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Heterogeneous Networked Data Recovery from
Compressive Measurements Using a Copula Prior

Nikos Deligiannis, João F. C. Mota, Evangelos Zimos, and Miguel R. D. Rodrigues,

Abstract—Large-scale data collection by means of wireless
sensor network and internet-of-things technology poses various
challenges in view of the limitations in transmission, computation,
and energy resources of the associated wireless devices. Com-
pressive data gathering based on compressed sensing has been
proven a well-suited solution to the problem. Existing designs
exploit the spatiotemporal correlations among data collected by
a specific sensing modality. However, many applications, such
as environmental monitoring, involve collecting heterogeneous
data that are intrinsically correlated. In this study, we propose
to leverage the correlation from multiple heterogeneous signals
when recovering the data from compressive measurements.
To this end, we propose a novel recovery algorithm—built
upon belief-propagation principles—that leverages correlated
information from multiple heterogeneous signals. To efficiently
capture the statistical dependencies among diverse sensor data,
the proposed algorithm uses the statistical model of copula
functions. Experiments with heterogeneous air-pollution sensor
measurements show that the proposed design provides significant
performance improvements against state-of-the-art compressive
data gathering and recovery schemes that use classical com-
pressed sensing, compressed sensing with side information, and
distributed compressed sensing.

Index Terms—Compressed sensing, side information, copula
functions, air-pollution monitoring, wireless sensor networks.

I. INTRODUCTION

THE emerging paradigm of smart cities has triggered the
development of new application domains, such as envi-

ronmental monitoring and smart mobility. These applications
typically involve large-scale wireless sensor networks (WSNs)
and internet-of-things (IoT) devices collecting and communi-
cating massive amounts of environmental data, related to air
pollution, temperature, and humidity. An air-pollution moni-
toring system1, for example, involves wireless devices spread
in an urban area communicating measurements on several air
pollutants, including carbon monoxide (CO), nitrogen dioxide
(NO2), ozone (O3), and sulfur dioxide (SO2). Such data types
have very different ranges and marginal statistics, but are
intrinsically correlated.
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This work shows how to effectively leverage the depen-
dencies among diverse (alias, heterogeneous) data types in
order to significantly reduce data-rates in the network. This
reduction translates into power savings at the wireless nodes or
IoT devices, which operate under austere limitations in energy
resources. Efficient designs should, nevertheless, exploit intra-
and inter-data dependencies at the decoder so as to conserve
the computational effort at the wireless sensors and to diminish
energy-demanding inter-sensor communication. Moreover, in
order to safeguard power savings, devices should communicate
over small distances through multi-hop wireless transmissions
[3], namely, from neighbor to neighbor, rather than directly to
a sink. Finally, as information is sent over error-prone wireless
channels, data collection and recovery schemes should provide
for robustness against communication noise.

A. Prior Work

Related studies on the problem of data collection and recov-
ery for WSNs proposed to reduce data rates by grouping nodes
with correlated readings into clusters [4], [5] or by allowing
a small subset of nodes to transmit data carrying most of the
information in the network [6]. Alternative studies focused
on conventional data compression techniques involving dif-
ferential pulse-code modulation (DPCM) followed by entropy
encoding [7], [8]. Other solutions considered collaborative
wavelet transform coding [9] or offered a flexible selection
between a distributed wavelet transform and a distributed pre-
diction based scheme [10], [11]. These techniques, however,
require additional inter-sensor communication, increasing the
transmission of overhead information over the network.

An alternative strategy adheres to distributed source coding
(DSC) [12], a paradigm that leverages inter-sensor (spatial)
data correlation via joint decoding. DSC is a promising
technique for WSNs as it shifts the computational burden
towards the sink node and delivers code constructs that are
robust against communication errors [12]. However, extending
DSC to the multiterminal case is known to be a challenging
problem in practice [13]–[15].

Compressed sensing (CS) [16], [17] addresses the problem
of data aggregation in WSNs by enabling data to be recovered
from a small set of linear measurements [18]. CS involves
solving an inverse problem at the decoder, for which several
algorithms have been proposed, including orthogonal matching
pursuit (OMP) [19], iterative thresholding [20], belief propaga-
tion (BP) [21], and approximate message passing (AMP) [22].

Considering a single-hop network, Haupt et al. [23]
proposed CS-based data aggregation through synchronized
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amplitude-modulated transmissions of randomized sensor
readings. Alternatively, Duarte et al. [24] proposed distributed
compressed sensing (DCS), where random measurements are
transmitted from each sensor and the data are jointly recovered
at the sink by leveraging the spatiotemporal correlations. Fur-
thermore, the authors of [25], [26] proposed a CS-based data
aggregation method that used principal component analysis
(PCA) to capture the spatiotemporal correlations in the data.

Assuming multi-hop transmission, Luo et al. [27] proposed
a compressive data gathering method that alleviated the need
for centralized control and complicated routing. They also
presented measurement designs that limit the communication
cost without jeopardising the data recovery performance. As an
alternative solution, Lee et al. [28] proposed spatially-localized
projection design by clustering neighboring nodes.

B. Contributions

Prior studies on networked data aggregation via (distributed)
compressed sensing [24]–[27] considered homogeneous data
sources, namely, they proposed to leverage the spatiotemporal
correlations within signals of the same type. Many applica-
tions, however, involve sensors of heterogeneous modalities
measuring diverse yet correlated data (e.g., various air pol-
lutants, temperature, or humidity). In this work, we propose
a novel compressive data reconstruction method that exploits
both intra- and inter-source dependencies, leading to signif-
icant performance improvements. Our specific contributions
are as follows:
• We propose a new heterogeneous networked data recov-

ery method, which builds upon the concept of Bayesian
CS with belief propagation [21]. Our algorithm ad-
vances over this concept by incorporating multiple side-
information signals, gleaned from heterogeneous corre-
lated sources. This is in contrast to previous studies [29]–
[32], which consider signal recovery aided by a single
side information signal.

• Previous CS approaches describe the dependency among
homogeneous sensor readings using the sparse common
component plus innovations model [24]; simple additive
models [33]; or joint Gaussian mixture models [32].
Unlike these studies, we model the dependency among
heterogeneous data sources using copula functions [34],
[35] and we explore copula-based graphical models—
based on belief propagation [36]—for data recovery.
Copula functions model the marginal distributions and
the dependence structure among the data separately; as
such, they capture complex dependencies among diverse
data more accurately than existing approaches.

• Experimentation using synthetic data as well as diverse
air-pollution sensor measurements from the USA Envi-
ronmental Protection Agency [37] shows that, for a given
data rate, the proposed method reduces the reconstruction
error of the recovered data with respect to classical
CS [27], CS with side information [29], and DCS [24]
based methods. Alternately, for a given reconstruction
quality, the method offers significant rate savings, thereby
resulting in less network traffic and reduced energy

consumption at the wireless devices. Furthermore, the
proposed design offers increased robustness against im-
perfections in the communication medium compared to
the classical CS [27] and DCS [24] based methods.

C. Outline

The paper continues as follows: Section II gives the back-
ground of the work and Section III details the proposed data re-
covery method. Section IV describes the copula-based statisti-
cal model for expressing the dependencies among diverse data
types, whereas Section V elaborates on the proposed belief-
propagation algorithm. Experimental results are provided in
Section VI, whereas Section VII concludes the work.

