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Faulty Successive Cancellation Decoding of Polar

Codes for the Binary Erasure Channel
Alexios Balatsoukas-Stimming and Andreas Burg

Abstract—In this paper, faulty successive cancellation decoding
of polar codes for the binary erasure channel is studied. To
this end, a simple erasure-based fault model is introduced to
represent errors in the decoder and it is shown that, under
this model, polarization does not happen, meaning that fully
reliable communication is not possible at any rate. Furthermore,
a lower bound on the frame error rate of polar codes under
faulty SC decoding is provided, which is then used, along with
a well-known upper bound, in order to choose a blocklength
that minimizes the erasure probability under faulty decoding.
Finally, an unequal error protection scheme that can re-enable
asymptotically erasure-free transmission at a small rate loss and
by protecting only a constant fraction of the decoder is proposed.
The same scheme is also shown to significantly improve the finite-
length performance of the faulty successive cancellation decoder
by protecting as little as 1.5% of the decoder.

Index Terms—Polar codes, successive cancellation decoding,
faulty decoding.

I. INTRODUCTION

UNCERTAINTIES in the manufacturing process of inte-

grated circuits are expected to play a significant role

in the design of very-large-scale integration systems in the

nanoscale era [2]–[4]. Due to these uncertainties, it will

become more and more difficult to guarantee the correct

behavior of integrated circuits at the gate level, meaning that

the hardware may become faulty in the sense that data is not al-

ways processed or stored correctly. Moreover, very aggressive

dynamic voltage scaling, which is commonly used to reduce

the energy consumption of integrated circuits, can increase

the occurrence of undesired faulty behavior [5]. Traditional

methods to ensure accurate hardware behavior, such as using

larger transistors or circuit-level error correcting codes, are

costly in terms of both area and power.

Fortunately, many applications are inherently fault tolerant

in the sense that they do not fail catastrophically under faulty

hardware. A good example of such an application are com-

munication systems, and more specifically channel decoders,

since the processed data is already probabilistic in nature

due to transmission over a noisy channel. Faulty iterative

decoding of LDPC codes was first studied in [6], where the

Gallager A and sum-product algorithms are considered. Later

studies also targeted the Gallager B algorithm [7]–[9], the min-

sum algorithm [10]–[12], as well as more general message-

passing algorithms [13], [14]. All of the aforementioned
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studies provide valuable insight into the limitations of LDPC

codes under various decoding algorithms and fault models.

Unfortunately, in many cases, the conclusion is that fully

reliable communication is not possible when faults are present

inside the decoder itself. Surprisingly, in some special cases,

it has been demonstrated that faulty decoders can in fact even

improve the error performance of LDPC codes in the finite

blocklength regime [15]–[18]. LDPC codes are usually studied

with the help of random ensembles, meaning that a family

of codes is studied rather than individual codes. Moreover

there exists an infinite number of code ensembles with a given

coding rate. Thus, it becomes unclear which code ensemble

and which individual code should be studied.

Polar codes [19] constitute a different class of channel

codes which has recently attracted significant attention, albeit

not yet in the context of faulty decoding. Contrary to LDPC

codes, a polar code for a given channel and coding rate is

uniquely defined, thus greatly simplifying the choice of code

to examine. Polar codes are provably capacity achieving over

various channels and they have an efficient and structured

successive cancellation (SC) decoding algorithm whose com-

plexity is O(N logN), where N is the length of the code.

Moreover, encoding can also be performed with complexity

that is O(N logN). When used for transmission over the

binary erasure channel (BEC), the SC decoding algorithm can

be highly simplified. Moreover, there exist analytical upper

and lower bounds on the frame erasure rate (FER), which

have been shown to be tight [20] and enable us to have a very

good approximation of the FER without resorting to lengthy

Monte-Carlo simulations.

Contribution: In this paper we study SC decoding of polar

codes for transmission over the BEC under an erasure-based

internal fault model. We show that, under the fault model

assumed in this paper, fully reliable communication is no

longer possible. Furthermore, by studying the polarization

process, we show that synthetic channel ordering with re-

spect to both the channel erasure probability and the internal

decoder erasure probability holds. We also adapt the lower

bound on the FER derived in [20] to the case of faulty

decoding, and we use it in order to derive the FER-optimal

blocklength for a polar code of a given rate, and for a given

channel and decoder erasure probability. Finally, we introduce

a simple unequal error protection method, which is shown

to re-enable asymptotically fully reliable communication by

protecting only a constant fraction of the decoder. In the

finite blocklength regime, our proposed fault-tolerance method

significantly improves the FER with very low overhead.

http://arxiv.org/abs/1505.05404v3
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Fig. 1: Synthetic channel construction for a polar code of

length N = 23 = 8. Pairs of solid lines represent the

+ transformation and pairs of dashed lines represent the −
transformation.

Outline: The remainder of this paper is organized as fol-

lows. Section II provides some background on the construction

and decoding of polar codes. In Section III, we introduce the

fault model that is used throughout this paper and we prove

that fully reliable communication using polar codes is not

possible under faulty decoding over the BEC. We also show

some other useful properties of the faulty decoder. Moreover,

in Section IV we adapt the lower bound on the FER derived

in [20] to the case of faulty decoding, and in Section V we

describe our proposed unequal error protection scheme. A

discussion and some results on the optimal blocklength under

faulty decoding are provided in Section VI. In Section VII,

we show numerical results concerning the FER, the optimal

choice of blocklength, as well as the effectiveness of our pro-

posed unequal error protection method. Finally, Section VIII

concludes this paper.

Notation: We use the notation X , 1 − X . We use

boldface letters to denote vectors, matrices, and strings. The

n-th character of a string s is denoted by sn. We use log(·)
to denote the binary logarithm. We denote the binary erasure

channel with erasure probability p as BEC(p) and the ternary

erasure channel with erasure probability p as TEC(p). We use

∅ to denote an empty string. Finally, we use | · | to denote both

the length of a string and the cardinality of a set. We use ⌊x⌉
to denote the nearest integer of x (i.e., the rounding function)

and ⌈x⌉ to denote the ceiling function.

II. POLAR CODES

A. Polarizing Channel Transformation

Let W denote a binary input memoryless channel with

input u ∈ {0, 1}, output y ∈ Y , and transition proba-

bilities W (y|u). The polarizing transformation proposed by

Arıkan [19, Section I] generates N , 2n synthetic channels

in n steps as follows. At step 1 of the polarizing transfor-

mation, N independent copies of the channel W , denoted by

W
(∅)
0,k , k = 0, . . . , N − 1, are combined pair-wise in order to

generate N/2 independent copies of a pair of new synthetic

channels denoted by W
(+)
1,k and W

(−)
1,k , k = 0, . . . , N/2 − 1.

