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Semi-coherent Detection and Performance

Analysis for Ambient Backscatter System
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Abstract

We study a novel communication mechanism, ambient badksc#lat utilizes radio frequency
(RF) signals transmitted from an ambient source as bothggnsupply and information carrier to
enable communications between low-power devices. Diffieirom existing non-coherent schemes, we
here design the semi-coherent detection, where chanresingéers can be obtained from unknown data
symbols and a few pilot symbols. We first derive the optimaéder for the complex Gaussian ambient
RF signal from likelihood ratio test and compute the coroesfing closed-form bit error rate (BER).
To release the requirement for prior knowledge of the anitiRsignal, we next design a suboptimal
energy detector with ambient RF signals being either theptexnGaussian or the phase shift keying
(PSK). The corresponding detection thresholds, the analyBER, and the outage probability are also
obtained in closed-form. Interestingly, the complex Garssource would cause an error floor while
the PSK source does not, which brings nontrivial indicatidrconstellation design as opposed to the

popular Gaussian-embedded literatures. Simulations rargéded to corroborate the theoretical studies.
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I. INTRODUCTION

The Internet of Things (IoT)[]1],[]2] describes the next gatien of Internet, where all
things could be accessed and identified through the Inteniaesensing devices [3]/[4]. As
emerging wirelessly sensory technologies have significamproved the capability of devices,
loT is being extended to ambient intelligence and autonaeoatrol [5]7]. Such an extension,
however, also leads to a key bottleneck in its developmémtessuch a huge number of devices
need to be battery-free and has to be powered with harvestdies, generating radio waves
themselves typically seems to be unrealistic.

One solution is the backscatter communicatidoh [8], [9], ®hdevices can transmit their
data through modulating and reflecting incident radio fesqy (RF) signals. It is distinct
from traditional wireless communications in that backsmatlevices consume power orders-
of-magnitude less, as they require no energy hungry compsrseich as oscillators. A typical
application example is the radio frequency identificati®fID) consisting of an active reader
(the transceiver) and a passive tag (the backscatter nSgdetifically, the reader can generate
continuous carrier waves, while the tag modulates its mé&difon onto the carrier wave by
adapting its antenna impedance loading to vary the reflecaefficient and then backscatters
the signal to the reader.

In order to enable ubiquitous communications between tyattee devices, a novel com-
munication mechanism, called ambient backscatter, wasdated in [[10], which leverages
existing ambient RF signals and applies them into the battesccommunication. The ambient
backscatter differs from conventional backscatter comoations in that it does not require a
centralized high-cost infrastructure (e.g., a RFID repdertransmit pre-requisite signals and
to initiate/control communications with devices. Moregwnce ambient RF signals are always
available, it enables the communication between passieaiealmost everywhere and anytime.

Following [10], the way of connecting ambient backscat@gst with the Internet via the
existing Wi-Fi infrastructure was designed in_[11]. In_[12he authors presented the multi-
antenna interference cancellation scheme operating orbdbkscatter devices. Nevertheless,

these works mainly focus on the hardware design and the tgpstgresentation with modest
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decoding performance but did not provide the fundamentallte from theoretical aspects.

Some exploration about signal detection for the ambienkdxtter communication was
presented in[[13]£[15], where the tag tends to employ thefésignaling with a low data rate,
and the reader can decode tag’s information by simple detestrategies. Another transmission
model was proposed in [16], where the reader is equipped mithiple antennas. The authors
of [17] looked into the non-coherent symbol detection untter condition that the channel
state information is unknown, and provided a method to egBrnthe system parameters without
sending pilots. Meanwhile, a detection algorithm basedtatissical covariances is suggested in
[18], which requires extremely large number of samples.

In this paper, we provide a fundamental study over the seieent detection of the classical
three-node ambient backscatter systewhere the channel state information (CSI) is unknown
and training symbols are sent to acquire the detectiontedjparameters rather than the chan-
nels themselves. We first derive the optimal detector froalitelihood-ratio test of the received
signal vector with the assumption of complex Gaussian amld®~ signals. As the optimal
detector requires the availability of the prior knowledgeambient RF signals and comes with
a less informative BER expression, a suboptimal energyctietés designed, where we consider
both the complex Gaussian and the phase shift keying (PSKjeamRF signals, and derive
their corresponding optimal detection thresholds. Theydical bit error rate (BER) as well
as the BER-based outage probability are obtained in clés®al- which tells more insight of
the system parameters and helps choosing the optimal pm@mkaterestingly, we demonstrate
that the BER with complex Gaussian ambient RF signals woxihib& an error floor while that
with PSK ambient RF signals does not. A practical approaahédbtimates the parameters from
the unknown data symbols and a few pilot symbols is also mepoFinally simulation results
demonstrate the effectiveness of different detectors disasahe correctness of the theoretical
analysis.

The rest of the paper is organized as follows. Section Ilimesl the system model. In

Section lll, the optimal detector and the suboptimal enedgyector is derived, along with

1Some of our preliminary results were published[in][19].

February 25, 2018 DRAFT



o[
xp[n]

htr

[

@3 n, yln Q

Reader
RF source

Fig. 1. A three-node ambient backscatter system consistiie RF signal source, a passive tag and a reader.

their corresponding performance analysis. In Section h¥, garameter estimation for the semi-
coherent detection is proposed. The simulation resultpremaded in Section V and Section VI
concludes the paper.