II. BACKGROUND

A. Compressed Sensing

Compressed Sensing (CS) builds upon the fact that many
signals x ∈ Rn have sparse representations, i.e., they can be
written as x = Ψs, where Ψ ∈ Rn×n0 is a dictionary matrix,
and s ∈ Rn0 is a k-sparse vector (it has at most k nonzero
entries). Suppose we observe m � n linear measurements
from x: y = Φx = As, where Φ ∈ Rm×n is a sensing
(or encoding) matrix, and A := ΦΨ. CS theory states that if
A satisfies the mutual coherence property [38], the Restricted
Isometry Property [39], or the Null Space Property [40], then
s (and thus x) can be recovered by solving

ŝ = arg min
s
‖s‖1 s.t. y = As. (1)

In particular, s is the only solution to (1) whenever the
number of measurements m is sufficiently large. When the
measurements are noisy, i.e., y = As + z, where z ∈ Rm
represents additive noise, s can be recovered by solving
instead

ŝ = arg min
s

1

2
‖y −As‖22 + κ‖s‖1, (2)

where κ > 0 controls the trade-off between sparsity and recon-
struction fidelity. Instead of assuming that s is strictly sparse
(i.e., ‖s‖0 = k), several works [21] (including this one) focus
on compressible signals, i.e., signals whose coefficients decay
exponentially, when sorted in order of decreasing magnitude.

B. Compressed Sensing with Side Information

CS can be modified to leverage a signal correlated to the
signal of interest, called side information, which is provided
a priori to the decoder, in order to aid reconstruction [29]–
[32], [41]. In CS with side information, the decoder aims to
reconstruct x from the measurements y, the matrix A, and
a side information vector w that is correlated with s. The
work in [29]–[31] provides guarantees for a particular way of
integrating side information into CS. In particular, one adds to
the objective of (1) the `1-norm of the difference between the
optimization variable s and the side information w, yielding
the `1-`1 minimization problem:

ŝ = arg min
s
‖s‖1 + ‖s−w‖1 s.t. y = As. (3)
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Fig. 1. Multi-hop transmission in a large-scale WSN using CS [27].

Other studies considered prior information in the form of
knowledge about the sparsity structure of s [42]–[45] and
derived sufficient conditions for exact reconstruction [42]. The
authors of [46] proposed to recover the difference between the
signal of interest and the side information, which was assumed
to be sparser than the signal itself.

C. Distributed Compressed Sensing

DCS [24] assumes a joint sparsity model to describe the
spatiotemporal dependencies among ζ homogeneous signals.
The sensor signals xj ∈ Rn, j ∈ {1, 2, . . . , ζ}, are assumed
to have a representation xj = Ψ(sc + sj), where sc ∈ Rn
is a sparse component common to all signals, sj ∈ Rn is a
sparse innovation component unique to each signal, and Ψ ∈
Rn×n is the sparsifying basis. Each sensor j ∈ {1, 2, . . . , ζ}
independently encodes the measured signal by projecting it
onto a sensing matrix Φj and transmits the low-dimensional
measurements yj = Φjxj to the sink. The sink, in turn, jointly
reconstructs the signals by solving:

ŝall = arg min
sall
‖sc‖1 +

ζ∑
j=1

ωj‖sj‖1 s.t. yall = Aallsall,

where ω1, . . . , ωζ > 0, yall =
[
yT1 · · · yTζ

]T
con-

tains the measurements from all the sensors, and sall =[
sTc sT1 · · · sTζ

]T
the vector to be recovered, contains

the common and all the innovation components. Also,

Aall =


A1 A1 0 0 · · · 0
A2 0 A2 0 · · · 0

...
...

...
...

. . .
...

Aζ 0 0 0 · · · Aζ

 ,
where Aj = ΦjΨ is associated to sensor j ∈ {1, 2, . . . , ζ}.
Note that the j-th block equation of yall = Aextsall corresponds
to the measurements of sensor j: yj = Aj(sc + sj).

D. Compressive Data Gathering for WSNs

The compressive data gathering approach in [18], [27]
adheres to a multi-hop communication scenario in which
each node relays a weighted sum of sensor readings to
a neighboring node. Specifically, consider a network of n
nodes and let xi ∈ R denote a scalar reading of node
i ∈ {1, 2, . . . , n}. As shown in Fig. 1, node 1 generates a
pseudorandom number φj,1 — using its network address as the
seed of a pseudorandom number generator — and transmits
the value φj,1x1 to node 2. Subsequently, node 2 generates

same node, 
different sensor 

Pollutants 
(sources) 

Node id: 

: Sink 

Fig. 2. Extension of the data gathering scheme of [27] to support the collection
of diverse sensor data. For each source X(l), l = 1, 2, . . . , `, the multi-
hop transmission among the nodes takes place for m(l) repetitions until the
measurements vector y(l) is formed at the sink.

φj,2, computes the weighted sum φj,1x1 +φj,2x2 and sends it
to node 3. In sum, node k generates φj,k, computes the value
φj,kxk, adds it to the sum of the previous relayed values, and
sends

∑k
i=1 φj,ixi to node k+ 1. The sink node thus receives

yj =
∑n
i=1 φj,ixi. After repeating the procedure m times, for

j = 1, . . . ,m, the sink obtains

y =
[
φ1 · · · φi · · · φn

]
x = Φx , (4)

where y = (y1, . . . , yj , . . . , ym) is the vector of measure-
ments, φi = (φ1,i, . . . , φj,i, . . . , φm,i) is the column vector
of pseudorandom numbers generated by node i, and x =
(x1, . . . , xi, . . . , xn) is the vector of the node readings. Given
the seed value and the addresses of the nodes, the sink can
replicate Φ and recover the data x using standard CS recovery
algorithms [19], [21], [22]. The study in [27] modified the
sensing matrix in (4) as Φ′ =

[
I R

]
, where I is the

m×m identity matrix and R ∈ Rm×(n−m) is a pseudorandom
Gaussian matrix. This means that the first m nodes transmit
their original readings directly to node m+ 1, which leads to
a reduced number of transmissions in the network.

Alternatively, in the approach of [26], each node i transmits
with probability pi its reading directly to the sink. In this way,
the sink collects measurements y = Φx, where Φ is a very
sparse binary matrix with one element equal to 1 per row
and at most one element equal to 1 per column, while all the
other elements are zero. The sink then solves (1) to recover
the readings from all the nodes in the network.

III. CS FOR HETEROGENEOUS NETWORKED DATA

State-of-the-art compressive data gathering and recovery
solutions [18], [24], [26], [27] leverage the spatiotemporal cor-
relation among homogeneous sensor readings, collected by a
given sensing modality. However, current WSN and IoT setups
involve diverse sensing devices gathering heterogeneous data;
for instance, different air pollution measurements (CO, NO2,
O3, SO2) are collected in an environmental monitoring setup.
We propose a design that jointly reconstructs heterogeneous
correlated data from compressive measurements, by leveraging
both intra- and inter-source data dependencies.

Consider a network comprising n wireless devices, each
of which equipped with ` sensors that monitor diverse,
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Sink 

///!

