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Abstract

In this paper, we study a layered random access scheme based on non-orthogonal multiple access

(NOMA) to improve the throughput of multichannel ALOHA. At a receiver, successive interference

cancellation (SIC) is carried out across layers to remove the signals that are already decoded. A closed-

form expression for the total throughput is derived under certain assumptions. It is shown that the

transmission rates of layers can be optimized to maximize the total throughput and the proposed scheme

can improve the throughput with multiple layers. Furthermore, it is shown that the optimal rates can be

recursively found using multiple individual one-dimensional optimizations. We also modify the proposed

layered random access scheme with contention resolution repetition diversity for reliable transmissions

with a delay constraint. It is shown to be possible to have a low outage probability if the number of

copies can be optimized, which is desirable for high reliability low latency communications.

Index Terms

random access; multichannel ALOHA; successive interference cancellation; non-orthogonal multiple

access

I. INTRODUCTION

In order to support massive connectivity in machine-type communications (MTC), random

access has been considered in cellular standards [1] [2]. In particular, ALOHA [3] [4] is mainly

studied for random access in MTC with multiple channels, which is multichannel ALOHA [5].

In [6] [7], the performance of multichannel ALOHA has also been analyzed and optimized for
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MTC. In [8], it is shown that the number of channels can be adaptively decided to maximize

the throughput if the number of channels is flexible.

Successive interference cancellation (SIC) can be employed to improve the throughput when a

tree algorithm is used for random access as in [9]. In [10], within a frame, a packet is repeatedly

transmitted to exploit contention resolution repetition diversity (CRRD) together with SIC. If

there is one copy of a packet that can be transmitted without collision, it can be successfully

decoded and its copies can be removed. This process can be repeated at a receiver, which can

result in the throughput improvement. In [11] [12] [13], further improvements are made using

graph-based analysis for irregular repetition of coded packets. The resulting approach is referred

to as irregular repetition slotted ALOHA (IRSA).

While the approaches in [9] assume a simple channel model without taking into account fading,

it might be necessary to consider fading channels in random access over wireless channels. In

this case, SIC can be considered in the context of non-orthogonal multiple access (NOMA) where

the power difference is to be exploited [14] [15] [16]. In [17], a NOMA based random access

method is proposed where each user can randomly choose a channel as well as a power level.

In this case, although two users choose the same channel, a receiver (or base station (BS) for

uplink transmissions) can recover both signals using SIC if they choose different power levels.

Thus, the throughput can be improved. In [18], NOMA is also used for random access based

on the power control scheme proposed in [19].

In this paper, we study a NOMA based random access as in [17] to improve the throughput of

multichannel ALOHA by exploiting the power difference. The resulting random access scheme

can be seen as a layered random access scheme where each layer is characterized by the power

level. However, unlike [17], we assume that users do not know their channel state information

(CSI). We derive a closed-form expression for the throughput in terms of transmission rates

under Rayleigh fading channels. This closed-form expression allows us to find the optimal rates
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that maximize the total throughput.

Although the proposed random access scheme in this paper relies on SIC as IRSA, there are a

few key differences. The proposed scheme does not use iterative decoding, which is used in [11]

[12] [13]. Thus, the decoding delay at a receiver is fixed. In terms of interference cancellation,

the main difference is that the proposed scheme uses inter-layer interference cancellation, which

is SIC across layers. On the other hand, IRSA uses intra-layer interference cancellation (as there

is only one layer), where interference cancellation is repeatedly carried out until no more signals

are decodable. Furthermore, along with SIC, the proposed scheme exploits the capture effect,

which is considered in [20] [21] to exploit the near/far effect, while IRSA does not consider the

capture effect. In this paper, the capture effect is induced by the power difference for NOMA.

We also consider a modification of the proposed scheme with CRRD where multiple copies of

a packet are transmitted through randomly selected different channels. Unlike the approaches in

[11] [12] [13], the main aim of this modification (with CRRD) is to guarantee a packet delivery

subject to a delay constraint with a high probability, not to improve the throughput. However, as

there are multiple layers, the overall throughput can be reasonably high once SIC is successfully

used. The resulting approach may be useful for high reliable low latency communications [22]

[23].

The rest of the paper is organized as follows. In Section II, we present the system model

for random access over fading channels and introduce the proposed layered random access

scheme. We study the throughput of the proposed scheme in Section III, where the proposed

scheme is also briefly compared with IRSA. In Section IV, the proposed scheme is modified

with random CRRD for reliable transmissions with a delay constraint. Simulation results are

shown in Section II and the paper is finally concluded with some remarks in Section VI.

Notation: Matrices and vectors are denoted by upper- and lower-case boldface letters, respec-

tively. The superscript T denotes the transpose. The 2-norm is denoted by ||a||. E[·] and Var(·)
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denote the statistical expectation and variance, respectively. CN (a,R) represents the distribution

of a circularly symmetric complex Gaussian (CSCG) random vector with mean vector a and

covariance matrix R.

II. SYSTEM MODEL

In this section, we present the system model for layered random access and explain a receiver

algorithm that is based on SIC.