Notations: Vectors and matrices are boldfaced letters: the Hermitie,inverse, and the
determinant of matrixA are denoted byd”, A~', anddet(A), respectively;ly and I, are
the N-order unit vector and thév-order unit matrix, respectivelyjy|| denotes the Euclidean

norm of vectory. Scalars are lowercase lettefs:, |h

, and R{h} denotes the conjugate, the
modulus, and the real part of complex numbgrrespectively.E{X} and var{X} are the
statistical expectation and the statistical variance nfloan variableX, respectively,\ (u, 0?)
and CN(u, %) respectively denotes the Gaussian distribution and theuleily symmetric

complex Gaussian distribution with meanand variancer.

II. SYSTEM MODEL

Consider a classical three-node ambient backscattermsyatedepicted in Fid.]1. Denote,,
hs., andh,, as the coefficients of the channels from the source to theéram, the source to the
reader, and from the tag to the reader, respectively. A &eqy-flat and block-fading channel

model is assumed, where all the channels are constant whhbithannel coherence time but
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may vary independently in different coherence intervals.

The signal from the ambient RF source can be received by betliaig and the reader. The
tag transfers its binary symbols to the reader by choosingtlvgn to backscatter the incident
RF signal or not. Specifically, if the tag wants to transmi gymbol “0”, it will adjust its
impedance so that little of the incident signal can be redl&ctvhile if it wants to transmit the
symbol “1”, some of the incident signal will be backscattete the reader. The reader then
senses the changes in the received signals and thus deettartbmitted symbols of the tag.

Mathematically, the signal received by the tag can be espress
zn] = hgs(n], 1)

wheres|n] is the unknown ambient RF signal. Since the tag only consigtgssive components
related to backscattering and involves little signal pssagg operation, the thermal noise at the
tag could be negligible [20].

Suppose the transmitted binary symbols of the tagji$ € {0, 1}, where “0” and “1” are of

equal transmit probabilities. The signal backscatteredhleytag is
zp[n] = ad[n]z[n], (2

where the real number is the tag coefficient related to scattering efficiency anmma gain.
The reader receives the superposition of the signal fronREheource and the signal backscat-

tered from the tag:
y[n] = hges[n] + hy-ap[n] + win] = (hs + ahghydn])sn] + wn], (3)

where w[n| is the zero-mean additive white Gaussian noise (AWGN) wahanceN,,, i.e.,
wn] ~ CN (0, N,).

Compared with the conventional communications modél, $4)nibre challenging in that,
besides the detected symbth], hy, hs-, by, «, s[n] andw(n] are all unknown to the reader,

while these parameters are coupled with each other in a nwonplecated way.
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IIl. SymBoL DETECTION

Different from the high-speed data transmission in corneeal wireless networks, the com-
munication involved in the ambient backscatter system segaly in a low-rate manner. For
example, the long-term parameters feedback in sensor retvay in the loT. Thus, the tag
will transmit at a much lower rate than the rate of the ambRRtsignal, sayd[n| remains
unchanged forV (an even number without loss of generality) consecutive's.

For clarity, let us omit the index in d[n] and used to denote one symbol of the tag.
Meanwhile, denotey = [y[1],---,y[N]]* as its corresponding received signal vector at the

reader, where

ol = hosn| + w(n, d=0, %
hys[n| + winl, d=1,

and we definehy = h,, andh; = h,, + ahghy, for notation simplicity.

A. Optimal Detector with the Complex Gaussian Ambient Source

In this section, we assume that the ambient RF signal follinescomplex Gaussian distribu-
tion, i.e., s[n] ~ CN(0, P;).
Denote?H, and H; as the hypotheses that the tag’s transmitted symbal=4s0 andd = 1,

respectively. The received signal vectpiis then a complex Gaussian vector with

CN(O,USIN>, HOu
Y~ (5)
CN(0,0%1y), Hi,

where
o0 £ [hol*Ps+ No, 07 2 |[’Py+ N, (6)

Remark 1. Although the knowledge of CSI is unavailable, the values?otan be estimated in
a way as will be presented in Sectibn] IV and are assumed knbmuoudhout our discussions.
Moreover, estimating? is more robust than estimating the channels themselves giecchannel

energy (or equivalently the channel amplitude) varies malower than the instantaneous CSI.
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Under the maximum likelihood paradigi |21], the optimal $phdetection can be achieved
from the likelihood ratio testing, defined as
p (y|Ho) <a%)N (a& — ot )
Ay) =" = (22 e Z), 7
whereZ = ||y||?, andp(y|H;) represents the probability density function (PDF)yofinder the

hypothesisH;. Obviously, the likelihood ratio depends only ani.e., the energy of the received
signal vector, which is the key statistics of the testing.

However, different from conventional detection methodbgtherA(y) is increasing ovet/
or not depends on the relationship between the values?adnd o?. Thus, the decision rule

could be made through

Z =z T 9P

H
> o2 > o?
Ho 751 ) 0 1>
A(Z/) z 1 == Ho (8)
Hi §
Ha

CG—op 2 2
Z T, , o5 < o7,

whereTfG“’p is the threshold for locating the range of the enefgyin fact, (8) can be referred

to as a modified energy detection.

Remark 2. If 02 = o7, then the two hypotheses cannot be discriminated and tleetd®t fails.

Nevertheless, the probability for such scenario to happarearly zero.

