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Abstract—We consider downlink transmission in cloud radio be embedded in the Fifth Generation (5G) mobile networks
access networks (C-RANs) with multiple cochannel multicasg [3].
groups served by a group of remote radio heads (RRHSs), which

receive information from a base band unit via finite-capaciy . Lo L .
fronthaul links. Our aim is to jointly design RRH selection and Coordinated multi-point (CoMP) transmission is one of

beamforming vectors such that the minimum weighted data ra¢  the key technologies to improve the capacity of wireless
among users are maximized under the constraints of maximum networks, particularly for the cell edge users. There ame tw
transmit power and fronthaul capacity at each specific RRH. main strategies of CoMP namely coordinated beamforming
The problem is intractable due to the numerical difficulties of (CB) and joint transmission (JT) [4]. To enable CoMP-CB
combination and nonconvex functions. Based on a semidefieit . . . ’
relaxation technique, bisection search, and branch-and4und the channel state mformgtlon (CSl) for receivers needseto. b
method, we develop an upper bound which is also the optimal Shared between transmitters. However, the data transimitte
solution to the original problem if the relaxation is tight. More to a user is available at only one transmitter. The gain of
importantly, we propose a heuristic low-complexity iteraive CoMP-CB comes from the interference mitigation, i.e. CoMP-
procedure for practical applications based on the state-ethe-art CB reduces the interference level experienced by a user (via
sequential convex approximation. Subsequently, we modifghe S - .
proposed methods for the uncertain channel state informatn designing the approp_rlatg precoding). On the cher hared, th
case. To be specific, the upper bound and its suboptimal soion ~Same data content is simultaneously transmitted to a user
are altered based on theS-lemma while the low-complexity from multiple transmitters in the CoMP-JT, i.e. transniite
algorithm is tailored by using two different approximations of collaborate in designing precoders operating as a largeaVir
intractable robust counterpart. The validity of the proposed multiple-input multiple-output (MIMO) system [5]. Therarde
methods in the region of limited fronthaul capacity is confimed . . '
by numerical results. CoMP-JT requires not only CSI but also the transmitted data

to be available at multiple transmitters. The main prattica

.. | . . X challenge of CoMP implementation is that the strict network

channel uncertainties, transmit beamforming, mixed inte@r . . . .
semidefinite program, sequential convex approximation, rbust synchronization accuracy is req_wred, espeC|aIIy_for _COMP
optimization. JT [6]. Consequently, CoMP typically cannot achieve itd ful

potential in the conventionally deployed mobile networke d

to the large backhaul latency [7].

Index Terms—Cloud radio access networks, multicasting,

I. INTRODUCTION

The evolution of wireless communications and the devel- Cloud (or centralized) radio access network (C-RAN) is a
opment of user devices (e.g. smartphones) with high-qualﬂOVe| network architecture which effectively supports linwe-
media capabilities lead to the explosion in mobile data dkitency deployments [8]. The central idea is to divide thecfu
mand, in which videos contribute nearfy) percent to the tionalities of the conventional base station (BS) into tveotp
total mobile traffic [1]. On the other hand, since the numbé&g@lled base band unit (BBU) and remote radio head (RRH); the
of connected devices is growing rapidly and is expected &BU performs base-band processing while the RRH includes
exceed more than 28 billions by 2021 [1], more and more oftéi¢ radio frequency operations. Due to the separation, the
multiple user devices located in a specific area access the s&BU can be located at a central location called BBU pool
media content. In such a case, point-to-multipoint trassioh  While the RRH is placed close to the antennas, and they are
or multicastingwould be much more efficient than point-connected with each other by, e.g., fiber link called frontha
to-point unicasting [2]. The benefits of multicasting havel9]- Such centralized base band processing allows the full
been exploited in the Long-Term Evolution (LTE) network§oordination between RRHSs, since the backhaul latency can
via the mechanism called evolved multimedia broadcast aRf ignored, and thus CoMP-JT is effectively supported by the
multicast service (eMBMS) [2]. The service is also likely td=-RAN. However, it should be noted that the capacities of the

fronthaul links are limited regardless of the deployed |x¢gls
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A. Related Works

Multicasting has been intensively studied over the last
decade. The problems with a single multicasting group were
considered in [11], [12] while those with multiple multi¢as)
groups were considered in [13]-[16]. There are two main
objectives in designing multicasting transmission. Thet fir
one is to minimize the transmit power subject to the quality
of service (QoS) of each specific user; the second one is
to maximize the minimum weighted signal-to-interference-
plus-noise ratio (SINR), i.e. weighted fairness, amongsise
under the constraints on maximum transmit power. In general
a multicasting problem is NP-hard [13], and thus to find
its optimal solution is a difficult task. Consequently, low-
complexity efficient suboptimal solutions are of inter@dtere
are two main approaches to design suboptimal linear beam-
forming for multicasting namely the semidefinite relaxatio
(SDR) [13] and the sequential convex approximation (SCA)
[12]. The SDR is a sort of outer approximation technique
which provides the exact optimal solution to the original
problem—when relaxation is tight—or the performance bound
based on that a suboptimal solution can be obtained using,
e.g., randomization techniques. On the other hand, the SCA
is an inner approximation method which achieves a solution
to the problem via solving a series of convex subproblems.
It is shown in [12] that the SCA achieves better performance

« We derive a tight upper bound and achieve a near

optimal solution to the considered problem. To do so,
we first follow the principles of the SDR to overcome
the quadratic nonconvex parts and arrive at a relax-
ation. We then globally solve the relaxation problem
via a procedure built based on the bisection search and
the branch-and-bound (BnB) technique. Then, feasible
solutions to the original problem are yielded via the
randomization/rescaling procedure (if necessary).

« For more practical implementation, we resort to the SCA

framework to develop a low-complexity iterative algo-
rithm. More specifically, we introduce a regularization
formulation arrived upon the idea of the exact penalty in
which all the elements are smooth [24]. Then, an iterative
procedure is built where a second-order cone program
(SOCP), which is an inner approximate subproblem of
the regularization problem, is solved in each iteration.

o The proposed approaches are then leveraged to the sce-

nario wherein the CSI is imperfect. In particular, we
follow the regular worst case strategy to overcome the
channel uncertainty. The intractable robust counterpart
is tackled by applying the relaxation (via introducing
SD matrices and applying th§-lemma) and the safety
approximations.

with a lower complexity in large scale networks compared fe- Organization and Notations
the SDR. Multicasting transmission under imperfect CSI was The rest of the paper is organized as follows. Section I

studied in [14] where the error sets are modeled as elligsoidescribes the system model and the problem formulation of
There are many works investigating joint beamformingint beamforming design and RRH selection. Section |
design and RRH selection for unicasting downlink CoMP-Jpresents the proposed approaches including the upper bound
The works in [17]-[19] focused on minimizing the total conand the suboptimal method for the perfect CSI scenario.
sumed power under the constraint of QoS for each specific uSerction 1V extends the methods for the case of imperfect CSI.
while those in [20], [21] aimed at maximizing the (weightedpection V provides the computational complexity estintatio
sum rate. For multicasting, [22] proposed methods miningjzi of the proposed methods. Numerical results and discussions
a network cost, which is the combination of the total traismare provided in Section VI. Finally, Section VII concludég t
power and the fronthaul cost, under the constraints of QoSwbrk.
each specific user. [23] investigated multicasting trassion Notation We follow the standard notations in this paper.
under imperfect CSI where the consumed power is minimiz&bld lower and upper case letters represent vectors and-matr
subject to the QoS for each user and maximum transmit poveas, respectively-||, represents the norm;|-| represents the
at each RRH. Generally, a problem of joint beamformingbsolute valueC**? represents the space of complex matrices
design and RRH selection is cast as a mixed integer nonconeéxdimensions given in superscrigt; V' (0, ¢) denotes a zero
program which is highly intractable. Thus, the mentioneahean circularly symmetric complex Gaussian random vagiabl
works mainly focus on low-complexity suboptimal schemeswith variancec; R(-) represents real part of the argument;
E{-} denotes the expectation operatAr’ and A" stand for
the transpose and the Hermitian transposé pfespectively;
Tr(A) andrank(A) are the trace and rank &, respectively.
nI—M represents ain/ x M identity matrix. The notatiotA = 0

forming design and RRH selection for C-RAN mu|t|cast|ngr.nef"ms thatA.is.positive semidefinite. Other notations are
Different from [22], [23], our goal is to maximize the mini-defmed at their first appearance.