A. Layered Random Access

Suppose that a system consists of one BS1 and a number of users for random access with

multiple channels in a time slot, which might be equivalent to a multiple access control (MAC)

frame in [11] [12] [13]. To improve the throughput, we consider multiple layers for each channel

by exploiting the notion of NOMA.

We assume that there are L layers and each layer, which is characterized by a different power

level, consists of N orthogonal channels2 in a time slot. An active user that has a packet to

transmit is to randomly choose a channel and one of L layers in the selected channel. Let Il,q

denote the index set of the users that choose channel q and layer l. In addition, denote by hk,q

and dk the channel coefficient and data symbol from user k to the BS, respectively, provided that

user k chooses channel q. Throughout the paper, we assume block-fading channels [24] where

the channel coefficients, hk,q, remain unchanged within a time slot. Then, the received signal at

the BS through channel q is given by

yq =
L
∑

l=1

sl,q + nq, (1)

where nq ∼ CN (0, N0) is the background noise and sl,q =
∑

k∈Il,q

√
Plhk,qdk. Here, Pl is the

transmit power of layer l, which is a design parameter. Here, we assume that E[|dk|2] = 1 and

E[dk] = 0. If a user chooses layer l, the signal power has to be set to Pl.

1Throughout this paper, the BS and receiver are interchangeable as we consider uplink random access.

2We can use orthogonal frequency division multiple access (OFDMA) to form multiple orthogonal channels in a time slot.



5

Note that if L = 1, the resulting system becomes the conventional single-channel slotted

ALOHA system. Throughput the paper, we assume coded signals from users. If a user chooses

layer l, the transmission (or code) rate is set to Rl. Together with Pl, Rl is also a design parameter.

B. Signal Decoding using SIC

Let

xl,q = sl,q + nl,q, (2)

where nl,q is the interference (plus-noise) term in layer l, which is given by

nl,q =
L
∑

i=l+1

si,q + nq.

Clearly, x1,q = yq and nL,q = nq. If there are multiple signals in xl,q, we may assume that the

receiver cannot decode any signal due to packet collision. However, if there is only one signal

and the interference is sufficiently weak in layer l (provided that the signals in layers 1, . . . l−1

are removed), the receiver can decode the signal. Let βl denote the conditional probability of

decoding error at layer l when there is only one signal from user k at channel q under the

lower-interference-free condition. Then, at channel q, assuming that capacity achieving codes

are used, we have

βl = Pr

(

log2

(

1 +
Pl|hk,q|2

σ2
l,q

)

< Rl

)

, (3)

where σ2
l,q = Var(nl,q | {hk,q}) = E[|nl,q|2 | {hk,q}] is the conditional variance of nl,q.

At each channel, from layer 1 to layer L, the receiver performs decoding with SIC. If there

is no signal or one signal that can be decoded and subtracted, the receiver can move to the next

layer in each channel. However, if there is packet collision or a signal that cannot be decoded

at a certain layer, the receiver stops SIC.

In Fig. 1, we illustrate a set of the channels of layered random access with L = 2 layers

and N = 10 channels (per layer). At channel 1, there is no signal in the first layer, but in the

second layer. Thus, the signal in the second layer is decodable if the signal-to-noise ratio (SNR)
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is sufficiently high. At channel 2, there are two signals. However, they are in different layers.

Thus, the BS is able to decode the signal in the first layer if the signal-to-interference-plus-noise

ratio (SINR) is sufficiently high. Once the signal in the first layer is decoded, it can be removed

using SIC and the signal in the second layer can be decoded if its SNR is sufficiently high. At

channel 3, there are also two signals, but both are in the second layer, which results in packet

collision. Thus, the two signals may not be decodable.

10

Layer 1

Layer 2

empty channel

channel with
one packet

channel with
collided packets

1 2

Multiple channels

...

Fig. 1. Multiple channels of layered random access access with L = 2 layers and N = 10 channels (per layer).

In [17], by exploiting the power difference, NOMA is applied to multichannel ALOHA, which

becomes the layered random access scheme in this section. While it is assumed that the users

know their CSI so that they can decide the transmit powers to allow SIC and guarantee successful

decoding if there is no collision in [17], we do not assume CSI at transmitters (i.e., users) in this

paper. Consequently, the success of SIC depends on both packet collision and (instantaneous)

CSI, and the throughput analysis becomes more involved than that in [17]. In the next section,

we study the performance analysis under certain assumptions.

III. THROUGHPUT ANALYSIS

We consider the following assumptions in this section for the throughput analysis.

A1 The number of arrivals at layer l or the number of the users that choose layer l, denoted

by Ml, is an independent Poisson random variable with mean λl, which is the (average)
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arrival rate3 at layer l, i.e.,

Pr(Ml = m) = Pl(m)

=
λm
l e

−λl

m!
, m = 0, 1, . . .

Note that the average number of users becomes
∑L

l=1 λl. Thus, if the average number of

users is fixed, the average number of users in each layer, λl, can decrease with L.

