + 1

+H
(

X[l+1:⌈N/s⌉], Z[s+1:s+γ]

∣

∣Z[1:s], X[1:l],W[1:ls]

)

(39i)

=
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+ εlsF + 1

+H
(

Z[s+1:s+γ]

∣

∣Z[1:s], X[1:l],W[1:ls]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s+γ], X[1:l],W[1:ls]

)

(39j)

≤
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+ εlsF + 1

+H
(

Z[s+1:s+γ]

∣

∣Z[1:s],W[1:ls]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s+γ], X[1:l],W[1:ls]

)

(39k)

=
s
∑

i=1

MiF + lFR∗
(

M[1:K]

)

+ εlsF + 1

+H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

−H
(

Z[1:s]

∣

∣W[1:ls]

)

+H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s+γ], X[1:l],W[1:ls]

)

, (39l)

where H(·) denotes the entropy function, while I(·; ·) repre-

sents the mutual information; (39d) follows from the chain

rule of mutual information; (39e) follows from bounding the

entropy of l common messages X[1:l] given the cache contents

Z[1:s] by lFR∗
(

M[1:K]

)

; (39f) is due to the definition of the

mutual information; (39g) follows from the nonnegativity of

entropy; (39h) is obtained from Fano’s inequality; and (39i)

also follows from the nonnegativity of entropy.

In (d), γ ≤ K − s cache contents, Z[s+1:s+γ], are inserted

inside the entropy. Note that from Z[s+1:s+γ] together with

messages X[1:l] the remaining N − ls files in the database

can be decoded. Since by each transmission Xi along with

the caches Z[1:s+γ], (s+ γ) files can be decoded, we have

s+γ ≤ ⌈N/l⌉ for l number of transmissions. Hence, we have

γ = min

{

(⌈

N

l

⌉

− s

)+

,K − s

}

. (40)

From the argument in [20, Appendix A], it can be verified that

H
(

X[l+1:⌈N/s⌉]

∣

∣Z[1:s+γ], X[1:l],W[1:ls]

)

≤ (N −Kl)
+
F.
(41)

Based on (39) and (41), we have

NF ≤
s
∑

i=1

MiF −H
(

Z[1:s]

∣

∣W[1:ls]

)

+ lFR∗
(

M[1:K]

)

+H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

+ (N −Kl)
+
F + εlsF + 1. (42)

Accordingly, for any set J ⊂ [1 : s+ γ] with |J | = s, the

following inequality can be derived by choosing a set of caches

{ZJ } =

{

⋃

k∈J

Zk

}

that allows decoding the files in the

database along with l common messages X[1:l]:

NF ≤
∑

i∈J

MiF −H
(

ZJ

∣

∣W[1:ls]

)

+ lFR∗
(

M[1:K]

)

+H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

+ (N −Kl)+F + εlsF + 1. (43)

Hence, there are a total number of
(

s+γ
s

)

inequalities, each

corresponding a different set J . By taking average over all

the inequalities, it can be evaluated that

NF ≤
s

s+ γ

s+γ
∑

i=1

MiF −
∑

J⊂[1:s+γ],
|J |=s

H
(

ZJ

∣

∣W[1:ls]

)

(

s+γ
s

)

+ lFR∗
(

M[1:K]

)

+H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

+ (N −Kl)
+
F + εlsF + 1. (44)

By applying Han’s inequality [21, Theorem 17.6.1], we have

∑

J⊂[1:s+γ],
|J |=s

H
(

ZJ

∣

∣W[1:ls]

)

(

s+γ
s

) ≥
s

s+ γ
H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

.

(45)

Accordingly, the following lower bound can be derived:

NF ≤
s

s+ γ

s+γ
∑

i=1

MiF +
γ

s+ γ
H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

+ lFR∗
(

M[1:K]

)

+ (N −Kl)
+
F + εlsF + 1. (46)

It is shown in [20, Appendix A] that

H
(

Z[1:s+γ]

∣

∣W[1:ls]

)

≤ (N − ls)
+
F. (47)

From (46) and (47), we can obtain

N ≤
s

s+ γ

s+γ
∑

i=1

Mi +
γ(N − ls)

+

s+ γ
+ lR∗

(

M[1:K]

)

+ (N −Kl)
+
+ εls+

1

F
. (48)

For F large enough, ε > 0 is arbitrary close to zero. As a

result, we have

R∗
(

M[1:K]

)

≥
1

l
×

(

N −
s

s+ γ

s+γ
∑

i=1

Mi −
γ(N − ls)

+

s+ γ
− (N −Kl)

+

)

. (49)

By optimizing over all parameters s, l, and γ, and re-ordering

the users such that M1 ≤ M2 ≤ · · · ≤ MK without loss of

generality, we have

R∗
(

M[1:K]

)

≥ RLB

(

M[1:K]

)

= max
s∈[1:K],

l∈[1:⌈N/s⌉]

1

l
×

{

N −
s

s+ γ

s+γ
∑

i=1

Mi −
γ(N − ls)+

s+ γ
− (N −Kl)+

}

. (50)
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Note that, the first (s+ γ) users have smaller cache capacities

compared to all the other users. We can argue that the lower

bound given in (50) is optimized over the set of cache

capacities.
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