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Abstract

A cache-aided broadcast network is studied, in which a server delivers contents to a group of

receivers over a packet erasure broadcast channel (BC). The receivers are divided into two sets with

regards to their channel qualities: the weak and strong receivers, where all the weak receivers have

statistically worse channel qualities than all the strong receivers. The weak receivers, in order to

compensate for the high erasure probability they encounter over the channel, are equipped with cache

memories of equal size, while the receivers in the strong set have no caches. Data can be pre-delivered

to weak receivers’ caches over the off-peak traffic period before the receivers reveal their demands.

Allowing arbitrary erasure probabilities for the weak and strong receivers, a joint caching and channel

coding scheme, which divides each file into several subfiles, and applies a different caching and delivery

scheme for each subfile, is proposed. It is shown that all the receivers, even those without any cache

memories, benefit from the presence of caches across the network. An information theoretic trade-off

between the cache size and the achievable rate is formulated. It is shown that the proposed scheme

improves upon the state-of-the-art in terms of the achievable trade-off.

I. INTRODUCTION

Wireless content caching is a promising technique to flatten the traffic over the backhaul

network by shifting part of the traffic from peak to off-peak periods [1]–[5]. Video-on-demand

services for mobile users would particularly benefit from content caching as a few highly popular

files are requested by a large number of users over a relatively short time period. Popular contents

that are likely to be requested by a majority of the users can be proactively cached at the network

edge during a period of low network traffic, known as the placement phase. The delivery phase

is performed during a peak traffic period, when the users reveal their demands, and the cached

contents can be exploited to reduce both the load over the backhaul links and the latency in

delivery [6].

http://arxiv.org/abs/1702.05454v2
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A coded proactive content caching and delivery scheme has been proposed by Maddah-Ali

and Niesen in [6], [7], where they consider a library of same-size files to be delivered over a

noiseless broadcast channel (BC), while the receivers are equipped with cache memories of equal

size. They identify a trade-off between the cache size and the minimum rate required during

the delivery phase to serve all the receivers for all demand combinations, and show that coding

can significantly reduce the required delivery rate. Several improved coded caching schemes

and information theoretic performance bounds have been introduced since then [8]–[15]. Coded

caching has since been extended to various network settings, including device-to-device caching

[16], [17], online cache placement [18], files with non-uniform popularities [19], [20] and distinct

lengths [21], users with non-uniform cache sizes [22], [23], multi-layer caching [24], and caching

by users with different distortion requirements [25]–[27].

In contrast to the setting introduced in [6], a noisy channel is considered for the delivery phase

in [28]–[35]. Here, we follow the model considered in [31], and assume that the delivery phase

takes place over a memoryless packet erasure BC, which models a packetized communication

system, where each packet is separately channel coded against errors at the physical layer, so

that a packet either arrives at a receiver correctly, or is lost. Communication over Internet is

usually modeled as a packet erasure channel. The receivers in the system are grouped into two

disjoint sets of weak and strong receivers. All the weak receivers are assumed to have statistically

worse channels than the strong receivers, while the users in each set can have arbitrary erasure

probabilities. To compensate for the worse channel quality, each weak receiver is equipped with

a cache memory of equal size. We consider the case when the number of receivers is not greater

than the number of files in the library. Assuming equal-rate files in the library, we derive a

trade-off between the size of the caches provided to the weak receivers and the rate of the

files, for which any demand combination can be reliably satisfied over the erasure BC. The

proposed scheme exploits a novel file subpacketization, and performs a different caching and

content delivery scheme to deliver different subpackets over the channel. Moreover, the delivery

of the contents to the weak and strong receivers are coupled through the use of a joint encoding

scheme to maximally benefit from the available cache memories. We show that, when specified

to the homogeneous scenario considered in [31], where the receivers in the same set have the

same erasure probability, the proposed scheme outperforms the one in [31].

The rest of this paper is organized as follows. We introduce the system model in Section II.

Main results are summarized and compared with the state-of-the-art in Section III. The proposed
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Fig. 1. Cache-aided packet erasure BC. The first Kw receivers have statically worse channels than the last Ks receivers, but

each of them is equipped with a cache of normalized size M .

scheme is elaborated and analyzed in Section IV. We conclude the paper in Section V.

Notations: For two integers i ≤ j, the set {i, i+ 1, ..., j} is denoted by [i : j], and the set

[1 : i] is shortly denoted by [i]. For two sets Q and P , Q\P is the set of elements in Q that

do not belong to P . Notation |·| represents the cardinality of a set, or the length of a vector.

Notation ⊕ refers to bitwise XOR operation; and finally,
(

j

i

)

returns the binomial coefficient “j

choose i”.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a server with a library of N popular files W
∆
= (W1, ...,WN). Each file Wf is

distributed uniformly over the set
[⌈

2nR
⌉]

, ∀f ∈ [N ], where R denotes the rate of each file, and

n is the number of channel uses during the delivery phase. Receiver k’s demand is represented

by dk, where dk ∈ [N ], ∀k ∈ [K]. The server delivers all the requests Wd1 , ...,WdK to their

corresponding receivers simultaneously over a BC.

Following [31], the channel between the server and the receivers is modeled as a memoryless

packet erasure BC. For each channel use, the server transmits an F -bit codeword from the

alphabet X
∆
= {0, 1}F , and the output alphabet at each receiver is Y

∆
= X ∪ {∆}, where the

erasure symbol ∆ corresponds to a packet that is not received at the receiver. Receiver k, for

k ∈ [K], receives the transmitted codeword x ∈ X correctly with probability 1 − δk, and the
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erasure symbol ∆ with probability δk. Thus, given the transmitted codeword x ∈ X , receiver

k ∈ [K] observes the output yk ∈ Y with the conditional probability

P (Yk = yk |X = x) =











1− δk, if yk = x,

δk, if yk = ∆.
(1)

Two disjoint sets of receivers, weak and strong receivers, are considered, grouped according to

the erasure probabilities of their channels. These groups may model users located in areas with

relatively bad and good network coverage, respectively. We assume that the channel condition

of each strong receiver is statistically better than that of each weak receiver; that is, the erasure

probability of a strong receiver is lower than any weak receiver. Without loss of generality, we

enumerate the receivers in the order of improving channel quality, that is, we have δ1 ≥ δ2 ≥

· · · ≥ δK . We denote the set of erasure probabilities by δ
∆
= {δ1, δ2, ..., δK}. We denote the

first Kw receivers as the weak receivers, and the next Ks = K − Kw receivers as the strong

receivers. To compensate for their poorer channel quality, each weak receiver is equipped with a

cache memory of size nM bits, as depicted in Fig. 1. The special case in which all the receivers

in the same set have the same erasure probability; that is, all the weak receivers have erasure

probability δw, and all the strong receivers have erasure probability δs, with δs < δw, is called

the homogeneous scenario. The set of erasure probabilities for the homogeneous scenario is

represented by δws.