mum weighted SINR among users subject to the limitation of

fronthaul capacity and the maximum transmit power at each !l- SYSTEM MODEL AND PROBLEM FORMULATION
specific RRH. We formulate the problem as a mixed BooleanWe consider downlink transmission in C-RAN where a set
nonconvex program by applying the Big-M formulation. Thef RRHs denoted byl = {1,2,...,T} jointly transmit data
distinguishing feature of the proposed formulation is thst to a set of multicast groups denoted 8y= {1, 2, ..., G}. Let
structure is amenable to developing a tight upper bound aiigl = {1,2,...,U,} be the set of users belonging to grogp
efficient suboptimal solutions. In particular, our contions ¢ € G, and each user belongs to only one group g\, =
include the following: 0 for all k& # ¢ [13], [22], [23]. We denote byy;, i € U, user

B. Contributions

In this paper, we investigate the problem of joint bea
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Figure 1. An example of collaborated transmission for mldtcochannel multicast groups in C-RAN where RRHs are ottedeto a BBU pool via fronthaul
links.

7 in group g. An example of the considered communicatiodenote byC} the capacity of the fronthaul link connecting to

system is displayed in Fig. 1. We assume that each useRRBH ¢, and byG, C G the set of multicast groups receiving

equipped with a single-antenna, and RRIH € T, is equipped data from RRH¢t. Then, constraints on data rate transmitted

with L, transmit antennas. Let us denote hy,;, € C'xL+  over the fronthaul links can be written as [22]

the channel (row) vector between uggrand RRH¢, and by

w, € CLe*! the beamforming vector for groupat RRH . Z Ry < Cy,VteT. ®)

We define7, C T to be the set of RRHs transmitting data to g€

groupg. With these introduced notations and under flat fading can be observed from (3) that, givet,, R, would be

channels, the received signal at ugeiis improved if G; is grouped suitably. In other words, properly
choosing the sets of serving RRHs for the multicast groups

Yg; = (Z hgq,tht)l"g + Z ( Z hgikam)xk +24;  would improve the common information rate.
teTy keG\g meTk

interference (1) B. Problem Statement

wherez,, ~ C/\/(O,aji) is the additive white Gaussian noise We are interested in _the problem_ qf_joint b_eamforming
(AWGN) at usery; with variancer? , andz, is the normalized design and RRH selection for maximizing weighted max-
complex data symbol, i.&{x,z%} = 1, intended for group. min fairness transmission. In order to formulate the proble
We assume that the cochannel interference in (1) is treated®f Us denote byl',, the grade of service with respect to
noise, then the signal-to-interference-plus-noise ré@itNR)  user g; where largerl’y, corresponds to higher grade [13].
at userg; can be expressed based on (1) as Let us also denote by, the worst case scaled SINR, i.e.

, Jogi > o for all g; [13], [14]. Based on the discussion in
| ZteTg hy, owge

Zkeg\g | ZmGTk hgi'rnwkm|2 + Ugi '

I,

) the previous subsection, in order to achieve some the
data rate with respect to groyptransmitted from the BBU
pool to the serving RRHs should be larger than or equal

A. Fronthaul Capacity Constraint for Multicasting to R, = log(1 + yl,) whereT, £ max Iy,. With this

We suppose that either perfect or imperfect CSl is availabd@servation, the problem of interest can be formulated as
at the BBU pool for central network management [17]. After
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base-band processing is performed, data is delivered fnem t {gz?fi{fgjf‘io 7o (4a)
BBU pool to the RRHs via fronthaul links. As mentioned ] Yai .

above, the fronthaul links are limited in capacity. Herein, ~ subject to &= >190,Vg € G,i € Uy (4b)
multicast data is transferred to the RRHs after the BBU pool v _

determined beamforming vectofsv,;}. Let R, be the data > log(l+ly) SC VEET  (40)
rate corresponding to group which is delivered over the 9€Ge

fronthaul link to RRH¢ (for all ¢t € T,). We note that, in D lwall3 < PVt e T. (4d)
multicasting applications, the data rate transmitted tpeziic 9€G:

user would be different from that to other users in the groupgngiraints in (4c) are arrived following (3), and that ird4
depending on the corresponding grades of service [13]. Th{g, eqents transmit power restriction whékés the maximum
R, sAhouId be the highest data rate of the users in giQU®.  ansmit power at RRH.

Ry = max Iy, whereR,, is the data rate transmitted {0 USer 14 sojve (4) globally is a difficult task, since (4) combines
gi. For viable transmission, the total data rate transmitied b the numerical challenges of handling discrete variables an
RRH (to users) should be smaller or equal to the capacity ménconvex functions. In particular, (4) is a combinatorial
the fronthaul link connecting to the RRH. In particular, st optimization problem for which an optimal solution may



require an exhaustive search to be found. Moreover, evdil. PROPOSEDJOINT BEAMFORMING DESIGN AND RRH
if {G.} are fixed, the resulting problem is still NP-hard SELECTION

due to the nonconvex constraints in (4c) and the intractalle ypper Bound and Suboptimal Design via SDR

form of {~,,} [13]. These observations promote finding low-

complexity efficient suboptimal solutions to (4). A common approach tackling the intractable formatygf

is to lift the problem to the semidefinite domain. Let us

introduce semidefinite matricéd’, £ w,w!!, vg. Utilizing

C. Alternative Formulation with Boolean Variables the principle of the SDR [28], we arrive at a relaxation of (6)
In order to develop solutions to (4), we equivalently re/hich is written as

formulate it into a more tractable form where RRH selection  ,ximize (7a)
is controlled by Boolean variables. In fact, this approaak h {W, >0} {dgt},

been considered in many works related to BS selection, e.g. Tr (H, W,)
[18], [21], [25], [26]. For notational convenience, let us subject to i T2 L'y, 70,
define vectorsw, = [w],, wl,. ..., wl,]T € C*D and D h=1izg 1 (Hg, Wi) + 07,
h,, 2 [hy,1,hy0, ..., hy,r] € CO¥D) whereL = (2], Ly) Vgeg,icly (7b)
is the total number of transmit antennas at all RRHs. Then the G -
SINR at userg; in (2) can be rewritten as > dglog(1+7l,)< CVteT  (7c)
wiH, w . p
Yo = —ag g Hg" g ; (5) Tr (B W) <dguP,VteT,geG  (7d)
PP Jotg Wi Hg Wi+ 07,
whereH,, £ h!! h,. To this end, let us introduce the Boolean Z Tr (BeW,) veeT (7e)
varlables{dgt}geg +e7 such thatd, = 1 indicates that RRH
t serves groupy, andd, = 0 otherwise. Then, problem (4) dge € {0,1},Vt€ T, g€ ¢ (79)
can be equivalently reformulated as where B, £ BJB,. Solving (7) globally is of particular
interest. Let({W7}},{d;;},7;) be the optimal solution of
6a tSs 10 . g .
{gf’}ﬁlﬁlf‘io o (63) (7). Then~g is the upper bound of the objectlve in (6).
Ygi . Moreover, ifrank(W5) = 1 for all g, ({w} }, {d;,},75) is an
bject t > v,V U 6b . ; g : tJ: 0
Stbject 1o Iy, — 70,9 € G, € Uy (6b) optimal solution of (6) wherev; is extracted frorﬂW using