The “+” channels can be shown to be better, in terms of

mutual information and Bhattacharyya parameter, than the

original channel, while the “-” channels are worse than

the original channel. The same transformation is applied to

W
(+)
1,k and W

(−)
1,k , k = 0, . . . , N/2 − 1 in order to generate

N/4 independent copies of W
(++)
2,k , W

(+−)
2,k , W

(−+)
2,k and

W
(−−)
2,k , k = 0, . . . , N/4− 1. This procedure is repeated for

a total of n steps, until 2n channels W
(s)
n,0, s ∈ {+,−}n, are

generated. Note that, in general, the notation W
(s)
s,k implies

that |s| = s and for this reason we have s ∈ {+,−}n for

the final combining step where s = n. An example of the

transformation steps is depicted in Figure 1 for n = 3.

B. Erasure Probability of Synthetic Channels

Let Z
(s)
s,k , Z

(

W
(s)
s,k

)

denote the Bhattacharyya parameter

of the synthetic channel W
(s)
s,k . When W is a BEC(p), its

Bhattacharyya parameter is equal to the erasure probability,

i.e., Z
(

W
(∅)
0,k

)

= Z(W ) = p. Moreover, all synthetic channels

generated at step s are also BECs and their Bhattacharyya

parameters (equivalently, their erasure probabilities) can be

calculated recursively based on the Bhattacharyya parameters

of the channels at step (s− 1) as [19, Section III]

Z
(s−)
s,k = Z

(s)
s−1,k + Z

(s)
s−1,k+2n−s

− Z
(s)
s−1,kZ

(s)
s−1,k+2n−s

, (1)

Z
(s+)
s,k = Z

(s)
s−1,kZ

(s)
s−1,k+2n−s

, (2)

where s = 1, . . . , n, k = 0, . . . , 2n−s − 1. The channels

W
(s)
s,k , k = 0, . . . , 2n−s − 1, are independent copies of the

same type of channel, meaning that their erasure probabilities

are identical. Thus, if we are only interested in the erasure

probability of a specific type s of channel we can simplify (1)

and (2) by omitting the index k as

Z(s−)
s = T−

(

Z
(s)
s−1

)

, 2Z
(s)
s−1 −

(

Z
(s)
s−1

)2

, (3)

Z(s+)
s = T+

(

Z
(s)
s−1

)

,

(

Z
(s)
s−1

)2

, (4)

with Z
(∅)
0 = p. The vector containing all Z

(s)
s , s ∈ {+,−}s,

variables is denoted by Zs.

Moreover, as in [19], [21], we define the polarization

random process ǫs as

ǫs = Z(s)
s , (5)

with P [S = s] = 1
2s , i.e., ǫs is equally likely to be equal

to the erasure probability of any of the 2s distinct types of

synthetic channels at step s of the polarizing transformation.

The random process ǫs can be written equivalently as

ǫs =

{

T−(ǫs−1) w.p. 1/2,
T+(ǫs−1) w.p. 1/2,

(6)

with ǫ0 = Z(W ) = p. It was shown in [19, Theorem 1] that

ǫs converges almost surely to a random variable ǫ∞ ∈ {0, 1},
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with P (ǫ∞ = 0) = I(W ) = 1 − p, where I(W ) denotes the

symmetric capacity of the BEC W .

Finally, let us define a binary erasure indicator variable E
(s)
s,k

for which E
(s)
s,k = 1 if and only if the output of the synthetic

channel W
(s)
s,k is an erasure and E

(s)
s,k = 0 otherwise. It is

clear that E
[

E
(s)
s,k

]

= Z
(s)
s,k. The indicator variables can also

be determined recursively as follows [20]

E
(s−)
s,k = E

(s)
s−1,k + E

(s)
s−1,k+2n−s

− E
(s)
s−1,kE

(s)
s−1,k+2n−s

, (7)

E
(s+)
s,k = E

(s)
s−1,kE

(s)
s−1,k+2n−s

. (8)

Similarly to the Bhattacharyya parameters, if we are only

interested in the statistics of the indicator variable for a channel

of a specific type s, we can simplify (7) and (8) as

E(s−)
s = E

(s)
s−1

′
+ E

(s)
s−1

′′
− E

(s)
s−1

′
E

(s)
s−1

′′
, (9)

E(s+)
s = E

(s)
s−1

′
E

(s)
s−1

′′
, (10)

where E
(s)
s−1

′
and E

(s)
s−1

′′
denote two independent realizations

of E
(s)
s−1 [20]. The vector containing all E

(s)
s indicator vari-

ables is denoted by Es.

C. Construction of Polar Codes

Let us define a mapping from s ∈ {+,−}n to the integer-

valued indices i ∈ {0, . . . , 2n − 1} as follows. First, we

construct b by replacing each − that appears in s with a

0 and each + that appears in s with a 1. Then, the index

i can be obtained by considering b as a left-MSB binary

representation of i. As this mapping is a bijection, we use

s and i interchangeably.

Let us fix a blocklength N = 2n and a code rate R ,
K
N
, 0 < K < N . Moreover, let A denote the set of the K

channel indices i (equivalently, strings s) with the smallest

Z
(s)
n . A polar code of rate R is constructed by transmitting

the information vector uA over the K best synthetic channels,

while freezing the input of the remaining synthetic channels,

i.e., uAc to a value that is known at the receiver. This can

be achieved by transmitting the encoded codeword x = uGn

over 2n independent uses of the initial BEC W , where

Gn = BnF
⊗n, F =

[

1 0
1 1

]

, (11)

and Bn denotes the bit-reversal permutation matrix [19, Sec-

tion VII-B]. Due to the structure of Gn, encoding can be per-

formed with complexity O(N logN). If R < I(W ) = 1− p,

then as n is increased, all synthetic channels W
(s)
n,0, s ∈ A,

become arbitrarily good and the polar code is capacity achiev-

ing [19, Theorem 2].

D. Successive Cancellation Decoding of Polar Codes

Without loss of generality, we assume the output alphabet

of the BEC W to be Y = {−1, 0,+1}, where 0 denotes an

erasure, while −1 corresponds to the binary input 1 and +1
corresponds to the binary input 0. The SC decoder proposed

by Arıkan [19, Section VIII] decodes the synthetic channels

W
(s)
n , s ∈ An, successively following a natural ordering with

respect to i (this is equivalent to a top-down decoding order

of the W
(s)
3,0 , s ∈ {+,−}3, channels in Figure 1). The input

of the channels s /∈ An does not need to be decoded as, by

construction, it is known a-priori to the receiver.

In order to estimate the input of the synthetic channel W
(s)
n ,

the N channel outputs resulting from N independent uses of

W , i.e., the outputs of W
(∅)
0,k , k = 0, . . . , N , are combined

pair-wise through a full binary tree structure of depth n that

is identical to the channel combining structure of Figure 1.