Content delivery is performed in two phases [6]. It starts with the placement phase which

takes place during the off-peak traffic period, and the caches of the weak receivers are filled

without the knowledge of their future demands. Thus, only the weak receivers take part in the

placement phase, and the contents of the cache of receiver k, for k ∈ [Kw], at the end of this

phase is denoted by Zk. Note that, Zk does not depend on any specific demand combination,

and it is instead a function of the library W. The caching function for receiver k ∈ [Kw] is

given by

φk :
[⌈

2nR
⌉]N

→
[⌊

2nM
⌋]

, (2)

which maps the entire library to the cache content Zk, i.e., Zk = φk (W). It is to be noted

that, since the placement phase is performed over a low-congestion period, it is assumed that

no erasure occurs during this phase.

The delivery phase follows once the demands of the receivers are revealed to the server, which
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transmits a length-n codeword Xn over the erasure BC. For a demand vector d
∆
= (d1, ..., dK),

a coded delivery function

ψ :
[⌈

2nR
⌉]N

× [N ]K → X n (3)

generates a common message Xn as a function of the entire library and the receiver demands,

i.e., Xn = ψ (W,d), to be delivered over the erasure BC. Each receiver k ∈ [K] observes Y n
k

according to (1). Each weak receiver k ∈ [Kw] tries to decode Wdk from its channel output

Y n
k along with the content available locally in its cache and the demand vector d, utilizing the

decoding function

µk : Y
n ×

[⌊

2nM
⌋]

× [N ]K →
[⌈

2nR
⌉]

, (4)

i.e., the reconstructed file by each weak receiver k ∈ [Kw] is

Ŵdk = µk (Y
n
k , Zk,d) . (5)

On the other hand, to serve the users with demand vector d, each strong receiver k ∈ [Kw + 1 : K]

reconstructs its demand Wdk solely from its channel output Y n
k through the decoding function

µk : Y
n × [N ]K →

[⌈

2nR
⌉]

, (6)

which generates the reconstructed file

Ŵdk = µk (Y
n
k , d) . (7)

Definition 1. An error occurs if Ŵdk 6= Wdk for any k ∈ [K], and the probability of error is

given by

Pe
∆
= max

d∈[N ]K
Pr

{

K
⋃

k=1

{

Ŵdk 6=Wdk

}

}

. (8)

Definition 2. A memory-rate pair (M,R) is said to be achievable, if for every ε > 0, there

exists a large enough n, and corresponding caching function (2), coded delivery function (3),

and decoding functions (4) and (6) at weak and strong receivers, respectively, such that Pe < ε.

Definition 3. For a given cache size M at the weak receivers, the capacity of the network is

defined as

C (M)
∆
= sup {R : (M,R) is achievable} . (9)
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We would like to note that the capacity of the above caching network remains an open problem

even when the delivery channel is an error-free shared bit pipe except for the network with an

uncoded cache placement phase [11]. Here, our goal is to identify achievable memory-rate pairs

that improve upon the state-of-the-art.

Remark 1. The system model considered in this paper is inspired by those studied in [30]–

[32]. We would like to remark that it is reasonable to assume that cache memories are placed

at receivers with relatively weaker coverage. Indeed, it is shown in [31] that placing cache

memories at the strong receivers, which already have good coverage, results in a lower capacity.

This is mainly due to the definition of the capacity in this framework. Note that, the capacity

here characterizes the highest rate of the messages to be delivered to all the receivers in the

network. Since a symmetry is imposed across the receivers regarding their requests and file

delivery, the system performance is determined by the worst receivers. Therefore, the goal of the

cache placement should be to improve the performance of the weak receivers to increase the

network capacity. Accordingly, equipping weak receivers with cache memories, and exploiting

the coding scheme proposed in this paper also benefits the strong receivers.

Following well-known results from multi-user information theory are included here for com-

pleteness as they will be instrumental in deriving our results later in the paper.

Proposition 1. [36] The capacity region of a packet erasure BC with K receivers, where file

Wi with rate Ri is targeted for receiver i with erasure probability δi, for i = 1, ..., K, is the

closure of the set of non-negative rate tuples (R1, ..., RK) that satisfy

K
∑

i=1

Ri

(1− δi)F
≤ 1, (10)

where F denotes the length of the binary channel input.

Next, we consider the packet erasure BC with side information, and provide an achievable rate

pair based on the joint encoding scheme of [37]. Here we briefly overview the coding scheme

and the proof of achievability, and refer the reader to [37] for details. Consider two receivers

with erasure probabilities δ1 ≥ δ2. Let W1 and W2, distributed uniformly over
[

2nR1
]

and
[

2nR2
]

,

denote the messages targeted for receivers 1 and 2, respectively. We assume that message W2

is available as side information at receiver 1, the weak receiver. We present a coding scheme



7

and the corresponding achievable rate region based on the joint encoding scheme of [37]. For a

fixed distribution P (X), we generate 2n(R1+R2) codewords of length n, xn (w1, w2), w1 ∈
[

2nR1
]

,

w2 ∈
[

2nR2
]

, where each entry of each codeword is generated independently according to P (X).

The codebook is revealed to the transmitter and the receivers. To transmit particular messages

W1 = w1 and W2 = w2, the codeword xn (w1, w2) is transmitted over the BC. In the proposed

coding scheme, the good receiver, i.e., receiver 2, decodes both messages; and therefore, it tries

to find a unique pair (ŵ1, ŵ2) ∈
[

2nR1
]

×
[

2nR2
]

, such that (Xn (ŵ1, ŵ2) , y
n
2 ) belongs to the

jointly typical set defined in [38]. The probability of decoding error tends to 0 as n goes to

infinity, if

R1 +R2 ≤ I (X ; Y2) . (11)

The first receiver already knows W2 as side information; therefore, it only needs to decode W1;

thus, it looks for a unique index ŵ1 ∈
[

2nR1
]

such that (Xn (ŵ1,W2) , y
n
1 ) belongs to the typical

set [38]. The probability of error tends to 0 as n goes to infinity, if

R1 ≤ I (X ; Y1) . (12)

For the packet erasure BC, both mutual information terms are maximized with a uniform input,

and the following conditions are obtained:

R1 ≤ (1− δ1)F, (13)

R1 +R2 ≤ (1− δ2)F, (14)

We can easily generalize this coding scheme to multiple receivers and obtain the achievable rate

region stated in the following proposition (also provided in [31]).

Proposition 2. Consider a packet erasure BC with two disjoint sets of receivers S1 and S2,

where the channels of the receivers in set Si have erasure probability δi, for i = 1, 2. A common

message Wi at rate Ri is to be transmitted to the receivers in set Si, for i = 1, 2, while message

W2 is known to the receivers in set S1 as side information. With the joint encoding scheme

outlined above, rate pairs (R1, R2) satisfying the following conditions can be achieved

R1 ≤ (1− δ1)F, (15)

R1 +R2 ≤ (1− δ2)F, (16)
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which is equivalent to

max

{

R1

(1− δ1)F
,
R1 +R2

(1− δ2)F

}

≤ 1. (17)

For notational convenience, in the rest of the paper we use

JE
(

(W1)S1
, (W2)S2

)

(18)

to represent the transmission of message W1 to the receivers in set S1, and message W2 to the

receivers in set S2 using the outlined joint encoding scheme, where S1 ∩ S2 = ∅, and W2 is

available at all the receivers in S1 as side information.