A2 An active user is to uniformly and randomly choose a layer and a channel within the selected

layer.

A3 If multiple users choose the same channel in the same layer, the receiver is not able to

recover any signals and declares packet collision.

A. Derivation of Throughput

Consider layer l and assume that all the signals in the lower layers, i.e., from layer 1 to layer

l − 1, are successfully decoded. Then, under the assumption of A3, the conditional probability

of collision or decoding error for given m transmitted signals in layer l is given by

αl(m) = pc(m) + (1− pc(m))βl, (4)

where pc(m) is the (conditional) probability of packet collision at layer l for given m transmitted

signals in layer l. Under A2, we have

pc(m) = 1−
(

1− 1

N

)m−1

, (5)

which is independent of l.

Lemma 1: Let ηl denote the average number of successfully decoded packets at layer l

provided that any signals in layers 1 to l−1 are removed by SIC. For convenience, this condition

3In MTC, it is expected to have sparse user activity. As a result, the normalized arrival rate rate (i.e., the arrival rate per

channel), λl/N , might be low due to sparse activity.
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is referred to as the lower-interference-free condition for layer l. Then, under the assumption of

A1, we have

ηl = ϕlλle
−

λl
N , (6)

where ϕl = 1− βl = Pr
(

log2

(

1 +
Pl|hk,q|

2

σ2
l,q

)

≥ Rl

)

.

Proof: See Appendix A.

If L = 1, the throughput is given by

T = R1η1 = R1ϕ1λ1e
−

λ1
N . (7)

The dimension of the throughput is the same as that of R1, which is the bits per channel use.

Note that λ1e
−

λ1
N is often regarded as the throughput of multichannel ALOHA [5] (which is the

average number of packets without packet collision) under the ideal collision channel model [4].

Let ρl denote the probability that there is no transmitted signal or a transmitted signal is

decoded through a given channel in layer l under the lower-interference-free condition. Then,

for a given channel, provided that there are Ml = m signals, the conditional probability that there

is no transmitted signal is
(

1− 1
N

)m
and the conditional probability that there is a transmitted

signal which is decodable is (1 − βl)
(

m
1

)

1
N

(

1− 1
N

)m−1
. Then, ρl can be found by taking the

expectation over Ml, which is given by

ρl = E

[

(

1− 1

N

)Ml

+ ϕl

(

Ml

1

)

1

N

(

1− 1

N

)Ml−1
]

=

∞
∑

m=0

(

(

1− 1

N

)m

+
ϕlm

N

(

1− 1

N

)m−1
)

×Pl(m)

=

(

1 +
ϕlλl

N

)

e−
λl
N . (8)

Suppose that L = 2. Since the numbers of users in layers 1 and 2 are independent, the throughput

of layer 2 becomes R2ρ1η2. Thus, the total throughput (with L = 2) becomes R1η1 + R2ρ1η2.

Unfortunately, this total throughput is an approximation since the throughput of each layer is

correlated. To see this clearly, with L = 2, we can consider the case that users 1 and 2 send
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signals through the first channel in different layers. In this case, the probability that the BS can

decode both signals becomes

ϕ1,2 = Pr

(

P1|h1,1|2
P2|h2,1|2 +N0

≥ ν(R1),
P2|h2,1|2

N0
≥ ν(R2)

)

,

where ν(R) = 2R−1. Clearly, ϕ1,2 6= ϕ1ϕ2. However, if we assume that the events of successful

decoding in different layers are independent (provided that there is only one signal in each layer

at the same channel), the throughput can be approximated by R1η1 + R2ρ1η2. In general, for

L ≥ 1, the total throughput can be approximated by T that is given by

T = R1η1 +R2ρ1η2 + . . .+RL

(

L−1
∏

m=1

ρm

)

ηL

=

L
∑

l=1

Rl

(

l−1
∏

m=1

ρm

)

ηl. (9)

Throughout the paper, we will consider the approximate throughput in (9) and, for convenience,

T is simply referred to as the throughput (although it is an approximation). Note that in (9),

∏l−1
m=1 ρm is the probability that the lower-interference-free condition holds at layer l (under the

independence assumption).

B. Throughput Maximization

In this subsection, we consider the throughput maximization. As shown in (9), in order to

maximize the throughput, the power and rate allocation as well as the arrival rate control can

be considered. However, due to tractability, we only focus on the rate optimization to maximize

the throughput, while the arrival rates and powers are fixed.

For the throughput maximization, we consider the following assumption for fading channels.

A4 The channel coefficients, hk,q, are iid and |hk,q| is Rayleigh distributed with E[|hk,q|2] = σ2
h.

Lemma 2: Under the assumptions of A1 – A4, we have

ϕl = exp

(

−ν(Rl)N0

Plσ2
h

−
L
∑

i=l+1

λi

N

ν(Rl)Pi

Pl + ν(Rl)Pi

)

≥ exp

(

−ν(Rl)

γl

)

, (10)
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where γl is the target SINR at layer l, which is given by γl =
Plσ

2
h

σ̄2
l

. Here,

σ̄2
l =

L
∑

i=l+1

σ2
hPiλi

N
+N0. (11)

Proof: See Appendix B.