B the eigenvalue decomposition [29]. We note that (7) is still
ngtlog(l +vIy) <C,VteT  (6¢c) a mixed Boolean nonconvex program. However, its optimal

g=1 solution can be obtained by the procedure presented below.
||Btwg||§ <dyuP,VteT,geg (6d) 1) Optimal Solution to(7): We make some useful obser-
G vations regarding to (7). First, whep is fixed, problem (7)
Z |Biw,||2 < P,VteT (6e) reduces to a mixed Boolean SDP (MI-SDP), i.e. the problem
g=1 becomes SDP as the Boolean variables are fixed or relaxed,
s {01}, ¥t eT,geg (6f) which can be solved globally by, e.g., BnB method [30].
Second, letQ(vy) be the feasible set of (7) corresponding
where B, = [0, s~i-1 1,0, 50 1,). Additional to some fixedsy, i.e.
constraints in (6d) are arrived based on the Blg M formalati Q7o) 2 {{W,}, {dy}|(7Tb) — (7H)}. ®)

[27], which indicate that RRH, ¢t € T, does not allocate
power for groupg, g € G, if the RRH does not serve theGiven~, and~, such thaty, < 7{, then we haved () # 0
group, i.e.wg = 0 whendy; = 0. if 9(vy) # 0; on the other hand, iD(yo) = 0, Q(vy) = 0.

It should be mentioned that a natural idea dealing witihese are due to the fact th@(+(,) C Q(vo). Consequently,
a mixed integer problem is to solve the problem where thvee can perform a bisection search ovey. We develop
integer variables are continuously relaxed, then round themethod based on these two remarks which provides the
value of the relaxed variables to the nearest integers, apptimal solution to (7).
subsequently solve the problem with the value of the integerThe main steps of the proposed method are outlined in
variables fixed for satisfying the constraints and refinemerlgorithm 1. At the initial stage, the starting value of the
However, for (6), to relax or fix the Boolean variables doespper bound;{, and lower bounds{, of the objectivey,
not lead to a more tractable formulation, i.e. the problenase required. For the lower bound, we simply sét = 0
at the first and the third steps in the mentioned three-stdpe tov, > 0. The transmit data rate depends not only on
procedure are still nonconvex. More importantly, it is nathe wireless channels but also on the fronthaul capacities.
guaranteed that the value ¢fl,,} are close to 0 or 1 after Thus the upper bound can be simply determinedygs=
solving the continuous relaxation problem. And thus, thalfln by, |13 . exp(C) 1 I VAR
obtained objective value might bs unacceptably detegdrat {Pto Ty,02,” }gi where P, = >°,_, P and
This motivates us to develop the methods presented in the= max Cy. The first term in the braces is arrived by apply-
following sections. ing the Cauchy-Schwartz inequality on the constraints ) (7
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which represents the upper bound dominated by the capadty Low-complexity Solution via Sequential Convex Approxi-
of the wireless channels [13]. The second term represeats thation
bound d_ommated by the capacity of the fronthaul Imkg (i-e. The method presented in the previous subsection can pro-
(7¢)) which corresponds to the case that the RRH associated t . - . !
. vide a tight upper bound and an efficient suboptimal solution
the largest fronthaul capacity serves only one group. Petem . . .
. . . . . to (6). However, this approach is not suitable for largdesca

eps IS the error tolerance, i.e. the possible maximum distance L . .

: P . etworks due to the exponential increase in the complexfity o
between the obtained objective value and the optimal one. th]
bisection search with respect g is performed in lines 2-5.
Inline 4, a BnB algorithm is carried out to check the feaipil

and find ({W: 1, {dz,}).

e BnB search and the high sensitivity of SDP with respect
to the problem dimensions [31]. We present herein a hearisti
low-complexity algorithm for practical large-scale netk®
which obtains suboptimal solutions to (6) by solving a serie
of SOCPs. The idea is to overcome the nonconvex problem
by resorting to the SCA framework [32], [33], which has been

Algorithm 1 The proposed method for solving (7) optimally

1: Initialization 3’{31 75+ €bs > 0 widely used in wireless communications design, e.g. [1B3] [

2: while 7" — 95 < ey do 1) Equivalent TransformationProblem (6) is currently not

3 sety = @ in an amenable format for using SCA due to the intractability

4 if Q) # 0 then ~rf = ~o and update of nonconvex constraints in (6b) and (6¢c) as well as the
(W33, {d:,}) € Q7o) elsery == end if. discrete parts in (6f). Thus, as the first step, we transfdven t

5. end while problem into an equivalent formulation in which its congxi

6: Output: ({W7}, {dy,},75) is more exposed. Let us introduce new optimization varible

{s4}4, and equivalently rewrite (6) as
2) Suboptimal solution tq6): When W7 is not rank-

1 for all g, a feasible point of (6) can be derived from Hv{,a?igitze Y0 (11a)
the output({W:}, {d:,},7&) by using randomization/scaling Yor{sg}

procedures [13], [28]. We note that the optimal value of (6) WHH. w G

is smaller than or equal tog. Thus the fronthaul capacity — subject to ——"—= > > w{H, wy + o,
constraints in (6¢) can be ignored in the scaling step. $peci Lg% k=1 k#g '

ically, let {w3*}, be a set of beamforming vectors obtained Vgeg,icU, (11b)

from the Gaussian randomization procedure. Then the gralin

log(1 r,) < 11
problem reads [14] (;g( +0ly) < 59,Y9 € G (11c)
maximize o (9a) Z dgtsqg < Cp,Vt e T (11d)
{Pg}ac g=1
; Pgay,
subject to — >Ty,a,Yg;  (9b) r G
D he1,kg Pkbgik + 0g, D> (A2 —dg) >0 (11e)
G t=1 g=1
> pocgr < Pi vt (9c) 0<dy <1,VgeG,teT (11f)
g=1 (6d), (6e) (119)

A sdp\H sd N sdp\H sdp

\;v:derce agé’ ﬂB(inngi’)||2H%:;%I2mbg(iék) I; S(ZT\};e(j) bl_; ggvgglyi,ngThe equivalence between (6) and (11) can be easily justified
biseci]iton searéh o gver 0.~] where each supproblem as follows. The constraints in (6c) are satisfied if and only

. 70 if there exists a poinf{w,},{dg}, 70, {sy}) which satisfies
a linear program. the constraints in (11c) and (11d). Similarly, the constisin
Remark 1. Although ~y can be achieved by any(i1e)and (11f) are satisfied simultaneously if and only,f
(W3}, {d;;}) € Q(y), choosing an arbitrary feasiblejs 1 or 0 for all ¢, ¢ [35, Chap. 4].
point in Q(~) might result in inefficient power performance. 2y Regularization FormulationWe note that the constraints
This is becaus@(~{) might contain multiple points and thej, (11d) can be rewritten aEGZI(dgt +59)2 = (dgt — 54)2 <
chosen one consumes more power than another. Moreoves, v ¢ 7. Hence, all the nonconvex constraints in (11) have
we numerically observe that the scaling procedure, i.e. (9 gifference-of-convex (DC) structure which can be conyexl
is efficient with power-efficient points of {W},{d.}). approximated using, e.g., the first order Taylor series. How
Therefore we propose the strategy of choosif®;}, {dg;}) ever, doing this arrives at the approximated problem which i
for the considered problem such that the total transmit poW&feasible due to (11e). Specifically, a convex approxiorati

is minimized, i.e. of (11le) at some{d;’[)} is given asF({dgt};{dg’;)}) 2
- S YL (2dyd —(d(”>)2—d > 0. It is straight-