III. ACHIEVABLE RATE-MEMORY PAIRS

A coding scheme as well as an information theoretic upper bound on the capacity of the

above caching and delivery network are proposed in [31] for the homogeneous scenario. Here,

we present a new coding scheme, called the successive cache-channel coding (SCC) scheme,

for delivery over any packet erasure BC, which is shown to improve upon the one in [31] in

the homogeneous scenario. We present the (M,R) pairs achieved by this scheme in Theorem 1

below. The details of the scheme are presented in Section IV.

Theorem 1. Consider cache-aided delivery of N files over a packet erasure BC with Kw weak

and Ks strong receivers, where each weak receiver is equipped with a cache of capacity M .

Memory-rate pairs
(

M(p,q), R(p,q)

)

are achievable for any p ∈ [0 : Kw] and q ∈ [p : Kw], where

R(p,q)
∆
=

F
q
∑

i=p

γ (p, δ, i)

q
∑

i=p

(

γ(p,δ,i)

(Kw
i )

Kw−i
∑

j=1

(Kw−j

i )
1−δj

)

+
K
∑

j=Kw+1

1
1−δj

, (19a)

M(p,q)
∆
=

N
q
∑

i=p

iγ (p, δ, i)

Kw

q
∑

i=p

γ (p, δ, i)

R(p,q), (19b)

with γ(p, δ, i) defined as follows:

γ(p, δ, i)
∆
=

(

Kw

i

)

(

Kw

p

)

Ks
i−p

i−1
∏

j=p











Ks

(1− δKw−j)
K
∑

l=Kw+1

1
1−δl

− 1











, for i = p, ..., q. (19c)
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The upper convex hull of these (Kw + 1) (Kw + 2) /2 memory-rate pairs can also be achieved

through memory-sharing.

Corollary 1. For the homogeneous scenario, the achievable memory-rate pairs
(

M(p,q), R(p,q)

)

,

for any p ∈ [0 : Kw] and q ∈ [p : Kw], are simplified as follows:

R(p,q) =

F
q
∑

i=p

γ (p, δws, i)

1
1−δw

q
∑

i=p

(

Kw−i
i+1

γ (p, δws, i)
)

+ Ks

1−δs

, (20a)

M(p,q) =

N
q
∑

i=p

iγ (p, δws, i)

Kw

q
∑

i=p

γ (p, δws, i)

R(p,q), (20b)

where

γ (p, δws, i) =

(

Kw

i

)

(

Kw

p

)

Ks
i−p

(

1− δs
1− δw

− 1

)i−p

, for i = p, ..., q. (20c)

Remark 2. As we will explain in Section IV, to achieve the rate-memory pair
(

M(p,q), R(p,q)

)

with

the proposed SCC scheme, for p ∈ [0 : Kw] and q ∈ [p : Kw], each file is divided into p− q + 1

non-overlapping subfiles. Here we remark that γ (p, δ, i) /
q
∑

j=p

γ (p, δ, j), for i ∈ [p : q], indicates

the fraction of the total rate R allocated to the (i−p+1)-th of these subfiles. Thus, a proportioned

rate allocation is performed according to the coefficients γ (p, δ, p) , γ (p, δ, p+ 1) , ..., γ (p, δ, q).

Next, we compare the achievable rate of the SCC scheme for the homogeneous scenario with

the scheme of [31], which we will refer to as the STW scheme. In Fig. 2, the achievable memory-

rate trade-off of the SCC scheme is compared with the STW scheme when Kw = 2, Ks = 2,

N = 20, F = 10, δs = 0.2, and δw = 0.8. The upper bound on the capacity of the cache-aided

packet erasure BC derived in [31, Theorem 7] is also included. The SCC scheme outperforms

the STW scheme due to the improved achievable memory-rate pair
(

M(0,2), R(0,2)

)

, which is not

achievable by the STW scheme. This improvement can be extended to a wider range of cache

sizes through memory-sharing, also reducing the gap to the upper bound.

In Fig. 3, we plot the achievable rates for both schemes in the homogeneous scenario with

Kw = 7, Ks = 10, N = 50, F = 20, δs = 0.2, and δw = 0.9. The upper bound on the

capacity derived in [31, Theorem 7] is also included. Observe that, for relatively small cache
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Fig. 2. Lower and upper bounds on the capacity for the homogeneous scenario with Kw = 2, Ks = 2, N = 20, F = 10,

δs = 0.2, and δw = 0.8.

sizes, where the best memory-rate trade-off is achieved by time-sharing between
(

M(0,0), R(0,0)

)

and
(

M(0,1), R(0,1)

)

, and for relatively large cache sizes, where the best memory-rate trade-off is

achieved by time-sharing between
(

M(6,7), R(6,7)

)

and
(

M(7,7), R(7,7)

)

, both schemes achieve the

same rate; however, the proposed SCC scheme achieves a higher rate than STW scheme for all

other intermediate cache sizes, and reduces the gap to the upper bound. For a cache capacity of

M = 30, the SCC scheme provides approximately 15% increase in the achievable rate compared

to the STW scheme.

In Fig. 4, the achievable rates of the SCC and STW schemes in the homogeneous scenario

are compared for different values of δw. System parameters considered in this comparison are

Kw = 20, Ks = 10, N = 100, F = 50, δs = 0.2, and δw = 0.7, 0.8, 0.9. Observe that, unlike the

STW scheme, the performance of the SCC scheme does not deteriorate notably for intermediate

and relatively high cache capacities when δw increases, i.e., having worse channel qualities for

the weak receivers. This is because the SCC scheme successfully exploits the available cache

capacities, and there is little to lose from increasing δw when M is sufficiantly large. Moreover,

the superiority of the SCC scheme over the STW scheme is more pronounced for higher values of
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Fig. 3. Lower and upper bounds on the capacity for the homogeneous scenario with Kw = 7, Ks = 10, N = 50, F = 20,

δs = 0.2, and δw = 0.9.

δw, in which case, exploiting the cache memories available at the weak receivers more effectively

through SCC becomes more important.

For the heterogeneous scenario, the capacity of the network under consideration is upper

bounded by [31]

min
S⊂[K]







F

(

∑

k∈S

1

1− δk

)−1

+
M

N
|S ∩ [Kw]|







. (21)

In Fig. 5, the effect of Kw is considered for the heterogeneous scenario with the system

parameters K = 15, N = 100, F = 10, δk = 0.9− 0.01k, for k = 1, ..., 5, and δl = 0.2− 0.01l,

for l = 6, ..., 15. In this figure, the achievable rates are plotted with respect to the total cache

capacity of KwM for four different values for the number of weak receivers in the system,

Kw = 4, 5, 10, 15. Note that the erasure probabilities are set such that the first 5 receivers have

significantly worse channels than the remaining 10 receivers. Note also that the parameter Kw

determines which receivers are provided with cache memories. As it can be seen, the setting

with Kw = 5 achieves significantly higher rates over a wide range of total cache capacities

compared to the other settings under consideration. If receiver 5, which has a relatively bad
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Fig. 4. Lower and upper bounds on the capacity for the homogeneous scenario with Kw = 20, Ks = 10, N = 100, F = 50,

δs = 0.2, and different values for δw given by δw = 0.7, 0.8, 0.9.

channel quality, is not provided with any cache memory, and only the first 4 receivers are

equipped with cache memories, i.e., Kw = 4, the performance degrades significantly except for

very small values of total cache size. This is because the first five receivers have much worse

channel qualities, and the performance depends critically on the caches provided to all these five

weak receivers. On the other hand, equipping receivers with relatively good channel qualities

with cache memories deteriorates the performance of the system in terms of the achievable rate.

