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Abstract—This paper presents results on the achievable spec-
tral efficiency and on the energy efficiency for a wireless multiple-
input-multiple-output (MIMO) link operating at millimeter wave
frequencies (mmWave) in a typical 5G scenario. Two different
single-carrier modem schemes are considered, i.e., a traditional
modulation scheme with linear equalization at the receiver, and
a single-carrier modulation with cyclic prefix, frequency-domain
equalization and FFT-based processing at the receiver; these
two schemes are compared with a conventional MIMO-OFDM
transceiver structure. Our analysis jointly takes into account the
peculiar characteristics of MIMO channels at mmWave frequen-
cies, the use of hybrid (analog-digital) pre-coding and post-coding
beamformers, the finite cardinality of the modulation structure,
and the non-linear behavior of the transmitter power amplifiers.
Our results show that the best performance is achieved by
single-carrier modulation with time-domain equalization, which
exhibits the smallest loss due to the non-linear distortion, and
whose performance can be further improved by using advanced
equalization schemes. Results also confirm that performance gets
severely degraded when the link length exceeds 90-100 meters and
the transmit power falls below 0 dBW.

Index Terms—mmWave, 5G, MIMO, single-carrier modula-
tion, spectral efficiency, energy efficiency, MIMO-OFDM, time-
domain equalization, frequency-domain equalization, hybrid de-
coding.

I. INTRODUCTION

The adoption of carrier frequencies larger than 10 GHz
will be one of the main new features of fifth-generation
(5G) wireless networks [1f], and, due to the availability of
large and currently unused bandwidths, will be instrumental
in delivering gigabit data-rates per users. The use of mmWave
frequencies for cellular communications has been thus deeply
investigated in recent years [2]-[6[], and several prototypes and
test-beds showing the potentiality of mmWave frequencies for
cellular applications are currently already available [7]], [S]].

One of the key questions about the use of mmWave fre-
quencies and in general about 5G cellular systems is about
the type of modulation that will be used at these frequencies.
Indeed, while it is not even sure that 5G systems will use
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orthogonal frequency division multiplexing (OFDM) modula-
tion at classical cellular frequencies [9ﬂ there is still an open
debate about the modulation type at mmWave frequencies,
with reasons that push for 5G networks operating a single-
carrier modulation (SCM) at mmWave frequencies [3]]. First
of all, the propagation attenuation of mmWave frequencies
makes them a viable technology only for small-cell, dense
networks, where few users will be associated to any given base
station, thus implying that there is no compelling reason to
exploit the efficient frequency-multiplexing features of OFDM,
and users may also be multiplexed in the time domain as
efficiently as in the frequency domain. Finally, mmWave
frequencies will be operated together with massive antenna
arrays to overcome propagation attenuation. This makes digital
beamforming unfeasible, since the energy required for digital-
to-analog and analog-to-digital conversion would be huge.
Thus, each user will have an own radio-frequency beam-
forming, which requires users to be separated in time rather
than frequency. Otherwise stated, due to hardware complexity
constraints, it may be difficult to have a fully digital (FD)
beamformer that is sub-carrier dependent, while it is simpler
to have a unique beamformer for the whole available radio-
frequency (RF) bandwidth that can change at the timeslot rate.

For efficient removal of the intersymbol interference in-
duced by the frequency-selective nature of the channel, the use
of SCM coupled with a cyclic prefix has been proposed, so
that FFT-based processing might be performed at the receiver
[10]]. In [11], [12], the null cyclic prefix single carrier (NCP-
SC) scheme has been proposed for mmWave frequencies. The
concept is to transmit a single-carrier signal, in which the usual
cyclic prefix used by OFDM is replaced by nulls appended at
the end of each transmit symbol. Given the cited prohibitive
hardware complexity of FD beamforming structures, several
mmWave-specific MIMO architectures have been proposed,
where signal processing is accomplished in a mixture of analog
and digital domains (see, for instance, [13|] and references
therein). In particular, while FD beamforming requires one RF
chain for each antenna, in hybrid (HY) structures a reduced
number of RF chains is used, and beamforming is made
partially in the digital domain and partially at RF frequencies,
where only the signal phase (and not the amplitude) can be
tuned prior to antenna transmission.

This paper is concerned with the evaluation of the achiev-
able spectral efficiency (ASE) and of the global energy effi-

! An agreement about the use of filtered-OFDM at least in the Phase 1 of
5G systems seems however to have been reached for sub-6 GHz frequencies.



ciency (GEE) of SCM and OFDM schemes operating over
MIMO links at mmWave frequencies. We consider three
possible transceiver architectures: (a) SCM with linear zero-
forcing (ZF) equalization in the time domain for intersymbol
interference removal and symbol-by-symbol detection; (b)
SCM with cyclic prefix and FFT-based processing and ZF
equalization in the frequency domain at the receiver; and (c)
plain MIMO-OFDM architecture for benchmarking purposes.
The ASE is computed by using the simulation-based technique
for computing information-rates reported in [14]; this tech-
nique, that has been already used in several other cases [15],
[16], permits taking into account the finite cardinality of the
modulation, and thus provides more accurate results than the
ones that are usually reported in the literature and that refer
to Gaussian signaling. The considered transceiver structures
use HY pre-coding and post-coding beamforming structures,
with a number of RF chains equal to the used multiplexing
order - this is indeed the minimum possible number of RF
chains and so the resulting structures are the one with the
lowest complexity. Non-linear behavior of the transmit power
amplifiers is also taken into account in our analysis. We also
provide an analysis of the system bit-error-rate (BER), under
the assumption that low-density parity-check (LDPC) codes
are used.

To the best of our knowledge, this is the first paper to
provide a comprehensive study of a MIMO wireless link
operating at mmWave frequencies taking simultaneously into
account effects such as (a) the clustered channel model for
mmWave frequencies; (b) the non-linear distortion introduced
by the power amplifier at the transmitter; (c) the use of HY
analog/digital beamforming schemes; and (d) the finite cardi-
nality of the modulation. Moreover, we detail the transceiver
signal processing for the three considered modulation schemes
explicitly taking into account the use of multiple antennas and
the frequency-selectivity of the propagation channel. Finally,
this is one of the first papers to provide results jointly on the
ASE and on the GEE of the considered modulation schemes.

Our results will show that, among the three considered
transceiver schemes, SCM with time-domain equalization
(SCM-TDE) achieves the best overall performance, since,
although being slightly inferior to OFDM for the case of
an ideal transmit power amplifier, it reveals to be the best
option when transmitter non-linearities are taken into account.
In particular, OFDM shows to be very sensitive to non-linear
distortion and incurs a heavy performance degradation. We
also quantify the superiority of HY beamforming with respect
to FD beamforming in terms of GEE. Moreover, our results
provide a further confirmation of the fact that for distances
up to 100 meters, and with a transmit power around 0 dBW,
mmWave links exhibit a very good performance and may
be very useful in wireless cellular applications; for larger
distances instead, either larger values of the transmit power or
a larger number of antennas must be employed to overcome
the distance-dependent increased attenuation.

