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Performance of Energy Harvesting Receivers

with Power Optimization

Zhengwei Ni, Mehul Motani

Abstract

The difficulty of modeling energy consumption in communication systems leads to challenges in

energy harvesting (EH) systems, in which nodes scavenge energy from their environment. An EH receiver

must harvest enough energy for demodulating and decoding. The energy required depends upon factors,

like code rate and signal-to-noise ratio, which can be adjusted dynamically. We consider a receiver which

harvests energy from ambient sources and the transmitter, meaning the received signal is used for both

EH and information decoding. Assuming a generalized function for energy consumption, we maximize

the total number of information bits decoded, under both average and peak power constraints at the

transmitter, by carefully optimizing the power used for EH, power used for information transmission,

fraction of time for EH, and code rate. For transmission over a single block, we find there exist problem

parameters for which either maximizing power for information transmission or maximizing power for

EH is optimal. In the general case, the optimal solution is a tradeoff of the two. For transmission over

multiple blocks, we give an upper bound on performance and give sufficient and necessary conditions

to achieve this bound. Finally, we give some numerical results to illustrate our results and analysis.

Index Terms

Energy harvesting communication systems, Simultaneous energy and information transfer, Time-

switching, Joint power and rate optimization

I. INTRODUCTION

Energy harvesting techniques enlarge the mobility of devices by breaking away from the

limitations of the conventional power supplies, and give the freedom to deploy networks at hard-
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to-reach places, such as remote areas and the human body. As such, energy harvesting networks

have the potential to be implemented in many new areas including medical, environmental and

safety applications.

Dependent on the characteristics of energy sources, many energy harvesting techniques are

under investigation. Among them, radio frequency (RF) radiation is a promising technique and

has already been used in many applications. The survey paper [1] offers some examples, such as

Computational RFID [2]. Additionally, researchers at the University of Washington have deployed

an energy scavenging WiFi camera [3]. Specially, the transmitter can work as an energy source,

as in the dedicated RF charging [4], [5]. Thus, both energy and information can be delivered

to the receiver via RF waves [6], [7]. Compared with ambient energy sources, the amount of

energy harvested from dedicated RF sources can be controlled and dynamically adjusted.

As we know, a receiver must harvest enough energy for demodulating and decoding, and

for many systems, the energy consumed at the receiver can be comparable to or even larger

than that at the transmitter [8]. However, the difficulty of modeling energy consumption at the

receiver leads to challenges. Some papers on energy harvesting ignore it [9], [10] or assume it

is given as a constant [6], [7]. The relationships between energy required at the receiver and

other parameters or performance metrics are not clear.

In our previous works [11], [12], we study the case that the transmitter works as a dedicated

energy source and provide some energy to the receiver, which has a time-switching architecture

[13]. To address the problem mentioned above, we make the following assumptions. Firstly, the

authors of [14] find that one can focus on energy consumed for decoding because they observe

that allowing uncoded transmission significantly reduces the system energy consumption in

designing transceiver circuits. Motived by this work, we assume the energy consumption of other

processing functions for extracting information is negligible compared with decoding. In addition,

energy consumption at the decoder is highly dependent on the decoding scheme used and

hardware implementation. To find a bridge to connect energy consumption and the performance

metrics we are interested in, we follow the approach in [15]–[17] that uses a generalized function

to express the energy consumed at the decoder in terms of code rate and channel capacity. Based

on these settings, by carefully allocating the time for energy harvesting/information transmission

and choosing the code rate, we maximize the total amount of information decoded for various

scenarios.
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In these previous works, we assume the symbols are transmitted at a predetermined constant

power. The channel is unchanging and we do not consider possible manipulation of the power at

the transmitter side. However, improving the performance by increasing the signal-to-noise ratio

is a fundamental technique in wireless communication systems. We can also control the amount

of energy transferred by adjusting the power. Hence, in this paper, we extend our previous work

[11], [12] by allowing optimization of the powers used for both information transmission and

energy harvesting, in addition to optimizing the fraction of time for energy harvesting and the

code rate. Intuitively, to maximize the number of information bits decoded at the receiver, the

transmitter has two choices on how to allocate its transmit power:

1) To increase the transmitting power for information transmission. In this scenario, the

signal-to-noise ratio increases and the symbol error rate will decrease. Thus, the channel

condition becomes better.1 Hence, it will cost less energy to extract the information, and

the transmitter may transfer less energy to the receiver from the dedicated energy signals.

2) To increase the transmitting power for energy harvesting. In this scenario, the transmitter

tries to transfer energy to the receiver more efficiently, so more time can be used for

information transmission even though the channel conditions may not be so good.

Then, the basic question is: For given power constraints at the transmitter, how should the

transmitter allocate power based on the two scenarios described above?

Motivated by this question, in this paper, we consider an end-to-end communication system,

in which the receiver can harvest energy from the environment. In addition, the transmitter also

offers energy to the receiver for powering its circuitry. Both average and peak power constraints

are considered at the transmitter. The aim is to maximize the total number of information bits

decoded at the receiver by joint optimization of the power used for energy harvesting, power

used for information transmission, fraction of time for energy harvesting, and code rate, over

both single block or multiple blocks. The contributions of our paper are summarized as follows:

1) For transmission over a single block, we formulate a non-convex optimization problem

to maximize the amount of information decoded at the receiver. Then, based on our

1For example, if Binary Phase Shift Keying (BPSK) is used for modulation and receiver use hard decision decoding, the

channel can be modeled as a binary symmetric channel (BSC). When transmitting power increases, the crossover probability

decreases, meaning that the channel capacity becomes larger.
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observation about the structure of the problem, we find a method to obtain all local optimal

solutions by solving a series of equations. These local optimal solutions correspond to three

different schemes: maximizing power used for energy harvesting, maximizing power used

for information transmission, and a tradeoff of the two as a general case. Our results show

that these three schemes all have the potential to be optimal. Finally, the global optimal

solution can be determined by comparing these local optimal solutions.