Note that this is because the total available cache capacity is allocated across a larger number

of receivers. This result confirms that it is more beneficial to allocate cache memories to the

receivers with relatively worse channel qualities. The upper bound on the achievable rate for

the setting with Kw = 5 and Ks = 10 is also included in this figure. We observe that the gap

between the upper bound and the achievable rate for the same setting is relatively small for a

wide range of cache sizes.

IV. THE SUCCESSIVE CACHE-CHANNEL CODING (SCC) SCHEME

Before presenting the SCC scheme for the general heterogeneous scenario, in which we allow

the weak and strong receivers to have distinct erasure probabilities, the main ideas behind this

scheme are illustrated on an example in the simplified homogeneous scenario.
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Fig. 5. Lower and upper bounds on the capacity for the heterogeneous scenario with K = 15, N = 100, F = 10, δk =
0.9− 0.01k, for k = 1, ..., 5, and δl = 0.2− 0.01l, for l = 6, ..., 15 with variable Kw and Ks.

For notational convenience, the i-element subsets of set [Kw] are enumerated by S
(i)
1 ,S

(i)
2 , ...,

S
(i)

(Kw
i )

, i.e.,

S
(i)
j ⊂ [Kw] and

∣

∣

∣
S

(i)
j

∣

∣

∣
= i, for i ∈ [0 : Kw], and j = 1, ...,

(

Kw

i

)

. (22)

Example 1. Consider the cache-aided packet erasure homogeneous BC depicted in Fig. 1 with

Kw = 3 weak and Ks = 2 strong receivers. In the following, we investigate the achievable

memory-rate pair
(

M(0,2), R(0,2)

)

, which corresponds to the memory-rate pair in (20) for p = 0

and q = 2. Each file Wf , f ∈ [N ], is divided into three subfiles W
(0)
f , W

(1)
f and W

(2)
f , where

subfile W
(i)
f has a rate of R(i), for i = 0, 1, 2, given by

R(i) ∆
=

γ (0, δws, i)
2
∑

j=0

γ (0, δws, j)

R, (23)

where γ (0, δws, i) is as defined in (20c). We have
2
∑

i=0

R(i) = R.

Placement phase: In the placement phase, subfiles W
(i)
1 , ...,W

(i)
N are placed in the caches of

Kw = 3 weak receivers using the procedure in [6, Algorithm 1], specified for a cache capacity

of iN/Kw, for i = 0, 1, 2. In this cache placement procedure, each subfile W
(i)
f is first divided
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into
(

3
i

)

non-overlapping pieces, each at a rate of R(i)/
(

3
i

)

.

W
(i)
f =



W
(i)

f,S
(i)
1

,W
(i)

f,S
(i)
2

, ...,W
(i)

f,S
(i)

(3i)



 , ∀f ∈ [N ] , ∀i ∈ [0 : 2] , (24)

For the example under consideration, we have, ∀f ∈ [N ],

W
(0)
f =

(

W
(0)
f,∅

)

, (25a)

W
(1)
f =

(

W
(1)
f,{1},W

(1)
f,{2},W

(1)
f,{3}

)

, (25b)

W
(2)
f =

(

W
(2)
f,{1,2},W

(2)
f,{1,3},W

(2)
f,{2,3}

)

. (25c)

The piece W
(i)

f,S
(i)
l

is placed in the cache of each receiver k ∈ S
(i)
l , for l = 1, ...,

(

3
i

)

. Therefore,

the cache contents of the weak receivers after the placement phase are as follows:

Z1 =
⋃

f∈[N ]

(

W
(1)
f,{1},W

(2)
f,{1,2},W

(2)
f,{1,3}

)

, (26a)

Z2 =
⋃

f∈[N ]

(

W
(1)
f,{2},W

(2)
f,{1,2},W

(2)
f,{2,3}

)

, (26b)

Z3 =
⋃

f∈[N ]

(

W
(1)
f,{3},W

(2)
f,{1,3},W

(2)
f,{2,3}

)

, (26c)

where the required cache capacity for each weak receiver is:

M =

(

R(1)

3
+

2R(2)

3

)

N =
γ (0, δws, 1) + 2γ (0, δws, 2)

3
2
∑

j=0

γ (0, δws, j)

NR. (27)

Delivery phase: The server tries to satisfy all the demands in the delivery phase by sending

four distinct messages in an orthogonal fashion, i.e., by time division multiplexing, where the

codewords corresponding to the i-th message, i = 1, ..., 4, are of length βin channel uses, such

that
4
∑

i=1

βi = 1. The contents delivered with each message are illustrated in Table I.

The first message is targeted only for the weak receivers, and its goal is to deliver the missing

subfiles of file W
(2)
dk

to receiver k, k = 1, 2, 3, that is, having received this message, each weak

receiver should be able to decode the third subfile of its desired file. Exploiting the delivery

phase of [6, Algorithm 1] for cache capacity 2N/Kw, the coded content with message 1 in

Table I is delivered to the weak receivers {1, 2, 3}. Having received message 1 given in Table I,

receiver k can recover its missing piece W
(2)
dk,[3]\{k}

of subfile W
(2)
dk

using its cache contents Zk.
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TABLE I

CONTENTS SENT WITH MESSAGES 1 TO 4 IN THE DELIVERY PHASE OF EXAMPLE 1.

Message 1
(

W
(2)
d1,{2,3}

⊕W
(2)
d2,{1,3}

⊕W
(2)
d3,{1,2}

)

to receivers 1, 2, 3

Message 2

Sub-message 1 JE

(

(

W
(1)
d1,{2}

⊕W
(1)
d2,{1}

)

{1,2}
,
(

W
(2)
d4,{1,2}

,W
(2)
d5,{1,2}

)

{4,5}

)

Sub-message 2 JE

(

(

W
(1)
d1,{3}

⊕W
(1)
d3,{1}

)

{1,3}
,
(

W
(2)
d4,{1,3}

,W
(2)
d5,{1,3}

)

{4,5}

)

Sub-message 3 JE

(

(

W
(1)
d2,{3}

⊕W
(1)
d3,{2}

)

{2,3}
,
(

W
(2)
d4,{2,3}

,W
(2)
d5,{2,3}

)

{4,5}

)

Message 3

Sub-message 1 JE

(

(

W
(0)
d1,∅

)

{1}
,
(

W
(1)
d4,{1}

,W
(1)
d5,{1}

)

{4,5}

)

Sub-message 2 JE

(

(

W
(0)
d2,∅

)

{2}
,
(

W
(1)
d4,{2}

,W
(1)
d5,{2}

)

{4,5}

)

Sub-message 3 JE

(

(

W
(0)
d3,∅

)

{3}
,
(

W
(1)
d4,{3}

,W
(1)
d5,{3}

)

{4,5}

)

Message 4
(

W
(0)
d4,∅

)

to receiver 4, and
(

W
(0)
d5,∅

)

to receiver 5

Thus, together with its cache content, receiver k can recover subfile W
(2)
dk

, for k = 1, 2, 3.