The rest of this paper is organized as follows. Next section
contains the system model, with details on the considered
mmWave channel model and on the front-end transmitter
and receiver. In Section III the three considered transceiver

structures, namely SCM-TDE, SCM with frequency-domain
equalization (SCM-FDE) and MIMO-OFDM, are accurately
described, while the design of the HY pre-coding and post-
coding beamforming structures is reported in Section IV.
Section V deals with the procedure used to compute the system
ASE taking into account the finite modulation cardinality;
it also models the power consumption of the considered
trasceivers and provides the GEE definition. Extensive numer-
ical results on the system ASE, on the system GEE, and on
the coded BER are illustrated and discussed in Section VI,
while, finally, Section VII contains concluding remarks.

Notation: The symbol (-) denotes conjugate transpose, (-)7

denotes transpose, and I denotes the (N x N)-dimensional
identity matrix. The symbol ® denotes circular convolution,
while, finally, || - || denotes the Frobenius norm.

II. SYSTEM MODEL

We consider a single-user transmitter-receiver pair that, for
an idealized scenario with a strictly orthogonal access scheme
and no out-of-cell interference may be also representative of
either the uplink or the downlink of a cellular system. We
denote by Npr and Npi the number of transmit and receive
antennas, respectively, and consider the general case of a
frequency-selective channel.

A. The channel model

The propagation channel can be modeled as an (Ng X N )-
dimensional matrix-valued continuous time function, that we
denote by H(¢). According to the popular clustered model for
MIMO mmWave channels, we assume that the propagation
environment is made of N scattering clusters, each of which
contributes with Ny, ; propagation paths 7 = 1,..., N, plus
a possibly present LOS component. We denote by ¢; ; and (b; !
the azimuth angles of arrival and departure of the [*" ray in the
ith scattering cluster, respectively; similarly, 07, and 9;1 are
the elevation angles of arrival and departure of the [ ray in
the i*" scattering cluster, respectively. The impulse response
of the time-continuous propagation channel is a matrix-valued
(of dimension N x Np) function written as

Ncl Nray,i
H(t) = WZ Z i/ Lri)a- (97,07 ,)-
i=1 1=1

ay’ (¢1,01)0(t = mi0) + Hros(t) . (1)

In the above equation, §(-) is the Dirac’s delta, v, ; and L(r; ;)
are the complex path gain and the attenuation associated to
the (4,0)-th propagation path (whose length is denoted by
r;,1), respectively; 7, ; = r;;/c, with ¢ the speed of light, is
the propagation delay associated with the (i,l)-th path. The
complex gain a;; ~ CN(O,JEM»), with O’i’i = 1 [17]. The
factors a,.(¢7;,07 ;) and a;(¢} ;, 07 ;) represent the normalized
receive and transmit array response vectors evaluated at the
corresponding angles of arrival and departure; additionally,
NgrNr
! vazdl ray,i

the received signal power scales linearly with the product

is a normalization factor ensuring that
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Figure 1. The considered RF transceiver. It can be deemed as a non-linear system with NIFEF inputs and N}F%F outputs. The transceiver model also includes
an SPD to compensate for the power amplifiers’ non-linearities. The parameter N denotes the oversampling factor used for the discrete-time approximation

of the continuous-time filtering operations.
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Figure 2. Transceiver block-scheme for SCM with TDE.

NpgrNr. Regarding the array response vectors a,.( i1 05 ;) and
a;(¢!,,0%,), a planar antenna array configuration is used for
the transmitter and receiver, with Y,., Z,. and Y;, Z; antennas
respectively on the horizontal and vertical axes for the receiver
and for the transmitter. Letting k = 27/A, A the considered
wavelength, and denoting by d the inter-element spacing we
have

am(gbip 9;0 — \/ﬁ[]~7 s efjkcz(msin¢?7l sineﬁlJrncosef,L)’
. e—jkd((Y,—l) sin @7 sin 07 ; +(Z;—1) cos Gfl)] ,

where x may be either r or t. Let us now comment on the LOS
component Hy,og(t) in (I). Denoting by ¢f g, ¢t s, 07 oss
and 6} 4 the departure angles corresponding to the LOS link,
we assume that

Hyos(t) = I1.0s(d)VNrNre/\/L(d)a, (¢} o5, 0f.0s)-

a! (¢f,0s,01,05)0(t — TLOS) - )

In the above equation, n ~ U(0,2x), while I1os(d) is an
indicator function/Bernoulli random variable, equal to 1 if a
LOS link exists between transmitter and receiver. We refer the

reader to [18] for a complete specification of all the channel
parameters needed to describe the channel model in (T)).

A comment is now in order about the frequency-selectivity
of this channel. As already discussed, the strong path-loss and
atmospheric absorption makes mmWave channels useful for
short-range communications (up to 100-200 meters). Since
the considered model relies on the direct path and on single-
reflections paths, it is reasonable to assume that the differences
between the lengths of the propagation paths are not larger
than 10% of the distance between the transmitted and the
receiver Accordingly, for a link length of 150 meters, this
difference is 15 meters, which results in a multipath delay
spread 75 equal to 0.05 ws. Assuming a communication
bandwidth of W 500 MHz, the use of raised-cosine
pulses with roll-off factor @ = 0.22, we have a symbol-time
T, = (1 4+ a)/W = 2.44 ns, which leads to a discrete-
time channel with 7, /7 ~ 21 taps. This number can become
even larger in the case of larger communication bandwidth or
in rich scattering environments. The above reasoning shows

2We are actually making a conservative choice here.



that at mmWave the MIMO wireless channel produces severe
intersymbol interference.

B. The RF transceiver model

As already discussed, this paper considers three different
modem schemes for MIMO mmWave systems; all of these
schemes rely on the same RF transceiver scheme, that is
depicted in Fig.[I] In order to reduce the hardware complexity,
a customary trend is to consider transceivers with a number
of RF chains considerably lower than the number of transmit
and receive antennas, and perform beamforming partially in
the digital domain and partially in the analog (RF) domain.
We thus assume that there are N} < Np and NEF < Np
RF chains at the transmitter and at the receiver, respectwelyﬂ
The RF transceiver can be thus modeled as a MIMO system
with NRF-dimensonal inputs and NE¥-dimensional outputs;
we use a discrete-time equivalent model at the symbol-rate.
At the transmitter side we have the shaping filter, followed
by the amplification stage, that we model as the cascade of
a non-linear signal pre-distorter (SPD) and of a non-linear
power amplifier; then an analog pre-coder follows; from a
mathematical point of view the analog precoder is expressed
as a (Np x NTRF)-dimensional matrix, Qrr say, whose entries
are constrained to have constant norm. At the receiver side,
the Ny dimensional vector goes through the analog RF post-
coding, modeled as a (Nr x NE¥)-dimensional matrix, Dry
say, with constant-norm entries, and then is fed to a bank of
receive filters matched to the ones used in transmission; the
filters outputs are then sampled at symbol time.