2) For transmission over multiple blocks, we give an upper bound on the total number of bits

decoded at the receiver. Furthermore, we also provide sufficient and necessary condition

to achieve this upper bound. For other cases, where the condition cannot be satisfied, we

obtain the local optimal solution by an iterative algorithm.

3) Finally, in the numerical results, we consider an example that coincides with low-density

parity-check (LDPC) codes. In this example, we find that we should maximize the trans-

mitting power for information transmission when there is a relatively strict constraint on

peak power. Maximizing the transmitting power for energy harvesting is the best scheme

when both average power constraint and peak power constraint are loose. If it is neither

of these two cases, we should make a trade-off between them.

II. SYSTEM MODEL

In this paper, we consider an end-to-end communication system with an energy harvesting

receiver. The receiver receives signals transmitted by the transmitter and tries to extract the

information contained inside by demodulation and decoding. To support powering the circuitry

for receiving and processing, the receiver also needs to harvest energy from outside. A time-

switching architecture is designed for the receiver in the context of energy harvesting. In this

architecture, a switcher inside the receiver can connect the RF front-end circuits to either energy

harvesting or information receiving sub-systems. Thus, the RF signals radiated by the transmitter

can be used for either harvesting energy or extracting information.

The duration of one block is T . In a given block, a scheme called Harvest-then-Receive (HTR)

is used [11]. HTR operates as follows: for the first αT duration, the switcher connects the RF

front-end to the energy harvesting sub-system. At the same time, the transmitter transmits RF

signals which contain no information but are specially designed for energy harvesting. Then

for the reminder (1− α)T duration, the switcher connects the RF front-end to the information



5

receiving sub-system and the transmitter starts information transmission. We call α the fraction

of time for energy harvesting.

Now, we present the channel model for information transmission. An information sequence

is encoded using capacity approaching/achieving channel codes. This code has a binary input

alphabet, which coincides with many popular channel codes, such as LDPC and polar codes.

Then, the encoded information is modulated using BPSK. The modulated symbols are sent

through an additive white Gaussian noise (AWGN) channel with power spectral density (PSD)

N0/2. Without loss of generality, we set N0 = 1. Letting pI be the average power per symbol and

TS be the symbol duration, the symbol (bit) error rate is Q(
√
2eI), where Q(x) =

∫ +∞
x

1√
2π
e−

t2

2 dt

and eI = pITS is energy per symbol. The receiver performs a hard decision on the received

symbols then starts channel decoding, so the channel can be regarded as a BSC with crossover

probability equivalent to the symbol (bit) error rate Q(
√
2eI). Here we want to emphasize that

even though we consider BPSK, it is easy to extend the results to other modulation schemes

using some well-known approximate bit error probabilities [18, Table 6.1]. Note that since the

duration of one block is T , one block can be discretized into n = T/TS channel uses, where

each symbol is sent using one channel use.

For energy harvesting, the receiver can harvest energy from both the transmitter and other

ambient sources. Here we do not limit the other sources to be RF and allow for solar, wind, etc.

Assuming the transmitting power for energy harvesting is pE, it can be regarded as αT/TS = αn

channel uses are used for energy harvesting and the energy transmitted per channel use is

eE = pETS. At the receiver, the energy can be obtained via RF to DC conversion. However,

this conversion depends on many factors, such as rectenna and impedance matching between the

antenna and the voltage multiplier, and a certain amount of energy may be lost during conversion

[19], [20]. Hence, we set the conversion efficiency to be η, where 0 < η ≤ 1.

We follow our previous work [11], [12] to model the energy required for extracting information

at the receiver. As previously mentioned, firstly, we assume the energy used at other components

for extracting information is negligible. Then, instead of giving an exact expression for how much

energy is consumed, we use a generalized function, ED(θ), to express the energy consumed for

decoding per channel use. θ is the inverse of capacity gap, which is defined as δ = 1 − R/C,

where R is code rate and C is channel capacity. That is, θ = 1/δ = C/(C − R). Furthermore,

we require this generalized function to satisfy certain properties as follows:
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(1) ED(1) = 0. When θ → +∞, ED(θ)→ +∞.

(2) ED(θ) is a non-decreasing convex function of θ.

Briefly, the reason that we can choose this function and these properties to characterize the

energy consumed at the decoder is that the capacity gap is widely used in the research on the

decoding complexity of capacity approaching/achieving codes based on iterative decoding, and

the given properties coincide with their results [16], [21], [22] if we assume the energy consumed

for decoding is proportional to the complexity of decoding scheme. A detailed elaboration is

given in our previous work [11]. The decoder starts working after all the symbols have been

received, which is at the end of a block, so the energy harvested can be used to decode symbols

received in the same block.

In addition, extra energy is consumed for processing and analyzing of the received data. We

assume the amount of energy used for these operations at receiver is G̃ and it is also used at the

end of one block, after all the information is decoded. Since all of these operations are controlled

by the processor at the receiver, the energy consumed for this part can be well predicted in the

short term, which makes offline optimization possible. We use g̃ = G̃/n to express the energy

consumed for other operations per channel use. The energy received from other sources may

vary with time. However, since decoding starts after energy harvesting, we only care about the

average, which is defined as eambient per channel use in a similar way. To make dedicated RF

charging meaningful, we assume the energy harvested from other sources is far from enough.

Thus, g = g̃ − eambient ≥ 0.

Both average and peak power constraints are considered at the transmitter. The average

transmitting power should not be larger than pavg, meaning that αpET + (1 − α)pIT ≤ pavgT .

We define eavg = pavgTS, so the previous inequality is equivalent to αeE + (1−α)eI ≤ eavg. We

also set pI ≤ plim and pE ≤ plim for the peak power constraint, or equivalently eI ≤ elim and

eE ≤ elim, where elim = plimTS. We assume ηeavg − g ≥ 0 so there does not exist the case that

even if all energy is used for energy harvesting, it still cannot support the consumption at the

receiver. In addition, to make the peak power constraints meaningful, we assume eavg < elim.