Through the second message of the delivery phase, the server simultaneously delivers subfile

W
(2)
dl

to strong receiver l, l = 4, 5, and the missing bits of subfile W
(1)
dk

to weak receiver k,

k = 1, 2, 3. The content targeted to the weak receivers is delivered by using the delivery phase

of [6, Algorithm 1] for the cache capacity of N/Kw; that is, the contents

{

W
(1)
d1,{2}

⊕W
(1)
d2,{1}

,W
(1)
d1,{3}

⊕W
(1)
d3,{1}

,W
(1)
d2,{3}

⊕W
(1)
d3,{2}

}

(28)

are transmitted to the weak receivers. Therefore, the goal is to deliver W
(2)
dl

to strong receiver l,

l = 4, 5, while delivering the contents in (28) to the weak receivers in parallel. The transmission

is performed by sending three sub-messages, transmitted over orthogonal time periods. With the

first sub-message of message 2 given in Table I, receivers 1 and 2 receive W
(1)
d1,{2}

⊕W (1)
d2,{1}

since

they both have W
(2)
d4,{1,2}

and W
(2)
d5,{1,2}

in their caches as side information. Accordingly, receiver

1 and receiver 2 can recover W
(1)
d1,{2}

and W
(1)
d2,{1}

, respectively. On the other hand, with the

joint encoding scheme, W
(2)
d4,{1,2}

and W
(2)
d5,{1,2}

are directly delivered to receiver 4 and receiver 5,

respectively. With the second sub-message of message 2 in Table I, W
(2)
d4,{1,3}

and W
(2)
d5,{1,3}

, which

are available in the caches of receivers 1 and 3 as side information, are delivered to receivers

4 and 5, while W
(1)
d1,{3}

⊕W
(1)
d3,{1}

is delivered to receivers 1 and 3. By receiving sub-message
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2, receiver 1 and receiver 3 can obtain W
(1)
d1,{3}

and W
(1)
d3,{1}

, respectively. Finally, sub-message

3 of message 2 aims to deliver W
(2)
d4,{2,3}

and W
(2)
d5,{2,3}

, which are in the cache of receivers 2

and 3, to receivers 4 and 5, respectively, and W
(1)
d2,{3}

⊕W
(1)
d3,{2}

to receivers 2 and 3 by the joint

encoding scheme. Having received coded content W
(1)
d2,{3}

⊕W
(1)
d3,{2}

, receiver 2 and receiver 3 can

recover W
(1)
d2,{3}

and W
(1)
d3,{2}

, respectively. Thus, having received message 2, each weak receiver

k, k = 1, 2, 3, can recover all the missing bits of subfile W
(1)
dk

of its request, while each strong

receiver l, l = 4, 5, can obtain subfile W
(2)
dl

of its request.

The third message of the delivery phase is designed to deliver W
(1)
dl

to strong receiver l,

l = 4, 5, and W
(0)
dk

is delivered to weak receiver k, k = 1, 2, 3. Third message is also divided

into three sub-messages, transmitted over orthogonal time periods. With sub-message k, given in

Table I, W
(1)
d4,{k}

and W
(1)
d5,{k}

, both of which are available locally at receiver k as side information,

k = 1, 2, 3, are delivered to receivers 4 and 5, respectively, while W
(0)
dk ,∅

is delivered to receiver

k. Therefore, with the third message in Table I, each weak receiver k, k = 1, 2, 3, can obtain

W
(0)
dk ,∅

, while each strong receiver l, l = 4, 5, can recover W
(1)
dl

. Thus, after receiving message 3

in Table I, the demands of the weak receivers are fully satisfied.

The last and fourth message of the delivery phase is generated only for the strong receivers

with the goal of delivering them the missing bits of their demands, in particular, subfile W
(0)
dl,∅

is delivered to each strong receiver l, l = 4, 5.

Observe that message 1 in Table I has a rate of R(2)/3. The capacity region of the standard

packet erasure BC presented in Proposition 1 suggests that all the weak receivers can decode

message 1, for n large enough, if

R(2)

3 (1− δw)F
≤ β1. (29)

From Table I, with each sub-message of the second message, messages of rate 2R(2)/3,

available at the weak receivers as side information, are delivered to the strong receivers; while,

simultaneously, a common message at rate R(1)/3 is transmitted to the weak receivers. Overall,
(

W
(2)
d4
,W

(2)
d5

)

and the contents in (28) with a total rate of 2R(2) and R(1) are delivered to the

strong and weak receivers, respectively, through three different sub-messages by using the joint

encoding scheme of [37] that exploits the side information at the weak receivers. Using the

achievable rate region of the joint encoding scheme for the packet erasure channels stated in

Proposition 2,
(

W
(2)
d4
,W

(2)
d5

)

and the contents in (28) can be simultaneously decoded by the
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strong and weak receivers, respectively, for n large enough, if

max

{

R(1)

(1− δw)F
,
R(1) + 2R(2)

(1− δs)F

}

≤ β2. (30)

From the expressions for R(1) and R(2) in (23), it can be verified that the two terms in the

maximization in (30) are equal for the setting under consideration. Thus, the condition in (30)

can be simplified as
R(1)

(1− δw)F
≤ β2. (31)

According to Table I, with each sub-message of message 3, a message at rate R(0) is targeted

for the weak receivers, while message at rate 2R(1)/3, available locally at the weak receivers,

is aimed for the strong receivers. Therefore, through joint encoding scheme over three periods,

messages with a total rate of 3R(0) are delivered to the weak receivers, while the strong receivers

receive a total rate of 2R(1). According to Proposition 2, all the weak and strong receivers can

decode their messages, for n large enough, if

max

{

3R(0)

(1− δw)F
,
3R(0) + 2R(1)

(1− δs)F

}

≤ β3. (32)

Again, from the expressions of R(0) and R(1) in (23), it can be verified that, when Kw = 3 and

Ks = 2, (32) can be simplified as
3R(0)

(1− δw)F
≤ β3. (33)

From the capacity region of the standard erasure BC in Proposition 1, each receiver l, l = 4, 5,

can decode W
(0)
dl,∅

, delivered with message 4, successfully for n sufficiently large, if

2R(0)

(1− δs)F
≤ β4. (34)

Combining (29), (31), (33), (34), and the fact that
4
∑

i=1

βi = 1, we have the condition

R(2)

3 (1− δw)F
+

R(1)

(1− δw)F
+

3R(0)

(1− δw)F
+

2R(0)

(1− δs)F
≤ 1. (35)

By replacing R(i) with the expressions from (23), for i = 0, 1, 2, and using the fact that
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γ (0, δws, 0) = 1, (35) is reduced to

R ≤

2
∑

j=0

γ (0, δws, j)F

1
1−δw

(

3 + γ (0, δws, 1) +
1
3
γ (0, δws, 2)

)

+ 2
1−δs

. (36)

Observe that, the term on the right hand side of inequality (36) is R(0,2), which is given by (20a).