In (10), ϕl can be seen as the capture probability [20] [21], which is the probability that the

receiver can decode the signal in layer l in the presence of the interferences in the upper layers,

i.e., layers l+1, . . . , L. In general, we can see that ϕl is a function of Pl, . . . , PL, λl+1, . . . , λL,

and Rl. Assuming that λl and Pl are fixed or given, ϕl becomes a function of Rl, the throughput,

T , is a function of the rates, {R1, . . . , RL} and the throughput maximization is given by

{R∗
l , l = 1, . . . , L} = argmax

Rl≥0, l=1,...,L
T (R1, . . . , RL), (12)

which is an L-dimensional optimization problem. Fortunately, it is not necessary to perform a

high dimensional optimization to find the optimal rates in (12). For example, consider the case

of L = 2, where the throughput is given by

T (R1, R2) = R1η1(R1) +R2η2(R2)ρ1(R1), (13)

which suggests that the throughput can be maximized by finding the optimal value of R2 first

and then that of R1 for given optimal rate R∗
2. Based on this, we can see that the optimal rates

to maximize the total throughput can be found by L individual one-dimensional optimizations

as follows.

Lemma 3: Each optimal transmission rate can be individually and recursively found in

descending order as

R∗
l = argmax

Rl

Tl(Rl), l = L, L− 1, . . . , 1, (14)

where

Tl(Rl) = Rlηl(Rl) + ρl(Rl)Tl+1(R
∗
l+1) (15)

and TL(RL) = RLηL(RL).
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Proof: It is a straightforward generalization from (13), we omit the proof.

Note that the transmit powers can be decided to keep the average SINR of each layer constant

as follows:

Plσ
2
h

σ̄2
l

= γ,

where γ represents the target SINR, i.e., Pl is in descending order decided as

Pl =
γσ̄2

l

σ2
h

, l = L, . . . , 1, (16)

since σ̄2
l is a function of Pl+1, . . . , PL as shown in (11).

Note that each user is to randomly choose a layer as all the users have the same average

channel power gains under the assumption of A4. This assumption differs from that in [19] [18],

where each user may have a different average channel power gain. As in [19] [18], if users have

different average channel power gains and know them, each user can choose the layer according

to the average channel power gain so that the overall transmit power is minimized. For example,

if L = 2, the users in a cell can be divided into two groups depending on their distances from

the BS. A group of users whose distances from the BS are less than or equal to din, which is

a threshold distance and less than cell radius, can be called near users, while the other users

whose distances are greater than din can be called far users. Since a near user can have a higher

channel gain than a far user with the same transmit power, it might be reasonable to allocate

near users to layer 1 and far users to layer 2 to reduce the transmit power. With L > 2, this

approach can be straightforwardly generalized.

C. Comparison with IRSA

In this subsection, we briefly study the comparison between the proposed layered random

access scheme and IRSA in [11] in terms of the average number of successfully decoded packets

in a slot (or MAC frame).

In general, the comparison between the proposed layered random access scheme and IRSA in

[11] is not straightforward since different assumptions are used in each scheme (e.g., no fading
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is considered in [11]). However, under some additional assumptions and approximations, we can

consider comparisons as follows.

For the sake of simplicity, we consider the lower-bound in (10) and a fixed target SINR, γ.

If we assume that R = Rl for all l, then ϕl ≥ ϕ̃ = e−
ν(R)
γ , which is assumed to be fixed. In this

case, ηl(Rl) is lower-bounded by

η̃l(Rl) = η̃l = ϕ̃λle
−

λl
N

and ρl is also lower-bounded by ρ̃l =
(

1 + ϕ̃λl

N

)

e−
λl
N . Then, the average number of successfully

decoded packets is lower-bounded by

SLA ≥ S̃LA =
L
∑

l=1

(

l−1
∏

m=1

ρ̃m

)

η̃l

= N

(

L
∑

l=1

(

l−1
∏

m=1

ρ̃m

)

ϕ̃τle
−τl

)

, (17)

where τl =
λl

N
is the normalized arrival rate. In (17), we can see that S̃LA can be maximized by

finding the optimal arrival rates or normalized arrival rates, {τl}. Since the optimization can be

similar to that in Lemma 3, we do not further discuss it. However, it is noteworthy that since

ρ̃l is also a function of τl as ρ̃l = (1 + ϕ̃τl)e
−τl , the average number of successfully decoded

packets of the proposed scheme can grow linearly with N as shown in (17), which is similar to

multichannel ALOHA [5] and IRSA [11].

Fig. 2, shows the average numbers of successfully decoded packets for the layered random

access scheme4, IRSA5, and slotted ALOHA. As mentioned earlier, for comparisons, we use

the lower-bound for the layered random access scheme in (17) with R = 1. In Fig. 2 (a), we

can see that the average number of successfully decoded packets of the layered random access

scheme increases with the number of layers, L, while the average numbers of successfully

decoded packets of IRSA and multichannel ALOHA are fixed, which are given by 0.965N (this

4The arrival rates are optimized to maximize S̃LA in (17).