W3 dy}) = arg min Tr (W,) (10) t=122g=1 gt Ggt gt gt | > 0.
({(WotddoeHEQE) g=1 forward to see that the se{{dgt}|F({dgt};{d§’;) ) >

which is also a MI-SDP. The advantages of the strategy arg(11f)} is empty for any{dé’f)} € (0,1)%T. Inspired by
numerically justified in Fig. 3 in Section VI. the recent results in [36], [37], we tackle this shortcoming



by introducing a nonnegative slack variakleand arriving at Algorithm 2 The proposed iterative procedure to solve (12).

a regularization problem of (11) written as 1: Initialization : Given A > 1,knax. Setn := 0, generate an
o initial feasible pointv(®) (of (12)), and set initial value of
maximize o — k¢ (12a) k
v .
subject to (6d), (6e) (11b)— (11d) (11f),¢ >0  (12b)  2: repeat
T G 3. Solve (13) to obtain optimal values".
Z Z(dfn —dg)+ >0 (12¢) 4 Setni=n+1,v(" = v*. Updatek = min(k, kmax).
=1 g=1 5: until Convergence
6: Output: (w(" ,{d(g’[)},w(()”))

wherev = {{wy},{dg},70,{sq},¢}, andk > 0 is the
penalty parameter. Clearly, problem (12) reduces to (1Brwh

¢ = 0, and thusp represents constraint residual temperature., . . .
From now on, we present an iterative procedure based %S increased after each iteration until the upper bokid.

the SCA technique to solve (12) which reaches a favoradidlich should be large. The purpose is to forgeas small
search region (for the solution) during some first iteratior?S POssible when the algorithm converges. The convergence
and minimizes the constraint residual at convergence. properties of Algorithm 2 are stated in the following claim.

3) Proposed lterative Procedure: Let v(® = Claim1l. The iterate{v(™}>  is guaranteed to converge, i.e.
Wi d Y, 48 {551, 6 be some feasible point of [[v("+!) — v(")||, tends to zero when tends to infinity, and
(12). Then a convex approximation of (12) at this point is(> is a Karush—Kuhn-Tucker (KKT) point of (12).

given as The proof for the claim follows the same arguments as

o (n))2 those in [32, Section 3]. It is not guaranteed that the output
maximize yo — 7||v — v\™||5 — k¢ (13a) ) ) : _ S n) )
v of Algorithm 2 is a feasible point of (6), i.€d,," },: might
subiect to é)%{(w(g”))HHgiwg} B (Wi )HH,, (w™) be only nearly binary. If this is the case, we roumg’[)}g,t
J Ty T, (147)? 79 to binary and run the algorithm with respect to the contiraiou
' p ' variables only until convergence for refinement. It is worth
> Z wHH, wy, + 03 Vg.i  (13b) mentioping that in the numerical section With. the considere
k=T hetq simulation systems and parameters, we obtained (0 when
' T n)) convergence. The examples are described in Section VI and
log(1 +7{T,) + % < 54,9 shown in Fig. 2. . . _
14+, Ty 4) Discussion on Practical Implementatiosks mentioned

(13c) above, the initial value of and the update step are set

G to be small. However, this might lead to the issue that the

Z ((dgt +54)° + (dg’j) —sg”))2 required number of iterations for convergence is large. A

g=1 possible approach overcoming this shortcoming is to use two
72(d(g7§) _ sg"))(dgt —5,)) < 4C, Vi different update steps; and\, whereA; < \a; Ao is applied

q after some predefined number of iterations.
) (13d) At some first iterations whek is small, the constraint in
Z(Qd;?)dgt _ (d_f,?)) _ dgt) +¢>0 (13¢) (12c¢) has an |nS|gn|f|car_1t impact on thg solutions. Thegefor
o to arrive at a formulation which is tight as the Boolean
(6d), (6€) (11f), ¢ > 0 (13) variables are relaxed _mlght improve the Qesued perfprmanc
A common approach is to apply perspective formulation [25],
wherer > 0. The proximal term —7||v — v(™||3 is added [39], [40]. In particular, let us introduce nonnegativeigaies
to make the objective function strongly concave with respe€p,; },.. Then the constraints in (6d) and (6e) are replaced by
to v. It guarantees that the iteratés(™)} obtained by the

proposed iterative algorithm converge to a limit points. (cf Bewyl[5 < dgepgr, ¥t € T, g €G (14)
[36], [38] for more details). The approximation functions i ¢ _

(13b), (13c), (13d), and (13e) are arrived following thetfirs Zpgt S P VteT (15)
order Taylor series approach which satisfy the three cmmdit g9=1

mentioned in [33]. respectively. We note that the constraints in (14) can beemwri

Our proposed method is to successively solve (13) with SOC as||[v2Biw,;dgt; pgillla < dgt + pge- A tighter
feasible pointv(”) and parametek are updated after eachformulation using the quadratic form of the Boolean varsbl
iteration. The main steps of the proposed iterative promdican also be applied [39], in which (14) is substituted by
are outlined in Algorithm 2. At the initial stage, a feasiblé|B;w||3 < dZ,p,:. This constraint is noncovex which can be
point v(9) of (12) is generated and the initial value bfis also convexly approximated by applying the first order Taylo
set. Also, the upper bound and the update step denoted series similar to those in (13).
by kmax @and, respectively, are given. In order to provide the The objective (13a) is strongly convex for all> 0. How-
relaxation for choosing RRHs, the initial value of the pépal ever, 7 should be small, otherwise the algorithm converges
parametek and the update step should be small. Parameterslowly. An alternative approach for practical implemeiutat



is that the proximal termr||v — v("™)||2 only joins when there B. Upper bound and suboptimal solution (b8) via SDR

is no variation imy (cf. [38]). A common approach overcoming the semi-infinite number
of intractable constraints in (18b) is to lift the problem to
V. JOINT ROBUST BEAMFORMING DESIGNS ANDRHH higher dimensions with SD variables [23]. Specifically, ust
SELECTION UNDER CHANNEL UNCERTAINTIES defineng =W, Ty ZszLk?ég W, for all g;, where

In this section, we extend the proposed solutions to systeHi§ Positive semidefinite matricgsV,,} have been defined in
with imperfect channel state. This is significant because ®$ction Ill-A. We equivalently rewrite (18b) as
ensure the error-free channel is still a challenge in practi H = H T
and the performance would be reduced due to the senS|t|V|ty091E910gq, < g, :>~091}Vgiigi + 2§R(hg£W910g%)
of the beamforming to the errors [41]. +hy, Wy h, — Ty 00, >0,Yg,7 (19)

There exist two approaches broadly used for modeling tg(%, strai ; ;
: : ghtforwardly applying the well-known technique
channel uncertainty [42]. The first approach assumes t@t Hblled S-Lemma [46] on (19) and ignoring the nonconvex

error resides in prespecified sets. Then, robust optimiasi ,ny 1 constraints oW, !, we arrive at a relaxation of (18)
applied with the aim at guaranteeing the performance levgl an as