Fig. 3. Diagram of the proposed data recovery scheme. The vectors of
readings x(l) of each data type are reconstructed sequentially, l = 1, . . . , `.
The reconstruction of x(l) uses the respective measurements y(l) and matrix
Φ(l), as well as the sparse representations of the previously reconstructed
modalities, s(1), . . . , s(l−1).

but statistically dependent, data types; for example, if the
sensors measure the concentration of CO, NO2, O3, and
SO2, then ` = 4. Let x(l)

i denote the reading at sensor
i ∈ {1, . . . , n} of data type l ∈ {1, . . . , `}, and let x(l) =(
x

(l)
1 , . . . , x

(l)
i , . . . , x

(l)
n

)
be the vector collecting all the read-

ings of data type l. We assume that x(l) is sparse or compress-
ible in a given orthonormal basis Ψ; that is, x(l) = Ψs(l),
where s(l) =

(
s

(l)
1 , . . . , s

(l)
i , . . . , s

(l)
n

)
is the compressible

representation of x(l). In our experiments in Section VI-B1,
Ψ will be the discrete cosine transform (DCT) as, among
several other common transforms, this is the one that yields
the sparsest representation of pollution data.

The data gathering schemes [18], [26], [27] that were
reviewed in Section II-D can be readily extended to address the
collection of heterogeneous data. Fig. 2 shows how we modify
the multi-hop scheme of [27]. Specifically, we assume that
the communication network is a line graph, starting at node
1 and ending at node n. Node n, in turn, is connected to the
sink node. The measurements of data type l are collected and
transmitted as was described in Section II-D: node 1 measures
x

(l)
1 , and transmits φ(l)

1,1x
(l)
1 to node 2, where φ(l)

1,1 is randomly
generated; node 2, in turn, measures x

(l)
2 , generates φ

(l)
1,2,

computes φ(l)
1,2x

(l)
2 , and transmits the sum φ

(l)
1,2x

(l)
2 + φ

(l)
1,1x

(l)
1

to node 3; and so on. The process is repeated m(l) times, each
time for different realizations of φ(l)

j,i . The sink then obtains
the vector of measurements for source l:

y(l) =
[
φ

(l)
1 . . .φ

(l)
i . . .φ(l)

n

]
· x(l) = Φ(l)x(l) , (5)

which has length m(l). Whenever the communication medium
and the receiver of the sink have imperfections, (5) can be
modified to y(l) = Φ(l)x(l) + z(l), where z(l) ∈ Rm(l)

is
additive white Gaussian noise (AWGN) [18]. The collection
and transmission of measurements of the other data types
is performed in the exact same way, either sequentially or
concurrently.

Unlike the studies in [18], [26], [27], the sensing matrix
we consider here is Φ(l) = Θ(l)ΨT , where Θ(l) is a sparse

Rademacher matrix [21], and ΨT is the transpose of Ψ. Each
measurement vector in (5) can then be written as y(l) =
Φ(l)x(l) = Θ(l)ΨTΨs(l) = Θ(l)s(l), where ΨTΨ = I be-
cause Ψ is orthonormal. Bearing a similarity with low-density
parity-check matrices [47], sparse Rademacher matrices have
only few non-zero entries, which are either −1 or 1, with
equal probability. As shown in [21], they can lead to accurate
and fast belief-propagation-based CS decoding, as opposed
to dense Gaussian matrices [16], [17]. Similarly to the work
in [21], the row weight λ and the column weight ρ of Θ(l)

are kept very low—with respect to the dimension of the row
and the column, respectively—and are assumed to be constant.
Note that our selection for Φ(l) requires all nodes to know the
matrices Θ(l) and Ψ(l), which can be accomplished by having
all the nodes share a seed for generating the random entries of
Θ(l); and, if required, the matrix Ψ(l) can easily be pre-stored.

After receiving the measurements y(l) for all data types l =
1, . . . , `, the sink then proceeds to the data recovery stage,
which is the focus of our paper, and is shown schematically
in Fig. 3. Our method operates in stages, with the sink
reconstructing the vectors s(l) sequentially, i.e., first s(1), then
s(2), until s(`). When reconstructing s(l), the sink uses the
measurements that were relayed, y(l), the matrix Φ(l), as well
as the previously reconstructed vectors ŝ(1), . . . , ŝ(l−1), which
play the role of multiple side information.

Standard CS recovery algorithms [19], [21], [22], as pro-
posed by [18], [26], [27], would require recovering each sparse
vector s(l) independently from the other vectors, based only on
the measurement vector y(l). This fails to leverage inter-source
correlations. We will refer to this approach as the baseline
solution. Alternatively, one can apply DCS [24] to recover
the ensemble of sparse vectors {s(l)}`l=1 using the ensemble of
measurements vectors {y(l)}`l=1 and the matrices {Φ(l)}`l=1.
However, as shown in our experimental results, DCS does
not efficiently capture the underlying dependencies among
heterogeneous data, such as various air pollutants, which have
different statistical properties.

The method we propose, in contrast, leverages diverse
correlated signals through copula functions [34], [35]. Copula
functions, explained in detail in Section IV-A, are elements
of a statistical framework to effectively capture dependencies
between random variables. As will be explained in Section V,
we use copula functions to integrate knowledge from other
data types in the reconstruction of a given data type or, in
other words, as a way to integrate multiple side information.
Our experiments in Section VI show that it is exactly because
it uses multiple side information signals at the recovery
stage that our scheme outperforms the state-of-the-art methods
in [24], [27], [29]–[31].

IV. STATISTICAL MODELLING USING COPULAS

We now describe how to model statistically heterogeneous
data using copula functions. Let S(l) denote the random vari-
able associated with the reading of source l ∈ {1, . . . , `}, and
let s(l) be one of its realizations. In general, the data sources
we consider are not independent, meaning their joint probabil-
ity density function (pdf) fS(1),S(2),...,S(`)

(
s(1), s(2), . . . , s(`)

)
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does not factor into the product of its marginals. We will
represent this joint pdf as fS(s), where S := (S(1), . . . , S(`))
is a random vector and s := (s(1), . . . , s(`)) its realization.2

We assume that each sensor i ∈ {1, . . . , n} observes Si, an
independent realization of S. In other words, Si is an i.i.d.
copy of S. This implies

fS1,...,Sn

(
s1, . . . , sn

)
=

n∏
i=1

fSi(si)

=

n∏
i=1

f
S

(1)
i ,...,S

(`)
i

(
s

(1)
i . . . , s

(`)
i

)
. (6)

We will see next how a copula function enables working
with the marginals of the joint pdfs f

S
(1)
i ,...,S

(`)
i

(
s

(1)
i , . . . , s

(`)
i

)
in (6), even though, as we saw before, these pdfs do not factor
into the product of their marginals.

A. Introduction to Copulas

Suppose the random vector S =
(
S(1), . . . , S(`)

)
is sup-

ported on a continuous set S ⊆ R` and has joint cumulative
distribution function (cdf)

FS(1),...,S(`)(s(1), . . . , s(`)) = Pr
[
S(1) ≤ s(1), . . . , S(`) ≤ s(`)

]
.

We will denote the marginal cdfs by FS(l)(s(l)) =
Pr
[
S(l) ≤ s(l)

]
. The probability integral transform [48] states

that, independently of the distribution of S(l), the random
variable U (l) := FS(l)

(
S(l)

)
always has uniform distribution

over [0, 1].
The copula function of the random vector S =

(S(1), . . . , S(`)) is defined on the unit hypercube [0, 1]` as the
joint cdf of U := (U (1), . . . , U (`)), that is,

C(u(1), · · · , u(`)) = Pr
[
U (1) ≤ u(1), . . . , U (`) ≤ u(`)

]
, (7)

where u(l) = FS(l)(s(l)). Namely, a copula is a multivariate
cdf whose marginals have uniform distribution. The following
result was seminal in the development of the theory of copula
functions.