5It is assumed that the degree distribution is optimized as in [11] and the asymptotic performance is considered.
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is obtained from [11] with a maximum repetition of 16 as an asymptotic performance) and e−1N

(this is known in [5] as the maximum stable throughput), respectively, as they are independent

of L.

As expected, in Fig. 2 (b), it is shown that the average numbers of successfully decoded

packets of the layered random access scheme, IRSA, and multichannel ALOHA grow linearly

with N . The proposed layered random access scheme can provide a higher throughput than the

others if L is sufficiently large (e.g., L ≥ 4).

Note that the comparisons in Fig. 2 may not be complete as no fading is considered for

IRSA6 and multichannel ALOHA, while the results in Fig. 2 might be favorable to IRSA and

multichannel ALOHA (as no fading is considered for them). In addition, it is noteworthy that the

proposed layered random access scheme can exploit the notion of IRSA within each layer with

iterative decoding. In this case, a receiver can employ not only inter-layer, but also intra-layer

SIC. This generalization might be a further research topic to be studied in the future.

IV. RANDOM CRRD FOR RELIABLE TRANSMISSIONS WITH A DELAY CONSTRAINT

In the previous sections, we have considered the layered random access scheme that can

improve the throughput. This scheme can be modified to guarantee successful packet delivery

within a slot with a sufficiently high probability. To this end, we can consider random CRRD

where a packet from a user is to be transmitted through randomly selected multiple channels.

Throughout this section, we consider the following assumption that replaces A2.

A5 A user can transmit B copies of a packet through randomly selected B channels out of N

channels, where B ≤ N , in a randomly (and uniformly) selected layer. To avoid self-packet

collision, a user is to choose B different channels. Each copy of a packet has the pointers

of the other B−1 copies as in [11] so that any successfully decoded copy can help remove

the other copies by interference cancellation.

6The performance of IRSA under fading is not well studied yet.
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For convenience, B is referred to as the repetition gain. Clearly, if B = N , the resulting

random access is identical to single-channel ALOHA with N-fold transmit diversity, which can

be seen as a generalization of [25]. Under the assumption of A5, provided that there are m

active users in a layer, the conditional probability of collision becomes

pc(m) = 1−
(

1− 1

N

)B(m−1)

, (18)

which can be seen a generalization of (5), as (18) becomes (5) with B = 1. Let Bk,l denote

the index set of the selected B channels by user k provided that user k chooses layer l. The

conditional probability of collision or decoding error of the signal transmitted by a user through

channel q ∈ Bk,l, provided that there are m transmitted signals in layer l, becomes

αl(m) = pc(m) + (1− pc(m))βl, (19)

where βl is the conditional probability of decoding error of layer l with only one signal from

user k at channel q under the lower-interference-free condition for layer l and the assumption

of A5. Note that pc(m), αl(m), and βl are slightly different from those in the previous sections

due to multiple transmissions (or the assumption of A5). However, as long as there is no risk

of confusion, we will use the same notations in this section.

Since there are B copies, under the assumption of A3, the conditional probability of collision or

decoding error becomes αB
l (m) if the signals in channels are independent. Thus, the (conditional)

probability of collision or decoding error of a user’s signal in layer l under the lower-interference-

free condition is given by

Ψl =
∞
∑

m=1

αB
l (m)P̄l(m), (20)

where

P̄l(ml) = Pr(ml |ml ≥ 1) =
Pl(m)

1− e−λl
, ml = 1, . . . . (21)

Here, ml represents the number of active users at layer l. Clearly, if B is large, αB
l (m) is small,

which can result in a low probability of collision or decoding error. Thus, for a large B, a



15

successful packet transmission subject to the delay constraint to transmit within one slot or a

MAC frame can be guaranteed with a high probability for reliable low latency transmissions at

the cost of throughput. However, due to multiple layers, it might be possible to transmit more

packets within a slot.

In fact, (20) is valid only if the σ2
l,q’s, q ∈ Bk,l, are independent. However, since each active

user sends B copies of signals to B different channels, σ2
l,q and σ2

l,q′ can be correlated if any

active user in layer i ∈ {l+1, . . . , L} sends his/her signal to channels q and q′ too. As a result,

(20) is an approximation unless B = 1. In general, if B ≪ N , (20) might be a reasonably good

approximation.

Lemma 4: Under the assumptions of A1, A3, A4, and A5, the approximation of Ψl can be

expressed by a sum of finite terms as follows:

Ψl ≈
∞
∑

m=1

αB
l (m)P̄l(m)

=

B
∑

b=0

(

B

b

)

(1− βl)
bβB−b

l gl(b), (22)

where

gl(b) =
e−λl

1− e−λl

b
∑

j=0

(

b

j

)

(−ω)−j(eλlω
j − 1)

βl = 1− e
−

ν(Rl)N0
Plσ

2
h

−
∑L

i=l+1
λiB

N

ν(Rl)Pi
Pl+ν(Rl)Pi . (23)

Here, ω =
(

1− 1
N

)B
.