We consider transmission over both single and multiple blocks. For multiple blocks, we assume

the information is delay-sensitive, meaning that the decoder is not allowed to store received

symbols and decode them in the following blocks when it has harvested enough energy. However,

the energy harvested in one block can be stored in a battery and used in the future. We do not
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limit the size of the battery so there will be no energy wasted due to overflow.

III. TRANSMISSION OVER A SINGLE BLOCK

In this section, we investigate the performance over a single block. The transmitter and the

receiver want to maximize the number of bits decoded by adjusting the fraction of time (channel

uses) for energy harvesting α, code rate R, energy used for information transmission eI and

energy harvesting eE per channel use. The optimization problem can be given as

(P1)

max
α,R,eE,eI

(1− α)R, (1)

s.t. (1− α)ED(θ) + g ≤ ηαeE, (2)

αeE + (1− α)eI ≤ eavg, (3)

θ =
C(eI)

C(eI)−R
, (4)

0 ≤ eE ≤ elim, (5)

0 ≤ eI ≤ elim, (6)

0 ≤ α ≤ 1, (7)

0 ≤ R ≤ C(eI). (8)

The total number of bits decoded at receiver is (1 − α)Rn, here we only maximize (1 − α)R

because the number of channel uses in one block n is a constant. (2) comes from energy causality,

meaning that the energy consumed at receiver should not be larger than that harvested. (3) is

from average power constraint while (5) and (6) are from peak power constraint. In general, the

channel capacity is a function of eI. As we mentioned in the previous section, the channel is a

BSC with crossover probability equal to Q
(√

2eI
)
, so the capacity is given as

C(eI) = 1 +Q
(√

2eI
)
log2

(
Q
(√

2eI
))

+
(
1−Q

(√
2eI
))

log2
(
1−Q

(√
2eI
))
. (9)

To solve P1, we first give two useful lemmas.

Lemma 1. To be optimal, (2) must hold with equality.



8

Proof: If the equality in (2) does not hold, we can increase θ to make the equality hold

since ED(θ) is a non-decreasing function of θ. According to (4), when eI is fixed, increasing θ

means increasing R, so the value of objective function is also increasing.

Lemma 2. To be optimal, (3) must hold with equality.

Proof: According to Lemma 1, we can express eE in terms of other parameters and substitute

it into (3). Then, we can obtain

(1− α)ED(θ) + g

η
+ (1− α)eI ≤ eavg. (10)

Similarly, we can decrease α in (10) to increase the value of objective function if the equality

does not hold.

Remark 1. Intuitively, Lemma 1 is true because, for the single block case, it is better to use

up the energy harvested. Intuitively, Lemma 2 is true is because we should use up the energy to

transmit as much as possible to achieve better performance.

Then, based on Lemma 1, Lemma 2 and (4), we can express α, R and eE in terms of θ and

eI, as

α = 1− ηeavg − g
ηeI + ED(θ)

, (11)

R =
θ − 1

θ
C(eI), (12)

eE =
E(θ)eavg + geI

ηeI + ED(θ)− (ηeavg − g)
. (13)

Notice that, as mentioned in the previous section, we assume ηeavg − g ≥ 0, so α ≤ 1. Then,

(P1) can be simplified into (P2), as

(P2)

max
θ,eI

θ − 1

θ
· (ηeavg − g) · C(eI)

ηeI + ED(θ)
, (14)

s.t. 0 ≤ eI ≤ elim, (15)

θ ≥ 1, (16)

ED(θ) +
ηelim − g
elim − eavg

eI ≥ ηeavg − g
elim − eavg

elim, (17)
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where (16) is obtained by substituting (12) into (8). In addition, (17) is obtained by substituting

(11) into (7) and substituting (13) into (5). In addition, (16) can be replaced by ED(θ) ≥ 0

equivalently due to our definitions and assumptions in the previous section.

Even though we only need to optimize two parameters now, (P2) is still challenging to solve.

Based on our observation of (P2), we can find that when we fixed one parameter and optimize

the other one, the problem becomes to reveal unimodality. By using this property, for any fixed

eI > 0, we can find the corresponding θ that maximizes the objective function (P3), which is

given as

(P3)

max
θ

θ − 1

θ
· (ηeavg − g) · C(eI)

ηeI + ED(θ)
, (18)

s.t. ED(θ) ≥ max

{
0,
ηeavg − g
elim − eavg

elim − ηelim − g
elim − eavg

eI
}
, (19)

Similarly, for any fixed θ > 1, we can find the corresponding eI that maximizes the objective

function (P4), which is given as

(P4)

max
eI

θ − 1

θ
· (ηeavg − g) · C(eI)

ηeI + ED(θ)
, (20)

s.t. max

{
0,
ηeavg − g
ηelim − g

elim − elim − eavg

ηelim − g
ED(θ)

}
≤ eI ≤ elim, . (21)

We show these results in the following two lemmas.

Lemma 3. For a given eI > 0, the optimal solution for optimization problem (P3) is θ =

max{θ∗, θ0}, where θ∗ satisfies

ηeI + ED(θ∗)− (θ∗ − 1)θ∗
∂ED(θ)
∂θ

∣∣∣
θ=θ∗

= 0, (22)

and θ0 satisfies

ED(θ0) = max

{
0,
ηeavg − g
elim − eavg

elim − ηelim − g
elim − eavg

eI
}
. (23)

Proof: For convenience of expression, we set CeI = (ηeavg − g)C(eI), which is a constant

in this problem and does not affect optimal θ. Taking derivative of objective function in terms

of θ, we can derive

∂
(
CeI

θ−1
θ(ηeI+ED(θ))

)
∂θ

= CeI
M(θ)

(θ(ηeI + ED(θ)))2
, (24)
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where