Theorem 4.1 (Sklar’s theorem [34]): For any `-dimensional
joint cdf FS(1),...,S(`)(s(1), . . . , s(`)) whose marginals are con-
tinuous, there exists a unique `-dimensional copula func-
tion C : [0, 1]` → [0, 1] such that

FS(1),...,S(`)(s(1), . . . , s(`)) = C(u(1), . . . , u(`)). (8)

The implications of Theorem 4.1 are best seen after taking the
`-th cross partial derivative of (8):

fS(1),...,S(`)

(
s(1), . . . , s(`)

)
=
∂FS(1),...,S(`)(s(1), . . . , s(`))

∂u(1) · · · ∂u(`)

= c
(
u(1), . . . , u(`)

)
×
∏̀
l=1

fS(l)

(
s(l)
)
, (9)

where c(u(1), u(2), . . . , u(`)) = ∂nC(u(1),u(2),...,u(`))
∂u(1),∂u(2),...,∂u(`) denotes

the copula density, and fS(l)(s(l)) is the pdf of S(l). Ex-
pression (9) tells us that the joint pdf of dependent random

2Notice the difference in notation with respect to s(l) := (s
(l)
1 , . . . , s

(l)
n ),

which collects the samples observed from data type l.

variables can be written as the product of the marginal pdfs,
as if the variables were independent, times the copula density,
which acts as a correction term. In other words, the copula
density alone captures all the dependencies of the random
variables. This means that finding a good model for the joint
pdf boils down to finding not only accurate models for the
marginal pdfs, but also an appropriate copula function to
effectively capture the dependencies in the data.

B. Copula Families

There exist several bivariate and multivariate copula fam-
ilies [35], [49], [50], typically categorized into implicit and
explicit. Implicit copulas have densities with no simple closed-
form expression, but are derived from well known distribu-
tions. An example is the Elliptical copulas, which are associ-
ated to elliptical distributions (for example, the multivariate
normal distribution), and have the advantage of providing
symmetric densities. This makes them appropriate for high-
dimensional distributions. Table I shows the expressions for
the two mostly used Elliptical copulas: the Gaussian, and
the Student’s t-copula [34]. The expression for the Gaussian
copula uses a standard multivariate normal distribution param-
eterized by the correlation matrix RG. In turn, the expression
for the Student’s t-copula uses a standard multivariate t-
distribution, parameterized by the correlation matrix Rt and
by the degrees of freedom ν. The diagonal entries of the
correlation matrices R(·) are 1, and the non-diagonal are equal
to the estimated Spearman’s ρ values.

Explicit copulas have densities with simple closed-form
expressions but, being typically parameterized by few parame-
ters, lack some modeling flexibility. The most popular explicit
copulas are the Archimedean, which are parameterized by a
single parameter ξ ∈ Ξ ⊆ R. Specifically, an Archimedean
copula is defined as [35]:

Ca(u(1), . . . , u(`); ξ) = q−1
(
q(u(1); ξ) + · · ·+ q(u(`); ξ); ξ

)
,

(10)
where q : [0, 1]×Ξ→ [0,∞) is a continuous, strictly decreas-
ing, convex function such that q(1; ξ) = 0. The function q(u)
is called generator and its pseudo-inverse, defined by

q−1(u; ξ) =

{
q(u; ξ) if 0 ≤ u ≤ q(0; ξ)

0 if q(0; ξ) ≤ u ≤ ∞ ,
(11)

has to be strictly-monotonic of order ` [51]. Table II shows
the distributions of the most popular Archimedean copulas:
the Clayton, the Frank, and the Gumbel copulas [52].

For both families, the estimation of the copula parameters,
e.g., the correlation matrix, is performed using training data.
This will be described in detail in Section VI.

C. Marginal Statistics

As shown in (9), a consequence of Sklar’s theorem (Theo-
rem 4.1) is that copula functions enable us to work with the
marginal pdfs of a random vector even when its components
are not independent. We will consider the following pdfs when
we model the distribution of each component.
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TABLE I
ELLIPTICAL COPULA FUNCTIONS

Name Ce
(
u(1), . . . , u(`)

)
Parameters Functions

Gaussian ΦRG

(
Φ−1
g (u(1)), ...,Φ−1

g (u(`))
)

RG: correlation matrix ΦRG : standard multivariate normal distribution
Φg : standard univariate normal distribution

Student TRt,ν
(
t−1
ν (u(1)), ..., t−1

ν (u(`))
) Rt : correlation matrix TRt,ν : standard multivariate t-distribution

ν : degrees of freedom Tν : univariate t-distribution

TABLE II
ARCHIMEDEAN COPULA FUNCTIONS

Name Ca
(
u(1), . . . , u(`)

)
Parameter Range Ξ Generator q(u)

Clayton
(∑`

l=1(u(i))−ξ − `+ 1
)−1/ξ

ξ ∈ (0,∞) ξ−1
(
u−ξ − 1

)
Frank − 1

ξ
log

1 +

∏`
l=1

(
e−ξu

(l)
−1

)
(e−ξ−1)`−1

 ξ ∈ (−∞,∞) − log
(
e−ξu−1
e−ξ−1

)

Gumbel exp

[(
−
∑`
l=1(− log u(l))ξ

)1/ξ
]

ξ ∈ [1,∞) (− log u)−ξ

1) Laplace distribution

fS(l)

(
s(l); b(l)

)
=

1

2b(l)
exp

[
−
∣∣s(l) − µ(l)

∣∣
b(l)

]
, (12)

where b(l) is the scaling parameter and µ(l) is the mean
value for the l-th data type, with l ∈ {1, 2, . . . , `}.

2) Cauchy (or Lorentz) distribution

fS(l)

(
s(l);α(l), β(l)

)
=

1

πβ(l)

[
1 +

(
s(l) − α(l)

β(l)

)2
]−1

,

(13)
where β(l) is a scale parameter specifying the half-width
at half-maximum, and α(l) is the location parameter.

3) Non-parametric distribution via kernel density estima-
tion (KDE) [53]

fS(l)

(
s(l);h(l)

)
=

1

n · h(l)

n∑
i=1

K

(
s(l) − s(l)

i

h(l)

)
, (14)

where n is the number of samples from data type
l ∈ {1, 2, . . . , `}. We use the Gaussian kernel K(v) =

1√
2π

exp
(
− 1

2v
2
)

because of its simplicity and good
fitting accuracy. We also select different smoothing
parameters h(l) for different data types, l ∈ {1, . . . , `}.

V. COPULA-BASED BELIEF PROPAGATION

We now describe our reconstruction algorithm, executed
at the sink node. As mentioned, the sparse vectors s(l) are
reconstructed sequentially: first, s(1), then s(2), and so on. The
reconstruction of each s(l) thus uses not only the respective
measurements y(l), but also the previously reconstructed data
types ŝ(1), . . . , ŝ(l−1) as side information.