For each combining step, one of two possible update rules is

used depending on the synthetic channel s and the stage s that

is being processed. More specifically, the two possible update

rules are

f−(m1,m2) = m1m2, (12)

f+(m1,m2, u) =

⌊

(−1)um1 +m2

2

⌉

, (13)

where m1,m2 ∈ {−1, 0,+1} and u denotes a partial sum,

which is the modulo-2 sum of some of the previously decoded

bits.1 If ss = −, then all updates at level s of the tree are

performed using f−, while if ss = +, then all updates at

level s of the tree are performed using f+. The partial sums

required by each of the f+ nodes at level s can be calculated

from the partial sums at level s + 1, either recursively [19,

Proposition 3] or directly [22, Section VI-F]. When level n is

reached, the output message will either be correct (i.e., −1 or

+1), or an erasure. If the final output message is correct, we

can derive the corresponding bit value for ui and proceed with

decoding. If the final output message is an erasure, the decoder

halts and declares a block erasure. By re-using intermediate

synthetic channel outputs, it can be shown that the complexity

of SC decoding is O(N logN) [19, Section VIII].

III. FAULTY SC DECODING OF POLAR CODES

All current SC decoder hardware implementations (e.g.,

[22]–[25]) require a full binary tree of memory elements (MEs)

of depth n, which store the messages that result from the

update rules at each level of the decoder tree. The total number

of MEs required by a decoder is

NME =

n
∑

s=0

2n−s = 2n+1 − 1 = 2N − 1 ∈ O(N). (14)

The processing elements (PEs), which apply the update rules,

can also have a full binary tree structure for a fully-parallel

implementation [23], although semi-parallel implementations

are also possible [22]. A fully-parallel implementation requires

N−1 PEs, while in a semi-parallel implementation the number

of PEs is restricted to P < N − 1.

A. Fault Model

We model faulty decoding as additional internal erasures

within the decoder, which may be caused either by faulty

PEs or by faulty MEs (or both) and we assume, without

loss of generality, that they manifest themselves when an

1We note that we use ⌊−0.5⌉ = −1 and ⌊0.5⌉ = 1 for tie-breaking in
f+.
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Fig. 2: Synthetic channel construction for a polar code of

length N = 22 = 4. Solid lines represent the + transformation

and dashed lines represent the − transformation.

output message is written to an ME. Moreover, we assume

that these erasures are transient in the sense that whenever

an ME is written to, the internal erasures occur independently

of any previous internal erasures. The partial sums, which are

required by the f+ update rule, also need to be stored in a

memory, which however is typically smaller than the memory

required to store the messages. Moreover, due to the partial

sum recursive update rules [19, Proposition 3], a single erasure

in a partial sum will result in erasures in all following partial

sums and we can intuitively see that the sensitivity of the

SC decoder with respect to faults in the partial sum memory

is high. Thus, in this work we assume that the partial sum

memory is fault-free.

Under the above assumptions, the internal erasures occur

at the output of all synthetic channels of a polar code of

blocklength n, i.e., W
(s)
s,k , s = 1, . . . , n, s ∈ {+,−}s, k =

0, . . . , 2n−s − 1. Moreover, the internal erasures occur inde-

pendently of the message value and with probability δ. Let

us define a ternary-input erasure channel (TEC) with input

alphabet X = {−1, 0,+1} and output alphabet Y = X and

the following transition probabilities

P [0|0] = 1, (17)

P [0|−1] = P [0|+1] = δ, (18)

P [+1|+1] = P [−1|−1] = 1− δ, (19)

where the probabilities of all remaining transitions are equal

to zero.

Using the above TEC, our error model can be represented

as a cascade of a BEC2 with a TEC, as shown in Figure 2,

where W
(s)
s,k results from the non-faulty polarizing channel

transformation applied to a pair of channels W
(t)
s−1,k and

W
(t)
s−1,k+2n−s

(where t is a prefix of s) and “TEC” represents

the internal erasures caused by the faulty SC decoder. We

denote this cascaded compound channel by W
(s)
s,k,δ in order to

make the dependence on δ explicit. It is easy to check that

for δ = 0 we get a non-faulty decoder, while for δ = 1
all messages are always erasures leading to a fully faulty

decoder. Since both of the aforementioned cases are already

2In order to avoid any confusion, we note that the erasure probability of
this BEC corresponds to the expected erasure probability at a particular point
within the deterministic faulty-free decoder, where the expectation is taken
over all possible noisy decoder input sequences. In other words, this BEC
is not related to the randomness caused by the faulty decoder. The decoder
noise is instead entirely modeled by the concatenated TEC.

well understood, in the remainder of this paper we restrict δ
to δ ∈ (0, 1).

In order to have a more rigorous definition of the internal

erasure fault model, let us define the binary erasure indicator

variable ∆
(s)
s,k, where ∆

(s)
s,k = 1 iff the TEC that comes

after W
(s)
s,k in Figure 2 causes an internal erasure at channel

W
(s)
s,k , and ∆

(s)
s,k = 0 otherwise. By definition, we have

P
[

∆
(s)
s,k = 1

]

= δ, thus E
[

∆
(s)
s,k

]

= δ and var
[

∆
(s)
s,k

]

=

δ(1−δ). Since the internal erasures are assumed to be transient,

all ∆
(s)
s,k are independent. Due to the cascaded BEC-TEC

structure, we can rewrite (7) and (8) using ∆
(s)
s,k as (15) and

(16). In this case, for the binary erasure indicator variable

E
(s)
s,k,δ we have E

(s)
s,k,δ = 1 if and only if the output of

the synthetic channel W
(s)
s,k,δ is an erasure and E

(s)
s,k,δ = 0

otherwise. We note that, even though the special case of E
(s)
0,k,δ

does not depend on δ but only on the erasure probability p of

the channel W , we keep the δ parameter in the notation for

consistency.

Again, if we are only interested in the statistics of the

indicator variable for a channel of a specific type s, we can

simplify (15) and (16) as

E
(s−)
s,δ = E

(s)
s−1,δ

′
+ E

(s)
s−1,δ

′′
− E

(s)
s−1,δ

′
E

(s)
s−1,δ

′′

+

(

E
(s)
s−1,δ

′
+ E

(s)
s−1,δ

′′
− E

(s)
s−1,δ

′
E

(s)
s−1,δ

′′
)

∆(s−)
s ,

(20)

E
(s+)
s,δ = E

(s)
s−1,δ

′
E

(s)
s−1,δ

′′
+

(

E
(s)
s−1,δ

′
E

(s)
s−1,δ

′′
)

∆(s+)
s . (21)

where E
(s)
s−1,δ

′
and E

(s)
s−1,δ

′′
denote two independent realiza-

tions of E
(s)
s−1,δ, and ∆

(s−)
s and ∆

(s+)
s denote a realization of

∆
(s−)
s,k and ∆

(s+)
s,k , respectively. The vector containing all E

(s)
s,δ

indicator variables is denoted by Es,δ.

We note that in a fully-parallel implementation, each ME

has a corresponding PE, and our erasure-based fault model

can take erasures in both the MEs and the PEs into account

simultaneously. In a semi-parallel implementation, on the other

hand, the MEs are significantly more than the PEs (i.e.,

typically P ≪ 2N − 1, as in [22] where N = 1024 and

P = 64), so it is reasonable to assume that faults stem only

from the MEs, as the PEs can be made reliable with circuit-

level techniques at a relatively low cost.