Theorem 1. The threshold for the optimal ML detector can be expressed as

2 2 2

JCCG—op _ Nojoi 1 01 9

h =2 o' (9)
01 — 0y 0g

Proof: The threshold is obtained froral(8) by solvindy) = 1. u

We summarize the optimal ML detector in AlgoritHm 1.
Theorem 2. The BER of the optimal ML detector can be expressed as

CG—o 1 Narznin U% Narznax U%
P = ry [PV a2 5 ) +T (N 525 )| (10)

1~ 0%y Op 100 Op

whereo? = max{o?, o}, 02, = min{o2, 0%}, and

Y(N,z) = / tNle7tdt  and T'(N,z) = / tNtemtdt (11)
0 T
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Algorithm 1 Optimal Detector
Input: The received signal vectors at the readegr,

Output: The detected result of the transmitted symbol of the tag,
1: Calculate the signal energy = ||y||?;
2: Obtain the parameters: ando?, and calculate the detection threshald”°";
3 if o2 > o? then
a0 fZ>T79" thend=0 elsed=1 end if
5. else
6 if Z<T 9 thend=0 elsed=1 endif
7. end if

~

8: return d

denote the lower and the upper incomplete gamma functiespectively.

Proof: According to [8), for the case ef? > ¢%, the BER can be derived as

PLEP = Pr(Ho) Pr(Z < Ty 9P| Ho) + Pr(Hy) Pr(Z > T 9P| H,)

CG—op
Th

! /0 f2(2[Ho)dz + % /T C:Gop fz(2H1)dz, (12)

2
where f;(z|H;) is the PDF ofZ under the hypothesi#;.
It can be readily known tha¥ is a central chi-square random variable w&N degrees of

freedom (DOF). Then, there i5s [22]

N1
i) — ) ) = 07 ]-7 13
f2GM) =t (13)
whereT'(-) denotes the gamma function. Then the BER (12) is furtheveédras

1 i TCG—op TCG—op T

PCG—op _ N h rlN h ) 14
Similarly, for the case o6 < o7, the corresponding BER is obtained as

1 i TCG—op TCG—op T
pPleP = _—__|T (N, N, = : 15
b 2F<N) ( I 0_8 ) + ’Y ( I O'% ( )
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Moreover, [1#) and (15) can be integrated into one, and treisltain [(10).

For relatively largeN, there are approximations [23]:

v(N, x) ['(N, z)
['(N) ['(N)

We can further approximate the expression[in (10) as

1 NoZy o2\ 1 No; 0
P~ Lo (m_ %111“_2) +50Q (gmrj In 20 — \/N> , (17)

2
0y — 01 01 Oy — 01 01

~Q(z), and oz = \/LN ~VN. (16)

~1-— Q(x1)7

which indicates that the difference betweghand o may be a crucial factor to the detection

performance.

Remark 3. The optimal detector may not obtain the same error proliglidr #, and#,, i.e.,
Pr(d = 1|Hy) # Pr(d = 0|H;), which is generally referred as the unbalanced BER [24]. In
some case, a balanced BER det&tsrrequired for. Referring td_(14) and (15), the balanced

BER detector with its threshold>* can be achieved from

e e
! <N’ Ug’lax) =1 (N’ Ur2nin ’ (18)

where it is difficult to get the exact solution @{>*. However, with the approximation if {1L6),

we can further rewrite[(18) as
Tba Tba
VR ) (AL - VA), 19
Q ( \/No-gnax Q \/Nofnin ( )
and obtain the threshold for the balanced BER detector

2 9
ba 2No§oi
P

(20)

o+ 0%
B. Suboptimal Detector with the Complex Gaussian Ambient Source

From [10) or[(1V), we cannot obtain a clear clue about how ylseesn parameters will affect
the detection performance. Thus, we here design a subdptatector which does not gain any
undesirable performance loss, but requires less prior leuye of the ambient RF signal and

yields a simpler and more informative BER expression.

2Balanced BER means that there is not any distinction intedwy the detection method to the status of different bitd, a

thus the BER performance does not rely on the detection rdetho
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10

From (8), we know the energy of the received signal vedfois the key statistics of the
detection, and the energy detection with a proper threstmlttl be the optimal detection. Thus,
the decision metric can be switched from the PDRyab PDF of Z. From another perspective,
the energy”Z = % ly[n]|* can also be regarded as the sumMofindependent 2-DOF central
chi-square randré):r; variables with the identical medrand variances! under the hypothesis
H;. WhenN is relatively Iargg, Z asymptotically becomes a Gaussian random variable from the
central limit theorem([[25]. Then the distribution af under hypothesig{; can be approximated
as Z|H; ~ N (us<,¢C¢) with PDF

2
. 1 z— g .
fz(2[H:) = ngge}‘p [_(2{%] : i=0,1, (21)
where
pSe = No?, 7% = Nof, i=0,1, (22)

are the means and the variancesZotinder the hypothesi#;, respectively.

The detection rule for the suboptimal detector is refornadeaas

Ho
i o Zz T, ag > o,
fZ(Z|HO) 2 fz(Z|H1) = H(l) (23)
”1 2= 07, of <ot
1

Namely, the suboptimal detector is also a type of energyctletebut with a different threshold
from the optimal one[(9).

1) General Case: We first present the general case of the suboptimal detection

Theorem 3. The threshold for the suboptimal detector can be expressed a

2(c¢ +0?) . o}
14y [14+ 20T g, 91 (24)
\/ N(of —03)  of

2 2
CG—sub __ Nogoy
I ) 2
oy + 071

Proof: The thresholdl}"“~*"" for the suboptimal detector can be computed from

F2(TP9 Ho) = f2(T29|1y). (25)

% Normally, N = 30 is adequate for most applications. However, if the PDIy6f]|? is smooth, then the value d¥ as low

as 5 can be used [26].
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11

Taking the natural logarithm of both sides bf(25) and reagiag the terms, we obtain

o (T}?G—sub)2 + CZThCG_SUb + c3 = 0’ (26)
where
o =q% - 2 =2(py 9 — g ey, (27)
CG
= (159’6 = ()6 = 9 n 2 (28)
0

As TS is the detection threshold of the received signal energly; e positive root of
(28) is valid, which gives the threshold{24). [
We next demonstrate the BER performance of the suboptintettde, which tells more insight

of the performance-affected parameters and would helgddbe system parameters.