The second one is suitable for errors which are unboundéd,
e.g. estimation errors. This approach assumes that the errovrélagi)imife Yo (20a)
parts are random variables whose statistics are known. I 70“@3_’{20?}’

this case, stochastic optimization is applied exploitihg t

L . . . . subject to
statistical information for guaranteeing probability fsome _ .
performance target (i.e. outage performance). However, th (ng- +figiEgi L ngh; ) -0
reformulated problems include chance constraints whieh ar h, W, hy, Wy hl — 02Ty v — g, 0g,) —
usually highly intractable [43]. In this paper, we consitie Vg€ G,i €U, (20b)
bounded uncertainty, and optimize the worst case perfotman (70)— (7f) (20¢)

. where {y,, },, are additional slack variables. Since (20b) is
A. Imperfect CSI Model and Robust Counterpart Formulanotl;n]e exact representation of (18b), the relaxation (20)ghtti

We consider the common additive error model of uncertajp rank(W,) = 1 for all g. As can be observed, nonconvex

channels given as constraints in (20b) reduce to tractable linear matrix iraq
o . ities (LMIs) when~y, is fixed. Consequently, the procedure

hy, =hy, + 64, Vg € G.i € Uy (16) similar to that in Algorithm 1 can achieve the optimal sabuti

whereh,, ¢ C"*%) is the known value vector, anfl,, ¢ to (20), i.e. replacingQ(vy,) in step 4 by O(yo) where

C(1xL) is the vector of random errors [14], [23], [44]. WeQ(y0) = {{Wy},{dg}, {1y, }|(7C) — (7f), (20b)}. Again,
assume that{6,,} lie in bounded sets. In particular, wewhen the rank-1 constraints are not satisfied for all obthine
concentrate on the ellipsoidal uncertainty sets given as  {W,}, a randomization/scaling procedure is run to yield

suboptimal solutions to (18).
Egi = {09L

0,,E,,00 <5, VgeG,icl (17)

where E,, is a nonsingular positive definite matrix. TheC. Low-complexity Robust Designs via SCA
uncertainty model (17) means that the true chadnglran-  \we now apply the SCA framework to design low-

domly lies in the ellipsoid parameterized iy, andd,, and  complexity robust solution to (18). To be consistent witk th
centered ahy,. The motivation of considering the ellipsoidalyorst case strategy, we consider a safety approximation of

uncertainty sets was discussed in [41], [44], [45]. (18b) given as
Following the worst case robust optimization strategy,cluhi R
has been broadly used in the existing literature [23], [#44], emei? |(hy, + 04, )w,|?
the robust counterpart of (6) takes the form f’G i z P . ~ > T'y:70,
maximize 7o (18a) egggi 2 k=1ktg | (g, + 09 )Wi[? + 07,
btk oo VgeGicl, (21)
subject to _ _ _ -
|(f1 + 6, )w,? By using the triangle and the Cauchy-Schwarz inequalities
min — gi 91/ 9 > Ty, 70, (c.f. [47] for details) for the numerator in the left side
99:€€0: ) et kg |(hg, + 04, )Wi|* + 07, and introducing nonnegative slack variables, },., we can
Vg€ G,icU, (18Db) equivalently rewrite (21) for eacly; as follows
(6¢)— (6f) (18¢) SR
) ) max Z |(hy, + 6,,)wi|* < th (22)
where (18b) follows from (16). To solve (18) optimally is a 04, €Eq, k=1 kg

major challenge because (18) inherits the numerical diffes. . 12 2
of (6) in addition to the semi-infinite number of constraiits ([|hgin| — V04 ||Eg, “wll] )
(18b). Ty 70

> vl ol (29)



where[z]* denotesmax(z,0). To deal with the semi-infinite Vge G,icel, (32)

set of constraints in (22), we first rewrite it as o
We remark that (21) is tighter than (32). However, (32) leads

04, E,, 00 <0, = ||(hy, +6,)W,[|> < v, (24) to the algorithm where a SOCP is solved in each iteration. In
particular, by again using the triangle and the Cauchy-schw

where W, = [wi, ..., Wg—1, Wy+1, ..., Wg]. Then, by apply- j,equalities, (32) is equivalent to

ing the Schur's complement lemma and tfiéemma on (24)

(similar to the arguments in [46, Chap. 6.3]), this constrai _ “1/2 +\2
is equivalent to ([|hgiwg| — V0. By “w] ) ST
G ”" —1/2 = +9i /0y
e =0 St kot (g Wi + /3 |[ By Pwil])? + 02,
" / Vg, (33)
vy I NG (E’l W ) WHRH _ .
S g\ T 97 o Let us introduce some slack variablegy, > 0},
692E91; Wy fig, I 0 N {@g: Y oi AVgik }gs kg ANA{Tg 1} g, k2g- Then (33) is equiv-
hy, W, 0 Vg, — Kg, alent to the following sets of constraints
(25) ) o
.
which is a LMI with respect to(v,,, kg, {Wk }rzq). We - P> N vl +on, Vg (34)
now focus on the nonconvex constraints in (23) which are 970 L g
equivalent to the following set of constraints lhy,wy| > @y, Vg, i (35)
% g, — g > /00, [|E-Y *w, ||, Vg, i 36
T 2 Voo T4, Y9, (26) e T oot
ng:}/() |hgiwk| < Vgiks 591 Eg% Wk” < Vgik — Vgikvvfyvzvk 7é g
lhg, wy| > dy,, Vg, i (27) (37)
Gy, — ag, > /04, B, Pw,||, Vg, i (28) where the nonconvex parts in (34) and (35) can be convexly

where {a,, > 0},,, and {&, > 0},, are newly introduced approximated as those in (29) and (30), respectively. To

slack variables. We can see that the nonconvex parts Iiesﬁgz;l:'rzeei’sthilioép solved in iterationt- 1 of the SCA
(26) and (27) which can be convexly approximated as P 9

agn) (agr;))g , , max%mize Yo —7|[v = v )2 — ko (38a)
- ;T - > i 29 .
2Fgﬁén) o T (V(n))QFyO = Vo T 040599 (29) subject to
m gr-L) (a(g?))Q & 2 2
HE I (m) 9 (n) 270 Z Vgik + qu,’v97l
(w0 HEL, wl) 0% Ty, (26") k=T

+2R{(wi) Hy, (wy —wi™)} > a7, vg,i, (30) (38b)

(13c)— (13f), (30), (36), (37) (38c)

respectively, wher&l,, £ h! hy,. At this point, we are ready
to arrive at the problem solved in each iteration of the SC#herev £ {v, {a,,}, {d4 }, {Vgir}, {7g:k } }- The theoretical
procedure which is written as complexity of the presented methods will be discussed in the
following section.

maximize vo — 7||v — v ||? — k¢ (31a)
v
subject to (13c)— (13f), (25), (29), (30), (28) (31b) V. COMPLEXITY ESTIMATE

wherev 2 {v,{ay,},{a4}, {vg: ), {kq }}. We remark that A. Solutions for Perfect CSI

to find initial points for starting the iterative procedure e first make some observations on the analytical complex-
is not straightforward, since it requires thi,wy’| > ity of the upper bound and the suboptimal solution developed
VO |IEg.*wi”|| for all g;. However, we can overcomevia the SDR. The number of iterations related to the bisectio
this issue by using variable), i.e. (28) is replaced by search isNy; = [log, (v /ens)|. The complexity is mainly
&y, — g, + ¢ > /34, |[Eq,>w,||. In fact, this technique of caused by solving MI-SDPs. Particularly, the number of the
finding feasible point was used in [48]. Boolean variables €T leading t02¢7 combinations. The

Problem (31) is a SDP, and thus the computational comverst case complexity solving the problem with the Boolean
plexity might become high when the problems are large-scal@riables are fixed using a general interior point solver is
In order to reduce computational effort, let us considetti@o O(G35L5® + UGS L5 4 G?5L?5T) [13]. This number

approximation of (18b) given as is dominated by the total number of transmit antennas at
- RRHs and the number of multicast groups. When the ran-

9gmein |(hy, + 8g,)wg|? domization/scaling procedure is used to extract a suba@ptim

A > Ty, 70, solution, the maximum number of solved linear programs

G I 2 . . .
D1 kot egggi|(hgi + 04, )Wi|* + 0, (LPS) iS Nyand [logs (7§ /ens)] where Nyq is the size of



the randomization. The complexity of solving each LP ig;. This network setting is considered unless otherwise ctate
O(G*(U + T + G)*?) [49], which does not depend ah. Other parameters will be specified in each experiment.