1) The transmitter non-linearities: We now provide further
details about the pre-distorter and the considered non-linear
power amplifier characteristic. Regarding the latter, we use
the popular Rapp model [|19], namely the power amplifier is a
non-linear memoryless device such that the output amplitude
A as a function of the input amplitude ¢ (assumed with unit
mean square value) is expressed as

¢

A(Q) = \/E(1 o 3)
where Pr is the amplifier saturation power and for the param-
eter p the value 2 is used in this paper, as in [20]. Concerning
the phase distortion introduced by the amplifier, the so-called
AM/PM amplifier characteristic, there is actually no generally
accepted applicable model for the AM/PM characteristic,
and the manufacturers only specify the maximum slope in
degrees/dB and the input level where the phase crosses 0
degree. In this paper, again in keeping with [20], we will
assume a phase offset with a slope of 2 degrees/dB when
the input level is bigger than -1.5 dB, and no phase distortion
below that level.

Regarding the pre-distorter, it is a non-linear memoryless
device whose task is to attenuate the distortion introduced by
the power amplifier. Following [21], We use a device with
the input-output relationship y(z) = Z _o 9s|z[**, which
is a memoryless Volterra series of order 25 + 1 taking into

3Note that assuming erfF = Nr and N}%F = Npg we obtain the case
of FD beamforming.

account odd order terms only. The complex coefficients g =
{gs} _o can be selected to minimize the mean-square error
between the ideally amplified term +/Prz and the signal at the
output of the non-linear power amplifier, as shown in [21]]. In
our simulations, we took S = 2 and [go, g1, 92] = [0.8275 +
0.06014, 0.6335 — 0.09214, 0.0319 — 0.22344].

2) The input-output relation in the linear case: It is also
useful, for the derivations in the sequel of the paper, to analyze
the transceiver in the case in which the pre-distorter is absent
and the amplifier is ideal, i.e. with an AM/AM characteristic
A(¢) = v/Pr( and with no-phase distortion. In this case, it is
easily recognized that the RF transceiver in Fig. [T|reduces to a
linear time-invariant LTI filter with (N¥ x N2)-dimensional
matrix valued impulse response. In particular, denoting by
hrx(t) the baseband equivalent transmit shaping ﬁltersf_f] by
hrx(t) the baseband equivalent of the impulse response of
the NEF receive filters, and by h(t) = hrx(t) * hrx(t) their
convolution, and assuming a sampling interval equal to Ty,
the RF transceiver block impulse-response of the linear time-
invariant system consisting of the N transmit shaping filters,
the propagation channel, and the Ny receive filters is a matrix-
valued (of dimension N%F X N?F ) discrete-time sequence that
can be written as follows:

L(n) = DH(n)Qrr , )

with H(n) the (Ng x Ny )-dimensional discrete-time compos-
ite channel response including the transmit and receive shaping
filters:

r'w i

’}/Z Z all\/TaT((bzl?ezl)at (¢zl’9 )

=1 =1 ~
h(?’lTé — 7'1'71) + HLOS(n) )
(5)
with

Hyos(n) = I1.0s(d)VNrNre/\/L(d)a, (¢} o5, 0r.0s)-

afl (¢} 0s, 0% 0g)h(nTs — TLOS) - ©

Assuming that the multipath delay spread spans P sampling
intervals and that the duration of the transmit and receive
shaping filters spans P, sampling intervals each, it is easily
seen that the matrix-valued channel sequences L(n) and H(n)
have P = P+2P;, —1 non-zero elements; for ease of notation,
we assume, as usually happens, that the non-zero elements of
L(n) and H(n) are those corresponding to n = 0,..., P —1.
Denoting by xpp(n) the NRF-dimensional vector at the input
of the RF transceiver at discrete epoch n, it is easily shown
that the corresponding output ygg(n) is represented by the
following NRF-dimensional vector

P—
¢=0
pP—

1
= v P DRFH QRFXBB (n — 6) + DgFW(TL) s
1—0
@)

yeB(N PrL(0)xpg(n —¥¢) + Dng(n)

4We have N%F of such filters.



with w(n) denoting the Nz-dimensional thermal noise vector
at the output of the receive shaping filters. It is seen from
that the input-output relationship introduces intersymbol
interference (ISI), thus implying that for SCM schemes prop-
erly equalization structures will be needed. Regarding the
additive thermal noise, it is uncorrelated across antennas, i.e.,
the noise samples collected through different receive antennas
are statistically independent: the vector w(n) is thus a complex
zero-mean Gaussian random variable with covariance matrix
02 Iny, with 02 = 2N, [ |hrx (t)|2dt. Conversely, noise
samples are in general correlated through time, i.e., we have
Ewi(n)w(n—1)] = 2Norpux(Ts) , Vi = 1,...,Npg,
where w;(n) denotes the i-th entry of the vector w(n), and
Thax (T) = f_Jr;O hrx (t)hix (t — 7)dt denotes the correlation
function of the receive shaping filter. It thus follows that, if
we arrange L consecutive noise vectors in an (N x L)-
dimensional matrix W = [w(n) w(n—1) ..., w(n—L+1)],
we have that the entries of the matrix W are vertically uncor-
related (actually, independent) and horizontally correlated.

III. TRANSCEIVER PROCESSING

In the following, we illustrate the signal processing opera-
tions performed by the three considered transceiver schemes,
namely SCM-TDE, SCM-FDE, and OFDM. We have already
commented on the RF transceiver block of Fig. [T} so, in the
following, the emphasis will be on the description of the
remaining blocks. Since, for the sake of simplicity, we will
not consider any processing at the receiver aimed at taking
care of the transmitter non-linearitiesE] we will describe the
signal processing at the receiver under the assumption that the
whole system is linear. Of course, when performing numerical
simulation, we will include, where needed, the effect of non-
linearities. This will permit assessing the effect that non-linear
power amplifiers have on the system performance when the
receiver has been designed under the assumption of perfectly
linear transmitter. The design of receiver schemes explicitly
taking into account the power amplifier non-idealities is indeed
a research topic left for future work.

Denote now by s a column vector containing the L data-
symbols — drawn either from a QAM constellation or from
a Gaussian distribution, and with unit average energy — to
be transmitted: s = [so,s1,...,5,_1]7 . We assume that
L = kM, where k is an integer and M, the multiplexing order,
is the number of information symbols that are simultaneously
transmitted by the Np transmit antennas in each symbol
interval. In the following, we present three possible transceiver
models.