M(θ) = ηeI + ED(θ)− (θ − 1)θ
∂ED(θ)
∂θ

. (25)

Firstly, we can obtain that

∂M(θ)

∂θ
= −(2θ − 2)

∂ED(θ)
∂θ

− (θ2 − θ)∂
2ED(θ)
∂θ2

, (26)

which is always non-positive when θ ≥ 1, so M(θ) is non-increasing. Then, since ED(θ) is

non-decreasing convex function, we must have ∂ED(θ)
∂θ

is non-decreasing, so we have

ED(θ) =
∫ θ

1

∂ED(θ)
∂θ

dθ ≤ (θ − 1)
∂ED(θ)
∂θ

, (27)

and

M(θ) ≤ ηeI − (θ − 1)2
∂ED(θ)
∂θ

. (28)

From (28) we can see, M(θ) < 0 as θ → +∞. Since we also have M(1) = ηeI > 0, there

must exist an optimal θ∗ which satisfies (22) and maximizes (18). If we do not consider the

inequality (19), θ∗ should be optimal solution for (P3). However, θ∗ may not satisfy this inequality

constraint. Thus, we can see (P3) is maximized at max{θ∗, θ0}.

Corollary 1. When eI ≥ elim(ηeavg − g)/(ηelim − g), (P3) is maximized at θ∗.

Proof: It is easy to see that in this case, θ0 = 1. However, since M(1) > 0, we must have

θ∗ > 1.

Lemma 4. For a given θ > 1, the optimal solution for optimization problem (P4) is eI =

min
{
max

{
eI∗, eI0

}
, elim

}
, where eI∗ satisfies

∂C(eI)

∂eI

∣∣∣∣
eI=eI∗

· (ηeI∗ + ED(θ))− ηC(eI∗) = 0, (29)

and eI0 satisfies

eI0 = max

{
0,
ηeavg − g
ηelim − g

elim − elim − eavg

ηelim − g
ED(θ)

}
. (30)

Proof: For convenience of expression, we set Cθ = θ−1
θ
(ηeavg − g), which is a constant in

this problem and does not affect optimal eI. Taking derivative of objective function in terms of

eI, we can derive

∂
(
Cθ

C(eI)
ηeI+ED(θ)

)
∂eI

= Cθ
N (eI)

(ηeI + ED(θ))2
, (31)
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where

N (eI) =
∂C(eI)

∂eI
· (ηeI + ED(θ))− ηC(eI). (32)

We can see that

∂N (eI)

∂eI
=
∂2C(eI)

∂eI2
· (ηeI + ED(θ)). (33)

We can prove that ∂2C(eI)
∂eI2

≤ 0, please refer to Appendix A. Hence, N (eI) in non-increasing. In

addition, we can derive that

∂C(eI)

∂eI
=
[
log2

(
1−Q

(√
2eI
))
− log2

(
Q
(√

2eI
))]
· 1√

4π
e−e

I

(eI)−0.5. (34)

Since ∂C(eI)
∂eI
|eI=0 > 0 and C(0) = 0, we can get N (0) > 0. In addition, ∂C(eI)

∂eI
·(ηeI+ED(θ))→ 0

and −ηC(eI) → −η as eI → +∞, so we can see that there must exist an optimal eI∗ which

satisfies (29). Similarly, if we do not consider the inequality constraints in (P4), eI∗ should

be optimal. When we consider the inequality constraints, we can see (P4) is maximized at

min
{
max

{
eI∗, eI0

}
, elim

}
.

Corollary 2. When ED(θ) ≥ elim(ηeavg − g)/(elim − eavg), (P4) is maximized at min{eI∗, elim}.

Proof: It is easy to see that because in this case, eI0 = 0. However, since N (0) > 0, we

must have eI∗ > 0.

In Fig. 1, we plot the values of (18) for different values of ED(θ), and the values of (20) for

different values of eI. Based on the analysis on Lemma 3 and Lemma 4, these curves can be

divided into three types, we call Type A, Type B, and Type C, respectively. In Type A, the curve

firstly increases, then decreases, which has a single mode. In Type B, the curve is monotone

non-increasing, and in Type C, the curve is monotone non-decreasing.

In Fig. 2, we draw the region of (eI, ED(θ)) under constraints (15), (16), and (17). The

coordinates of point A are (elim(ηeavg− g)/(ηelim− g), 0) and the coordinates of point B are (0,

elim(ηeavg− g)/(elim− eavg)). When we ‘observe’ the value of (14) from a vertical or horizontal

line, it actually corresponds to one of curves introduced above. We can have the following

observations:

1) When we ‘observe’ from vertical line between (0, 0) and point A, like line 1©, according

to Lemma 3, the curve can be either Type A or Type B.
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ED(θ) or eI

Bits

(a) Type A.

ED(θ) or eI

Bits

(b) Type B.

ED(θ) or eI

Bits

(c) Type C.

Fig. 1. Illustrations of curves for different types.

elimA

B

0

4©

3©

1© 2©

eI

ED(θ)

Fig. 2. Region of (eI, ED(θ)) under constraints (15), (16), and (17).

2) When we ‘observe’ from vertical line between point A and (elim, 0), like line 2©, the curve

can only be Type A. It is due to the fact that, in this case, eI ≥ elim(ηeavg−g)/(ηelim−g),

so in Lemma 3, (19) becomes ED(θ) ≥ 0. However, since M(1) > 0, the curve must

increase for a while, making Type B impossible.

3) When we ‘observe’ from horizontal line above point B, like line 3©, the curve can be

either Type A or Type C. Similarly, in this case, ED(θ) ≥ elim(ηeavg − g)/(elim− eavg), so

in Lemma 4, (21) becomes 0 ≤ eI ≤ elim. Since N (0) > 0, the curve must increase for a

while, making Type B impossible.
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elimA

B

0 eI

ED(θ)

Fig. 3. Possible optimal point in the region.