Theorem 4. The BER for the suboptimal detector can be expressed as

CG—sub CG—sub
PCG—sub - _Q T Ngmax _Q T Namln (29)
’ \/Narznax \/_Umin .

Proof: According to [2B), ifo? > o2, the corresponding BER is

ByST = Pr(Ho) Pr(Z < TP Ho) + Pr(Hy) Pr(Z > T,/ Hy)

TCGfsub

1 [T . Y
— 5 [m fZ(Z|H0)dZ + 5 LCGsub fz(Z|H1)dZ
1 1 TCG—sub _ ,,CG TCG sub CG
:§_§Q<h /CGIu > _Q< /C = (30)
So §1
If 03 < o7, the BER is similarly derived as
PCG—sub B lQ T}?G—sub _ MOCG 1 B _Q TCG sub IulCG (31)
b - 2 gCG \/gi .
0 1
Therefore, the BER(29) is obtained by integratingl (30) &8) {nto one. u

2) Special Case with Large N: We next focus on analyzing the special case with lakge

where much more results can be obtained.

Corollary 1. For a relatively large value oV, the asymptotic one of (24) is expressed as

2N00<71
00 + o?

TCG sub

(32)
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and the asymptotic BER is given by

- SG—su VN|o? — o2 VNA
peasn g (VL) _ g , (33)
o5 + oy Y+2/y
where
I
=5 A=lRl =Pl S = el + [l (34)

Proof: The result[(3B) is easily obtained by substituting the adptipthreshold[(3R) and
the expressions af? (@) into (29). Note thaty is the signal-to-noise ratio (SNR) of the ambient
RF source. [

It can be readily checked th&““~*" is an decreasing function Jg/%y, i.e., larger SNR,
larger N, larger A, and smaller> all conduce to better detection performance. It may differ
from the conventional binary detection theory where thdgoerance is mainly controlled by

SNR andN.

Remark 4. Different from [13] and the proposed optimal detecfdr (8 suboptimal detector
achieves the same error probability fgr= 0 andd;, = 1 at the threshold (32), i.e.,

R R 1 1 TCG—sub . N0_2 1 TCG—sub . NO.2
Pr(d = 0[H;) — Pr(d = 1|Ho) = 5 = 5Q ( h NI 0] — 5@ h NI !
0 1

:1[162(@)@(@)]:0 @

2 o8 + o} og + o}

Moreover, it is readily seen tha>* = T°¢—"P. The suboptimal detector with largé achieves

the same performance as the optimal detector with balanédl B

By carefully checking[(33), we find that there exists an inglle BER in terms of SNR,

i.e., when SNR turns to infinity, the BER does not go to zerowalltapproach an error floor.

Corollary 2. As the SNR goes to infinity, the BER of the suboptimal deteateets an error

floor at

vVNA 1 NA? 1 2N A2
floor __ ~ _ _ _
PP =Q <72 155%P ( E ) + 15%P ( e ) . (36)
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Proof: The result is obtained by omitting the ter%nin (33) when SNR turns to infinity,

and we utilize a simple but accurate approximatiorQgf:) [27]

1 x? 1 222
— - = > 0.
Q(x) ~ 156X p< 2)+4exp( 3 ), x>0, (37)
for the approximate equality ifi (B6). |

Clearly, the position of the error floor is related to the eabf N and A/, where the latter
reflect the impacts of the channels. We then define relatieardl difference (RCD) as

A _ llhol = Imf|

RCD2 — = .
Y |hol? + [ ?

(38)

Since the detection is mainly based on checking the enengieler two different channel
situations, when SNR increases to a certain extent the ingfathe high SNR on enlarging
the energy difference is not dominant, while the relativifedence between the two channel

situations, i.e., RCD, will play a very important role foretletection performance.

Definition 1. Define the outage probability as the probability of the gibrathat the instanta-

neous asymptotic BER exceeds a certain threshold, whicives dpy
Py = Pr {PfG-Sub > (} . (39)
Theorem 5. The outage probability can be computed in closed-form as

S i ) v g S

m=0 n=0 k=
( )( 1)kz Zm)\m—i-l)\n 2% 2(m ntk+1)
1-—

r k+1, ° ) -
p2)n—k= 1()\1% )\20,2 )m+k+1 <m+ + 1, (1— 2)0%()0%1)

2m1_

mln!(

-\ © mon m+k: ( )(_l)kp2m)\?)\72n+10.}2Lko_Z(m n+k-+1)
1 2\-2 L , (40
exp <(1 ,0 ) Onz: =0 mlnl(l p )n—kz—l ()\20}2;1 — N ho)m-i-k:-i-l (40)
where
2Q07(¢) —2Q71(¢)
AL = and )\, = . (41)
(W) (W)
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|h1‘2ll

/

/)\2 0 /1 |h0\§
A

/ 2

Fig. 2. The domain of integratio® for the calculation of the outage probability.

Proof: Substituting [(3B) in[(39)P,.: is further given by

_ VNA _ Q) _ P =ImP Q7'
P"‘“‘Pr{Q <2+2/7> ZC}‘PY{‘ A ST T S

where@~!(-) denotes the invers@-function.