We adopt the framework of Bayesian CS [21], [54], as it
naturally handles our joint statistical characterization of the
correlated modalities. We start by computing the posterior
distribution of the random vector S(l), representing the sparse

vectors of coefficients of data type l, given the respective
measurements Y (l) and the first l − 1 data types:

fS(l)|Y (l)S(1)···S(l−1) (15)

∝ fY (l)|S(1)···S(l) × fS(l)|S(1)···S(l−1) (16)

= fY (l)|S(l) × fS(l)|S(1)···S(l−1) (17)

=

m(l)∏
j=1

f
Y

(l)
j |S(l) ×

n∏
i=1

f
S

(l)
i |S

(1)
i ···S

(l−1)
i

, (18)

where we excluded the arguments of the pdfs for notational
simplicity. From (15) to (16), we just applied Bayes’s theorem
and omitted constant terms. From (16) to (17), we used
the assumption that measurements from data type l given
realizations of all the previous data types j ≤ l depend
only on the value of S(l) = s(l); in other words, the
process Y (l)|S(1) · · ·S(l) = Y (l)|S(l) is Markovian. Finally,
from (17) to (18), we used the assumption that measurement
noise at different sensors is independent, and also that each
sensor observes independent realizations of the random vector
S = (S(1), . . . , S(`)) (cf. Section IV). Obtaining an estimate
of s(l) by minimizing the mean-squared-error or via maximum
a posteriori (MAP) is challenging due to the complexity of the
posterior distribution in (18). Therefore, as in [21], we use the
belief propagation algorithm [36].

Our approach modifies the algorithm in [21] to take into
account the previously reconstructed signals s(1), . . . , s(l−1) in
the reconstruction of s(l). Fig. 4 represents the factor graph as-
sociated with (18). A factor graph represents the factorization
of an expression by using two types of nodes: variable nodes
and factor nodes. Variable nodes are associated to the variables
of the expression, in this case, the components of the vector
S(l) =

(
s

(l)
1 , . . . , s(l)

n

)
and, in Fig. 4, are represented with

circles. The factor nodes are associated to the intermediate
factors in the expression, in this case, the terms in (18)
and, in Fig. 4, are represented with squares. Specifically, the
leftmost squares in the figure represent the terms in the product
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f
Y

(l)

m(l)
|S(l)

f
Y

(l)
j

|S(l)

f
Y

(l)
1 |S(l)

s
(l)
n

s
(l)
n−1

s
(l)
i

s
(l)
2

s
(l)
1

f
S

(l)
n |S

(1)
n ···S

(l−1)
n

f
S

(l)
n−1|S

(1)
n−1·S

(l−1)
n−1

f
S

(l)
i

|S
(1)
i

···S
(l−1)
i

f
S

(l)
2 |S

(1)
2 ···S

(l−1)
2

f
S

(l)
1 |S

(1)
1 ···S

(l−1)
1

...

...

qλ
1→Y

(l)
1 |S(l)

rλ
Y
m(l) |S

(l)→n

qλ
1→S

(l)
1 |S

(1)
1 ···S

(l−1)
1

Fig. 4. Factor graph corresponding to the posterior distribution (18). The
variable nodes are represented with circles and the factor nodes with squares.
A message from variable node s(l)i to factor node fZ at iteration λ is denoted
with qλi→Z , and a message in the inverse direction is denoted with rλZ→i.

∏m(l)

j=1 fY (l)
j |S(l) , and the rightmost squares represent terms in

the product
∏n
i=1 fS(l)

i |S
(1)
i ···S

(l−1)
i

.
Notice that when there is no measurement noise in the

acquisition of the measurements y(l), each factor f
Y

(l)
j |S(l)

becomes

f
Y

(l)
j |S(l)

(
y

(l)
j |s

(l)
)

= δ
(
y

(l)
j −

N∑
i=1

Θ
(l)
j,i s

(l)
i

)
, (19)

where δ(·) is the Dirac delta function. When the measurement
noise is, for example, AWGN, then δ(·) in (19) is replaced
by the density of the normal distribution. Therefore, in Fig. 4,
the edges from the variable nodes to the leftmost factor nodes
represent the connections defined by measurement equation
y(l) = Θ(l)s(l) (cf. Section III): there is an edge between
factor f

Y
(l)
j |S(l) and variable s(l)

i whenever Θ
(l)
ji 6= 0. Recall

also that the nonzero entries of Θ(l) are ±1.
Regarding the connections with the rightmost factor nodes

in Fig. 4, notice that (9) implies that each term f
S

(l)
i |S

(1)
i ···S

(l−1)
i

can be expressed as the marginal pdf f
S

(l)
i

times a cor-
rection term that captures information from the previously
reconstructed data types. Indeed, assuming we have access
to estimates ŝ(k) of s(k), for k < l, there holds

f
S

(l)
i |S

(1)
i ,...,S

(l−1)
i

(
s

(l)
i

∣∣∣ ŝ(1)
i , . . . , ŝ

(l−1)
i

)
(20)

=
f
S

(1)
i ,...,S

(l)
i

(
s

(l)
i , ŝ

(1)
i , . . . , ŝ

(l−1)
i

)
f
S

(1)
i ,...,S

(l−1)
i

(
ŝ

(1)
i , . . . , ŝ

(l−1)
i

) (21)

=
c
(
û

(1)
i , . . . , û

(l−1)
i , u

(l)
i

)
c
(
û

(1)
i , . . . , û

(l−1)
i

) · f
S

(l)
i

(
s

(l)
i

)
, (22)

where û
(k)
i = F

S
(k)
i

(
ŝ

(k)
i

)
for k = 1, . . . , l − 1. From (20)

to (21) we used the definition of conditional density, and
from (21) to (22) we simply used (9). Expression (22) depends

only on s
(l)
i and thus explains the edges from the variables

nodes to the rightmost factor nodes in Fig. 4.
Belief propagation is an iterative algorithm in which each

variable node s(l)
i sends a message to its neighborsMi (which

are only factor nodes), and each factor node fZ sends a
message to its neighbors NZ (which are only variable nodes).
Here, Z represents either Y (l)

j |S
(l), for j = 1, . . . ,m(l), or

S
(l)
i |S

(1)
i · · ·S

(l−1)
i , for i = 1, . . . , n. In our case, a belief

propagation message is a vector that discretizes a continuous
probability distribution. For example, suppose the domain of
the pdfs is R, but we expect the values of the variables to
be concentrated around 0. We can partition R into 10 bins
around 0, e.g., (−∞,−4]∪ (−4,−3]∪ · · · ∪ (3, 4]∪ (4,+∞).
The message, in this case, would be a 10-dimensional vector
whose entries are the probabilities that a random variable
belongs to the respective bin. For instance, all the messages
to and from variable node s

(l)
1 are vectors of probabilities,(

P{S(l)
1 ∈ (−∞,−4)}, . . . ,P{S(l)

1 ∈ (4,+∞)}
)

, which are
iteratively updated and represent our belief for the (discretized)
pdf of s(l)

1 . Note, in particular, that all vectors have the same
length and that all the messages to and from a variable node
s

(l)
i depend on that variable only. We represent a message from

variable s(l)
i to factor fZ at iteration λ as qλi→Z(s

(l)
i ), and a

message from factor fZ to variable s
(l)
i as rλZ→i(s

(l)
i ). The

messages are updated as follows:3

qλi→Z
(
s

(l)
i

)
=

∏
U∈Mi\{Z}

rλ−1
U→i

(
s

(l)
i

)
(23)

rλZ→i
(
s

(l)
i

)
=
∑
∼s(l)i

fZ
(
Z
)
·

∏
k∈NZ\{s(l)i }

qλ−1
k→Z

(
s

(l)
k

)
, (24)

where
∑
∼s(l)i

denotes the sum over all variables but s(l)
i , and a

“product” between messages is the pointwise product between
the respective vectors.

We run the message passing algorithm (23)-(24) for Λ

iterations. To obtain the final estimate ŝ
(l)
i of each s

(l)
i , we

first compute the vector

g
(
s

(l)
i

)
:=

∏
U∈Mi

r
(Λ)
U→i

(
s

(l)
i

)
,

and select ŝ(l)
i as the mid-value of the bin corresponding to

the largest entry of g
(
s

(l)
i

)
. This gives us each component of

the estimated vector of coefficients ŝ(l). In turn, the estimated
readings are computed as x̂(l) = Ψŝ(l).