B. Erasure Probability of Synthetic Channels Under Faulty

SC Decoding

Using the fault model introduced in the previous section,

we can rewrite the recursive expressions for Z
(s)
s,k (i.e., (1) and

(2)) in order to obtain a recursive expression for the erasure

probability of the synthetic channels in the faulty case, which
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E
(s−)
s,k,δ

= E
(s)
s−1,k,δ +E

(s)

s−1,k+2n−s,δ
−E

(s)
s−1,k,δE

(s)

s−1,k+2n−s,δ
+

(

E
(s)
s−1,k,δ + E

(s)

s−1,k+2n−s,δ
− E

(s)
s−1,k,δE

(s)

s−1,k+2n−s,δ

)

∆
(s−)
s,k

, (15)

E
(s+)
s,k,δ

= E
(s)
s−1,k,δE

(s)

s−1,k+2n−s,δ
+

(

E
(s)
s−1,k,δE

(s)

s−1,k+2n−s,δ

)

∆
(s+)
s,k

. (16)

we denote by Z
(s)
s,k,δ , E

[

E
(s)
s,k,δ

]

. Specifically, we have

Z
(s−)
s,k,δ = Z

(s)
s−1,k,δ + Z

(s)
s−1,k+2n−s,δ

− Z
(s)
s−1,kZ

(s)
s−1,k+2n−s,δ

+
(

Z
(s)
s−1,k,δ + Z

(s)
s−1,k+2n−s,δ

− Z
(s)
s,kZ

(s)
s−1,k+2n−s,δ

)

δ,

(22)

Z
(s+)
s,k,δ = Z

(s)
s−1,k,δZ

(s)
s−1,k+2n−s,δ

+
(

Z
(s)
s−1,k,δZ

(s)
s−1,k+2n−s,δ

)

δ,

(23)

with Z
(∅)
0,k,δ = p, k = 0, . . . , 2n−1. The channels W

(s)
s,k,δ , k =

0, . . . , 2n−s − 1, are independent copies of the same type of

channel, meaning that their erasure probabilities are identical.

Thus, if we are only interested in the erasure probability of

a specific type s of channel we can simplify (1) and (2) by

omitting the index k as

Z
(s−)
s,δ = T−

δ

(

Z
(s)
s−1,δ

)

, 2Z
(s)
s−1,δ −

(

Z
(s)
s−1,δ

)2

+

(

2Z
(s)
s−1,δ −

(

Z
(s)
s−1,δ

)2
)

δ, (24)

Z
(s+)
s,δ = T+

δ

(

Z
(s)
s−1,δ

)

,

(

Z
(s)
s−1,δ

)2

+
(

Z
(s)
s−1,δ

)2

δ, (25)

with Z
(∅)
0,δ = p. The vector containing all Z

(s)
s,δ , s ∈ {+,−}s,

variables is denoted by Zs,δ . The random process ǫs can be

rewritten for the faulty case as

ǫs,δ =

{

T+
δ (ǫs−1,δ) w.p. 1/2,

T−
δ (ǫs−1,δ) w.p. 1/2,

(26)

with ǫ0,δ = Z(W ) = p.

C. Properties of T+
δ and T−

δ

In this section, we show some properties of the T+
δ and T−

δ

transformations, which will be useful to prove two negative

results in the following section, as well as to interpret some

of the numerical results of Section VII. We note that the proofs

of all properties can be found in the Appendix.

Property 1. For T+
δ (ǫ) and T−

δ (ǫ), we have

(i) T+
δ (ǫ) ≥ δ, ∀ǫ, δ ∈ [0, 1],

(ii) T−
δ (ǫ) ≥ δ, ∀ǫ, δ ∈ [0, 1].

Property 2. The fixed points of T+
δ (ǫ) are ǫ = 1 and ǫ = δ

1−δ
.

The unique fixed point of T−
δ (ǫ) for ǫ ∈ [0, 1] is ǫ = 1.

Moreover, the following two properties of the process ǫs,δ
give us some first insight into the effect that the faulty decoder

has on the decoding process.

Proposition 1. The process ǫs,δ, s = 0, 1, . . . , defined in (26)

is a submartingale.

Proof: Since ǫs,δ is bounded, it holds that E(|ǫs,δ|) < ∞.

Moreover we have

E(ǫs,δ|ǫs−1,δ) =
1

2

(

T+
δ (ǫs−1,δ) + T−

δ (ǫs−1,δ)
)

(27)

=
1

2

(

(1− ǫ2s−1,δ)δ + 2ǫs−1,δ

+ (1 − 2ǫs−1,δ + ǫ2s−1,δ)δ
)

(28)

= ǫs−1,δ + (1− ǫs−1,δ)δ ≥ ǫs−1,δ. (29)

Proposition 2. For the expectation of the process ǫs,δ, s =
0, 1, . . . , defined in (26) we have

E(ǫs,δ) = 1− (1− p)(1− δ)s, (30)

Proof: From the proof of Property 1, we know that

E(ǫs,δ|ǫs−1,δ) = ǫs−1,δ + (1− ǫs−1,δ)δ. (31)

By taking the expectation with respect to ǫs−1,δ on both sides

of (31), we have

E(ǫs,δ) = E(ǫs−1,δ) + (1− E((ǫs−1,δ))δ (32)

= (1− δ)E(ǫs−1,δ) + δ, (33)

with E(ǫ0,δ) = ǫ0,δ = p. In order to simplify our notation for

the proof, let cs , E(ǫs,δ). Then, (33) can be written as

cs = (1− δ)cs−1 + δ. (34)

By repeated substitution in the above expression we get

cs = (1− δ)2cs−2 + (1 − δ)δ + δ (35)

= (1− δ)3cs−3 + (1 − δ)2δ + (1− δ)δ + δ (36)

= (1− δ)sc0 + δ

s−1
∑

n=0

(1 − δ)n. (37)

Since c0 = p and
∑s−1

n=0(1− δ)n = 1−(1−δ)s

δ
, we finally have

E(ǫs,δ) = (1− δ)sp+ δ
1− (1− δ)s

δ
(38)

= 1− (1− p)(1− δ)s. (39)

Specifically, this tells us that, contrary to [19, Section III-A],

the average erasure probability is not preserved by T+
δ (ǫ) and

T−
δ (ǫ). Thus, even if fully reliable transmission were possible

in the limit of infinite blocklength, the polar code would not be

capacity achieving since lims→∞ P [ǫs,δ = 0] < 1−p, meaning

that the fraction of noiseless channels would be strictly smaller

than the capacity of the BEC.



6

D. Polarization Does Not Happen

Unfortunately, as the following property shows, fully reli-

able transmission under faulty decoding is not possible.

Property 3. Let Q denote the sample space of the process

ǫs,δ and let ǫs,δ(q), q ∈ S, denote a specific realization of

ǫs,δ for δ > 0. Polarization does not happen under faulty SC

decoding for the BEC in the sense that ∄q ∈ Q such that

ǫs,δ(q)
s→∞
−→ 0.

It turns out that we can prove the following stronger result,

which states that, under faulty SC decoding over the BEC,

almost all channels become asymptotically useless.

Proposition 3. For the process ǫs,δ, s = 0, 1, . . . , defined in

(26) and for δ > 0, we have ǫs,δ
a.s.
−−→ 1.