Moreover, sincel — % > 0, namely¢ > Q(v/N) generally holds for largeV, we have

Py = // o2, ka2 (Y15 Y2)dyrdys
D

Ay _Myi

A1 — Agl-i-)q 00 pos +A1
:/ / fh0|2,|h1|2(y1>y2)dy2dy1+/ / Jirol2, ka2 (Y1, Y2)dyady,
0 0 A1 2

X291
— 248 Y

= 1(¢) + L (Q), (43)

where the domain of integratioP is displayed in Figl12, whilefy,,2,jn,12(v1, y2) is the joint
PDF of |hy|* and|h4|?. The calculation of the integral (¢) and J5(¢) is given in AppendixXZA.
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As channel affects BER performance, it is then of interestiteck how the asymptotic BER
(38) would satisfy a predefined performance under the rancloamnel effect. We then define
the asymptotic outage (AT) probability as the probabilifyttee situation that the instantaneous

BER floor falls below a certain threshold.
Definition 2. Define the asymptotic outage (AT) probability as

Pyr = Pr{P"" > n}. (44)
Theorem 6. The AT probability can be expressed as

> C4m$m+1 )\4 )\3
Pyp =Y —— LR (2m+2,m+1m+2, =) =5 F (2m+2,m+1;m+2, - =2 )| | (45)
m=0 m+1 P P

where, Fi (-, -; -, -) denotes the Gauss hypergeometric function [28], and

2 2
As = 1+ @ L A= 1_ 9w L (46)

VN
Proof: Substituting [(36) in[(44) Pt is further given by

ho|?

|
A -1 Tty — 1) -1
X~ VN P+l T VN
Define X = {Zj‘j whose cumulative density function (CDF) can be computed as
2, Oyt x
Fx(z) = anﬁﬁl <2m+2,m+1;m+2,—;), (48)

m=0
where the detailed derivation can be found in Appeidix B.nitvwe have

Q') _ X-1 Q‘l(ﬁ)}
Pyt =Pr< — < < =Pr{d < X < \} = Fx(\) — Fx(N3). (49
AT T{ \/N =Xr1- \/N 1"{3_ > 4} X( 4) X( 3) (49)
Thus, the AT probability is obtained by substituting the CBfFX into (49). [

C. Suboptimal Detector with the PSK Ambient Source

In practice, ambient RF signals are usually the PSK or thed€atare Amplitude Modulation

(QAM) signals rather than the complex Gaussian signal. ia #ection, we will study the
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suboptimal detector and its performance with PSK ambie;rtaslg, ie.,

s[n] =/ Psexp (j%), kE=0,---,M—1, (50)

where P, is the signal power.

Let us explicitly expand”Z as
N

> ([hol?ls[n]|* + [w[n]? + 2R{hos[n]w*[n]}) . Ho,
7 — n;l (51)
n; (Iha?[s[n]* + [w[n]* + 2R {1 s[n]w*[n]}) , Ha,

From the central limit theorem, we haje(n]|* ~ N(N,, N2) and R{h;s[nJw*[n]} ~
N (0, |h;|?PsN,,). Then the distribution ofZ under the hypothesi&; can be obtained ag|#,; ~
N (uFSK, ¢PSKY with the PDF

7 7

2
: 1 z— g .
fz(2|H:) = nggeXp [_%] ; 1=0,1, (52)
where
S = No?, s % = 2N|h;|*P,N,, + NN2, i=0,1. (53)

Theorem 7. The threshold for the suboptimal detector with PSK ambiégads is expressed

as
21n <2|h0\2’7+1>
NN. 1 1 2|h1]?y+1
TPk — Y L NN, hol2~y + = hil2v + =) |1 . 54
ey (' o ”*2) (' 1 ”*2) TNy | Y

Proof: Similar to the operation[(25), the optimum threshold foraliieg the range of
the energyZ is obtained throughf, (T75%|Hy) = fz (TFS€|H,). After some tedious yet

straightforward calculation, we will obtain the result Bdj. [ |

Theorem 8. The BER for the suboptimal detector can be expressed as

PPSK _ 1 . EQ TESK — Hmax + EQ TESK — Hmin (55)
b 2 2 Vmax 2 Vomin /)

“The extension to QAM ambient signal can be similarly made iarsitted due to the length limit.
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Where fiax = max {6, 1™}, pin = min {#g> 0%}, Gnax = max {G™, "¢} and

_ : PSK _PSK
Cmin = 1MIN {§0 NS }

Proof: The proof is similar to that of Theoreni 4. [ |
We can see that the threshdld](54) cannot be obtained withelnowledge of CSI. However,
if the reader have access to the knowledge of the noise,N.g.we can obtain the threshold

with o2 as follows

NN N 2N ln (7208_1\%)
w o2—N,
TPk — 2w D Tgg2 Ny (202 — N,) | 1 2 56

Nevertheless, we provide another solution even wNgnis unknown.
Corollary 3. For high SNR circumstance witb|h;|*P, + N,, > N, and with largeN, the
asymptotic threshold is expressed as
TPSK = Nogo. (57)
Proof: When there i2|h;|*P, + N, > N, the asymptotic distribution off with PSK
ambient signals under the hypothe®is can be approximated by
Z|H; ~ N (N|hi|*Ps + NNy, 2N|h;|*P;N,, + 2NN;) =N (No7,2NN,07).  (58)
Similar to the operation before, the corresponding thriestsogiven by

2N, In (Z—é)

1

N(o§ —ot)

T}}LDSKNO'()O'lJl—i— %NO'(]O'l, (59)

where the approximation holds valid fo¥ large enough. Then the threshdld™* can be

obtained just with knowledge of?. [ |

Remark 5. The proposed suboptimal detector with PSK ambient sigraigeaes the balanced