We now consider the SCA design. Since there exists noThe initial points for starting the proposed iterative groc
result of the bound of the required number of iterationslures are generated as follows. First, we aé%i = 0.5 for

we focus on the complexity of solving a SOCP in each 4 t. Then the beamforming vectorsw'”}, are created
iteration. Specifically, (13) contain&/(2L + 7" + 1) + 2 randomly which are scaled (if necessary) such that the power
real variables and/ + G(T' + 1) 4+ 2T SOC constraints of ~onstraints are satisfied. Based on tho;é@,, {820)}, andp(©)
different dimensions. Thus, the upper bound complexity i§e determined such that (11b), (11c), (11d), and (12c) are
O((U +GT +T)*°G*(L + T)*G(U + L)). As the numbers gatisfied. For penalty parameter the initial value is set as

of multicasting groups and total transmit antennas areelarq073' and the maximum valuk,.. is set asl0?; the updated

the upper bound reduces @G L?) showing that the SCA ¢onstanty is set as 3. The parameter(of the proximal term)
design is less sensitive tb compared to that of the solutionjg get 45107,

derived via SDR. In this section, beside the derived upper bound serving as
a benchmark, we also compare the schemes of joint RRH
B. Solutions for Imperfect CSI selection and beamforming design to the conventional sehem

In case of the upper bound and SDR solution, the Cor%[Jomt cooperation, i.ed,, = 1 for all g, ¢. The beamforming

plexity of solving the problem as the Boolean variables anv&ctors of the sch_eme are derived _based on the‘ SDR-Pased
variableq, are fixed iSO(LO3 (G + U)O5(GL2 + U2 (GL? + method presented in [14]. We refer this scheme as ‘FullCd’ an

‘FullCoRo’ in perfect and imperfect CSI systems, respejiv
2 _
UL® + (G + 1)T)). The number has the same order of Ma%o this end, for convenience, we denote by ‘JBR-SDR’ and

Peit:utdgsv:”thLe;r??;;;fmﬁsgtﬁ)r?/c;?;;ﬁlrge(:);[gc?;;rfeoristhuesggr-t“]BR'SCA’ the proposed suboptimal solutions obtained from
complex.ity of solving a scaling problem @(LO5U°5(G + ' Rl_gor?thm 1 (with the random_ization/scaling_proced_ur_e |u; a
U)2(UL? + T)) which depends orL. (different from that in plied if neccess_ary) and Algorithm 2, respectively. Simylan
case of perfect CSI) the case of the |mperfe_ct CSl, we denote by ‘JBRRo-SDR’ and
For the SCA designs the complexity of solvin ‘JBRR0-SCA' the solutions derived based on SDR and SCA,
’ grespectively. To solve SOCPs and SDPs, we use the modeling

the problem (31) is O((GL LU UG)*5G? ) .

LQ(T(?QLQ N UL(2 +) UGL))(( Focuiing onL+ the rzumber package YALMIP [51] with the inner solver MOSEK [52]; to
7 . , i . ;

reduces toO(L3) which is lower (in order of magnitude) solve MI-SDPs, inner solver BNB (of YALMIP) is used.

Ece)?apuag:dth?r ethigt noc: itr?t(rao dduecst:g: (\)/:ca Stgemsa?rg&gs E\ Performances under Perfect Knowledge of Channel States
in (31). The upper bound complexity of solving (38) is In the first experiment, we study the convergence behavior
O(GY" (U +T)°G*(L + T + U)%(G(U + L) + UL)).A of Algorithm 2 (JBR-SCA) over two randomly generated
channels. Specifically, Fig. 2(a) depicts the convergenite w
respect to the value ofy, and Fig. 2(b) shows the value ¢f
over iterations. As can be seen, the valuggptonverges to the

In this section, we report simulation results to evaluai§oints close to the corresponding upper bounds. The value of
the performances of the proposed methods. We consider theonverges to zero which implies that the obtaidelg; } ,;
simulation model based on those in [18], [22], [23]. Imre binary, i.e. the outputs of Algorithm 2 are the feasible
particular, for each multicast group, the positions of tsers sp|utions to (6). We also observe that the valueypfs larger
are uniformly and independently generated in a circle olusd than the derived upper bound during some iterations. This is
15 meters. Similarly, the positions of the RRHs and that of thye to the relaxation of the discrete constraints. Theeefor
centers of multicast groups are uniformly and indepengienthe can see in Fig. 2(b) that the value of (representing
generated in a circle of radil$0 meters. The numbers of thethe constraint residual temperature) is also large dutiege
RRHs and multicast groups are changed in the experimefggrations. Another observation is that the algorithm eges
The system parameters are set as follows. The system bagfhin 25 iterations with the both channels.
width is 10 MHz, and the noise power density is -174 dBm/Hz. |n Fig. 3 we investigate the average performances of the
The 3GPP path loss model in dB isl5.4 + 37.5log14(!) considered schemes as the functions of the fronthaul dgpaci
where [ is the distance in kilometers, and the log normajith network configuratio, ') set ag3,4) and (4, 5). The
shadowing standard deviation is 4 [50]. The channel vectgfror tolerance of the bisection seargh is 10~2. The size
from RRH¢ and useu; is generated aliy,; = fy,:hy,+ Where of the randomization procedut®,,.q is 100. For JBR-SDR,
Bg.¢ represents path loss and shadowing, ang follows we provide the performances of two different strategies of
CN(0,I). The maximum transmit power and the number &fhoosing feasible points i®(v) (i.e. step 4 of Algorithm
antennas at the RRHs are setffp= 32dBm andL; = 2, 1): the first strategy follows (10); the second one is chapsin
for all z. The number of users in a multicast grouplis = 4 random feasible poinfsThe iterative procedure of Algorithm
for all g. Without loss of generality, we sdt, = 1 for all 2 stops when the conditiofp"*1) — (| < 10~4, where

VI. NUMERICAL RESULTS

1We provide the computational time of different schemes ims®ation 2The first feasible points obtained by the branch and boundegiare are
VI-C, Table I, for numerically comparing the complexity angpthe schemes. chosen.
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ol ‘ ‘ ‘ ‘ ] the consumed power correspondind¥; } is large, and thus

_______ wmmmmlmmecmmmmmmmmmmmm---=-=4 (he probability of existing a feasible point of (9) satisfyi

g |- - | A& is small. This also explains that JBR-SDR with (10)
S outperforms JBR-SDR with random chosen (feasible) points.
“qO: 6p - Figures 3(b) and 3(d) depict the average consumed power
2 . of the considered schemes. We observe that if beamforming
> 4 R JBR-SCA, random channel 1 |  design ignores the limitation of fronthaul capacity, i.bet
oS T ?gg?égzurr‘ghéaoﬁiraﬁzzlngel1 scheme labeled ‘ [14] w/o fronthaul constraints’ in the fiesir
; the consumed power is always large while the achievable
————— Upper bound, random channel |2 . . . . . .
0 h }, 1‘0 1‘5 2‘0 - deswed_ perform_anc_e is inferior. This resul_t again confrrms
T necessity of taking into account the capacity of fronthankd
Number of iterations in design. The scheme FullCo consumes the smallest power
(@) Convergernce in value of compared to the others due to the full connection and the low
10! T T ‘ - achieved data rate. The figures clearly show the advantage of
---------- Random channel 1 . . .

w ks Random channel 2 the strategy in (10) in terms of power efficiency.