Proof: From Property 1, we know that ǫs,δ is a bounded

submartingale. Thus, it converges a.s. to some limiting random

variable ǫ∞. Moreover, from Proposition 2 we have

E(ǫs,δ) = 1− (1− p)(1− δ)s, (40)

which directly implies that lims→∞ E(ǫs,δ) = 1, since, by

assumption, δ ∈ (0, 1). Equivalently, and since ǫs,δ ∈ [0, 1],
we can write

lim
s→∞

E(|ǫs,δ − 1|) = 0, (41)

which means, by definition, that ǫs,δ
L1

−−→ 1. Moreover,

ǫs,δ
L1

−−→ 1 implies that ǫs,δ
P
−→ 1. Since we know, due to

the submartingale property, that ǫs,δ also converges almost

surely and almost sure convergence implies convergence in

probability, all the aforementioned limits must be identical and

we can conclude that ǫs,δ
a.s.
−−→ 1.

E. Synthetic Channel Ordering

In the case of non-faulty decoding, there exists a partial

ordering of the synthetic channels with respect to the BEC

erasure probability p. In order to explain this ordering, we

first need to define the notion of “η-goodness”.

Definition 1. A synthetic channel W
(s)
s is said to be “η-good”

if Z
(s)
s ≤ η.

In the non-faulty case, it is easy to see that both T+(ǫ)
and T−(ǫ) are increasing in ǫ, ∀ǫ ∈ [0, 1]. Thus, a synthetic

channel that is η-good for a BEC with erasure probability p1,

will also be η-good for a BEC with erasure probability p2
when p2 ≤ p1.

In this section, we show that under faulty decoding the

partial ordering with respect to the BEC parameter p is

preserved and we show that a similar partial ordering exists

with respect to the decoder erasure probability δ. To this end,

in the following two properties we examine the monotonicity

of T−
δ (ǫ) and T+

δ (ǫ) with respect to ǫ and δ.

Property 4. Both T−
δ (ǫ) and T+

δ (ǫ) are

(i) Increasing in ǫ, ∀ǫ ∈ [0, 1].

(ii) Increasing in δ, ∀δ ∈ [0, 1].

Property 5 (Monotonicity with respect to p). Let p1, p2 ∈
(0, 1), p2 ≤ p1 and δ ∈ (0, 1). A synthetic channel that is

η-good for a decoder with a fixed erasure probability δ over

a BEC with erasure probability p1 is also η-good for the same

decoder over a BEC with erasure probability p2.

The following proposition states that there also exists a

partial ordering of the synthetic channels with respect to the

decoder erasure probability δ. This is a useful property, as it

ensures that, for any given polar code, a decoder with internal

erasure probability δ2 will not perform worse than a decoder

with internal erasure probability δ1, where δ2 ≤ δ1.

Property 6 (Monotonicity with respect to δ). Let δ1, δ2 ∈
(0, 1), δ2 ≤ δ1 and ǫ ∈ (0, 1). A synthetic channel that is

η-good for a decoder with erasure probability δ1 over a BEC

with a fixed erasure probability ǫ is also η-good for a decoder

with erasure probability δ2 over the same channel.

IV. FRAME ERASURE RATE UNDER FAULTY DECODING

In this section, we adapt the framework of [20] to the case

of faulty decoding in order to derive a lower bound on the

frame erasure probability under faulty decoding. Let Pe(An)
denote the frame erasure rate (FER) of a polar code of length

2n with information set An. From [19, Section V-B], we have

the general upper bound

Pe(An) ≤
∑

s∈An

Z(s)
n , PUB

e . (42)

Furthermore, from [20] we have the lower bound

Pe(An) ≥
∑

s∈An

Z(s)
n −

1

2

∑

s,t∈An:
s 6=t

(

Z(s)
n Z(t)

n + C(s,t)
n

)

, PLB
e

(43)

where Cn , [C
(s,t)
n : s, t ∈ {+,−}n] denotes the co-

variance matrix of the random vector En, where C
(s,t)
n ,

cov[E
(s)
n E

(t)
n ]. It was shown in [20] that, in the non-faulty

case, the elements of Cs, s = 1, . . . , n, can be calculated

recursively from the elements of Cs−1 and Z
(s)
s−1 as follows

C(s−,t−)
s = 2Z

(s)
s−1Z

(t)
s−1C

(s,t)
s−1 + C

(s,t)
s−1

2
, (44)

C(s−,t+)
s = 2Z

(s)
s−1Z

(t)
s−1C

(s,t)
s−1 − C

(s,t)
s−1

2
, (45)

C(s+,t−)
s = 2Z

(s)
s−1Z

(t)
s−1C

(s,t)
s−1 − C

(s,t)
s−1

2
, (46)

C(s+,t+)
s = 2Z

(s)
s−1Z

(t)
s−1C

(s,t)
s−1 + C

(s,t)
s−1

2
, (47)

with C
(∅,∅)
0 = p(1 − p). In the case of reliable decoding, the

second sum in (43) goes to zero as n is increased [20] if

R = |An|
2n < 1− p, so that

Pe(An) ≈
∑

s∈An

Z(s)
n . (48)

We can use the upper and lower bounds of (43) and (42) for

the case of faulty decoding by replacing Z
(s)
n with Z

(s)
n,δ, and

C
(s,t)
n with C

(s,t)
n,δ , where C

(s,t)
n,δ , [C

(s,t)
n,δ : s, t ∈ {+,−}n], is

the covariance matrix of the random vector En,δ. In the case of

faulty decoding, as n is increased, we know from Proposition 3
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that almost all Z
(s)
n,δZ

(t)
n,δ, s, t ∈ An, are equal to 1. Moreover,

the non-diagonal elements of C
(s,t)
n,δ still converge to 0 for

any s, t, as almost all indicator variables become deterministic

like in the fault-free case. Thus, for some n the lower bound

of (43) becomes negative and can be replaced by the trivial

lower bound Pe(An) ≥ maxs∈An
Z

(s)
n,δ. Similarly, for some

n the upper bound of (42) becomes greater than 1, so it can

be replaced by the trivial upper bound Pe(An) ≤ 1. Clearly

though, since Z
(s)
n,δ converges to 1 as n grows for almost all

s ∈ {+,−}n, we have limn→∞ Pe(An) = 1 for any An such

that limn→∞
|An|
2n 9 0.

A. Lower Bound on Pe(An) Under Faulty Decoding

We already have an efficient way to calculate Z
(s)
n,δ recur-

sively (i.e., (24) and (25)), but, in order to evaluate PLB
e , we

still need to find an efficient way to calculate Cn,δ. To this

end, we first introduce a property which we then combine with

the results of [20] in order to obtain a recursive expression for

Cs,δ, s = 1, . . . , n.

Property 7. Let X,Y denote two arbitrary random variables.