BER ford = 0 andd = 1 at the threshold (39), i.e.,

. . 1 1, [TPSK— Ng2 1 [ TPSK — Ng2
Pr(d = 0[H1) — Pr(d = 1/Ho) = 5 — 5Q <u> - 5@ <¥>

V2NN, o2 V2NN, 0%

1 VN(o1 — 00) VN(oo — 0y) _
_ill_Q< 2N, >_Q< 2N, )]_0' ©o
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Corollary 4. For high SNR circumstance withh;|?P,+ N,, > N,, and largeN, the asymptotic
BER is given by

PP = Q (@Mhovw =Py + 1\) ~Q (x/%\lw - Ihﬂ}) G

Proof: The result is easily obtained by recomputifig] (55), i.e.Jagpg 7% with 75K,

and replacing:T5% with 2N N,,02,

pbPSKzl—lQ TFIL)SK_NU?naX _|_1Q TFIL)SK_NU?nin :Q \/N|UO_01| . (62)
2 2 V2N N,02,.. 2 V2NN,o2. 2Ny

[
Unlike the case of complex Gaussian ambient signals, the @ERwith PSK ambient signals
is not only an decreasing function of SNR but also meets mur éisor as SNR goes to infinity.
It is also noted that the channel differed¢b0| — |h1|\ rather than RCD affects the performance

here. Moreover, increasing the sampling numbehas the same effect as increasing SNR.

V. PARAMETER ESTIMATION

For the proposed detectofs (9) ahdl(24), the reader doesprdttn estimate the channel state
information of kg, hs., andhy,., as well ass[n] and«. Nevertheless, the two crucial parameters

oi ando? should be estimated before the detection.

A. Blind Estimation of 02 and o}

Since the channel energy (or equivalently the channel anag) varies much slower than the
instantaneous CSI, we assume that the coherent time of ehanergy spans much longer than
the channel coherent time. Specifically, let us assume thengi energy does not change during
M symbol periods of the tag, (a¥/ N s[n]'s correspondingly), and the corresponding received
signal vectors at the reader are denotedypagk = 1,---, M). Bearing in mind that? and
o? represent the statistic variances of the received sign@)inwe then propose the following
estimation steps:

Step 1: Compute the normalized energyyefas

2
4 il

L k=1 M (63)
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Fig. 3. An example demonstrating the estimatiorvg§fand o2, with N = 100, M = 20, and M, = 1.

Step 2: ArrangeA, in ascending order, denoted A%, k=1,---,M.
Step 3: Since the tag transmits symbols of 0 and 1 with equddgtility, average the first and

second half ofd] as

o M/2

M
Amin = 77 Z AL Apax = % > AL (64)

k=M/2+1

However, [64) can not tell which one of,;, and A,,., corresponds to which?.

B. Discrimination of o2 and o? with Short Training

We employ a very short training to discriminatg from 7. Assume the tag send¥; > 1
bits as training symbols and the corresponding receiveabigectors arey,; (i = 1,---, M;).

Then we continue the previous estimation approach as

Step 4. Compute the average bf, normalized powers as
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Step 5: If | Apin — Ai| < [Amax — A¢|, S€t62 = Apay @andé? = Ay, otherwise set? = A,
ando? = Ay
A specific example is presented here with= 100, M = 20, and M, = 1. We showA, and
A (k=1,---,20) in Fig.[d and obtaind,,;, and A,,.. as the corresponding values of the two

dotted lines. SinceA, i, — Ay > [Amax — A

, We seto? = A, ando? = A

Remark 6. Theoretically, sending one training symbol is sufficientdistinguisho? and o?.
Moreover, we call this estimation a “semi-blind” method, ex the energies ol/ symbols
are utilized to blindly estimate values of while only few training symbols are required to

differentiate between the twe?’s.

V. NUMERICAL RESULTS

In this section, we resort to numerical examples to evaltlaeproposed studies. Since the
distance between the source and the tag (or the distancedetine source and the reader) is
much larger than that between the tag and the reader [10]ewergte the channels; andh,
according taC N (0, 1) and the channel,, according taCA/ (0, 10). Energies of all channels are
assumed to hold unchanged during 50 symbol period of theiag)M = 50, and 4 training
symbols of bit "1” are periodically inserted, i.e}/; = 4. The tag coefficientv = 0.5 and the
AGWN follows CN (0, 1). Totally 10 Monte-Carlo runs are adopted for average.

We first demonstrate the BER versus SNR of the proposed detdat Fig.[4. The simulated
BERs with perfects? and estimated? are displayed, respectively, and thresholds of different
detectors in[(9),[(24) and_(56) are all applied for simulatibhe theoretical results ib_({10), (29)
and [55) are also shown for comparison. We Set 50 and RCD = 0.5. It is seen that for all
cases, the simulated BERs with perfe¢tare consistent with the theoretical BER. Moreover,
the simulated BER with estimatedt performs ignorably worse than that with perfe¢t which
indicates the effectiveness of the proposed estimationoaph in Sectiof V. For the complex
Gaussian (CG) ambient signal, the optimal detector outpsis the suboptimal one, as expected,
and higher SNR leads to smaller BER while the performanceamrgment will flatten as SNR

becomes relatively large, which verifids 33). However, tftie PSK ambient signal, it achieves
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Fig. 4. BER versus SNR for the detectors with= 40 and RCD = 0.5.

better performance than the CG, sing® is in the numerator of (35), while the effect gfon
BER is partly alleviated by: as shown in[(33). Moreover, there exists no error floor as SNR
becomes larger, as analyzed in](61).