4) When we ‘observe’ from horizontal line between (0, 0) and point B, like line 4©, according

to Lemma 4, the curve can be any type.

Obviously, if a point in the region of (eI, ED(θ)) is optimal, when we ‘observe’ from vertical line

that passes through this point, it should maximize (18) for the given eI. Similarly, we ‘observe’

from horizontal line that passes through this point, it should maximize (20) for the given ED(θ).

Then, we analyze on the possible places that the optimal point lies in and the conditions the

optimal point should satisfy.

We use Fig. 3 to illustrate. Since M(1) > 0 in Lemma 3 and N (0) > 0 in Lemma 4, the

optimal point cannot lie in the segment between point A and (elim, 0), and the ray that starts

from point B along Y axis. Then we divide possible area into three cases.

1) The optimal point is inside the red area.

2) The optimal point is on the green ray that starts from point (elim, 0) along Y axis.

3) The optimal point is on the blue segment between point A and point B.

In case 1), since the optimal point in not on the boundary, when we ‘observe’ from either vertical

or horizontal line which passes through this point, the curve should be Type A. In case 2), the

optimal point is the point achieve maximum when we ‘observe’ from the green ray. In case 3),
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we must have

ED(θ) =
ηeavg − g
elim − eavg

elim − ηelim − g
elim − eavg

eI. (35)

Based on these observations, we provide the following theorem to solve optimization problem

(P2).

Theorem 1. The necessary condition that (eI, θ) is optimal solution for (P2) is that it should

satisfy at least one of the following sets of conditions:

(a)  ηeI + ED(θ)− (θ − 1)θ ∂ED(θ)
∂θ

= 0,

∂C(eI)
∂eI
· (ηeI + ED(θ))− ηC(eI) = 0.

(36)

(b)  ηeI + ED(θ)− (θ − 1)θ ∂ED(θ)
∂θ

= 0,

eI − elim = 0.
(37)

(c)  ED(θ) + ηelim−g
elim−eavg e

I − ηeavg−g
elim−eavg e

lim = 0,

(elim − eI)C(eI) + (θ2 − θ)(elim − eI)∂C̃(θ)
∂θ

= (θ2 − θ)C(eI) elim−eavg
ηelim−g

∂ED(θ)
∂θ

,
(38)

where C̃(θ) = C(ẽI(θ)) and ẽI(θ) = ηeavg−g
ηelim−g e

lim − elim−eavg
ηelim−g ED(θ), which are channel

capacity and energy per symbol expressed in terms of θ, respectively.

Proof: Assume (eI, θ) is the optimal solution, according to Lemma 3 and Corollary 1, for

the first equation of (36) and the first equation of (38), at least one must hold.

1) If the first equation of (36) holds, but the first equation of (38) does not hold, according

to Lemma 4 and Corollary 2, we must have that, for the second equation of (36) and the

second equation of (37), at least one must hold. It means that at least one of (36) and (37)

must hold.

2) If the first equation of (38) holds, by expressing eI in terms of θ, (P2) becomes

(P5)

max
θ

θ − 1

θ
· e

lim − eavg

elim − ẽI(θ)
· C̃(θ), (39)

s.t. 0 ≤ ED(θ) ≤
ηeavg − g
elim − eavg

· elim, (40)
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where the definitions of C̃(θ) and ẽI(θ) are given above. To find the optimized θ, we can

obtain that

∂ẽI(θ)

∂θ
= −e

lim − eavg

ηelim − g
· ∂ED(θ)

∂θ
≤ 0, (41)

∂2ẽI(θ)

∂θ2
= −e

lim − eavg

ηelim − g
· ∂

2ED(θ)
∂θ2

≤ 0, (42)

and

∂C̃(θ)

∂θ
=

∂C(ẽI(θ))

∂ẽI(θ)
· ∂ẽ

I(θ)

∂θ
≤ 0, (43)

∂2C̃(θ)

∂θ2
=

∂2C(ẽI(θ))

∂ẽI(θ)2
·
(
∂ẽI(θ)

∂θ

)2

+
∂C(ẽI(θ))

∂ẽI(θ)
· ∂

2ẽI(θ)

∂θ2
≤ 0 (44)

Define f(θ) = (θ−1)C̃(θ)
θ(elim−ẽI(θ)) , so the objective function of (P5) can be written as (elim−eavg) ·

f(θ). Taking derivative of f(θ) in terms of θ, we can obtain

∂f(θ)

∂θ
=

h(θ)

θ2(elim − ẽI(θ))2
, (45)

where

h(θ) = (elim − ẽI(θ))C̃(θ) + (θ2 − θ)(elim − ẽI(θ))∂C̃(θ)
∂θ

+ (θ2 − θ)C̃(θ)∂ẽ
I(θ)

∂θ
. (46)

Since

∂h(θ)

∂θ
= 2θ(elim − ẽI(θ))∂C̃(θ)

∂θ
+ (θ2 − θ)(elim − ẽI(θ))∂

2C̃(θ)

∂θ2

+ (2θ − 2)C̃(θ)
∂ẽI(θ)

∂θ
+ (θ2 − θ)C̃(θ)∂

2ẽI(θ)

∂θ2
≤ 0, (47)

and

h(1) =
ηelim − ηeavg

ηelim − g
elim · C

(
ηeavg − g
ηelim − g

elim
)
> 0, (48)

h(θ′) = (θ′2 − θ′)elim · ∂C(e
I)

∂eI

∣∣∣∣
eI=0

·
(
− elim − eavg

ηelim − g

)
· ∂ED(θ)

∂θ

∣∣∣∣
θ=θ′

< 0, (49)

where ED(θ′) = ηeavg−g
elim−eavg · e

lim. From (47)-(49) we can see that the optimal solution θ must

satisfy

h(θ) = 0. (50)

Thus, (38) must be satisfied.

This completes the proof of the theorem.
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Remark 2. When (38) holds, due to (13), we can obtain

eE = elim, (51)

which means that the transmitting power for energy harvesting is maximized.