. E In Fig. 4, we show the average achieved minimum data
< 10 4 rate performance regarding to different number of RRHSs. In
E 10-2 = particular, we consider a network scenario where RRHs and
2 108 1 the centers of multicast groups are randomly placed inside a
- 104 1 circle of radius500 meters. The number of multicast groups

1 is fixed atG = 10 (i.e. 40 users), and the number of RRHs
1077 3 is taken asl’ = {12, 16,20}. For the such scenario, we focus
10~6 1 on the low-complexity scheme JBR-SCA, and also provide

the performance of FullCo for comparison. It is observed

that, with large values of’;, the two schemes provide better
performance when more RRHs are added. This is due to the
cooperation gain, i.e. the wireless channel capacity asgs
with respect tdl'. In addition, it is interesting to observe that
the gap between the performance of JBR-SCA and FullCo
is larger whenT" increases. On the other hand, whéh is
small, to add more RRHs does not improve the performance
with scheme FullCo. Meanwhile, JBR-SCA can exploit the
o™ = A" 7|y — v =112 — ke s satisfied. selection gain, which results in better performance wiien
Figures 3(a) and 3(c) show the performances in terms iotreases.

average achieved minimum data rate. The first observation
from these figures is that the achieved minimum data rate gf
all considered schemes increases whgincreases indicating
that the network performance does not only depend on the We now investigate the performance of the robust designs

capacity of wireless channels but also on that of the frmﬂthémder imperfect CSI conditions. For simplicity, we seldut t
links. An expected result is that remarkable gains are sebie error sets as fO||0VXS We first define the uncertam/ty paramet
by jointly designing beamforming vectors and selecting RRi{ > 0 and leta = Ivnaxﬂglt* we then sety;, = ¢'/a and
especially when the fronthaul capacity is small. On the oth&,, = I for all g;. Other parameters are set as those in the
hand, whenC; is large enough, the performances of thexperiments in the previous subsection.

proposed schemes close to that of FullCo. This is because th&imilar to the case of perfect CSl, we investigate the
network performance now is mainly dominated by the capacitpnvergence behavior of the proposed iterative procedures
of the wireless channels which is maximized when the RRHwer two random channel realizations which are shown in
fully cooperate. As such, further increasifigdoes not change Fig. 5. We set the network configuratio&’, T') as(3,4) and

the performances. We can also see that the performanceshef uncertainty paramete¥ as 0.3. Again we can observe
suboptimal schemes JBR-SDR and JBR-SCA are quite closahat ¢ goes to zero in all cases. The procedures converge
the upper bound. Another observation is that the performaneithin 10 and 25 iterations with the random channel 1 and
of JBR-SDR with (10) almost agree with the upper bounithe random channel 2, respectively. We can also observe that
when(; is small and there is a small gap between them whéime convergence points of, of scheme (31) are better than
C, is large. The results can be explained as follows. Whgn those of scheme (38). This is because the approximation in
is small, the consumed power corresponding to the obtain@l) is tighter than that in (32). The reason thatis larger

SD matrices{ W} } is small. As the beamforming vectors arghan the upper bound during some iterations is the same as
extracted from{W}}, it is likely that there exist points in that for the results in Fig. 2.

the feasible set of the scaling problem (9) which satisfy the Fig. 6 depicts the average performances in terms of the
obtained upper boungy. On the other hand, whef, is large, worst case minimum data rate of the considered robust

(b) Convergernce in value af

Figure 2. Convergence performances of Algorithm 2 (i.e. -BE) over two
random channel realizations (with perfect CSI). The nelwoonfiguration
(G, T) of random channel 183, 4), and that of random channel 2(4, 5).
The fronthaul capacity is set &; = 80 Mbits/s, Vt.

Performances under Channel Uncertainties
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Figure 3. Average performances of the considered schentessvelifferent fronthaul capacities with two different wetk configurations ofl G, T") those

are (3

Average minimum data rate (Mbits/s)

,4) and (4, 5).

-

49
41

33

25 [

A== =-==~

17 T=12

o | | | | | |
100 200 300 400 500 600 700 800

Fronthaul capacityC:; (Mbits/s)

Figure 4. Average achieved minimum data rate of JBR-SCA ankiCé
versus different fronthaul capacities for three number &HR: 7' = 12,
T = 16, andT = 20. The number of multicast groups @ = 10.

schemes as functions of uncertainty paramétert is ob- ) s ; .
served that the performances of all the proposed scheni§n in Subsection VI-C, the numerical effort for computing

reduce whend’
uncertainty. Although the safety approximations are used

of this scheme is mainly dominated by the fronthaul capacity
with respect to the simulation setup, i.e. although the leg®
channel capacity reduces because of the uncertainty, itlis s
higher than the limitation caused by the fronthaul capacity
Clearly, there are remarkable gaps between FullCoRo and the
proposed schemes.

Fig. 7 shows the average worst case minimum performance
of the considered robust schemes against the fronthautitapa
Cy. We set the network configuration &&,7") = (3,4) and
the uncertainty parameter @5 = 0.3. We can see that the
performance of all considered schemes increase with respec
to C;. This result is similar to that in the case of perfect CSI.
As expected, the joint beamforming design and RRH selection
schemes outperform FullCoRo whé&ry small. WhenC; is
large, the performances of JBRRo-SDR, JBRRo0-SCA with
(31), and FullCoRo are close to each other and slightly highe
than that of JBRRo-SCA with (38). This is because the impact
of the safety approximation used in (32). However, as will be

increases due to the effect of the channadBRRO-SCA with (38) is remarkably lower compared to that

fpr the others.

(21) and (32), JBRRo-SCA schemes (with (31) and (38)) areln Fig. 8 we study the behavior of the proposed schemes
able to achieve more than 90% of the upper bound. We al3BRRo-SCA with (31) and (38) when the size of the uncer-
see that the performance of FullCoRo does not change ota&nty sets considered in the designs are smaller than tifat o
the considered range of. This is because the performancectual uncertainty sets. For this purpose, let us introdbee
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Figure 5. Convergence performances of the proposed itergtiocedures,
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channel realizations (under imperfect CSl). The networkfigoration is
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Figure 7. Average worst case minimum data rate of the coresideobust
schemes versus the fronthaul capacity The networks configuratio(&, T')
is (3,4), and the uncertainty paramet&ris 0.3.

parametet € [0, 1) which represents the degree of reduction
in size of the uncertainty sets in the designs (compared to
that of the actual uncertainty sets), i.e. the error vectors
the designs are assumed to lie in hyperspheres of radius
(1 — &)+/dy, for all g;. We run the algorithms over 1000
channel realizations where the uncertainty parameterkenta
as ¢’ = 0.5. Fig. 8(a) shows the worst case minimum data
rate obtained by the algorithms. Fig. 8(b) depicts the actua
average minimum data rate. In this figure, if any constraint
in (6b) is violated, there will be an outage and the (actual)
minimum data rate is set as zero. The probability of outage
is showed in Fig. 8(c). As expected, the worst case minimum
data rate obtained by the algorithms increases vghiroreases
due to the reduction in size of the uncertainty sets (consitle

in the designs). The important observation is that the &ctua
average minimum data rate first increases then decreades wit
the increase oft. This is because, wheg is small, the
probability of outage is small. Thus, the average minimum
data rate performance is improved due to the increase of
the worst case minimum data rate. However, after a certain
value of¢, the probability of outage becomes larger leading
to performance loss in terms of average minimum data rate.
Clearly, the results indicate that there exists a tradestfilben

the worst case minimum data rate and the average minimum
data rate performances.