VI. EXPERIMENTS

We evaluate the data recovery performance of the proposed
copula-based design using synthetic data (cf. Section VI-A)
as well as actual sensor readings taken from the air pollu-
tion database of the US Environmental Protection Agency
(EPA) [37] (cf. Section VI-B). Furthermore, in Section VI-C,
we study the impact of the proposed method on the energy
consumption of the wireless devices.

3See, e.g., [21] for a more detailed account on belief propagation algo-
rithms, including a derivation of these formulas. Note also that, for simplicity,
we omit normalizing constants.
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Fig. 5. Performance comparison of the proposed system against the baseline
system using synthetic data. The marginal densities of the target and side
information data follow the Laplace and Gaussian distribution, respectively.
The generation of the data is done using (a) the Clayton or (b) the Frank
copula function. The strength of the dependency is varied via controlling the
ξ parameter of the copulas.

A. Results on Synthetic Data

In order to evaluate the proposed copula-based method, we
simulate the approach described in Section III. We consider
the vectorized readings x(1),x(2) ∈ Rn×1 of two statistically
dependent data types collected at a given time instance by a
WSN and their compressible representations s(1), s(2) ∈ Rn×1

in a basis Ψ. Following existing stochastic models [55] for the
generation of spatially-correlated WSN data, we assume that
both x(1) and x(2) are Gaussian. We also assume that x(1) is
stationary (its variance is constant across readings), while x(2)

is piece-wise stationary (its variance varies across groups
of readings). Taking Ψ as the DCT basis, it can be fairly
assumed that the coefficients in s(1) are Gaussian, whereas
the coefficients in s(2) follow the Laplace distribution4 [56].

4As shown in [56], the Laplace distribution emerges under the assumption
that the variance across the group of readings is exponentially distributed.

To simulate this scenario, we generate s(1), s(2) as follows:
We draw two coupled i.i.d. uniform random vectors u(1),u(2),
with u(l) ∈ [0, 1]n, from the bivariate Clayton or Frank
copula [52]. The length of each uniform random vector
is n = 1000 and the copulas are parameterized by ξC and ξF ,
respectively. We consider different values for ξC = {1, 5, 15}
and ξF = {4, 8, 20}, corresponding to weak, moderate, and
strong dependency, respectively. We then generate the entries
of s(1) by applying the inverse cdf of N (0, σ2) with σ = 4 to
the entries of u(1); similarly, the entries of s(2) are generated
by applying the inverse cdf of L(0, b) with b = 2 to the
entries of u(2). We obtain measurements y(2) = Θ(2)s(2)—
the column weight of Θ(2) is set to ρ = 20—and we assess the
reconstruction of s(2). We vary the number of measurements
m(2) from 50 to 750 and, for each m(2), we perform 50
independent trials—each with a different Θ(2)and s(2)—and
we report the average relative error ‖s(2)− ŝ(2)‖2/‖s(2)‖2 as
a function of m(2).

We compare the recovery performance of two methods: the
baseline method—which recovers s(2) from y(2) via Bayesian
CS with belief propagation [21]—and the proposed copula-
based method that recovers s(2) using y(2) and s(1). In both
methods, the length of each message vector carrying the pdf
samples in the belief propagation algorithm is set to 243
and the number of iterations to 50. In order to have a fair
comparison with CS, we account for a copula mismatch in
our method. Namely, we use the bivariate Gaussian copula to
model the dependency between the data, where the correlation
matrixRG is fitted on the generated data using maximum like-
lihood estimation [57], even though the true relation between
data types is generated with the Clayton or Frank copula.

The experimental results, depicted in Fig. 5, show that—
despite the copula mismatch—the proposed algorithm man-
ages to leverage the dependency among the diverse data and
thus, to systematically improve the reconstruction performance
compared to the classical method [21]. The performance
improvements are increasing with the amount of dependency
between the signals, reaching average relative error reductions
of up to 72.90% and 64.09%, for the Clayton (ξC = 15) and
the Frank copula (ξF = 20), respectively.

B. Results on Real Air Pollution Data

The AQS (Air Quality System) database of EPA [37]
aggregates air quality measurements taken by more than 4000
monitoring stations, which collect hourly or daily measure-
ments of the concentrations of six pollutants: ozone (O3),
particulate matter (PM10 and PM2.5), carbon monoxide (CO),
nitrogen dioxide (NO2), sulfur dioxide (SO2), and lead (Pb).
We consider a network architecture comprising a sink and n =
1000 nodes, where each node is equipped with ` = 3 sensors
to measure the concentration of CO, NO2 and SO2 in the air.
Using the node coordinates in the EPA database, we simulate
such networks5 by assuming that the transmission adheres to
LoRa [58], according to which the node distance does not
exceed 2km in urban areas and 22km in rural areas. From

5Each network is formed by nodes within only one of the following states:
CA, NV, AZ, NC, SC, VA, WV, KY, TN, MA, RI, CT, NY, NJ, MD.
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TABLE III
AVERAGE PERCENTAGE OF THE NUMBER COEFFICIENTS OF THE DATA

WITH AN ABSOLUTE VALUE BELOW A GIVEN THRESHOLD τ .

τ DCT Haar Daubechies-2 Daubechies-4

SO2

0.1 28.8 19.1 25.50 23.80
0.2 48.50 35.80 46.30 44.00
0.4 74.10 67.00 77.50 77.30

CO
0.1 25.90 16.40 22.60 19.40
0.2 44.50 31.20 40.30 38.70
0.4 70.30 58.20 69.80 69.20

the database, we take 2 × 105 values for each of the three
pollutants—i.e., CO, NO2 and SO2—collected during the year
2015. The data are equally divided into a training and an
evaluation set, without overlap.

1) Sparsifying Basis Selection: We first identified a good
sparsifying basis Ψ for the data. Following the network
architecture described in the previous paragraph, we organized
the training data into blocks of n readings per pollutant. In
order to form a block x(l), readings must have the same
timestamp and be measured by neighboring stations, adhering
to the LoRa [58] transmission distance criteria. We projected
the data in each block onto different set of bases, including the
discrete cosine transform (DCT), the Haar, the Daubechies-2,
and the Daubechies-4 continuous wavelet transform (CWT)
bases; for the CWT we experimentally found that the scale
parameter α = 4 led to the best compaction performance.
Since the resulting representation s(l) is a compressible signal,
we calculated the number of coefficients in s(l) whose the
absolute value is below a given threshold τ . Table III reports
the results for SO2 and CO, averaged over all the blocks in
the training set. It shows that the DCT yielded the sparsest
representations.

2) Marginal Statistics and Copula Parameters: To select
the most appropriate marginal distribution for DCT coeffi-
cients of each s(l), with l = 1, 2, 3, we performed fitting
tests using the training set. The Laplace, the Cauchy, and
the non-parametric distribution—via KDE with a Gaussian
Kernel—were fitted to the data using the Kolmogorov-Smirnov
test [59], with significance level set to 5%. The results,
which were averaged over all the blocks in the training set,
are reported in Table IV and Fig. 6. We can observe that
the Cauchy distribution gives the best fit for the CO and
SO2 data, whereas the Laplace distribution best describes the
statistics of the NO2 data. The parameters of the distributions
were estimated via maximum likelihood estimation (MLE),
resulting in β̂CO = 0.6511, β̂SO2

= 0.9476 for the Cauchy
distributions, and b̂NO2

= 2.3178 for the Laplace distribution;
recall the expressions for the pdf of these distributions in (12)
and (13). We also estimated the mean values of the DCT
coefficients, which were very close to zero for all distributions.