We then compare the performance of the semi-coherent detadth that of the existing
noncoherent detectors in Fig. 5, wheke= 40, RCD = 0.5 and the ambient source transmits
CG signals. Specifically, the theoretical and simulated BER our optimal detector and the
energy-difference method in_[13], and the simulated BERhaf honcoherent ML detector in
are demonstrated, respectively, for comparison. A simulated BERs are obtained with
perfectoc?. We can see that the optimal semi-coherent detector ootpesfthe noncoherent
ones, at all SNR region.

The balanced or unbalanced BER phenomenon of the proposedats is then illustrated
in Fig. @, where we sefV = 40 and RCD = 0.5, and®r(d = 1|H,) and Pr(d = 0|#,)
corresponding to the thresholds$ (9).1(32) dnd (59) are sitadl In order to more clearly illustrate
the phenomena, all the thresholds are only computed witfegter?. As analyzed previously,

both [32) and[{59) can achieve the balanced BER for “0” andwhfle (3) can not.
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Fig. 5. Performance comparison between semi-coherent andaoherent detectors withh = 40, RCD = 0.5, and the CG

ambient source.

We next show the BER versus the length of the received sigeetby, N, for the detectors
in Fig.[@. We set SNR = 10 dB and RCD = 0.5. Similar to Fig. 4, theves of the theoretical
BER, simulated BER with perfect? and simulated BER with estimated’ are all close to
each other. It is obviously seen that largérresults in a reduced BER for all the detectors and
there is no error floorwheV increases as seen from the theoretical expreskidn (33)&hd (
Nevertheless, in practice one cannot use very l&fgance it will decrease the transmission rate
of tag’s symbols, increase the computational complexity] enay exceed the channel energy
coherence time. In addition, the suboptimal detector wit &nbient signals performs closer
to the optimal one since the Gaussian approximation udilinethe suboptimal detector works
better at largerV. Moreover, the detector with CG ambient signals perfornesea to that with
PSK ambient signals a§ becomes large, because the distributiot¥ofith CG ambient signals
approximates to that with PSK ambient signals, both logaéiroundN¢? with a relatively large
probability as shown in[(22) an@d _(53).

Fig.[8 depicts the curves of BER versus RCD correspondindnéooptimal and suboptimal
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Fig. 6. Balanced or unbalanced phenomenon for the detewitisNV = 40 and RCD = 0.5.

detectors with CG ambient signals. We set SNR = 10 dB &ng 40. Obviously, large RCD
results in smaller BER and there is no error floor effect, Whis intuitively correct since
the reader can easily decode the symbol when the channeisponding to “0” and “1” are
relatively distinct. Compared with the BER values in Eig.néldig.[7, we can infer that RCD has
a more important impact on BER performance than other sypmameters. The improvement
of the performance is gradual at small RCD but becomes radatge RCD, because the effect
of SNR may slow down the reduction of BER at small RCD, whilggéa RCD will totally
dominate the BER, as can be verified frdml(33). It can also ba feat the BERs approach to
0.5 at small RCD, since both the detectors fail to work wite goorest detection environment
and only yield random results.

In this example, we illustrate the outage probability and gbbability of the suboptimal
detector versus the target BER in Hig). 9 and those versus 8IRRI10. In Fig[®, the parameters
are set as SNR = 5 dB andl = 40, while in Fig.[10, we setV = 40 and{ = n = 0.1. Since
hs is assumed as a constant during the outage derivation inn&ippg\, we seth;, = 2 and

hy. = —5 for comparison. The theoretical BERs in {33) and] (36) are leyaa for outage
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Fig. 7. BER versusV for the detectors with SNR = 10 dB and RCD = 0.5.

simulation. The theoretical outage probability given b@)(4and [45) is displayed as well. As
can be seen, the theoretical analysis matches the resutteedflonte Carlo runs very well.
Naturally, a larger target BER leads to a lower outage pritibatAs mentioned in Fig[(#4, BER
approaches an SNR-independent error floor as SNR turns, latgée the outage probability
correspondingly flattens and approaches the AT probabilsanwhile, i, with larger absolute
value can achieve lower AT probability since lardér,.| will amplify the difference between

|ho| @and|h4|, i.e., the RCD or the correlation coefficientin (€7), which would contribute to a

better outage performance.

Lastly, we demonstrate simulated BER versus the numbenriofitig symbols in Fig. 11 when
three detection thresholds (9), {24) and](56) are applieddmparison. We set SNR = 10 dB,
N = 40. The RCD is unconstrained and set as 0.5 for comparison. Weeamthat, on one hand,
sending more training symbols contributes to a better BERopeaance, especially when the
number turns from 1 to 2; on the other hand, no more distindbpmance improvement can be
achieved by keeping increasing the number of training sysatbtence, 3 or 4 training symbols

are appropriate for the comprehensive consideration desyperformance and complexity.
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Fig. 8. BER versus RCD for the detectors with SNR = 10 dB ane: 40.

VI. CONCLUSION

This paper presents a theoretical study of the semi-cohdetaction for the ambient backscat-
ter system, where training symbols are sent to acquire ttectien-required parameters rather
than the channels themselves. Our goal is to offer feasibigestions for practical system
designs of this new born communication prototype. We pregadesigned symbol detectors
under different scenarios to realize the trade-off betwtberdetection accuracy and the freedom
from prior knowledge. The closed-form BER expressions ange analysis are also derived
for various cases, which demonstrate the effect of diffiesgatem parameters. Simulation results

are provided to verify the correctness of our studies.