We use JBRRo-SCA with (38) to evaluate the average worst
case minimum data rate performance in a large scale scenario
The results are illustrated in Fig. 9. In particular, we adop
the same network settings as those in Fig. 4. We t@ke
10, T = {12,14,16}, and ¢’ = {0.1,0.5}. On one hand,
we can observe similar results as in Figs. 6 and 7 that the
performance improves regarding to the increas€'ofand the
largerd’ results in the lower performance in all casesf On
the other hand, adding more RRHs provides improvement in
performance. This is due to the cooperation gain and setecti
gain exploited by the scheme. We can also see that the gap
between the curves af = 0.1 and§’ = 0.5 in the regime
of small C; is smaller than that in the regime of largg.
Again, this is because, in the regime of sm@jl, a reduction
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(a) Average calculated worst case minimum data rate

T =12, 14, and16. We taked’ = 0.1 and0.5.

in wireless channel capacity (due to the uncertainty) dags n
result in a performance loss if the wireless channel capéit
still higher than the limitation caused by the fronthaul aeipy.

C. Numerical Efficiency

We now numerically investigate the computational complex-
ity of the proposed solutions. Since the complexity of JBR-
SDR and JBRRo-SDR are quite high due to the BnB methods,
we mainly focus on the SCA-based designs and compare them
to the existing solutions (i.e. FullCo and FullCoRo0). Table
presents the average run time (in second) for solving the cor

_ responding convex problems of the considered schemes with
L 0- - JBRR0-SCA (38)Cr = 200 (Mbits/s) different network configurations. Notably, the shown numsbe
0 01 02 03 04 05 06 0.7 08 0.9 accountthe total run time of iterations for the algorithras t
¢ converge. In order to clarify the effectiveness of the psgub
solutions, we also provide the desired performances,he. t
average (worst case) minimum data rate. We can observe from
the table, in case of the perfect CSl, that the average rum tim

—— JBRRO-SCA (31)C} = 130 (Mbits/s)
g | - -0O- - JBRRO-SCA (38)C; = 130 (Mbits/s)
—o0— JBRRO-SCA (31)C} = 200 (Mbits/s)

Actual average minimum data rate (Mbits/s)

(b) Actual average achieved minimum data rate

1 I I I I I I I
—— JBRRO0-SCA (31)C; = 130 (Mbits/s)

- -O- - JBRR0-SCA (38)(C; = 130 (Mbits/s) of JBR-SCA is smaller than 2 seconds, and that of FullCo

0.8 | 28 JBRRa-SCA Bt = 200 Mbitaa) is smaller than 3 seconds. Thus, by JBR-SCA, we can yield

remarkable gain in terms of the desired performance without
putting more computational effort (compared to the exgstin
solution). In case of the imperfect CSlI, due to arriving aC3O
in each iteration, the complexity of JBRRo-SCA with (38)
is significantly lower compared to the others. On the other
hand, the complexity of FullCoRo is much higher than that
of FullCo. This is because of the additiorfdalLMIs in (20b)
and, more importantly, the randomization/scaling procedu
i.e. the scaling power problems corresponding to FullCoRo
A BB 07 o8 og &e SDPS. This is also the reason that JBRRo-SCA with (31)
requires lower computational effort than FullCoRo. Anathe
¢ y observation is that the average running time of JBRRo-SCA
(c) Outage probability with (38) is larger than that of JBR-SCA. This is reasonable
Figure 8. Performances of the proposed robust scheme38RRo-SCA with ~ Since the numbers of variables and constraints in (38) agerla
(31) and (38), as functions @f The network configuration i€+, 7) = (4,6).  than those in (13).

The uncertainty parameter & = 0.5. The fronthaul capacity is taken as
Cy = {130,200} (Mbits/s).

Outage probability

VIl. CONCLUSION

We have investigated multicasting transmission in C-RAN
where multiple RRHs controlled by a BBU collaborate in
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AVERAGE RUN TIME (IN SECOND) AND AVERAGE (WORST CASE MINIMUM DATA RATE (IN MBITS/S) OF THE PROPOSED LOWCOMPLEXITY SCHEMES
COMPARED TO THE EXISTING SOLUTION(I.E. [14]) WITH DIFFERENT NETWORK CONFIGURATIONS OFG, T') AND C}. FOR THE PERFORMANCES UNDER
IMPERFECTCSI, THE UNCERTAINTY PARAMETERS’ IS SET AS0.3.

(G, 1) (3,5) (4,4) (4,6)

C: (Mbits/s) 60 | 80 | 160 | 60 | 80 | 160 60 | 80 | 160
JBR-SCA avg. min. rate 284 36.8 | 459 | 20.6 | 224 | 264 | 255 | 276 | 37.4
avg. run time 110 | 1.09 | 051 | 1.09| 0.78 | 056 | 1.94 | 1.71 | 051
FullCo [14] avg. min. rate 200 | 26.7 | 455 | 15.0 | 20.0 | 26.2 | 15.0 | 20.0 | 37.2
avg. run time 0.65| 1.22 | 299 | 1.15| 1.41 | 1.92 | 1.18 | 1.01 | 2.28
i avg. worst case min. rat§] 28.1 | 31.1 | 39.5 | 17.8 | 20.1 | 22.4 | 21.6 | 23.6 | 32.0
JBRRO-SCA (38) avg. run time 204| 180 | 1.23 | 1.83 | 1.17 | 1.65 | 4.08 | 2.40 | 1.85
i avg. worst case min ratg| 28.4 | 31.4 40.6 | 181 | 20.2 23.4 21.8 | 246 | 335
JBRR0-SCA (31) avg. run time 332 | 277 | 145 | 232 | 111 | 164 | 585 | 384 | 20.3
FullCoRo [14] avg. worst case min ratg| 20.0 | 26.7 40.6 | 15.0 | 19.7 23.5 15.0 | 20.0 | 33.6
avg. run time 65.7 | 109.2 | 230.7 | 83.2 | 115.7 | 131.3 | 100.2 | 117 | 226.3

transferring data to multiple cochannel multicast grodad- [12] L.-N. Tran, M. Hanif, and M. Juntti, “A conic quadraticggramming

ing into account the limitation of the fronthaul capacitye w
explored the joint RRH selection and beamforming vectofs;
with the aim on weighted max-min fairness among users. In
particular, we have formulated the problem as mixed Boolean
nonconvex programs. A tight upper bound and an efficie{%Q]
solution have been derived based on the combination of the
SDR, bisection search, and branch-and-bound technignes, |
addition, we have also developed a low-complexity iterativ:®)
procedure based on the SCA framework in which a SOCP is
solved in each iteration. Afterwards, we have leveraged odf]
proposed methods to the context where the CSI is uncertain.
The issue of erroneous CSI has been tackled by the regular
robust worst case strategies those are relaxation (viaSthe[17]
lemma) and safety approximations. The numerical resuits ha
clearly demonstrated that the proposed solutions outparfojig
the existing ones in the regions of limited fronthaul capaci
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