Thus, we can respond to the question asked in Section I. The three equation groups can be

explained as

1) In case (b), we have eI = elim, which means that we should maximize the transmitting

power for information transmission.

2) In case (c), due to Remark 2, we have eE = elim, which means that we should maximize

the transmitting power for energy harvesting.

3) In case (a), we maximize neither transmitting power for information transmission nor

transmitting power for energy harvesting, but make a trade-off between them.

Due to case (b) and case (c), we surprisingly find that the ideas of maximizing power for energy

harvesting and information transmission both have the potential to be optimal. In addition, for

some cases we should make a trade-off between them, which yields case (a). One decisive factor

that determines which one is optimal is the form of ED(θ), which inherently reflects the decoding

scheme used and hardware implementation.

As mentioned in Section I, in practical systems, ED(θ) can be obtained by experiments or

simulations, so it is possible to do an off-line optimization based on Theorem 1 for different

values of g beforehand. Hence, the devices can obtain the best scheme by simply evaluating

g when they are working. The global optimal solution can be obtained by solving (36)-(38)

and selecting the one maximizing (14) from all possible solutions. Notice that we convert the

problem from solving non-convex optimization problem into solving equation groups, and for

many specific forms of ED(θ), some simple-form or even closed-form solutions can be obtained.

Hence, the complexity may decrease. We denote the value of (14) as O(θ, eI). The algorithm to

solve (P2) can be summarized as Algorithm 1.

IV. TRANSMISSION OVER MULTIPLE BLOCKS

In this section, we extend our results to multiple transmission blocks. We assume there are

N blocks in total and use the subscript i to denote parameters for the ith block. In addition, the
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Algorithm 1 Finding optimal solution for (P2)
Solve equations (36).

Solve equations (37).

Solve equations (38).

Set θopt = 0, eIopt = 0, fval = 0

for all solutions (eI, θ) above do

if (eI, θ) satisfies (15), (16), (17) and fval < O(θ, eI) then

Set θopt = θ,eIopt = eI, fval = O(θopt, eIopt).

end if

end for

average and peak power constraints are the same for all blocks and we have ηeavg − gi ≥ 0,

i = 1, . . . , N . To maximize the total number of bits decoded over N blocks, the optimization

problem becomes

(P6)

max
α,R,eE,eI

N∑
i=1

(1− αi)Ri, (52)

s.t.
k∑
i=1

(1− αi)ED(θi) + gi ≤ ηαie
E
i , ∀k, (53)

αie
E
i + (1− αi)eIi ≤ eavg, ∀i, (54)

θi =
C(eIi)

C(eIi)−Ri

∀i, (55)

0 ≤ eEi ≤ elim, ∀i, (56)

0 ≤ eIi ≤ elim, ∀i, (57)

0 ≤ αi ≤ 1, ∀i, (58)

0 ≤ Ri ≤ C(eIi), ∀i, (59)

where α = {α1, . . . , αN}, R = {R1, . . . , RN}, eE = {eE1 , . . . , eEN}, and eI = {eI1, . . . , eIN}.

Notice that (53) becomes a group of energy-causality constraints, since the energy harvested

can be stored for use in the following blocks. To decompose these constraints, we introduce Ti

that (1− αi)ED
(

Ci

Ci−Ri

)
+ gi + Ti = ηαie

E
i . Similar to Section III, we can convert (P6) into an
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equivalent optimization problem (P7), which is given as

(P7)

max
θ,eI,T

N∑
i=1

θi − 1

θi
(ηeavg − gi − Ti)

C(eIi)

ηeIi + ED(θi)
,

(60)

s.t.
k∑
i=1

Ti ≥ 0, ∀k, (61)

Ti ≤ ηeavg − gi, ∀i, (62)

0 ≤ eIi ≤ elim, ∀i, (63)

θi ≥ 1, ∀i, (64)

ED(θi) +
ηelim − gi − Ti
elim − eavg

eIi ≥
ηeavg − gi − Ti
elim − eavg

elim, ∀i, (65)

where θ = {θ1, . . . , θN} and T = {T1, . . . , TN}. Similar to (11), to derive (P7) here we can

obtain αi = 1− ηeavg−gi−Ti
ηeIi+ED(θi)

, and (62) is given due to the fact that αi ≤ 1. Hence, we can see all

the terms in objective function are non-negative.

A. Upper Bound for (P7) and Conditions to Achieve the Bound

(P7) is not easy to solve optimally. In this subsection, we give an upper bound for the solution

to (P7). Then, we show in which scenarios this upper bound can be achieved. First, we define

Õ(θ, eI) = θ − 1

θ
· C(eI)

ηeI + ED(θ)
, (66)

and introduce a new optimization problem

(P8)

max
θ,eI

Õ(θ, eI), (67)

s.t. 0 ≤ eI ≤ elim, (68)

θ ≥ 1. (69)

Based on the analysis in Theorem 1, (P8) can be solved by Algorithm 1 without case (c) (i.e.,

solving equations (38)). We assume θ̇ and ėI are optimal that maximize Õ(θ, eI) under constraints

(68) and (69). We further define

Ġ = ηeavg − (ED(θ̇) + ηėI) · e
lim − eavg

elim − ėI
, (70)
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so it is easy to see ED(θ̇) + ηelim−g−T
elim−eavg ė

I ≥ ηeavg−g−T
elim−eavg e

lim is equivalent to T + g ≥ Ġ. Now we

give the following lemma regarding the upper bound and the conditions to achieve the upper

bound.

Lemma 5. An upper bound for the solution of (P7) is
∑N

i=1(ηe
avg − gi)Õ(θ̇, ėI). The upper

bound can be achieved if and only if there exists a feasible set of (θ, eI,T ) that satisfies θ1 =

· · · = θN = θ̇, eI1 = · · · = eIN = ėI,
∑N

i=1 Ti = 0 and other constraints in (P7).