Proof: See Appendix C.

From the Ψl’s, we can define the outage probability of each layer as the probability that any of

B copied packets from a user cannot be successfully decoded at layer l. The outage probability

of layer 1 is equal to Ψ1. For layer l, l > 1, by taking into account the error propagation, we

have

Pout,l = 1−
l
∏

i=1

(1−Ψi). (24)
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Due to the closed-form expression in (22), the outage probability can be found in a closed-form,

which can help optimize key parameters such as B to minimize the outage probability. Note

that if Ψl ≪ Ψ1 for l = 2, . . . , L, we can see that the outage probability is generally decided by

Ψ1 or Pout,1. For a low Ψ1, we expect to have reliable transmissions within a slot. Furthermore,

since Pout,l increases with l, the users who can accept tolerable reliability can choose upper

layers, i.e., layers l ∈ {2, . . . , L}.

Note that unlike IRSA, no intra-layer SIC is used in the modified layered scheme with CRRD

in this section. Furthermore, as no iterative decoding is used, the processing delay at a receiver

is fixed, which is desirable for high reliability low latency communications.

V. SIMULATION RESULTS

In this section, we present simulation results to see the performance of the proposed layered

random access scheme Rayleigh fading in terms of the throughput (without CRRD) and outage

probability (with CRRD).

A. Throughput

In this subsection, we present simulation results under the assumptions of A1 – A4. For

simulations, we assume that the transmit powers are decided as in (16) and σ2
h = N0 = 1 for

normalization. In addition, for convenience, we assume that λ = λl, l = 1, . . . , L (i.e., an equal

arrival rate is assumed for all the layers). The throughput in this section is in the number of bits

per channel use as mentioned earlier.

Fig. 3 presents the throughput of the layered random access scheme for different arrival rate,

λ, when N = 10 and γ = 3 dB. In Fig. 3 (a), with L = 3, the throughput of each layer is

shown with the optimal rates that are found from (14) for each value of λ. We can see that

the theoretical result agrees with the simulation result for layer 1. However, we find that the

theoretical result becomes an approximation for the bottom layers, i.e., layers 2 and 3 due to

the correlation of the events of successful decoding in different layers as explained earlier. From
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this, the theoretical total throughput becomes an approximation as in Fig. 3 (b), where we can

also observe that the total throughput is improved with more layers. In Fig. 3 (b), we can also

observe that the arrival rate per layer that maximizes the throughput is less than the number

of channels, N , and decreases with the number of layers. In order to avoid frequent collisions,

an arrival rate lower than N might be desirable (which could result in a higher throughput). In

addition, since the interference power increases with the number of layers, the arrival rate can

decrease with the number of layers for a reasonable interference power and to achieve a higher

throughput.

Fig. 4 shows that the transmit power increases with the number of layers. From this, we

can see that the total throughput is improved at the cost of higher transmit power. In addition,

the transmit power increases with λ to meet the nominal SINR because the interference power

increases with λ (which is shown in (11)).

In Fig. 5, we assume an equal transmission rate for all the layers, i.e., R = Rl, l = 1, . . . , L,

and show the total throughput for different values of R when N = 10, λ = N , L ∈ {3, 6}, and

γ = 3 dB. We can observe that the optimal rates that are obtained from (14) can provide the

best performance in terms of the total throughput.

In Fig. 6, we show the total throughput for different target SNR, γ, when N = 10, λ = N ,

and L ∈ {3, 6}. Since ϕl increases with γ, the total throughput increases with γ as shown in

Fig. 6.

Fig. 7 shows the total throughput for different numbers of layers, L, when N = 10, λ ∈

{N/2, N}, and γ = 3 dB. The total throughput increases with L, while it becomes saturated for

a large L. In particular, when λ = N , the total throughput slowly increases with L when L ≥ 4.

Interestingly, for a large L (e.g., 8), we can observe that the total throughput can be higher with

a lower arrival rate λ. This shows that a lower arrival rate is desirable for a larger number of

layers to keep the interference low, which may result in a higher total throughput.
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B. Outage Probability

In this subsection, we present simulation results when each user transmits B copies of a

packet through different channels for reliable transmissions (i.e., with CRRD). We show the

outage probabilities that are obtained by the theoretical approximations (i.e., (22) and (24)) and

simulations under the assumptions of A1, A3, A4, and A5 with σ2
h = N0 = 1. Furthermore,

throughout this subsection, we assume that R = Rl and λ = λl, l = 1, . . . , L, while the powers

are decided as in (16).

Fig. 8 shows the outage probability for different values of transmission rate, R, when B = 4,

N = 60, L = 3, λ = 3, and γ = 10 dB. Clearly, we can see a trade-off relationship between

the transmission rate and reliability with a delay constraint. That is, we can achieve reliable

transmissions with a delay constraint at the cost of transmission rates. We can also see that

although (24) is an approximation, it can provide reasonably good approximations of the outage

probabilities at around R = 1.