A. SCM with TDE

We refer to the discrete-time block-scheme reported in
Fig. 2] The QAM symbols in vector s are fed to a serial-to-
parallel (S/P) conversion block that splits them in & distinct
M -dimensional vectors $(1),...,8(k). These vectors are pre-
coded using the (NRY¥ x M)-dimensional digital pre-coding

5The non-linearity of the power amplifier is taken into account at the
transmitter through the pre-distortion and a possible input backoff.

matrix Qgg; we thus obtain the N}‘F—dimensional vectors
xpp(n) = Qpss(n), n = 1,..., k. The vectors xgp(n) are
fed to a bank of NB¥ identical shaping filters, converted to
RF, amplified, pre-coded at RF and transmitted.

At the receiver, after RF post-coding and baseband-
conversion, the NEF received signals are passed through a
bank of filters matched to those used for transmission and
sampled at symbol-rate. We thus obtain the N}I%F-dimensional
vectors ypp(n), which are passed through a digital post-
coding matrix, that we denote by Dpp, of dimensions (NEF x
M). Recalling that H(n) is the matrix-valued finite-impulse-
response (FIR) filter representing the composite channel im-
pulse response (i.e., the convolution of the transmit filter,
actual matrix-valued channel, and receive filter) it is easy to
show, by virtue of the input-output relationship that the
generic M -dimensional vector at the output of the post-coding
matrix, say r¥(n), is written as

t(n) = Dffpynn(n)

N pr < ey (®)
= Z DgpL(0)Qers(n — £) + DggDrrw(n) .
=0

So far, the choice of the pre-coding and post-coding beam-
forming matrices Qpp, Qrr, Dpp, and Drp has been left
unspecified. We now describe the considered beamforming
structures in the FD case (i.e., assuming a number of RF
chains equal to the number of antennas, both at the trans-
mitter and at the receiver, and removing the RF beamforming
matrices) deferring to Section IV the exposition of the al-
gorithms for the design of the HY structures. Letting u =
argmax,_, 5, {Hﬁ(ﬁ)H }, we assume here that Qgp
contains on its columns theFleft eigenvectors of the matrix
H(p) corresponding to the M largest eigenvalues, and that
the matrix Dpgp contains on its columns the corresponding
right eigenvectors. Note that, due to the presence of ISI,
the proposed pre-coding and post-coding structures are not
optimal. Nevertheless, we make here this choice for the sake
of simplicity, and also to avoid increasing the computational
complexity gap with the OFDM scheme, resorting to the use of
an equalizer to cancel the effects of ISI. We will adopt a linear
ZF equalizer making a block processing of P consecutive
received data vectors: to obtain a soft estimate of the data
vector $(n), the P observables r(n + P — 1)...7(n) are
stacked into a single PM-dimensional vector, expressed as
T5(n) = [f(n+P—1)...F(n)]" . Through ordinary algebra,
it is easy to recognize that this vector can be expressed in the
form

Fﬁ(n) = Agﬁ(n) + B\?NVf,(n) , )]

where s5(n) is an M (2P — 1)-dimensional vector containing
the data symbols contributing to T;(n), i.e.: $5(n) = [8(n +
P—1)...8(n)...8(n — P+ 1)]7, Wx(n) = [W(n+ P -
1)...w(n)]T is the N P-dimensional noise vector and A and
B are suitable matrices, of dimension [M P x M (2P —1)] and
[M P x NgP], respectively. The ZF-equalized soft estimate of
the desired data vector §(n) is obtained through the following
processing:

5(n) = Ef¥5(n) (10)



where E is the (PM x M )-dimensional ZF equalizer. Its (-th
column is expressed as [22]:

(AATYFA(, M(P — 1) +0)

E(:,E) = = )
[(AAT)*YAG, M(P —1) +0)|r

(1)

with £ =1,..., M, and (-)* denoting Moore-Penrose pseudo-
inverse. Note that we are here considering a ZF equalizer
based on the use of the pseudo-inverse: this equalizer performs
similarly to the MMSE equalizer in the case in which the
interference spans the whole signal space and no interference-
free signal space dimensions exist. Another possible approach
is instead to perform signal projection onto the interference-
free signal space; in the current scenario, however, using
this latter approach would require the consideration of a
fractionally-spaced equalizer in order to have a non-empty
interference-free subspace. For the sake of simplicity, we thus
choose to adopt the former approach.

Considerations on complexity. Regarding processing complex-
ity, we note that the computation of the equalization matrix E
requires a computational burden proportional to (PM)3; then,
implementing (I0) requires a matrix vector product, with a
computational burden proportional to (PM?); this latter task
must be made k times in order to provide the soft vector
estimates for all values of n =1,...,k.

B. SCM with FDE

We now consider the case in which SCM is used in
conjunction with a CP and FDE; we refer to the discrete-time
block-scheme reported in Fig.[3] A cyclic prefix of length C'M
is added at the beginning of the block s of L = kM QAM
symbols, so as to have the vector s of length (k + C)M. As
in the previous case, the vector s is passed through a serial-to-
parallel conversion with M outputs, a digital pre-coding block
(again expressed through the matrix Qpp), a bank of NEF
transmit filters; then conversion to RF, signal amplification,
analog RF pre-coding and transmission take place. At the
receiver, after RF post-coding and baseband-conversion, the
NEF received signals are passed through a bank of filters
matched to the ones used for transmission and sampled at
symbol-rate; then, the cyclic prefix is removed. We thus
obtain the NEF-dimensional vectors y(n), withn =1,...,k,
containing a noisy version of the circular convolution between
the sequence X(n) = Qrrxpgp(n) and H(n) , ie.:
¥(n) = \/PrDHE, [H(n) ®x(n)|+w(n), n=1,... .k

(12)
The vectors y(n) are then processed by the digital post-coding
matrix Dpg. The choice of the beamforming matrices is the
same as that of the previous subsection (SCM with TDE) for
the FD case, so we do not comment on it here; again, the
case of HY analog/baseband beamforming is treated in the
sequel of the paper. After digital post-coding beamforming,
we obtain the M-dimensional vectors r(n) = DI,y (n), with
n = 1,...,k. These vectors go through an entry-wise FFT
transformation on k points; the n-th FFT coefficient, with n =

1,...,k, can be shown to be expressed asﬂ
R(n) = VEPrH(n)X(n) + W(n) ,

where H(n) is an (M x Nr)-dimensional matrix represent-
ing the n-th FFT coefficient of the matrix-valued sequence
DH,DILH(n), and X(n) and W (n) are the n-th FFT coeffi-
cient of the sequences X(n) and DE;DE w(n), respectively.
From @]), it is seen that, due to the presence of multiple
antennas, and, thus, of the matrix-valued channel, the useful
symbols reciprocally interfere and an equalizer is needed. (T3)

can be also shown to be expressed as:
R(n) = \/kPrH(n)QrrQpaS(n) + W(n)

with S(n) an M-dimensional vector representing the n-th FFT
coefficient of the vector-valued sequence §(n)[] We denote by
E(n) the (M x M)-dimensional equalization matrix, and a
zero-forcing approach is adopted, thus implying that Ef(n) =
(VEPrH(n)QrrQpp)~!. The output of the equalizer is
written as

13)

(14)

Z(n) = E” (n)R(n) = S(n)+(v/kPrH(n)QrrQss) "W (n) .