The cache size of each weak receiver exploited by our coding scheme is given by (27), and we

have M = M(0,2), where M(0,2) is defined as in (20b). Thus, the memory-rate pair
(

M(0,2),

R(0,2)

)

given by (20) is achievable for the setting under consideration.

Next, we present the SCC scheme for a general heterogeneous scenario, achieving the memory-

rate pair
(

M(p,q), R(p,q)

)

given by (19), for any p ∈ [0 : Kw] and q ∈ [p : Kw]. For a given (p, q)

pair, where p ∈ [0 : Kw] and q ∈ [p : Kw], each file Wf , f ∈ [N ], is divided into (q − p + 1)

non-overlapping subfiles, represented by

Wf =
(

W
(p)
f , ...,W

(q)
f

)

, (37)

where subfile W
(i)
f , for i ∈ [p : q], has a rate of

R(i) ∆
=

γ (p, δ, i)
q
∑

j=p

γ (p, δ, j)

R, (38)

such that
q
∑

i=p

R(i) = R. Note that, γ (p, δ, i), for i ∈ [p : q], is given in (19c).

In the sequel, the placement and delivery phases of the SCC scheme are explained, and the

achievability of the memory-rate pair in (19) is proven.

A. Placement Phase

In the placement phase, for each set of subfiles W
(i)
1 , ...,W

(i)
N a cache placement procedure,

corresponding to the one proposed in [6, Algorithm 1] for a cache capacity of iN/Kw, is

performed, ∀i ∈ [p : q]; that is, each subfile W
(i)
f is partitioned into

(

Kw

i

)

independent equal-rate

pieces,

W
(i)
f =



W
(i)

f,S
(i)
1

,W
(i)

f,S
(i)
2

, ...,W
(i)

f,S
(i)

(Kw
i )



 , ∀f ∈ [N ] , ∀i ∈ [p : q] . (39)
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The piece W
(i)

f,S
(i)
l

of rate R(i)/
(

Kw

i

)

is cached by receivers k ∈ S
(i)
l , for l = 1, ...,

(

Kw

i

)

. Thus,

the content placed in the cache of each weak receiver k ∈ [Kw] is given by

Zk =
⋃

f∈[N ]

⋃

i∈[p:q]

⋃

l∈[(Kw
i )]:k∈S

(i)
l

W
(i)

f,S
(i)
l

. (40)

Accordingly,
(

Kw−1
i−1

)

pieces, each of rate R(i)/
(

Kw

i

)

, corresponding to each subfile W
(i)
d are

cached by each weak receiver k ∈ [Kw], which requires a total cache capacity of

M = N

q
∑

i=p

(

Kw − 1

i− 1

)

R(i)

(

Kw

i

) =
N

Kw

q
∑

i=p

iR(i) =

N
q
∑

i=p

iγ (p, δ, i)

Kw

q
∑

i=p

γ (p, δ, i)

R. (41)

B. Delivery Phase

In the delivery phase, the goal is to satisfy all the demands for an arbitrary demand combination

(d1, ..., dK). The delivery phase consists of (q − p + 2) different messages, transmitted over

orthogonal time periods, where the codewords of the i-th message are of length βin channel

uses, for i = 1, ..., q − p+ 2, such that
q−p+2
∑

i=1

βi = 1.

The first message of the delivery phase is only targeted for the weak receivers, and the goal

is to deliver the missing bits of subfile W
(q)
dk

to receiver k, ∀k ∈ [Kw]. It is to be noted that, for

q = Kw, based on the cache contents in (40), all the weak receivers have all the subfiles W
(q)
f ,

∀f ∈ [N ]; therefore, no message needs to be delivered. In the sequel, we consider q < Kw. The

first message of the delivery phase is transmitted over
(

Kw

q+1

)

orthogonal time slots, where in each

slot, a sub-message is delivered to a group of q+1 weak receivers. Sub-message j is a codeword

of length β1,jn channel uses, and is targeted to the receivers in set S
(q+1)
j , for j = 1, ...,

(

Kw

q+1

)

,

such that

(Kw
q+1)
∑

j=1

β1,j = β1. Following the procedure in [6, Algorithm 1], the content delivered by

sub-message j is given by

V
(q)
j

∆
=
⊕

k∈S
(q+1)
j

W
(q)

dk ,S
(q+1)
j \{k}

, for j = 1, ...,
(

Kw

q+1

)

. (42)

After receiving V
(q)
j , each receiver k ∈ S

(q+1)
j can obtain W

(q)

dk,S
(q+1)
j \{k}

, for j = 1, ...,
(

Kw

q+1

)

,

i.e., the missing bits of subfile W
(q)
dk

of its desired file, having access to Zk given in (40). Thus,

together with its cache content, receiver k ∈ [Kw] can recover W
(q)
dk

.
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The delivery technique performed to transmit messages 2, 3, ..., q − p + 1 follows the same

procedure. With the message q − i + 1 of length βq−i+1n channel uses, the server delivers the

missing bits of subfile W
(i)
dk

to each weak receiver k, k ∈ [Kw], and W
(i+1)
dl

to each strong

receiver l, l ∈ [Kw +1 : K], for i = q− 1, q− 2, ..., p.1 Message (q− i+1) is delivered through
(

Kw

i+1

)

sub-messages, transmitted over orthogonal time periods, where sub-message j is of length

βq−i+1,jn channel uses, such that
(Kw
i+1)
∑

j=1

βq−i+1,j = βq−i+1. With the j-th sub-message, using the

coded delivery procedure in [6, Algorithm 1], the coded content

V
(i)
j

∆
=
⊕

k∈S
(i+1)
j

W
(i)

dk,S
(i+1)
j \{k}

, (43)

is delivered to the weak receivers in set S
(i+1)
j , while

{

W
(i+1)

dKw+1,S
(i+1)
j

, ...,W
(i+1)

dK ,S
(i+1)
j

}

, (44)

is delivered to the strong receivers, for i = q − 1, ..., p, and j = 1, ...,
(

Kw

i+1

)

. Observe that, after

receiving sub-message V
(i)
j , each receiver k ∈ S

(i+1)
j can obtain W

(i)

dk,S
(i+1)
j \{k}

, for j = 1, ...,
(

Kw

i+1

)

,

i.e., the missing bits of subfile W
(i)
dk

of its desired file, for i = q− 1, ..., p. Note that, the content

in (44), which is targeted to the strong receivers, is known by each weak receiver in set S
(i+1)
j .