APPENDIX A

CALCULATION OF THE INTEGRAL J;({) AND J5(()

Consider the situation where the distance between the tdghenreader is much smaller
than that between the tag and the source (or the reader arsdiinee), and the communication

environment around the tag and the reader is usually staoturing the data transmission,

February 25, 2018 DRAFT



26

10°

Outage Probability

Theoretical Pyt )
Simulated Py, (theore. PCE=™)
Theoretical Pyr

5 Simulated Pyt (theore.Pélom)
0’ I I I I i i i

o<dop

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
target BER C orn

Fig. 9. Outage probability and AT probability versus tarB&R for the suboptimal detector with SNR = 20 dB aiNd= 40.

the channel coefficiert,, can be taken as a constant. Then we redarée hq + ah,h, as the
sum of two independent zero-mean complex Gaussian randdables, i.e., a new zero-mean
complex Gaussian random variable whose varianeg is= o7, + o®|h.|*02,. Since|ho|* and

|hy|? are correlated, their joint PDF is given by
1 1 yio e 20\/Y1Y2
= - 2L 2 66
f|h0‘2"h1‘2(y17 y2) (1 — pz)o‘}%oo‘%l exp |: 1 _ p2 <O'}2lo + 0’}211):| 0 (O_hoo_hl(l . p2) ) ( )
wherep is the correlation coefficient betweéhy|*> and |h;|? with the form
_ E{[nol’1m]*} — E{[holYE{|M*} _ (204, + 93,97) — 93 (0hy +9F) _ i,

= _ho 67
VD{haP}y/D{I ) 7 (o7 o) 7 0
and Iy(-) is the modified Bessel function of the first kind.
According to [438),J:(¢) is expressed as
A GXP (ﬁ) “ A —y 2py/
Tho 2 P/ Y1Y2
= — = ] dysd
0= [ oL,k [ e (s p2>a%;1) (o )
0 2m A1 _ iy
_ P / m < — ) A2 1
= yirexp| — x5 |7 (mt+l 55 |dy
mZ::O (m)2(1 — p2ymo2m D Jo 7 (1= p?)oy, ( (1— pz)ofi) 1
(68)
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Fig. 10. Outage probability and AT probability versus SNR tioe suboptimal detector wittv = 40 and¢ = n = 0.1, Ay,

is set as 2 and -5 for comparison.

where we use the series representatiory¢f) [23]

[e.9]

1 2\ 2m
As the lower incomplete gamma function has the special deete[28]
R
y(m+1,z) = m! ll—e (ZW)]’ (70)
n=0
using the binomial theorem, we have
o0 om A1
p — -\
50 - [ o (=) - ()
n;) m!(1— pz)maigmﬂ) o 7 (1= p?oi, (1= poy,
k
m n n _ M n—k
3 () ( Az) M /Al T exp ( — M0, + A, y1) dyl}
fe i (1= 2oy Jy (1= p*)aoy 07,
= (e i) o ()
= —y|m+1l, | —exXp |
2 o) T ) 2202
n m —-n ny\m m+k—n
(k)(—l)kp2 (1= p*)F AT +1Uf2L§Uf2L§ o )\1)\2<7le1 )\%Uf%o
m+k+1 v m+k+1’ 2 2 2 :
min! (Ao}, — Aio3,) (1 = p*) 20},
(71)
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Fig. 11. BER versus the number of training symbols for theeg¢hdetectors with SNR = 10 dB and = 40. RCD is

unconstrained and set as 0.5, respectively.

Similarly, we can obtain the second integratidsi¢) as

e 2m )
P —h
Jo(C) = / Y1 exp <7)
) mz::o (m)2(1 — p2)map ™y, ' (1—p?)oy,
N\, — 22u1 Ay — 2y
'im-+1 2 bY! —T'{m+1 IANNPYI di 2 Jo1(C) — Jn(C). (72)
(1= p?)aj, "(1 = p?)oi,

Take the computation of the first part in {72) as example, we ha

2m Ao A\ n

A

Jo1(¢) = : / Yy exp ( ho I 1) —dy;
mzzo ml(1 —p )mo—i(m“’ o (1= p*)\oj, o, Z nl(1 — p?)ro}”

. 2meX ( ) " -

3 S S WO [ e [,

—ml(l—p*)mo 2(m+1 =0 k0 nl( 1_ A1 (1= p*) Moy o,
1 k 2m(1 —p )k n+1>\m+l)\n 2%k 2(m+k n+1)

B _>\2 2 ho h
= exp ( ) Z Z Z m!n!()xlahl — )\2%0)%”1

m=0 n=0 k=0

T k+1 ! 0 73
(”'” * ’<1—p2>azoo—zl)’ (73)

n=0
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where the upper incomplete gamma function also has a sp=asal that

m

C(m+1,z) =mle™ Z

n=0

Therefore, [(4D) can be obtained from(¢) + J21(¢) — J22(¢) with the relationship thal'(m +

xn

= (74)
n.

Lx)=m!—~(m+1,x).

APPENDIX B
hol?

PDFOF X — |

|h1]?
With the PDF definition of the ratio of two random variableg][2the PDF of X can be

obtained from

fx(z) = / Y finol2.na2 (@y, y)dy = / Chye” TP [ (Cy/zy) dy
0

0
— C1C3mam /OO 2mt1,—Ca (w+p) N Cama™

- mi ym e_prydy: —m’ .CL’ZO (75)

n;) am(ml)* o mZ:O (1+x/p)>m+?

where
1 1
C, = , Co=—r—, (76)
(1= pH)op,oh, (1—p?)op,
2 1—p?)pm (2 1)!
03: P N C4m:( p)p gm_'_ )7 (77)
Uhoghl(l - P ) (m'>
Thus the CDF ofX is given by
* 2, O™t x
Fx(z) = dy = —F (2m+2m+1m+2,— ). 78
x () /Ofx(y)y mzzom+121 P (78)
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