Let ∆1,∆2 denote two random variables with ∆1,∆2 ∈
{0, 1} and E [∆1] = E [∆2] = δ that are independent of X,Y
and of each other. Then, we have

cov [X + (1−X)∆1, Y + (1− Y )∆2] = (1 − δ)2cov [X,Y ] .
(49)

Proposition 4. The covariance matrix of the random vector

Es,δ, denoted by Cs,δ , [C
(s,t)
s,δ : s, t ∈ {+,−}s], where

Cs,δ , cov
[

E
(s)
s,δE

(t)
s,δ

]

, can be computed in terms of Cs−1,δ

and Zs−1,δ as follows:

C
(s−,t−)
s,δ = (1− δ)2

(

2Z
(s)
s−1,δZ

(t)
s−1,δC

(s,t)
s−1,δ + C

(s,t)
s−1,δ

2)

,

(50)

C
(s−,t+)
s,δ = (1− δ)

2
(

2Z
(s)
s−1,δZ

(t)
s−1,δC

(s,t)
s−1,δ − C

(s,t)
s−1,δ

2)

,

(51)

C
(s+,t−)
s,δ = (1− δ)

2
(

2Z
(s)
s−1,δZ

(t)
s−1,δC

(s,t)
s−1,δ − C

(s,t)
s−1,δ

2)

,

(52)

C
(s+,t+)
s,δ = (1− δ)

2
(

2Z
(s)
s−1,δZ

(t)
s−1,δC

(s,t)
s−1,δ + C

(s,t)
s−1,δ

2)

,

(53)

with C
(∅,∅)
0 = p(1− p).

Proof: To avoid unnecessary repetition, we prove the

result only for (53), as the remaining relations (50)–(52) can

be derived in the same way. Recall that, in the case of faulty

decoding, from (21) we have

E
(s+)
s,δ = E

(s)
s−1,δ

′
E

(s)
s−1,δ

′′
+
(

1− E
(s)
s−1,δ

′
E

(s)
s−1,δ

′′)

∆(s+)
s ,

(54)

E
(t+)
s,δ = E

(t)
s−1,δ

′
E

(t)
s−1,δ

′′
+
(

1− E
(t)
s−1,δ

′
E

(t)
s−1,δ

′′)

∆(t+)
s .

(55)

Let us define X , E
(s)
s−1,δ

′
E

(s)
s−1,δ

′′
, Y , E

(t)
s−1,δ

′
E

(t)
s−1,δ

′′
,

∆
(s+)
s , ∆1, and ∆

(t+)
s , ∆2. Then, we can rewrite (54) as

E
(s+)
n,δ = X + (1−X)∆1, (56)

E
(t+)
n,δ = Y + (1− Y )∆2, (57)

where X and Y are identical to the update rule for E
(s+)
s

and E
(t+)
s in the fault-free case given in (10), respectively.

Using E
[

∆
(s+)
s

]

= E
[

∆
(t+)
s

]

= δ, along with the fact that

∆
(s+)
s and ∆

(t+)
s are independent by assumption, we can apply

Proposition 7 to the update formula for cov [X,Y ] from [20]

given in (47), in order to obtain (53).

It is intuitively pleasing to note that, for δ = 0 (i.e., for fault-

free decoding), the expressions in (50)–(53) become identical

to the expressions in (44)–(47).

V. UNEQUAL ERROR PROTECTION

As mentioned in Section I, standard methods employed to

enhance the fault tolerance of circuits, such as using larger

transistors or circuit-level error correcting codes, are costly in

terms of both area and power if the entire circuit needs to

be protected. With this in mind, we note that in SC decoding

of polar codes not all levels in the tree of PEs are of equal

importance, meaning that it may suffice to employ partial

protection of the decoder against hardware-induced errors.

In fact, we shall see in Proposition 5, a careful application

of such a protection method allows polarization to happen

even in a faulty decoder while protecting only a constant

fraction of the total decoder PEs. The concept of identifying

and protecting the most critical part of a decoder has also

been used in the literature related to faulty decoding of

LDPC codes. For example, in [12], [15] it is found that a

noiseless implementation of the early-termination circuitry can

significantly improve the error-correcting performance of a

noisy LDPC decoder.

Let 0 ≤ np ≤ n + 1 denote the number of levels that are

protected, starting from level n of the tree (i.e., the root) and

going towards level 0 of the tree (i.e., the leaves). We assume

that for these np levels we have δ = 0, meaning that np = n+1
results in a fault-free decoder and np = 0 is equivalent to the

faulty SC decoder defined in Section III. Let Np denote the

total number of protected PEs, where

Np =

{

∑np−1
j=0 2j = 2np − 1, np > 0,

0, np = 0.
(58)

If we set np = (n+ 1)− nu, where nu > 0 is a fixed number

of unprotected levels, then the fraction of the decoder that is

protected converges to a constant as n grows. Indeed, we have

lim
n→∞

Np

NPE

= lim
n→∞

2(n+1)−nu − 1

2n+1 − 1
= 2−nu . (59)

In this case, the process ǫs,δ can be rewritten as

ǫs,δ =















T+
δ (ǫs−1,δ), w.p. 1/2,

if s = 1, . . . , nu,
T−
δ (ǫs−1,δ), w.p. 1/2,

T+(ǫs−1,δ), w.p. 1/2,
if s = nu + 1, . . . , n.

T−(ǫs−1,δ), w.p. 1/2,
(60)
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The following proposition asserts that the protection of a

constant fraction of the decoder is sufficient to ensure that

polarization happens as n grows.

Proposition 5. Setting np = s−nu for any fixed nu suffices to

ensure that ǫs,δ converges almost surely to a random variable

ǫ∞ ∈ {0, 1}. However, the unprotected levels result in a rate

loss ∆R(δ, p, nu), in the sense that P (ǫ∞ = 0) = 1 − p −
∆R(δ, p, nu), which can be calculated in closed form as

∆R(δ, p, nu) = (1 − (1− δ)nu)(1 − p). (61)

Proof: The process ǫs,δ as defined in (60) is a submartin-

gale for s ≤ nu, but it becomes a martingale for s > nu.

Thus, for s > nu we have E(ǫs,δ) = E(ǫnu,δ). Using the

arguments from [19, Proposition 9], we can show that ǫs,δ
converges almost surely to a random variable ǫ∞ ∈ {0, 1}
with P (ǫ∞ = 0) = 1−E(ǫnu

) ≤ 1−p. Equivalently, P (ǫ∞ =
0) = 1−p−∆R(δ, ǫ, nu) for ∆R(δ, ǫ, nu) = E(ǫnu

)−p. Using

the closed form expression for E(ǫs,δ) from Proposition 2, we

get

∆R(δ, p, nu) = E(ǫnu
)− p (62)

= 1− (1− p)(1− δ)nu − p (63)

= (1− (1− δ)
nu) (1− p). (64)

Proposition 5 implies that, when partial protection of the de-

coder is employed, polar codes are still not capacity achieving,

but they can nevertheless be used for reliable transmission at

any rate R such that R < 1− p−∆R(δ, p, nu).