Proof: For any feasible solution for (P7), {θ̂1, . . . , θ̂N}, {êI1, . . . , êIN}, and {T̂1, . . . , T̂N}, we

can obtain
N∑
i=1

(ηeavg − gi − T̂i)Õ(θ̂i, êIi)

(a)

≤
N∑
i=1

(ηeavg − gi − T̂i)Õ(θ̇, ėI)

=

(
N∑
i=1

(ηeavg − gi)−
N∑
i=1

T̂i

)
Õ(θ̇, ėI)

(b)

≤
N∑
i=1

(ηeavg − gi)Õ(θ̇, ėI), (71)

where the equality in (a) holds if and only if θ1 = · · · = θN = θ̇, eI1 = · · · = eIN = ėI and the

equality in (b) holds if and only if
∑N

i=1 Ti = 0.

To achieve the upper bound, there must exist a set of T can make
∑N

i=1 Ti = 0, which is

more strict than (61), and since ED(θ̇) + ηelim−gi−Ti
elim−eavg ėI ≥ ηeavg−gi−Ti

elim−eavg elim holds for all i, we must

have Ti+gi ≥ Ġ for all i. Hence, whether there exists a solution satisfying the above constraints

is highly dependent on the relationship between {g1, . . . , gN} and Ġ.

Theorem 2. The sufficient and necessary condition that the solution of (P7) is
∑N

i=1(ηe
avg −

gi)Õ(θ̇, ėI) is
N∑
i=k

gi ≥ (N − k + 1)Ġ, ∀k. (72)

Proof:
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All possible
combinations

TiM = −
∑iM−1

j=1 Tj

Case M

TiM = Ġ− giM

TiM−1
= −

∑iM−1−1
j=1 Tj

Case M − 1

Ti2 = Ġ− gi2

Ti1 = −
∑i1−1

j=1 Tj

Case 1

Ti1 = Ġ− gi1
Case M + 1

Fig. 4. Dividing all possible combinations of values for {Ti1 , . . . TiM } into M + 1 cases.

1) Sufficiency: Firstly, we prove the sufficiency. Let

Ti =

 max(0, Ġ− g1), i = 1,

max(−
∑i−1

j=1 Tj, Ġ− gi), i = 2, . . . , N,
(73)

We can see T1 ≥ 0 and for any i ≥ 2, we have
∑i

j=1 Tj =
∑i−1

j=1 Tj+Ti ≥
∑i−1

j=1 Tj−
∑i−1

j=1 Tj =

0, so (61) is satisfied. Then for any i, if Ġ − gi ≤ 0, then Ti ≤ 0 ≤ ηeavg − gi. Otherwise,

Ti = Ġ − gi ≤ ηeavg − gi, so (62) is also satisfied. And Ti + gi ≥ Ġ − gi + gi = Ġ, so

θ1 = · · · = θN = θ̇, eI1 = · · · = eIN = ėI are feasible. To complete the proof of sufficiency, we

only need to prove
∑N

i=1 Ti = 0. Since
∑N

i=1 Ti ≥ 0, our next work is to prove
∑N

i=1 Ti ≤ 0.

We assume there are totally M blocks, indexed by im, m = 1, . . . ,M , in which gim ≥ Ġ

happens. It is easy to see iM = N because we can obtain gN ≥ Ġ when we set k = N in (72).

For i′ 6= im, m = 1, . . . ,M , Ġ ≥ gi′ , so Ti′ = Ġ− gi′ . For Tii , . . . , TiM , we cannot decide their

values, so we divide all possible combinations into M + 1 cases illustrated by Fig. 4.

For Case m, m = 1, . . . ,M , we have
N∑
i=1

Ti =
im−1∑
i=1

Ti + Tim +
N∑

i=im+1

Ti =
im−1∑
i=1

Ti −
im−1∑
i=1

Ti +
N∑

i=im+1

(Ġ− gi)

=
N∑

i=im+1

(Ġ− gi) ≤ 0. (74)
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For Case M + 1, we have
N∑
i=1

Ti =
N∑
i=1

(Ġ− gi) ≤ 0. (75)

Thus, we show
∑N

i=1 Ti ≤ 0 and we complete the proof of sufficiency.

2) Necessity: Then, we prove the necessity. From Lemma 5 we know, when
∑N

i=1(ηe
avg −

gi)Õ(θ̇, ėI) can be achieved, we must have
∑N

i=1 Ti = 0 and Ti + gi ≥ Ġ for all i. Due to (61),

we must have
N∑
i=k

Ti =
N∑
i=1

Ti −
k−1∑
i=1

Ti = −
k−1∑
i=1

Ti ≤ 0, ∀k. (76)

Then, since gi ≥ Ġ− Ti for all i, we can obtain that
N∑
i=k

gi ≥ (N − k + 1)Ġ−
N∑
i=k

Ti ≥ (N − k + 1)Ġ, ∀k. (77)

Thus, the necessity is proved.

Intuitively, Theorem 2 says that, when gi is relatively large, if we decrease gi by one, the

energy saved can be used to decode another Õ(θ̇, ėI) information bits. However, when gi becomes

smaller, the additional number of bits decoded by decreasing gi may also be smaller due to the

power constraints. In addition, we notice that Ġ can be non-positive, so (72) can alway hold for

some cases.

B. General Case

For the general case, we can obtain a local optimal solution by optimizing (eI, θ) and T

iteratively.

I. When T is fixed, (P7) can be decomposed into N independent sub-optimization problems.

It is easy to find that each sub-problem has the same form with (P2) and can be directly

solved using Algorithm 1.

II. When eI and θ are fixed. T can be solved by a standard linear programing (LP) method.

III. Iteratively optimize (eI, θ) and T until the conditions for convergence are satisfied.

V. NUMERICAL RESULTS

In this section, we give numerical results to illustrate and verify the analysis presented in

previous sections. We assume ED(θ) = θ log2 θ, which coincides with the research on the

decoding complexity of LDPC codes [22].
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A. Single Block
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Fig. 5. Number of bits decoded with/without power optimization at the transmitter in a single block.