We now elaborate on the estimation of the parameters of the
different copulas, described in Section IV-B. Using standard
MLE [57], we calculate the correlation matrix RG for the
Gaussian copula, the pairwise correlation values of which are
presented in Table V. Moreover, we estimate the correlation
matrixRt and the degrees-of-freedom parameter ν for the Stu-
dent’s t-copula via approximate MLE [57]. The latter method

TABLE IV
ASYMPTOTIC p-VALUES DURING THE KOLMOGOROV-SMIRNOV FITTING

TESTS TO FIND THE MARGINAL DISTRIBUTION OF THE DCT
COEFFICIENTS OF THE DATA.

Laplace Cauchy KDE

CO 0.0031 0.6028 9.4218× 10−20

NO2 0.5432 0.1441 2.2777× 10−21

SO2 0.0471 0.9672 1.0626× 10−21

TABLE V
PAIRWISE COPULA PARAMETER ESTIMATES.

Parameters (CO,NO2) (NO2, SO2) (CO, SO2)

Correlation 0.7025 0.8126 0.8563
Degrees of Freedom, ν 35.56 35.56 490.95

ξ (Clayton) 1.5770 2.3004 2.7655
ξ (Frank) 6.6760 8.8767 11.0249
ξ (Gumbel) 2.0877 2.5874 3.1619

fits a Student’s t-copula by maximizing an objective function
that approximates the profile log-likelihood for the degrees-of-
freedom parameter. For the ensemble of the three pollutants we
find the optimal value to be ν = 89.91, whereas the values cor-
responding to each pair of pollutants are in Table V. Table V
also reports the pair-wise maximum-likelihood estimates [60]
of the ξ parameter for different bivariate Archimedean copulas
[cf. (10)]. We consider bivariate Archimedean copulas for their
simplicity, i.e., they are parameterized by a single parameter.
This, however, limits their modeling capacity and makes them
less accurate than, for example, Elliptical copulas [35].

3) Performance Evaluation of the Proposed Algorithm: We
now describe how we evaluated the performance of our method
against state-of-the-art reconstruction algorithms. Simulating
the data collection approach described in Section III, for every
vector of readings x(l) in the test dataset, we obtained its
measurements as y(l) = Φ(l)x(l). Similar to Section VI-A,
we varied the number of measurements m(l) from 50 to
750 and, for each m(l), we generated 50 different matrices
Φ (independently). We will report the average [over the
Φ’s and over all the points x(l) in the test dataset] relative
error ‖x(l) − x̂(l)‖2/‖x(l)‖2 as a function of m(l).

In the first set of experiments, we used the NO2 data to
aid the reconstruction of the CO readings and considered
the following methods: (i) the proposed copula-based belief
propagation algorithm, running for 50 iterations and using five
different bivariate copulas for modelling the joint distribution,
namely, the Gaussian, the Student’s t, the Clayton, the Frank,
and the Gumbel copulas; (ii) the `1-`1 minimization method;6

(iii) the baseline method [18], [27], which applies Bayesian
CS [21] to recover the CO data independently; and, as a sanity
check, (iv) simply keeping the m(l) largest (in absolute value)
DCT coefficients.

Fig. 7(a) depicts the relative reconstruction error versus the
number of measurements m(l). It is clear that the proposed
algorithm and `1-`1 minimization efficiently exploited the side

6 The `1-`1 minimization problem (3) is solved using the code in [61];
a detailed explanation of the solver can be found therein. The experiments
in [29], [31] show that such a solver finds medium-accuracy solutions to (3)
efficiently.
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(a) Carbon Monoxide (CO) (b) Nitrogen dioxide (NO2) (c) Sulfur dioxide (SO2)

Fig. 6. Fitting of distributions (Laplace, Cauchy and KDE with a Gaussian kernel) on DCT coefficients of different air pollutants in the EPA dataset [37].
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Fig. 7. Reconstruction performance of CO signals using as side information
(a) only signals of NO2, and (b) both signals of NO2 and SO2. The baseline
method refers to the no side information case, i.e., [18], [27].

information and were able to improve the performance with
respect to the baseline method [18], [27]. When the number
of measurements was small (< 200), the baseline method
outperformed `1-`1 minimization; this is because, with few

measurements, the side information was actually hindering
reconstruction; recall that `1-`1 minimization assumes the side
information to be of the same kind as the signal to recon-
struct. Furthermore, it is clear that the proposed algorithm
systematically outperformed `1-`1 minimization [29] for all
the considered copula functions. The best performance was
achieved by the Student t-copula function, providing average
relative error reductions of up to 47.3% compared to `1-`1
minimization. We mention that, contrary to most results in
compressed sensing, the results of Fig. 7(a) fail to exhibit a
precise phase transition. This is because the representation of
the data is not exactly sparse, only compressible. That can
be seen in the plot, as the baseline method [18], [27] had
a very similar performance to the DCT reconstruction, i.e.,
keeping only the largest DCT coefficients. This also shows
that, in this case, what allowed both our method and `1-`1
minimization to achieve better performance was the proper
use of the (correlated) side information.

In another experiment, we reconstructed CO readings using
as side information data from the other two pollutants, i.e.,
NO2 and SO2. Fig. 7(b) shows the average relative error of the
proposed algorithm with one and two side information signals,
and also the baseline method [18], [27]. It is clear that the more
side information signals there are, the better the performance
of our algorithm. We also observe that the Student’s t-copula
lead to a performance better than the Gaussian copula; this
was because the former depends on more parameters than the
latter, giving it a larger modeling capacity [62].

4) Evaluation of the Aggregated System Performance:
We now describe the experiments conducted to evaluate the
sequential reconstruction algorithm in which the readings are
reconstructed consecutively. First, we focus on the scenario
where two pollutants are measured, and we compare the
following schemes: (i) the proposed sequential scheme, using
the Gaussian and the Student t-copula models (as shown in
Section VI-B3), they perform better than other copulas); (ii)
sequential data recovery using `1-`1 minimization [29]; (iii)
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Fig. 8. Performance comparison of the proposed successive reconstruction
architecture with the DCS, the ADMM-based and the baseline systems when
we assume (a) two air pollutants (CO and NO2), and (b) three air pollutants
(CO, NO2 and SO2).

the DCS setup7 [24]; and (iv) the baseline system in which
each source is independently reconstructed using Bayesian CS
[21].

The performance metric is expressed as the aggregated aver-
age relative error for all signals,

∑`
l=1 ‖x(l)− x̂(l)‖2/‖x(l)‖2,

versus the total number of measurements
∑`
l=1m

(l). Fig. 8(a)
shows that the systems based on `1-`1 minimization and on
DCS leverage both the inter- and intra-source dependencies
between the pollutants, resulting in an improved performance
with respect to the baseline system. However, when the
number of measurements is small (

∑2
l=1m

(l) < 400), we
see that `1-`1 minimization performs poorly compared to the
other methods. The proposed system with the Student t-copula

7In the classical DCS scenario, each signal of interest is constructed by
many readings of the same sensor. In order to have a fair comparison with
our design, we have modified this framework by assuming that each signal of
interest contains readings from different sensors observing the same source.
In our experiments we used ω1 = · · · = ω` = 1.
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Fig. 9. Performance comparison of the proposed system with the DCS setup
when we assume different noise levels (σz = 0, 2, 5) for (a) two sources (CO
and NO2), and (b) three sources (CO, NO2 and SO2).

model systematically outperforms all the other schemes, bring-
ing aggregated average relative error improvements of up
to 27.2% and 13.8% against `1-`1 minimization and DCS,
respectively.