Then, the vectors Z(n) go through an entry-wise IFFT trans-

formation on k points. It can be shown that the n-th IFFT

coefficient of the vector Z(n) can be expressed as:
z(n) =s(n) + [IIVI ® [DIFFT]W] Nstacked ,  (15)

where [Dippr] , is the n-th column of the isometric

IFFT matrix Dippr, whose (m,l)-th element is
. 1 ., (m—1u-1)

given by Dippr(m,l) = —keJ 2 3 , and

Ngtackea 18 the kM-dimensional vector containing the

stacked _ vectors (VEPIH(1)QreQep) *W(1), ...,
(VEPrH(k)QrrQs) W (k).

Considerations on complexity. Looking at the scheme in Fig.
[l the computational burden of the considered transceiver
architecture is the following. 2M FFTs of length k are re-
quired, with a complexity proportional to 2M k log, k; in order
to compute the zero-forcing matrix, the FFT of the matrix-
valued sequence #(n) must be computed, with a complexity
proportional to M Nr(klogy k); computation of the matrix
(H(n)QrrQspg) and of its inverse, for n = 1,..., k, finally
requires a computational burden proportional to k(NpM? +
M?3). Tt can be easily seen that the complexity of the FDE
scheme is lower than that of the TDE scheme.

C. Transceiver model - OFDM

Finally, we consider the MIMO-OFDM discrete-time block-
scheme reported in Fig. {] Differently from previous schemes,
baseband beamforming is made on a "per-subcarrier”" basis
[23[], while the analog beamformer jointly process the entire
signal bandwidth, i.e., all the subcarriers are treated uniformly.

Each OFDM symbol is assumed to be made of
L = kM QAM data symbols; after S/P conversion, the

®The factor vk in is due to the fact that we are considering isometric
FFT and IFFT transformations.

"We used here the relation X (n) = QrrQppS(n).
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data symbols are split in k distinct A -dimensional vec-
tors S(1),...,S(k). These vectors are pre-coded through
the (NRY x M)-dimensional digital pre-coding matrices
Qgs(1),...,Qgep(k), thus yielding the vectors X(n) =
Qgg(n)S(n). These vectors then go through an entry-wise
IFFT transformation on k points; we denote by X(n) the M-
dimensional transformed vectors, with n =1,... k. A CP of
length C' is added at the beginning of the block so that we
have the following sequence of NE¥-dimensional vectors:

xpg(n) = {

The vectors xpp(n) are passed through a bank of NEF
transmit filters, converted to RF, amplified, RF-precoded, and
transmitted. At the receiver, analog RF post-coding, baseband-
conversion, matched-filtering and sampling at the symbol-rate,

X(n+k—-C),n=1,...,C,

%(n—-C), n=C+1,....C+k. 19

the cyclic prefix is removed. We thus obtain the following
NEF_dimensional vectors y(n), with n =1,..., k:

y(n) = VPrDf [H(n) ® Quex(n)| + Dipw(n) . (17)

with ﬁ(n) denoting again the matrix-valued FIR filter rep-
resenting the composite channel impulse response (i.e., the
convolution of the transmit filter, actual matrix-valued channel
and receive filter). These vectors go through an entry-wise
FFT transformation on & points; the n-th FFT coefficient, with

n=1,...,k, can be shown to be expressed as
?(n) =4/ kPTDgFg(n)QRFQBB (n)g(n) + DgFW(TL) ,

(18)
where #(n) is an (Ng x Nr)-dimensional matrix representing
the n-th FFT coefficient of the matrix-valued sequence H(n),
and W (n) is the n-th FFT coefficient of the sequence w(n),




respectively. The vectors Y (n) are then processed by the
digital post-coding matrix Dgg(n); we thus obtain the M-
dimensional vectors

R(n) = VkPrD{g (n)DEpH(n)QrrQsa(n)S(n)+

DI (DLW (n), n=1,....k. (19

From (I8), it is seen that, due to the presence of multiple
antennas, and, thus, of the matrix-valued channel, the useful
symbols reciprocally interfere and thus an equalizer is needed.
Denoting by E(n) the (M x M)-dimensional equalization
matrix, and using a zero-forcing approach, it can be seen that
E'(n) = (VEPrDH,(n)DrrH(n)QrrQus(n))*, where
()T denotes the Moore-Penrose pseudoinverse. The output of
the equalizer can be shown to be expressed as:

Z(n) =En)"R(n) =S(n)+

(VkPrDpp(n)"DEH(n)QrrQir(n) T Dep(n) "W (n) .
(20)

After P/S conversion we finally obtain the soft estimates of
the transmitted symbols.

IV. HY ARCHITECTURE DESIGN

At mmWave antenna arrays usually have more elements
than at lower frequencies, due also to the small size induced by
the reduced wavelength. As already said, current technology
prevents the use of FD beamformers and thus signal processing
operations are shared among the digital and analog domains;
lower-resolution data-converters are also used [13]]. HY archi-
tectures are one approach for providing enhanced benefits of
MIMO communication at mmWave frequencies [17]. Similar
solutions are also reported in [24], [25].

A small number of transceivers is assumed, so that M <
N{?F < Np and M < Ng”F < Ng. We now detail the
low-complexity HY beamforming structures. We have already
specified the beamforming matrices for the FD case. Now,
these beamforming matrices are to be approximated through
the cascade of an analog and baseband precoder. In the
following, we denote by Q°P* and D°P* the beamforming pre-
coding and post-coding structures (specified in the previous
section for all the considered modulation schemes) to be
approximated through the HY structure. We first deal with the
case of SCM, and then we will examine the MIMO-OFDM
case.

A. Hybrid beamforming for SCM schemes

In order to reduce hardware complexity with respect
to the FD beamforming, in HY structures the (Np X
M )—dimensional pre-coding matrix is written as the product
QrrQpp, where Qgr is the (Nr x NEF)-dimensional RF
pre-coding matrix and Qpg is the (NF¥" x M)—dimensional
baseband pre-coding matrix. Since the RF precoder is imple-
mented using phase shifters, the entries of the matrix Qgrp
have all the same magnitude (equal to ﬁ), and just differ
for the phase. The matrices Qrr and Qpp can be found by

Algorithm 1 Block Coordinate Descent for Subspace Decom-
position Algorithm for Hybrid Beamforming
1: Initialize I,,,,, and set i =0
2: Set arbitrary Qgrr,0 and Dgp o
3. repeat
4. Update Qppi+1 = (QgF,iQRF,i)il Qfr Q™"
and Dpp i1 = (DIP;IF,iDRF,i)il ngl:,iDOpt
5 Set ¢ = QPQHy 1y (QeBit1Qls i)
and ¢; = DopthB,iJrlA(DBB,1+1DgB,i+1)

6: Update Qrr,; = \/11\/76]%
and DRF,i = \/}V—Rejwi

7: Sett=1+1
8: until convergence or ¢ = I a5

using the Frobenius norm as a distance metric and solving the
following optimization problem:

(Qips Qi) = argmin ||Q°P" — QrrQesl|F
RrF;QBB
Vi, j

SUbjeCt to |QRF(7’7])| = ﬁ ) (21)

||QrrQBB||% < M .