VI. OPTIMAL BLOCKLENGTH UNDER FAULTY DECODING

In the finite blocklength regime, which is of practical

interest, there are two clashing effects occurring. On one side,

we have the polarization process, which tends to decrease the

code’s FER as the blocklength is increased, but on the other

side we have the internal erasures of the decoder which tend

to increase the code’s FER as the blocklength is increased.

From Proposition 3 we already know that, as the blocklength

is increased towards infinity, the latter effect dominates and the

resulting polar code becomes asymptotically useless. However,

there must exist at least one blocklength which minimizes the

FER and it is of great practical interest to identify this length.

Since this is a finite-length problem with practical appli-

cations, there will usually be a pre-defined maximum block-

length nmax for which a decoder is implementable with

acceptable complexity. Thus, for a given nmax, we define

N = {0, . . . , nmax} as the set of n values of interest. For

a given code rate R, we define the n∗ which leads to the

optimal blocklength N∗ = 2n
∗

as

n∗ = arg min
n∈N

Pe(An). (65)

A simple way to identify the optimal blocklength is to

perform extensive Monte-Carlo simulations of the codes for

all n ∈ N . However, we can find the solution more efficiently

by using the bounds on Pe(An) given by (42) and (43). First,

we study the special case where p < δ. More specifically, the

following proposition shows that, when p < δ, it is optimal in

terms of the FER to use uncoded transmission, as the faulty

decoder can only increase the FER.

Proposition 6. If p < δ, then n∗ = 0.

Proof: The FER for n = 0 (i.e., uncoded transmission)

over a BEC(p) is equal to p. From Property 1, we know that

Z
(s)
n,δ ≥ δ, ∀s ∈ {+,−}n. Since p < δ by assumption, we

have Z
(s)
n,δ > p, ∀s ∈ {+,−}n. Thus, using the trivial lower

bound on the FER, i.e., PLB
e = maxs∈An

Z
(s)
n,δ, we can see that

PLB
e > p for any An such that |An| > 0. Thus, in this special

case coded transmission with any blocklength such that n > 0
and at any rate R > 0, leads to a higher FER than uncoded

transmission.

In general, we can efficiently evaluate PUB
e (An) and

PLB
e (An) for all n ∈ N for a given rate R. Using these

values, we can deduce whether there exists a single n ∈ N
satisfying the following inequality

PUB
e (An) ≤ PLB

e (An′ ), ∀n′ ∈ N . (66)

If there exists such a unique n ∈ N , then clearly this is the

optimal n∗. Otherwise, we need to examine (via Monte-Carlo

simulations) all n ∈ N for which PUB
e (An) and PLB

e (An)
overlap, i.e., for which ∃n′ ∈ N and ∃B ∈ {UB,LB} such

that

PLB
e (An′ ) ≤ PB

e (An) ≤ PUB
e (An′). (67)

Numerical results for n∗ using the above observations are

presented in Section VII-C.

VII. NUMERICAL RESULTS

In this section we provide some numerical results to explore

the process ǫs,δ , as well as the FER performance of polar

codes constructed based on this process. Moreover, we use the

FER bounds derived in Section IV in order to find the optimal

blocklength for a polar code under faulty SC decoding and

we explore the effectiveness of the unequal error protection

scheme described in Section V.

Remark: We note that most of the results in this section

are presented for a decoder erasure probability of δ = 10−6.

From Property 1, we know that the erasure probability of the

synthetic channels is lower bounded by δ. Moreover, from

(42), we know that the frame error rate is upper bounded by

the sum of the erasure probabilities of the synthetic channels

used to transmit information. In the numerical experiments

we did, we saw that the same number also provides a good

lower bound for most code rates. Moreover, the first numerical

results are also provided for δ = 10−4 and they show

that the behavior of the decoder does not seem to change

fundamentally for different values of δ. Thus, have we selected

δ = 10−6 as this leads to frame error rates that are practically

relevant for the blocklengths that we have considered.

A. Bhattacharyya Parameters Z
(s)
n,δ

In Figure 3, we show the sorted values Z
(s)
n,δ, s ∈ {+,−}n,

for polar codes with n = 8, 10, 12, designed for the BEC(0.5)
under faulty SC decoding with δ = 10−4, δ = 10−6, and
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Fig. 3: Sorted Z
(s)
n,δ, s ∈ {+,−}n and Z

(s)
n , s ∈ {+,−}n,

values for polar codes of length N = 256, 1024, 4096,
designed for the BEC(0.5) under faulty SC decoding.

δ = 0. We observe that we always have Z
(s)
n,δ ≥ δ, as predicted

by Property 1. Moreover, ǫ = δ
1−δ

is a fixed point of T+
δ (ǫ),

but it is not a fixed point of T−
δ (ǫ) (whereas ǫ = 1 is a fixed

point for both), resulting in the staircase-like structure that

we can observe in Figure 3. Finally, we see that the behavior

of the faulty decoder does not change fundamentally when

increasing the value of δ.

B. Frame Erasure Rate

In Figure 4, we present the evaluation of PUB
e and PLB

e

as a function of R and for N = 256, 1024, 2048, for a

faulty SC decoder with δ = 10−6 and transmission over the

BEC(0.5). We also present Monte Carlo simulation results

that corroborate our analytical expressions for PUB
e and PLB

e .

We observe that, especially for low rates, PUB
e and PLB

e are

practically indistinguishable. For rates R > 0.30, a difference

between the lower bound and the upper bound begins to

appear, while for R > 0.40 both the upper bound and the

lower bound break down and should be replaced by their trivial

versions PUB
e = 1 and PLB

e = maxs∈An
Z

(s)
n,δ. Moreover, we

observe that over a wide range of rates the FER under SC

decoding actually increases when the blocklength is increased,

contrary to the fault-free case where increasing the blocklength

generally decreases the FER. This can be explained if we

recall that Z
(s)
n,δ ≥ δ. Thus, by increasing the blocklength while

keeping the rate fixed, we are increasing the number of terms

in (48), and since some of these terms do not decrease beyond

some point, the value of the sum can increase.

C. Optimal Blocklength

An example of the evaluation of PUB
e and PLB

e for

N = 2n, n = 4, . . . , 12, and code rates R ∈
{0.1250, 0.1875, 0.2500} (where K = ⌈RN⌉) is shown in

Figure 5 under faulty SC decoding with δ = 10−6 over a

BEC(0.5). We observe that the bounds are tight enough in
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F
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e

Fig. 4: Evaluation of PUB
e and PLB

e for polar codes of lengths

N = 256, 1024, 4096, designed for the BEC(0.5) with δ =
10−6.
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Fig. 5: Evaluation of PUB
e and PLB

e for various blocklengths

and code rates and for transmission over a BEC with erasure

probability 0.5 under faulty SC decoding with δ = 10−6.

this case so that there always exists a unique n ∈ N that

satisfies (66). Thus, for R = 0.1250 the optimal blocklength

is N = 128, for R = 0.1875 the optimal blocklength is

N = 256, and finally for R = 0.2500 the optimal blocklength

is N = 512.

Moreover, we present results for δ = 10−4 in Fig. 6. We

observe that the upper and lower bounds are also tight in this

case, but the optimal blocklength for is smaller than for the

case of δ = 10−6 for all considered code rates. This is not

unexpected, since for a higher δ the internal decoder erasures

will start dominating the error rate at a shorter blocklength.