In this subsection, we consider transmission over a single block. Here, we assume η = 0.5

and g = 0. Firstly, we show that considering power optimization at the transmitter can improve

the performance. In, Fig. 5, we set elim = 3 and let eavg changes from 0 to 3. When there is no

power optimization, each symbol is transmitted at a predetermined constant power, irrespective

of whether it is used for energy harvesting or information decoding, as assumed in our previous

works [11], [12]. With power optimization (as studied in this paper), the powers used for energy

harvesting and information transmission can be different. The numerical results in Fig. 5 shows

that the performance with power optimization is better than that without power optimization,

e.g., at eavg = 0.5, there is a 50% increase in number of bits decoded.

Then, we investigate the performance for different values of elim and eavg. The numerical results

are shown in Fig. 6 and Fig. 7, from different angles. The gray dashed mesh is the globally opti-

mal solution obtained by directly numerically solving (P1). The red surface corresponds to case

(a) in Theorem 1, meaning that we make a trade-off between transmitting power for information

transmission and energy harvesting. It is obtained by solving (36). Similarly, the green and the
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Fig. 6. Global optimal solution by numerically solving (P1) and solutions of case (a), case (b), and case (c) in Theorem 1,

under different values of elim and eavg.

blue surfaces correspond to maximizing transmitting power for information transmission (case

(b) in Theorem 1) and maximizing transmitting power for energy harvesting (case (c) in Theorem

1), which are obtained by solving (37) and (38), respectively. We can see the gray dashed mesh

beautifully covers the other surfaces. It validates Algorithm 1, which solves (P1) by choosing

the best one from solutions of (36), (37), and (38). Then, in Fig. 8, we show the optimal region

for each case. When elim and eavg fall in the red region, the (eI, θ) obtained by case (a) in

Theorem 1 has better performance than other two cases. Similarly, (eI, θ) obtained by case (b)

is optimal in green region and the one obtained by case (c) is optimal in blue region. The results

shows that for different average and peak power constraints, the optimal transmission schemes

are also different. In this example, when there is a relatively strict constraint on peak power, we

should maximize the transmitting power for information transmission. When both average power

constraint and peak power constraint are loose, we should maximize the transmitting power for

energy harvesting. Then, for other situations, we should perform a trade-off between them.
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Fig. 7. Global optimal solution by numerically solving (P1) and solutions of case (a), case (b), and case (c) in Theorem 1,

under different values of elim and eavg.
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Fig. 8. Optimal region for each case.
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B. Multiple Blocks

In this subsection, we investigate the performance over multiple blocks. We assume there are

a total of 4 transmission blocks. We set g1 = g2 = g3 = g4 = g, then (72) becomes Ġ ≤ g. By

the definition of Ġ, we can obtain that

u =
elim − ėI

ηelim + ED(θ̇)
· g + ηėI + ED(θ̇)

ηėlim + ED(θ̇)
· elim, (78)

and when eavg ≤ u, the upper bound provided by Theorem 2 can be achieved; otherwise, the

upper bound cannot be achieved. To illustrate this, we set elim = 4, g = 0.1, and η = 1, and

plot the upper bounds and results directly solving (P6) for different values of eavg, respectively.

From Fig. 9, we can see that to the left of the dashed line, the two curves overlap, and to the

right of dashed line, a gap appears. This coincides with our analysis in Theorem 2.
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Fig. 9. Upper bounds and results directly solving (P6) for different values fo eavg.

VI. CONCLUSIONS

In this paper, we consider an end-to-end communication with an energy harvesting receiver.

The transmitter works as a dedicated energy source and transfers some energy to the receiver,
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which can also harvest energy from ambient sources. When there are both average and peak

power constraints at the transmitter, we maximize the total number of bits decoded at the receiver

by optimizing the power used for energy harvesting, power used for information transmission,

fraction of time for energy harvesting, and code rate. A generalized function is used to charac-

terize the energy consumed at the receiver. For the single-block case, we provide an algorithm

to obtain the global optimal solution. For the multiple-block case, we provide an upper bound

and show when this bound can be achieved. In addition, an iterative method is given to get local

optimal solution for the general case. Finally, we give some numerical results to illustrate our

results and analysis.

APPENDIX A

Now we prove ∂2C(eI)
∂eI2

≤ 0. Firstly, we can obtain that

∂2C(eI)

∂eI2
=
e−e

I
(eI)−

3
2

√
4π ln 2

· φ(eI), (79)

where

φ(eI) = (ln ε− ln(1− ε))(eI + 0.5) +
(1
ε
+

1

1− ε

)e−eI(eI) 1
2

√
4π

, (80)

and ε = Q(
√
2eI). Now we only need to show φ(eI) ≤ 0 when eI ≥ 0. It is easy to obtain that

∂φ(eI)

∂eI
= ln ε− ln(1− ε)−

(1
ε
+

1

1− ε

) e−e
I
(eI)

1
2

4πε(1− ε)
· ψ(eI), (81)

where

ψ(eI) = 4
√
π(ε− ε2)− (1− 2ε)e−e

I

(eI)−
1
2 . (82)

If we can show ψ(eI) ≥ 0 when eI ≥ 0, then ∂2C(eI)
∂eI2

≤ 0 must hold. We have

∂ψ(eI)

∂eI
= e−e

I

(eI)−
3
2χ(eI), (83)

where χ(eI) = −(1 − 2ε)eI − 2√
4π
e−e

I
(eI)

1
2 + 1

2
− ε. It is easy to obtain that χ(eI) ≤ 0 when

eI ≥ 0, so ψ(eI) is non-increasing. We can see ψ(eI) → 0 as eI → +∞, so ψ(eI) ≥ 0 when

eI ≥ 0. Thus we prove ∂2C(eI)
∂eI2

≤ 0.
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