When three pollutants are measured, we compared all the
previous schemes, except the one based on `1-`1 minimization,
since it does not handle multiple side information signals.
Fig. 8(b) shows that DCS delivers superior performance com-
pared to the baseline system, which is more noticeable when∑3
l=1m

(l) > 600. Furthermore, the proposed design with the
Student t-copula model provides significant aggregated aver-
age relative error reductions of up to 19.3% when compared
to DCS [24]. It is important to notice that the proposed design
significantly outperforms the other schemes when the number
of measurements is small.

5) Evaluation of the System Performance under Noise:
We evaluate the robustness of the proposed successive data
recovery architecture against imperfections in the commu-
nication medium. As explained in Section III, we model
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TABLE VI
NUMBER OF MEASUREMENTS AND ENERGY CONSUMPTION AT THE WIRELESS NODES FOR TWO DIFFERENT DATA RECOVERY QUALITY LEVELS. TWO

POLLUTANTS (CO, NO2) ARE MEASURED.

Medium Data Recovery Quality High Data Recovery Quality
Baseline `1-`1 Proposed Baseline `1-`1 Proposed

Aggregated average relative error 1.4046 1.4230 1.3957 1.1148 1.1044 1.0969
Total number of measurements 950 850 550 1400 1300 1050

EHW
proc. (J) 4.84× 10−6 4.33× 10−6 2.80× 10−6 7.14× 10−6 6.63× 10−6 5.35× 10−6

ESW
proc. (J) 46.51× 10−6 41.62× 10−6 26.93× 10−6 68.54× 10−6 63.64× 10−6 51.41× 10−6

ETx (J) 0.8586 0.7668 0.4968 1.2636 1.1718 0.9450
Etotal (J) 0.8586 0.7668 0.4968 1.2636 1.1718 0.9450

such imperfections using a zero-mean white Gaussian noise
component z(l) ∼ N (0, σzI) additive to the measurements,
where σz is the noise standard deviation8 and I is the m(l)×
m(l) identity matrix. In this experiment, we vary the noise level
as σz ∈ {0, 2, 5} and calculate the aggregated average relative
error as a function of the total number of measurements. We
first consider the case in which two pollutants are gathered
by each device. The considered schemes are (i) the proposed
system with successive data recovery using the copula-based
algorithm (the Student’s t copula is used); (ii) DCS [24],
and; (iii) the baseline system [18], [27]. Figs. 9(a) and 9(b)
show that the proposed system delivers superior performance
compared to the competing systems for moderate (σz = 2) and
high (σz = 5) noise. Moreover, we observe that the proposed
algorithm is robust against noise, especially, when the number
of measurements is small. In particular, the aggregated average
relative error increases on average 5.8% (σz = 2) and 18.7%
(σz = 5) with respect to the noiseless case.

In case three pollutants are measured, the proposed system
systematically outperforms the DCS scheme and the baseline
system, under both moderate and high noise. Moreover, the
proposed design continues to demonstrate robustness against
noise, with the aggregated average relative error increasing on
average only 4.2% (σz = 2) and 10.1% (σz = 5) compared
to the noiseless case. It is clear that the robustness of the
proposed system increases with the number of pollutants.

C. Energy Consumption Analysis

We now study the impact of the proposed system on
reducing the number of measurements and in turn the energy
consumption of the wireless nodes, for a given data recon-
struction quality. The energy consumption at each node is
broken down into a sensing, processing and transmission part:
Etotal = Esens. + Eproc. + ETx [63]. The sensing part, Esens.,
depends on the amount of censored data; hence, its energy
consumption is the same for the proposed and the baseline
system. We thus focus our comparison on the energy consump-
tion due to the processing and transmission parts. Following a
typical IoT design, we assume that the nodes are equipped with
the MSP430 micro-controller [64] and that communication
adheres to LoRa [58]. MSP430 architectures [64] are typically
built around a 16-bit CPU running at 25 MHz, with a voltage

8We assume that the standard deviation of the noise is the same for all
sources; hence, we drop the superscript (l).

supply of V = 1.8 − 3.6 Volt and a current of I = 200
µA/MIPS in the active mode. As discussed in Section III,
every node generates a pseudorandom number, computes the
product between this number and the censored value, adds
it to the sum of the previous relayed values, and sends
the final value to the next node. This operation is repeated
per measurement and source l ∈ {1, ..., `}. Neglecting the
pseudorandom number generation part, the encoding operation
boils down to a multiply-and-accumulate (MAC) operation.
The MSP430 CPU cycles needed for a single signed 16-
bit MAC operation are 17 for a hardware implementation or
between 143 and 177 for a software implementation [64].
Therefore, the time to perform a single MAC operation9 is
tHW = 17 cycles

25 MHz = 0.68 µs or tSW = 177 cycles
25 MHz = 7.08 µs.

The total time to encode the measurements at each device can
then be calculated as t(•)proc. =

∑`
l=1m

(l) × t(•) and the total
processing energy as E(•)

proc. = V · I · t(•)proc., where (•) stands for
HW or SW. In order to calculate the energy consumption for
transmission, we used the LoRa energy consumption calculator
from Semtech [65], [66]. For a typical 12-byte payload packet
with a 14 dBm power level, a current at 44 mA and a
spreading factor of 7, the transmission energy consumption
was estimated at 5.4 mJ. In the scenario where two pollutants
(CO and NO2) are encoded [and no noise is assumed in the
communication medium], Table VI-B4 reports the number of
measurements and the energy consumption at the nodes for the
baseline system, the system using `1-`1 minimization [29], and
the proposed system. It is worth observing that the processing
energy is negligible compared to the energy consumed by
the transceiver. It is evident that for a comparable aggregated
average relative error the proposed system leads to a significant
reduction in the number of transmitted measurements com-
pared to the competition, which translates to critical energy
savings at the nodes.

VII. CONCLUSION AND FUTURE WORK

We addressed the problem of data recovery from com-
pressive measurements in large-scale WSN applications, such
as air-pollution monitoring. In order to efficiently capture
statistical dependencies among heterogeneous sensor data, we
used copula functions [34], [35]. This enabled us to devise
a novel CS-based reconstruction algorithm, built upon belief
propagation [36], [67], which leverages multiple heteroge-
neous signals (e.g., air pollutants) as side information in order

9We consider the higher value on the number of cycles for software.



13

to improve reconstruction. Experiments using synthetic data
and real sensor data from the USA EPA showed that the
proposed scheme significantly improves the quality of data
reconstruction with respect to prior state-of-the-art methods
[23], [29], [68], even under sensing and communication noise.
Furthermore, we showed that, for a given data reconstruction
quality, the proposed scheme offers low encoding complexity
and reduced radio transmissions compared to the state of the
art, thereby leading to energy savings at the wireless devices.
We conclude that our design effectively meets the demands
of a large-scale monitoring application. Future work should
concentrate on assessing the method on alternative datasets,
such as the Intel-Berkeley Lab dataset [69], the dataset from
the Center for Climatic Research [70], and the indoor dataset
from the University of Padova [71].
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