Similarly, with regard to the design of the post-coding beam-
forming matrix, the optimal FD beamformer D°P' that we
would use in case of no hardware complexity constraints is
approximated by the product DrrDpp, where Dgryp is the
(Ngp x N §F )—dimensional RF post-coding matrix and Dgp
is the (N3 x M)—dimensional baseband post-coding matrix.
The entries of the RF post-coder Dip are constrained to have
norm equal to % The matrices Drr and Dgg can be then
found solving t@ollowing optimization problem
(Dfp, D) = argmin|[D°P* — DrpDgg||r
Drr,Dgg

B L (22)
|Drr(i,5)] = Nork

subject to Vi, j .

It is easy to show that optimization problems ZI) and (22)
are not convex optimization problem; inspired by [26], we
thus resort to the Block Coordinate Descent for Subspace
Decomposition (BCD-SD) algorithm, that basically is based
on a sequential iterative update of the analog part and of the
baseband part of the beamformers. The algorithm’s recipe,
whose complexity is tied to the third power of the number
of RF chains, is reported in Algorithm |1} It is worth noting
that the topic of HY beamforming is currently a very active
research area, and several alternatives to the proposed solution
are available. A detailed study about the performance of other
HY beamforming schemes is however out of the scope of this
paper; however, for benchmarking purposes, we will also show
performance results for the case of FD beamforming, so as to
quantify the loss incurred by the HY structures.

B. HY beamforming for the MIMO-OFDM transceiver

We now consider the issue of beamformer design for the
MIMO-OFDM transceiver. From (19) it is seen that the
optimal pre-coders and post-coders for the detection of the
data vector S(n) are given by the left and right singular
vectors associated to the M largest eigenvalues of the matrix



H(n), respectively. We will denote these optimal beamformers
as Q°P(n) and DOP*(n), respectively; differently from what
happens for the SCM transceivers, these beamformers are now
carrier dependent. Our aim is to approximate the optimal
pre-coder Q°P*(n) with the product QrrQpp(n), and the
optimal post-coder D°Pt(n) with the product DrpDgg(n).
Now, letting [23]]

QOPt = [QOPt(1), ..., QP (k)] € CNrxkM
Dopt :[DOpt(1)7...,Dopt(k)] € CNrxkM :

Qss = [Qss(1),...,Qe(k)] € (CNiFXkM 7
Dgp = [Dgg(1),...,Dea(k)] € CNr" xkM :

the HY beamformer design amount to solving the following
two constrained optimization problems

(Qr: Qbp) = argmin ||Q°P* — QrrQssl|F

Qrr,QBB

subject to |Qrr(i,7)| = ﬁ , (23)
|Qrr QB3 < kM,
and
(D, Dfp) = argmin [|[D°P* — DrpDgg||r
Drr,DgB (24)

subject to

|DRF(17]) = \/11\77R :

The above optimization problems have the same structure as
problems in I) and (22), and can thus be solved through a
straightforward application of the BCD-SD algorithm. We do
not explicitly report here the full details of the algorithm for
the sake of brevity.

V. PERFORMANCE INDICATORS

The different transceiver architectures will be compared
based on the ASE and the GEE.

A. Computation of the ASE

The ASE is the maximum achievable spectral efficiency
with the constraint of arbitrarily small BER and of pre-fixed
modulation type. The ASE takes the particular constellation
and signaling parameters into consideration, so it does not
qualify as a normalized capacity measure (it is derived from
the constrained capacity). We focus here on ergodic rates so
the ASE is computed given the channel realization and aver-
aged over it (remember that we are assuming perfect channel
state information at the receiver). The spectral efficiency p
of any practical coded modulation system operating at a low
packet error rate is upper bounded by the ASE, i.e., p < ASE,
where

lim L

ASE = TW L—oo E

Eg [](s;é|ﬁ)} bit/s/Hz  (25)
I(s;$|H) being the mutual information (given the channel
realization) between the transmitted data symbols and their
soft estimates, 7y the symbol interval, and W the signal
bandwidth (as specified in Section [VI). Although not explicitly
reported, for notational simplicity, the ASE in depends on
the Signal-to-Interference plus Noise Ratio (SINR).

The computation of the mutual information requires the
knowledge of the channel conditional probability density

function (pdf) p(8|s, H). As already said, it can be numer-
ically computed by adopting the simulation-based technique
described in [[14] once the channel at hand is finite-memory
and the optimal detector for it is available. In addition, only
the optimal detector for the actual channel is able to achieve
the ASE in (23).

In both transceiver models described in Section III the soft
symbol estimates can be expressed in the form

8(n) = Cs(n) + Z Cys(n— L) + z(n)
££0

(26)

i.e., as a linear transformation (through matrix C) of the
desired QAM data symbols, plus a linear combination of
the interfering data symbols and the colored noise z(n)
having a proper covariance matrix. The optimal receiver has
a computational complexity which is out of reach and for this
reason we consider much simpler linear suboptimal receivers.
Hence, we are interested in the achievable performance when
using suboptimal low-complexity detectors. We thus resort to
the framework described in [14, Section VI]. We compute
proper lower bounds on the mutual information (and thus on
the ASE) obtained by substituting p(§|s, H) in the mutual
information definition with an arbitrary auxiliary channel
law ¢(8|s, H) with the same input and output alphabets as
the original channel (mismatched detection [14])—the more
accurately the auxiliary channel approximates the actual one,
the closer the bound is. If the auxiliary channel law can
be represented/described as a finite-state channel, the pdfs
q(8[s, H) and ¢, (8|H) = 3, q(8]s, H) P(s) can be computed,
this time, by using the optimal maximum a posteriori symbol
detector for that auxiliary channel [14]. This detector, that
is clearly suboptimal for the actual channel, has at its input
the sequence § generated by simulation according to the
actual channel model (for details, see [14]). If we change the
adopted receiver (or, equivalently, if we change the auxiliary
channel) we obtain different lower bounds on the constrained
capacity but, in any case, these bounds are achievable by those
receivers, according to mismatched detection theory [14]. We
thus say, with a slight abuse of terminology, that the computed
lower bounds are the ASE values of the considered channel
when those receivers are employed. This technique thus allows
us to take reduced-complexity receivers into account. In fact,
it is sufficient to consider an auxiliary channel which is a
simplified version of the actual channel in the sense that only a
portion of the actual channel memory and/or a limited number
of impairments are present. In particular, we will use the
auxiliary channel law (26), where the sum of the interference
and the thermal noise z(n) is assimilated to Gaussian noise
with a proper covariance matrix.