Therefore, the j-th sub-message of message q − i+ 1 can be transmitted using joint encoding:

JE

(

(

V
(i)
j

)

S
(i+1)
j

,

(

W
(i+1)

dKw+1,S
(i+1)
j

, ...,W
(i+1)

dK ,S
(i+1)
j

)

[Kw+1:K]

)

, for i = q − 1, ..., p,

and j = 1, ...,
(

Kw

i+1

)

. (45)

However, to increase the efficiency of the delivery phase, the j-th sub-message is delivered

via Ks orthogonal time periods, such that in the m-th period a codeword of length βq−i+1,j,mn

channel uses is transmitted, where
Ks
∑

m=1

βq−i+1,j,m = βq−i+1,j . Coded content V
(i)
j , targeted for

receivers in set S
(i+1)
j , is divided into Ks non-overlapping equal-rate pieces

V
(i)
j =

(

V
(i)
j,1 , ..., V

(i)
j,Ks

)

, (46)

1For example, with the second message, subfile W
(q)
dl

is delivered to each strong receiver l ∈ [Kw+1 : K], and subfile W
(q−1)
dk

to each weak receiver k ∈ [Kw]. With the third message, subfile W
(q−1)
dl

is delivered to each strong receiver l ∈ [Kw +1 : K],

and subfile W
(q−2)
dk

to each weak receiver k ∈ [Kw ], and so on so forth.
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TABLE II

CONTENTS SENT WITH MESSAGES 1 TO q − p+ 2 IN THE DELIVERY PHASE OF THE SCC SCHEME FOR THE

HETEROGENEOUS SCENARIO.

Message

index

Sub-message

index

Delivered content

1

1
(

V
(q)
1

)

to receivers in S
(q+1)
1

...
...

(

Kw

q+1

)

(

V
(q)

(Kw
q+1)

)

to receivers in S
(q+1)

(Kw
q+1)

t = 2, ...,
q − p+ 1

1
JE

(

(

V
(q−t+1)
1,m

)

S
(q−t+2)
1

,

(

W
(q−t+2)

dKw+m,S
(q−t+2)
1

)

{Kw+m}

)

in m-th time period, for m = 1, ..., Ks

...
...

(

Kw

q−t+2

) JE







(

V
(q−t+1)

( Kw
q−t+2),m

)

S
(q−t+2)

( Kw
q−t+2)

,



W
(q−t+2)

dKw+m,S
(q−t+2)

( Kw
q−t+2)





{Kw+m}







in m-th time period, for m = 1, ..., Ks

q − p+ 2
(

W
(p)
dl

)

to receiver l ∈ [Kw + 1 : K]

and the delivery over the m-th time period is performed by joint encoding:

JE

(

(

V
(i)
j,m

)

S
(i+1)
j

,

(

W
(i+1)

dKw+m,S
(i+1)
j

)

{Kw+m}

)

, for m = 1, ..., Ks. (47)

We note that, after receiving messages 2 to q − p+ 1, each weak receiver k ∈ [Kw] can obtain

subfiles
(

W
(q−1)
dk

,W
(q−2)
dk

, ...,W
(p)
dk

)

, while each strong receiver l ∈ [Kw + 1 : K] can decode

subfiles
(

W
(q)
dl
,W

(q−1)
dl

, ...,W
(p+1)
dl

)

; therefore, together with message 1, the demand of weak

receivers are fully satisfied. However, strong receiver l ∈ [Kw + 1 : K] only requires to receive

subfile W
(p)
dl

.

The last message delivers subfile W
(p)
dl

to the strong receiver l ∈ [Kw + 1 : K] using the

channel coding scheme for standard packet erasure BCs.

The contents delivered with each message in the delivery phase for the heterogeneous scenario

are summarized in Table II.

Remark 3. We remark here that, instead of multicasting XORed contents to groups of weak

receivers, one can also use a higher dimensional joint encoding scheme, in which case each
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weak receiver can decode its missing part directly by using the parts available in its cache

as side information. However, we stick to the coding scheme presented here as it makes the

connection to the original delivery scheme of Maddah-Ali and Niesen in [6] more explicit.

C. Achievable Memory-Rate Pair Analysis (Proof of Theorem 1)

The rate of the coded content targeted to a group of weak receivers for each message of

the delivery phase is allocated such that it can be decoded by the weakest receiver among the

intended group of weak receivers.

With sub-message j of message 1 of length β1,jn channel uses, V
(q)
j , which is given in (42),

a message of rate R(q)/
(

Kw

q

)

is transmitted to the weak receivers in S
(q+1)
j , for j = 1, ...,

(

Kw

q+1

)

.

The rate of V
(q)
j is adjusted such that the weakest receiver in S

(q+1)
j can decode it successfully,

i.e.,

R(q)

(

Kw

q

) ≤ β1,j

(

1− max
r∈S

(q+1)
j

{δr}

)

F, for j = 1, ...,
(

Kw

q+1

)

, (48)

which after summing over all the sets S
(q+1)
j , for j = 1, ...,

(

Kw

q+1

)

, one can obtain

R(q)

(

Kw

q

)

Kw−q
∑

r=1

(

Kw−r

q

)

1− δr
≤

(Kw
q+1)
∑

j=1

β1,jF = β1F. (49)

Note that with the codeword given in (47), V
(i)
j,m, targeted for the receivers in S(i+1)

j , is of rate

R(i)/
(

Ks

(

Kw

i

))

, while W
(i+1)

dKw+m,S
(i+1)
j

, destined for receiver Kw +m, is of rate R(i+1)/
(

Kw

i+1

)

, for

m = 1, ..., Ks, i = q − 1, ..., p and j = 1, ...,
(

Kw

i+1

)

. Proposition 2 suggests that the codeword in

(47) can be decoded correctly by the intended receivers if

max























R(i)/
(

Ks

(

Kw

i

))

(

1− max
r∈S

(i+1)
j

{δr}

)

F

,
R(i)/

(

Ks

(

Kw

i

))

+R(i+1)/
(

Kw

i+1

)

(1− δKw+m)F























≤ βq−i+1,j,m, for m = 1, ..., Ks,

(50)

where the rate of V
(i)
j,m is limited by the weakest receiver in S

(i+1)
j , for i = q − 1, ..., p, and
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j = 1, ...,
(

Kw

i+1

)

. By summing up all the Ks inequalities in (50), we have

max























R(i)/
(

Kw

i

)

(

1− max
r∈S

(i+1)
j

{δr}

)

F

,

(

R(i)

Ks

(

Kw

i

) +
R(i+1)

(

Kw

i+1

)

)

Ks
∑

m=1

1

(1− δKw+m)F























≤ βq−i+1,j,

for i = q − 1, ..., p, and j = 1, ...,
(

Kw

i+1

)

. (51)

By the choice of (38), and the fact that

γ (p, δ, i+ 1) =

(

Kw

i+1

)

(

Kw

i

)

Ks











Ks

(1− δKw−i)
K
∑

l=Kw+1

1
1−δl

− 1











γ (p, δ, i) , (52)

which follows from the definition in (19c), the second term of the maximization in (51) is

reduced to
R(i)/

(

Kw

i

)

(1− δKw−i)F
. (53)

Thus, (51) is simplified as follows:

max























R(i)/
(

Kw

i

)

(

1− max
r∈S

(i+1)
j

{δr}

)

F

,
R(i)/

(

Kw

i

)

(1− δKw−i)F























≤ βq−i+1,j, for i = q − 1, ..., p, j = 1, ...,
(

Kw

i+1

)

.