In Fig. 9, we present the outage probability for different values of repetition gain, B, when

R = 1, N = 60, L = 3, λ = 3, and γ = 10 dB. It is interesting to see that there might be

an optimal B, which is around 6. If B is too large, there might be more collisions. On the

other hand, if B is too small, the multiple transmit diversity gain is small. Note that there is

a noticeable gap between the theoretical approximations and simulation results for a large B,

because (22) is obtained without taking into account the correlation of the σ2
l,q’s that increases

with B.

In Fig. 10, the outage probabilities are shown for different values of arrival rate, λ, when

B = 4, N = 60, L = 3, R = 1, and γ = 10 dB. For a low outage probability, it is desirable to

have a low arrival rate, λ. This might be seen as a trade-off relationship between the throughput

and reliability with a delay constraint. Together with the results in Fig. 9, we can conclude

that reliable transmissions with a delay constraint can be achieved with CRRD at the cost of
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transmission rates as well as arrival rates or throughput.

From Figs. 8 – 10, we can see that the outage probabilities of layers are not significantly

different, while the outage probability increases with l as expected. With a large L, we can have

more transmissions. However, the users choosing upper layers, i.e., a large l, should be more

tolerable for transmission reliability.

VI. CONCLUDING REMARKS

We considered a layered random access scheme that can support more users by exploiting

the notion of NOMA in this paper. To find the throughput, we derived a closed-form expression

for the probability of successful decoding by taking into account packet collision as well as

decoding errors due to low instantaneous SINR. From this, a closed-form expression for the

total throughput was derived. Although it is an approximation as the correlation of the events of

successful decoding in different layers has been ignored, it allowed us to find optimal rates that

maximize the total throughput. From simulation results, we confirmed that the resulting optimal

rates can provide the highest throughput (as shown in Fig. 5).

From brief comparisons between the proposed layered random access scheme and IRSA, we

found that the proposed layered random access scheme can provide a higher throughput using

multiple layers than IRSA. A generalization of the proposed scheme with the notion of IRSA

might be an interesting topic where a receiver can employ not only inter-layer, but also intra-layer

SIC. This generalization might be a further research topic to be studied in the future.

We also modified the proposed layered random access scheme with CRRD so that a receiver

can decode the signals from users within a slot (or MAC frame) with a high probability. A

closed-form expression for the outage probability is derived, which is an approximation and

reasonably good when the repetition gain is not too large. From simulation results and analysis,

we observed that reliable transmissions can be accomplished with a high probability at the cost

of transmission rates as well as arrival rates or throughput.
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APPENDIX A

PROOF OF LEMMA 1

From (4), we have

ηl =

∞
∑

m=0

m(1− α1(m))Pl(m)

= (1− βl)

∞
∑

m=0

m(1− pc(m))Pl(m), (25)

where Pl(m) is the probability that there are m active users at layer l. Under the assumption of

A1, since Pl(m) =
λm
l
e−λl

m!
, it follows

ηl = (1− βl)λl

∞
∑

m=1

(

1− 1

N

)m−1
λm−1
l e−λl

(m− 1)!

= ϕlλle
λl(1− 1

N )e−λl, (26)

which leads to (6). This completes the proof.

APPENDIX B

PROOF OF LEMMA 2

Under the assumption of A4, |hk,q|2 becomes an independent chi-squared random variable

with 2 degrees of freedom. Let Dl,q denote the number of users transmitting signals through

channel q and layer l. Then, σ2
l,q can be given by

σ2
l,q = E[|nl,q|2 | {hk,q}]

=

L
∑

i=l+1

Pi

∑

k∈Ii,q

|hk,q|2 +N0

=
L
∑

i=l+1

σ2
hPi

2
χ2
2Di,q

+N0, (27)

where χ2
2D represents an independent chi-squared random variable with 2D degrees of freedom.

Under the assumptions of A1 and A2, we can see that Dl,q is an independent Poisson random

variable with mean λl

N
. Thus, it can be shown that

E

[

σ2
hPi

2
χ2
2Di,q

]

=
σ2
hPiλi

N
. (28)
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Under the assumption of A4, from (3), the decoding error probability becomes

βl = 1− E

[

exp

(

−σ2
l ν(Rl)

Plσ2
h

)]

. (29)

Then, using Jensen’s inequality, we have

ϕl ≥ exp

(

−E[σ2
l ]ν(2

Rl)

Plσ2
h

)

= exp

(

−ν(Rl)

γl

)

, (30)

which becomes the lower-bound in (10).