The transceiver models are compared in terms of ASE
without taking into account specific coding schemes, being
understood that, with a properly designed channel code, the
information-theoretic performance can be closely approached.

B. GEE and power consumption models

The GEE is defined as the ratio between the achievable rate
and the overall power consumption, taking into account both



the radiated power and the power consumed by the hardware
circuitry [27]]. GEE is measured in [bit/Joule] and is expressed
as:

W ASE

GEE = ,
BPr + Prx ¢ + Prx,c

27)

where W is the system bandwidth, Prx . is the amount of
power consumed by the transmitter circuitry, Prx . is the
amount of power consumed by the receiver’s device circuitry,
and 5 > 1 is a scalar coefficient modeling the power amplifier
inefficiency. Note that, differently from what happens in the
most part of existing studies on energy efficiency for cellular
communications, we have included in the GEE definition
the power consumed both at the transmitter and at the
receiver’s devices.

1) Transceiver power consumption for FD beamforming:
In the case of SCM-TDE the considered FD pre-coding
architecture requires a baseband digital precoder that adapts
the M data streams to the N transmit antennas; then, for
each antenna there is a digital-to-analog-converter (DAC), an
RF chain and a power amplifier (PA). At the receiver, for
the SCM-TDE, a low noise amplifier (LNA), an RF chain, an
analog-to-digital converter (ADC) is required for each antenna,
plus a baseband digital combiner that combines the Ny outputs
of ADC to obtain the soft estimate of the M trasmitted
symbols. Following thus the same approach as in [28]], the
amount of power consumed by the transmitter circuitry can be
expressed as Prx c = Nr (Prrc + Ppoac + Ppa)+ Pae, and
the amount of power consumed by the receiver circuitry can
be expressed as Prx c = Nr (Prrc + Papc + PLya)+PeB.
According to [28]] and references therein, Prrc = 40 mW is
the power consumed by the single RF chain, Ppac = 110
mW is the power consumed by each DAC, Pxpc = 200mW
is the power consumed by each single ADC, Ppy = 16 mW is
the power consumed by the PA, Prnya = 30 mW is the power
consumed by the LNA, and Ppp is the amount of power con-
sumed by the baseband precoder/combiner designed; assuming
a CMOS implementation we have a power consumption of 243
mW.

In the case of SCM-FDE the transmitter has the same
power consumption of the previous case. At the receiver,
for the SCM-FDE, after the baseband digital combiner there
are the operations of FFT and IFFT in order to implement
the frequency domain equalization. The amount of power
consumed by the transmitter circuitry can be thus expressed as
Prx c = Nr (Prrc + Poac + Pra) + Ppp, and the amount
of power consumed by the receiver circuitry can be expressed
as Prx,c = Ngr (Prrc+Papc+Pina+P.rer+Peirrr) +
Ppp. We have already provided numerical values for the above
quantities, except that for P, ppr and for P jppr that are the
powers consumed by the FFT and IFFT processing. For a
256-point FFT and IFF we have P, prpr = 153 mW and
Pc,IFFT =153 mW [29]

Similarly, for the OFDM transceiver we have Prx . =
Nr (Prrc + Poac + Ppa + Peivrr) + PaB, and Prxc =
Nrg (Prrc + Papc + Puna + Perrr) + PaB.

8In the numerical simulations we will be taking k = 256.
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2) Transceiver power consumption for HY beamforming:
For HY beamforming and SCM-TDE transceiver, the amount
of power consumed by the transmitter circuitry is expressed
as Prx.c = NR¥ (Prrc + Poac + NrPps + Ppa) + Pgg,
while the amount of power consumed by the receiver
circuitry is PRX,C = NIP%F (PRFC + Papc + NRPPS) +
NrPina + Pgg. Numerical values for the above
quantities have already been provided, except that for
Ppg, the power consumed by each phase shifters, that we
assume to be 30 mW. In the case of SCM-FDE, we have
Prx.c = N3¥ (Prrc + Poac + NrPps 4+ Ppa) 4+ Pgp, and

Prx.c = NE¥(Prrc+ Papc+NgPps+P.rrr + Pe1rrr) +
NrPina + Ppg. Finally, for the
MIMO-OFDM case we have Prx . =

NP (Prrc+Ppac+NrPps+Ppa+Peirrr) + Pgp, and
Prxe = NE¥(Prrc + Papc + NpPps + Poprr) +
NrPiNa + PpB.

VI. NUMERICAL RESULTS

In our simulation setup, we consider a communication
bandwidth of W = 500 MHz centered over a mmWave
carrier frequency. The MIMO propagation channel, described
in Section II, has been generated according to the statistical
procedure detailed in [18]. The additive thermal noise is as-
sumed to have a power spectral density of -174 dBm/Hz, while
the front-end receiver is assumed to have a noise figure of 3
dB. For SCMs, the Square Root Raised Cosine (SRRC) pulse
with roll-off factor 0.22 is adopted for the shaping transmit and
receive filters. For this waveform, we define the bandwidth as
the frequency range such that out-of-band emissions are 40 dB
below the maximum in-band value of the Fourier transform
of the pulse. For the considered communication bandwidth of
W = 500 MHz, we found that the symbol interval T is 2.15
ns, for the case in which we consider its truncated version to
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the interval [—4Ty, 47;]. For the OFDM case, we are instead
considering rectangular pulses of duration Tx = 1/W; in this
case, we show in the figures the 90% value of the obtained
ASE to take into account the fact that carriers at the edge of the
frequency band are usually not loaded to reduce out-of-band
emissions. Moreover, for the SCM-FDE and OFDM schemes
the reported ASE values include the penalty factor (1 — C/k)
due to the insertion of the cyclic prefix, with & = 256. We
also point out that the reported results are to be considered
as an ideal benchmark both for the ASE and the GEE since
we are considering a single-user link and we are neglecting
the interferenceﬂ HY pre-coding and post-coding, with M RF
chains at the transmitter and at the receiver, is considered, also
in comparison to FD structures. All the figures refer to the case
that Ng x Ny = 10 x 50, and uniform linear arrays were used.

We start by considering the case that the power amplifier
operates in the linear regime and causes no distortion. Fig.
reports the ASH'”| and the GEE for SCM-TDE, SCM-FDE
and MIMO-OFDM transceivers versus the transmit power Pr.
Both the cases of finite cardinality (16-QAM) data symbols
and Gaussian data symbols are considered. Fig. [6] reports
the ASE for the three considered transceivers versus the link
length d, assuming that the transmit power is Pr = 0 dBW.
While Fig. [5] contains a comparison between the 16-QAM
modulation scheme and the case of Gaussian-distributed data
symbols, Fig. [6] focuses on the case of 4-QAM modulation
and studies the impact of the multiplexing order M.