(54)

Note that

∣

∣

∣
S

(i+1)
j

∣

∣

∣
= i+ 1; hence, for i = q − 1, ..., p,

max
r∈S

(i+1)
j

{δr} ≥ δKw−i, ∀j ∈

[(

Kw

i+ 1

)]

. (55)

From (55), (54) is reduced to

R(i)/
(

Kw

i

)

(

1− max
r∈S

(i+1)
j

{δr}

)

F

≤ βq−i+1,j, for i = q − 1, ..., p, j = 1, ...,
(

Kw

i+1

)

, (56)

which holds for every j ∈
[(

Kw

i+1

)]

, each corresponding to a different (i + 1)-element subset
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S
(i+1)
j . After summing up over all values of j, one can obtain

R(i)

(

Kw

i

)

Kw−i
∑

r=1

(

Kw−r

i

)

1− δr
≤

(Kw
i+1)
∑

j=1

βq−i+1,jF = βq−i+1F, for i = q − 1, ..., p. (57)

According to Proposition 1, each receiver l, l ∈ [Kw+1 : K], can decode subfile W
(p)
dk

of rate

R(p), delivered by the last message, correctly, if

R(p)
K
∑

l=Kw+1

1

1− δl
≤ βq−p+2F. (58)

By combining inequalities (49), (57) and (58), we have

q
∑

i=p

(

R(i)

(

Kw

i

)

Kw−i
∑

j=1

(

Kw−j

i

)

1− δj

)

+R(p)
K
∑

j=Kw+1

1

1− δj
≤

q
∑

i=p−1

βq−i+1F = F. (59)

Finally, by replacing R(i), for i = p, ..., q, with the expression in (38), one can obtain

R ≤

F
q
∑

i=p

γ (p, δ, i)

q
∑

i=p

(

γ(p,δ,i)

(Kw
i )

Kw−i
∑

j=1

(Kw−j

i )
1−δj

)

+
K
∑

j=Kw+1

1
1−δj

, (60)

which, together with the cache capacity of each weak receiver, M , given in (41), proves the

achievability of the memory-rate pairs
(

M(p,q), R(p,q)

)

in (19).

Remark 4. We remark that, for the homogeneous scenario, the codeword in (47) can be received

by the targeted receivers correctly if

max

{

R(i)/
(

Ks

(

Kw

i

))

(1− δw)F
,
R(i)/

(

Ks

(

Kw

i

))

+R(i+1)/
(

Kw

i+1

)

(1− δs)F

}

≤ βq−i+1,j,m,

for i = q − 1, ..., p, j = 1, ...,
(

Kw

i+1

)

, and m = 1, ..., Ks, (61)

from which we obtain

max

{

R(i)

(

Kw

i

)

(1− δw)F
,
R(i)/

(

Kw

i

)

+KsR
(i+1)/

(

Kw

i+1

)

(1− δs)F

}

≤
Ks
∑

m=1

βq−i+1,j,m = βq−i+1,j,

for i = q − 1, ..., p, and j = 1, ...,
(

Kw

i+1

)

. (62)

By adding all
(

Kw

i+1

)

sub-messages, each weak receiver and each strong receiver can decode their
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targeted contents after receiving message q − i+ 1, if

max

{

Kw−i
i+1

R(i)

(1− δw)F
,
Kw−i
i+1

R(i) +KsR
(i+1)

(1− δs)F

}

≤

(Kw
i+1)
∑

j=1

βq−i+1,j = βq−i+1, for i = q − 1, ..., p.

(63)

According to (38), we have

R(i+1) =
γ (p, δws, i+ 1)

γ (p, δws, i)
R(i) =

Kw − i

Ks(i+ 1)

(

1− δs
1− δw

− 1

)

R(i), (64)

where we used

γ (p, δws, i+ 1) =
Kw − i

Ks(i+ 1)

(

1− δs
1− δw

− 1

)

γ (p, δws, i) (65)

from (20c). By substituting (64) into (63), the second term of the maximization in (63) can be

rewritten as
Kw−i
i+1

R(i) + Kw−i
i+1

(

1−δs
1−δw

− 1
)

R(i)

(1− δs)F
=

Kw−i
i+1

R(i)

(1− δw)F
, (66)

which is equal to the first term of the maximization in (63). Thus, (63) can be simplified as

Kw−i
i+1

R(i)

(1− δw)F
≤ βq−i+1, for i = q − 1, ..., p. (67)

By combining (49), (67), and (58), we have

q
∑

i=p

(

Kw−i
i+1

R(i)

(1− δw)F

)

+
KsR

(p)

(1− δs)F
≤

q
∑

i=p−1

βq−i+1 = 1. (68)

Replacing R(i), for i = p, ..., q, with the expression in (38) for the homogeneous scenario results

in

R ≤

F
q
∑

i=p

γ (p, δws, i)

1
1−δw

q
∑

i=p

(

Kw−i
i+1

γ (p, δws, i)
)

+ Ks

1−δs

, (69)

where γ (p, δws, i) is given in (20c). Observe that (69) together with the cache capacity of each

weak receiver given in (41) confirm the achievability of the memory-rate pair in (20) for the

homogeneous scenario.

Remark 5. It is to be noted that the achievable STW scheme introduced in [31] is a special

case of the SCC scheme for the homogeneous scenario with q = p+1. The delivery phase of the
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STW scheme is performed by delivering three messages in orthogonal time periods. The SCC

scheme utilizes a more flexible caching and coding scheme which applies a finer subpacketization

compared to [31], together with the joint encoding scheme of [37], also used in [31], enabling

all the receivers to exploit the cache capacities of the weak receivers.

Remark 6. The performance gain from the proposed SCC scheme is relatively higher when the

erasure probabilities of the two sets of receivers are more disparate, i.e., the difference between

the erasure probability of the best receiver among the weak receivers and the erasure probability

of the worst receiver among the strong receivers is larger (see Fig. 5). Furthermore, the SCC

scheme is relatively robust to skewed erasure probabilities across the strong receivers; this is

due to the subpacketization performed to deliver the sub-messages of messages 2 to q − p + 1,

where the sub-messages targeted to strong receivers are delivered over orthogonal time slots.

On the other hand, it suffers more from skewed erasure probabilities across the weak receivers,

which is due to the multicast nature of cache-aided coded content delivery to a group of weak

receivers, which should be decoded by all of them simultaneously. Accordingly, the reliable rate

at which the coded content is delivered to the intended set of weak receivers, is limited by the

worst one.

V. CONCLUSIONS

We have studied cache-enabled content delivery over a packet erasure BC with arbitrary erasure

probabilities. We have defined the capacity of this network as the maximum common rate of

contents in the library, which allows reliable delivery to all the receivers, independent of their

demands. We have derived a lower bound on the capacity by proposing a novel caching and

delivery scheme, which enables each receiver, even the strong receivers without a cache memory,

to benefit from the cache memories available at the weak receivers. The proposed scheme utilizes

a finer subpacketization of the files in the library, and provides a better exploitation of the

available cache memories with a higher achievable rate than the state-of-the-art [31], which

focuses on the homogeneous scenario, where the receivers in the same set all have the same

erasure probability. This model and the presented results illustrate that even limited storage

can be converted into spectral efficiency in noisy communication network, benefiting the whole

network, if it is placed strategically across the network, and exploited intelligently.
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