Thus, we observe that, as the code rate increases, the optimal

blocklength generally increases, while as the internal erasure

probability δ increases, the optimal blocklength generally

decreases.
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Fig. 6: Evaluation of PUB
e and PLB

e for various blocklengths

and code rates and for transmission over a BEC with erasure

probability 0.5 under faulty SC decoding with δ = 10−4.

0 0.1 0.2 0.3 0.4
10−20

10−15

10−10

10−5

100

Rate

F
ra

m
e

E
ra

su
re

R
at

e

np = 0

np = 1

np = 2

np = 3

np = 4

np = 5

np = n + 1

Fig. 7: FER for a polar code of length N = 1024 designed

for the BEC(0.5) under faulty SC decoding with δ = 10−6

and various numbers of protected decoding levels.

D. Unequal Error Protection

The effect of the partial protection for a finite length code

is illustrated in Figure 7, where we present PUB
e (An) for

N = 210 = 1024 and δ = 10−6 when np = 0, . . . , 5, levels of

the tree are protected. To improve readability, we intentionally

omit PLB
e (An) from the figure. However, we have already

seen that the bounds are tight, especially for low rates, so

using only the upper bound is sufficient to illustrate the effect

of unequal error protection. We observe that protecting only

the root node already improves the performance significantly,

especially for the lower rates. When np = 5, the performance

of the faulty SC decoder is almost identical to the non-faulty

decoder in the examined FER region and it is remarkable that

this performance improvement is achieved by protecting only
Np

NPE
= 31

2047 ≈ 1.5% of the decoder. Moreover, in Figure 8, we

present PUB
e (An) for N = 512, 1024, 2048, and δ = 10−6

0.1 0.2 0.3 0.4 0.5
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100
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N = 210 (faulty)

N = 210 (non-faulty)

N = 212 (faulty)

N = 212 (non-faulty)

Fig. 8: FER for polar codes of length N = 512, 1024, 2048,
designed for the BEC(0.5) under faulty SC decoding with

δ = 10−6 and np = n− 5 protected decoding levels.

with np = n − 5, so that the protected part for each N
is fixed to approximately 1.5% of the decoder. We observe

that, contrary to the results of Section VII, increasing the

blocklength actually decreases Pe(An) in the examined FER

region, as in the case of the non-faulty decoder.

VIII. CONCLUSION

In this paper, we studied faulty SC decoding of polar codes

for the BEC, where the hardware-induced errors are modeled

as additional erasures within the decoder. We showed that,

under this model, fully reliable communication is not possible

at any rate. Furthermore, we showed that, in order for partial

ordering of the synthetic channels with respect to the BEC

parameter p to hold, the internal erasure probability of the

decoder has to be approximately smaller than the erasure

probability of the BEC. Moreover, we derived a lower bound

on the frame erasure rate and we used this lower bound

in order to optimize the blocklength of polar codes under

faulty SC decoding. Finally, we proposed an error protection

scheme which re-enables asymptotically error-free transmis-

sion by protecting only a constant fraction of the decoder. This

protection can be implemented using some conventional circuit

error-protection mechanism, such as redundancy or increased

transistor sizing. Finally, our unequal error protection scheme

was shown to significantly improve the performance of the

faulty SC decoder for finite-length codes by protecting as little

as 1.5% of the decoder.

APPENDIX

PROOFS OF PROPERTIES 1–7

Proof of Property 1: For T+
δ (ǫ), we have

ǫ2 + (1 − ǫ2)δ ≥ δ ⇔ (68)

(1 − δ)ǫ2 ≥ 0, (69)
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which indeed holds for any ǫ, δ ∈ [0, 1]. Similarly, for T−
δ (ǫ),

we have

2ǫ− ǫ2 + (1− 2ǫ+ ǫ2)δ ≥ δ ⇔ (70)

(1− δ)(2ǫ − ǫ2) ≥ 0, (71)

which indeed holds for any ǫ, δ ∈ [0, 1].
Proof of Property 2: The above property can easily

be shown by solving T+
δ (ǫ) = ǫ and T−

δ (ǫ) = ǫ for ǫ,
respectively, and noting that one solution of T−

δ (ǫ) = ǫ is

negative.

Proof of Property 3: This is a direct consequence of

Property 1, since all ǫs,δ(q) are produced by repeated applica-

tions of T+
δ and T−

δ to ǫ0,δ = p, so that ǫs,δ(q) ≥ δ, ∀q ∈ Q.

Proof of Property 4: (i) T+
δ (ǫ) can be re-written as

T+
δ (ǫ) = ǫ2 + (1− ǫ2)δ (72)

= ǫ2(1− δ) + δ. (73)

Thus, for any fixed δ ∈ [0, 1], T+
δ (ǫ) is increasing in ǫ for any

ǫ ∈ [0, 1]. Similarly, T−
δ (ǫ) can be re-written as

T−
δ (ǫ) = 2ǫ− ǫ2 + (1− 2ǫ+ ǫ2)δ (74)

= (2ǫ− ǫ2)(1 − δ) + δ, (75)

which is also increasing in ǫ for any ǫ ∈ [0, 1].
(ii) Both T−

δ (ǫ) and T+
δ (ǫ) are linear functions of δ with a

non-negative slope, so they are increasing ∀δ ∈ R.

Proof of Property 5: The erasure probability of any syn-

thetic channel W
(s)
s,δ can be calculated by repeated applications

of T−
δ and T+

δ starting from p as

Z
(s)
s,δ (p) = T ss

δ

(

T
ss−1

δ (· · · (T s1
δ (p)))

)

, (76)

where s = [ss, ss−1, . . . , s1] and si ∈ {+,−}, i = 1, . . . , s.

Since from Property 4(i) we know that both T−
δ (ǫ) and T+

δ (ǫ)
are increasing with respect to ǫ, any composition of the two

functions will also be increasing. Thus

Z
(s)
s,δ (p2) ≤ Z

(s)
s,δ (p1) ≤ η. (77)

Proof of Property 6: Similarly to the proof of Property 5,

the proof stems directly from the monotonicity of T−
δ (ǫ) and

T+
δ (ǫ) with respect to δ shown in Property 4(ii).

Proof of Property 7: For simpler notation, let us define

X ′ , X + (1 − X)∆1 and Y ′ , Y + (1 − Y )∆2. We then

have

cov [X ′, Y ′] = E[X ′Y ′]− E[X ′]E[Y ′] (78)

= E[(1 −∆1)X +∆1)((1 −∆2)Y +∆2)]

− E[(1 −∆1)X +∆1]E[(1−∆2)Y +∆2]
(79)

(∗)
= E [(1−∆1)(1−∆2)] (E[XY ]− E[X ]E[Y ])

(80)

(∗∗)
= (1− δ)2cov [X,Y ] , (81)

where for (∗) we have used the independence of ∆1 and ∆2

from X and Y , while for (∗∗) we have used the independence

between ∆1 and ∆2.
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