We can see that there are no huge differences among the
performance of the considered transceivers, even though the
OFDM appears to be the best-performing scheme, while SCM-

9We note however that being mmWave systems mainly noise-limited
rather than interference limited, the impact of this assumption on the obtained
results is very limited.

100f course, the achievable rates in bit/s can be immediately obtained by
multiplying the ASE by the communication bandwidth W = 500 MHz.

FDE achieves the worst performanceE] While, as expected,
FD beamforming outperforms HY beamforming in terms of
ASE, we see that in terms of GEE the reverse is generally true.
As an instance, if we focus on the OFDM transceiver with 16-
QAM modulations and with a transmit power of 0 dBW, it is
seen that the HY beamformer exhibits a loss in terms of ASE
with respect to the FD beamformer on the order of about 22%,
while, instead, its gain, in terms of GEE, is around 120%. The
advantage of HY structures with respect to FD structures in
terms of GEE can however disappear for MIMO links with
large number of antennas, as reported in [28].

In order to have an insight into the effect of power amplifiers
non-linearities, Figs. [7] [§] and [9] show the system ASE, when
the power amplifier non-linearities are taken into account. Fig.
also reports a comparison between 16-QAM modulation
and the constant-envelope 16-PSK modulation, while Fig. [§]
also shows GEE results. It is seen from the figure that the
non-linear behavior of the power amplifier introduces some
performance degradation, especially on the OFDM scheme,
which now performs worse than the other two schemes, while
instead SCM-TDE reveal to be the best performing scheme.
The results thus confirm that also for mmWave frequencies
the OFDM scheme is more sensitive than SCM schemes to
the peak-to-average power ratio (PAPR) problem. Moreover,
the fact that SCM-FDE performs worse than OFDM can be
intuitively justified by noting that OFDM uses a subcarrier-
dependent digital pre-coder and post-coder, which is not the
case for SCM-FDE.

Other general comments about the obtained results are in
the following.

- Results, in general, improve for increasing transmit power
and for decreasing distance d between transmitter and
receiver.

- In particular, a good performance can be attained for
distances up to 100 m, whereas for d > 100 m we have
a steep degradation of the ASE. In this region, all the
advantages given by increasing the modulation cardinality
or the multipexing gain M are essentially lost or reduced
at very small values. Of course, this performance degra-
dation may be compensated by increasing the transmit
power:this thus confirms that mmWave are well suited
for wireless cellular communications for distances up to
100 m.

- For a reference distance of 30 m (which will be a
typical one in small-cell 5G mmWave deployments for
densely crowded areas), a transmit power around 0 dBW
is enough to grant good performance and to benefit from
the advantages of increased modulation cardinality, size
of the antenna array, and multiplexing order.

We now proceed to showing BER results. In Figs [0} [TT]
and we report the BER results respectively of 16-QAM
SCM-TDE, SCM-FDE and MIMO-OFDM when employing
low-density-parity-check (LDPC) codes of rate equal to 1/2

"However, as reported in [30], SCM-TDE turns out to be the best
performing scheme for the case in which a linear minimum mean square error
equalizer is used in turn of the ZF equalizer. Additionally, results not reported
here due to lack of space have shown that the performance of SCM-TDE can
be improved considerably by considering fractionally-spaced TDE.
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Figure 7. ASE versus transmit power; comparison of TDE, FDE and OFDM,
with 16-QAM and 16-PSK modulations, linear and non linear PA. Parameters:
M =1;d=30m Ng x Ny = 10 x 50, HY beamforming with NEF =
NEF = 1.

and 2/5, in order to show how practical (i.e., finite-length
and not ad hoc designed) codes perform in one realization
of the considered scenario, which entails M = 2, d = 30 m,
Npg x Np = 10 x 50. The parameters of the codes are reported
in Table [I| where r. denotes the rate of the code and the
degree distributions of variable and check nodes are provided
by giving the fraction a; (}_, a; = 1) of degree i nodes. In any
case, the codeword length is L = 64800 bits, and the decoder
iterations are limited to 40. These codes were designed for
low intersymbol interference (ISI) channels, and, despite not
specifically designed for these systems, they closely approach
the provided ASE lower bounds. Since with M = 2 the two
multiplexed streams perform differently, the code rates on each
stream should be tailored accordingly.

VII. CONCLUSION

This paper has provided a comparison between single-
carrier modulation schemes and conventional OFDM for a
MIMO link operating at mmWave frequencies. In particular,
two SCM techniques have been considered, SCM-TDE and
SCM-FDE, and these transceivers have been compared with
the MIMO-OFDM scheme. Our analysis has jointly taken into
account the modulation finite cardinality, the peculiarity of the
channel matrix at mmWave frequencies (a clustered model has
been adopted), the adoption of HY analog/digital beamforming
structures, and the effect of hardware non-idealities such
as the non-linear behavior of the transmit power amplifiers.
Results have shown that the SCM-TDE structure achieves
superior performance with respect to the other two competing
schemes, in particular when non-linear distortions are taken
into account. The advantage of HY beamforming structures
with respect to FD ones in terms of GEE has also been
highlighted.

The present study can be generalized and strengthened in
many directions. In particular, the considered analysis might

12 T T T T 400 T T T T
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Figure 8. ASE and GEE versus transmit power for the case in which non-
linearities in the power amplifier are taken into account. Parameters: d = 30
m; M = 2; Ngx Ny = 10x50; HY beamforming with NEF = NEF = 2,
16-QAM modulation.

ASE [bits/Hz]

o
©

| | —&— TDE, Linear PA

= B = TDE, Non linear PA + SPD
==H== TDE, Non linear PA ‘~*§ -
~&— OFDM, Linear PA

= & — OFDM, Non linear PA + SPD
===~ OFDM, Non linear PA
=== FDE, Linear PA

= Y = FDE, Non linear PA + SPD
=-%-= FDE, Non linear PA

1 1 1 1 Il 1 Il 1 Il 1 L 1 L 1
510 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Distance between TX and RX [m]

Figure 9. ASE versus distance for the case in which non-linearities in the
power amplifier are taken into account. Parameters: Pr = 0 dBW; M = 2;
Ng x Ny =10 x 50; HY beamforming with NEF = NEF =2, 16-QAM
modulation.

be applied in a multiuser environment; additionally, since, as
already discussed, the reduced wavelength of mmWave fre-
quencies permits installing arrays with many antennas in small
volumes, an analysis, possibly through asymptotic analytic
considerations, of the very large number of antennas regime
could also be made. Finally, the impact of the use of non-linear
equalization schemes might also be investigated.
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