To find the exact expression, from (29), we have

ϕl = e
−

ν(Rl)N0
Plσ

2
h E

[

e
−

ν(Rl)

Pl

∑L
i=l+1

Piχ
2
2Di,q

2

]

. (31)

Since χ2
2D is a chi-squared random variable (under the assumption of A4), it can be shown that

E

[

e
−

ν(Rl)

Pl

∑L
i=l+1

Piχ
2
2Di,q

2

]

=
L
∏

i=l+1

E

[

e
−

ν(Rl)

Pl

Piχ
2
2Di,q

2

]

=
L
∏

i=l+1

E





(

1

1 + ν(Rl)Pi

Pl

)Di,q



 . (32)

Now, noting that Di,q is a Poisson random variable (under the assumptions of A1 and A2), we

have

E





(

1

1 + ν(Rl)Pi

Pl

)Di,q





=
∞
∑

d=0

(

1

1 + ν(Rl)Pi

Pl

)d
(λi/N)d

d!
e−λi/N

= exp

(

−λi

N

ν(Rl)Pi

Pl + ν(Rl)Pi

)

. (33)

Substituting (33) into (32), we have

E

[

e
−

ν(Rl)

Pl

∑L
i=l+1

Piχ
2
2Di,q

2

]

= e
−

∑L
i=l+1

λi
N

ν(Rl)Pi
Pl+ν(Rl)Pi . (34)

Finally, substituting (34) to (31), we can obtain the exact expression in (10).
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APPENDIX C

PROOF OF LEMMA 4

It can be shown that

∞
∑

m=1

αB
l (m)P̄l(m)

=
∞
∑

m=1

(pc(m) + (1− pc(m))βl)
B P̄l(m)

=
∞
∑

m=1

B
∑

b=0

(

B

b

)

(1− βl)
bpbc(m)βB−b

l P̄l(m)

=

B
∑

b=0

(

B

b

)

(1− βl)
bβB−b

l

∞
∑

m=1

pbc(m)P̄l(m). (35)

In order to find an expression with a sum of finite terms, we can show that

∞
∑

m=1

pbc(m)P̄l(m) =

∞
∑

m=1

(1− ωm−1)bPl(m)

=
b
∑

j=0

(

b

j

) ∞
∑

m=1

(−ωm−1)jP̄l(m)

=
e−λl

1− e−λl

b
∑

j=0

(

b

j

)

(−ω)−j(eλlω
j − 1).

Substituting (36) into (35), we have

Ψl ≈
e−λl

1− e−λl

B
∑

b=0

(

B

b

)

(1− βl)
bβB−b

l

×
b
∑

j=0

(

b

j

)

(−ω)−j(eλlω
j − 1), (36)

which is (22).

Note that βl in (23) is different from 1 − ϕl that can be obtained from (10) due to multiple

transmissions (i.e., B > 1). Under the assumptions of A1 and A5, Di,q in (27) is a Poisson random

variable with mean λiB
N

instead of λi

N
, i.e., Di,q ∼ Poiss

(

Bλi

N

)

. Thus, under the assumption of

A4, we have

E

[

e
−

ν(Rl)

Pl

∑L
i=l+1

Piχ
2
2Di,q

2

]

= e
−

∑L
i=l+1

λiB

N

ν(Rl)Pi
Pl+ν(Rl)Pi , (37)

which is substituted into (31) to obtain βl in (23).
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Fig. 2. Comparisons between the proposed layered random access scheme, IRSA, and multichannel ALOHA in terms of the

average number of successfully decoded packets: (a) the average number of successfully decoded packets versus L with N = 10;

(b) the average number of successfully decoded packets versus N with γ = 10 dB and L ∈ {3, 4}.
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Fig. 3. Throughput versus arrival rate λ with γ = 3 dB and N = 10: (a) throughput of each layer; (b) total throughput with

L = 3 and L = 6.
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Fig. 4. Average transmit power for different arrival rate, λ with γ = 3 dB, L ∈ {3, 6}, and N = 10.
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Fig. 5. Total throughput for different transmission rate, R = Rl, l = 1, . . . , L, when N = 10, λ = N , L ∈ {3, 6}, and

γ = 3 dB.
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Fig. 6. Total throughput for different target SNR, γ, when N = 10, λ = N , and L ∈ {3, 6}.
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Fig. 8. Outage probabilities for different values of transmission rate, R, when B = 4, N = 60, L = 3, λ = 3, and γ = 10 dB.
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Fig. 9. Outage probabilities for different values of repetition gain, B, when R = 1, N = 60, L = 3, λ = 3, and γ = 10 dB.
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Fig. 10. Outage probabilities for different values of arrival rate, λ, when B = 4, N = 60, L = 3, R = 1, and γ = 10 dB.



0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

Arrival Rate, λ

T
ot

al
 T

hr
ou

gh
pu

t

 

 

Without CSI (Theory)
Without CSI (Sim.)
With CSI (Sim.)



0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

Arrival Rate, λ

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

Layer 1 (Theory)
Layer 1 (Sim.)
Layer 2 (Theory)
Layer 2 (Sim.)
Layer 3 (Theory)
Layer 3 (Sim.)


	I Introduction
	II System Model
	II-A Layered Random Access
	II-B Signal Decoding using SIC

	III Throughput Analysis
	III-A Derivation of Throughput
	III-B Throughput Maximization
	III-C Comparison with IRSA

	IV Random CRRD for Reliable Transmissions with a Delay Constraint
	V Simulation Results
	V-A Throughput
	V-B Outage Probability

	VI Concluding Remarks
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Lemma ??
	References

