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Abstract—We consider downlink transmission in cloud radio
access networks (C-RANs) with multiple cochannel multicasting
groups served by a group of remote radio heads (RRHs), which
receive information from a base band unit via finite-capacity
fronthaul links. Our aim is to jointly design RRH selection and
beamforming vectors such that the minimum weighted data rate
among users are maximized under the constraints of maximum
transmit power and fronthaul capacity at each specific RRH.
The problem is intractable due to the numerical difficulties of
combination and nonconvex functions. Based on a semidefinite
relaxation technique, bisection search, and branch-and-bound
method, we develop an upper bound which is also the optimal
solution to the original problem if the relaxation is tight. More
importantly, we propose a heuristic low-complexity iterative
procedure for practical applications based on the state-of-the-art
sequential convex approximation. Subsequently, we modifythe
proposed methods for the uncertain channel state information
case. To be specific, the upper bound and its suboptimal solution
are altered based on theS-lemma while the low-complexity
algorithm is tailored by using two different approximation s of
intractable robust counterpart. The validity of the proposed
methods in the region of limited fronthaul capacity is confirmed
by numerical results.

Index Terms—Cloud radio access networks, multicasting,
channel uncertainties, transmit beamforming, mixed integer
semidefinite program, sequential convex approximation, robust
optimization.

I. I NTRODUCTION

The evolution of wireless communications and the devel-
opment of user devices (e.g. smartphones) with high-quality
media capabilities lead to the explosion in mobile data de-
mand, in which videos contribute nearly70 percent to the
total mobile traffic [1]. On the other hand, since the number
of connected devices is growing rapidly and is expected to
exceed more than 28 billions by 2021 [1], more and more often
multiple user devices located in a specific area access the same
media content. In such a case, point-to-multipoint transmission
or multicasting would be much more efficient than point-
to-point unicasting [2]. The benefits of multicasting have
been exploited in the Long-Term Evolution (LTE) networks
via the mechanism called evolved multimedia broadcast and
multicast service (eMBMS) [2]. The service is also likely to
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be embedded in the Fifth Generation (5G) mobile networks
[3].

Coordinated multi-point (CoMP) transmission is one of
the key technologies to improve the capacity of wireless
networks, particularly for the cell edge users. There are two
main strategies of CoMP namely coordinated beamforming
(CB) and joint transmission (JT) [4]. To enable CoMP-CB,
the channel state information (CSI) for receivers needs to be
shared between transmitters. However, the data transmitted
to a user is available at only one transmitter. The gain of
CoMP-CB comes from the interference mitigation, i.e. CoMP-
CB reduces the interference level experienced by a user (via
designing the appropriate precoding). On the other hand, the
same data content is simultaneously transmitted to a user
from multiple transmitters in the CoMP-JT, i.e. transmitters
collaborate in designing precoders operating as a large virtual
multiple-input multiple-output (MIMO) system [5]. Therefore,
CoMP-JT requires not only CSI but also the transmitted data
to be available at multiple transmitters. The main practical
challenge of CoMP implementation is that the strict network
synchronization accuracy is required, especially for CoMP-
JT [6]. Consequently, CoMP typically cannot achieve its full
potential in the conventionally deployed mobile networks due
to the large backhaul latency [7].

Cloud (or centralized) radio access network (C-RAN) is a
novel network architecture which effectively supports thelow-
latency deployments [8]. The central idea is to divide the func-
tionalities of the conventional base station (BS) into two parts
called base band unit (BBU) and remote radio head (RRH); the
BBU performs base-band processing while the RRH includes
the radio frequency operations. Due to the separation, the
BBU can be located at a central location called BBU pool
while the RRH is placed close to the antennas, and they are
connected with each other by, e.g., fiber link called fronthaul
[9]. Such centralized base band processing allows the full
coordination between RRHs, since the backhaul latency can
be ignored, and thus CoMP-JT is effectively supported by the
C-RAN. However, it should be noted that the capacities of the
fronthaul links are limited regardless of the deployed physical
medium (e.g. optical fiber). Consequently, the fronthaul links
may become the bottlenecks, if their capacities are smaller
than those of the wireless channels. An effective approach
addressing the issue is to properly select the set of serving
transmitters for each typical user [10]. This gives rise to the
problems of joint beamforming design and RRH selection in
the C-RAN.
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A. Related Works

Multicasting has been intensively studied over the last
decade. The problems with a single multicasting group were
considered in [11], [12] while those with multiple multicasting
groups were considered in [13]–[16]. There are two main
objectives in designing multicasting transmission. The first
one is to minimize the transmit power subject to the quality
of service (QoS) of each specific user; the second one is
to maximize the minimum weighted signal-to-interference-
plus-noise ratio (SINR), i.e. weighted fairness, among users
under the constraints on maximum transmit power. In general,
a multicasting problem is NP-hard [13], and thus to find
its optimal solution is a difficult task. Consequently, low-
complexity efficient suboptimal solutions are of interest.There
are two main approaches to design suboptimal linear beam-
forming for multicasting namely the semidefinite relaxation
(SDR) [13] and the sequential convex approximation (SCA)
[12]. The SDR is a sort of outer approximation technique
which provides the exact optimal solution to the original
problem—when relaxation is tight—or the performance bound
based on that a suboptimal solution can be obtained using,
e.g., randomization techniques. On the other hand, the SCA
is an inner approximation method which achieves a solution
to the problem via solving a series of convex subproblems.
It is shown in [12] that the SCA achieves better performance
with a lower complexity in large scale networks compared to
the SDR. Multicasting transmission under imperfect CSI was
studied in [14] where the error sets are modeled as ellipsoids.

There are many works investigating joint beamforming
design and RRH selection for unicasting downlink CoMP-JT.
The works in [17]–[19] focused on minimizing the total con-
sumed power under the constraint of QoS for each specific user
while those in [20], [21] aimed at maximizing the (weighted)
sum rate. For multicasting, [22] proposed methods minimizing
a network cost, which is the combination of the total transmit
power and the fronthaul cost, under the constraints of QoS of
each specific user. [23] investigated multicasting transmission
under imperfect CSI where the consumed power is minimized
subject to the QoS for each user and maximum transmit power
at each RRH. Generally, a problem of joint beamforming
design and RRH selection is cast as a mixed integer nonconvex
program which is highly intractable. Thus, the mentioned
works mainly focus on low-complexity suboptimal schemes.

B. Contributions

In this paper, we investigate the problem of joint beam-
forming design and RRH selection for C-RAN multicasting.
Different from [22], [23], our goal is to maximize the mini-
mum weighted SINR among users subject to the limitation of
fronthaul capacity and the maximum transmit power at each
specific RRH. We formulate the problem as a mixed Boolean
nonconvex program by applying the Big-M formulation. The
distinguishing feature of the proposed formulation is thatits
structure is amenable to developing a tight upper bound and
efficient suboptimal solutions. In particular, our contributions
include the following:

• We derive a tight upper bound and achieve a near
optimal solution to the considered problem. To do so,
we first follow the principles of the SDR to overcome
the quadratic nonconvex parts and arrive at a relax-
ation. We then globally solve the relaxation problem
via a procedure built based on the bisection search and
the branch-and-bound (BnB) technique. Then, feasible
solutions to the original problem are yielded via the
randomization/rescaling procedure (if necessary).

• For more practical implementation, we resort to the SCA
framework to develop a low-complexity iterative algo-
rithm. More specifically, we introduce a regularization
formulation arrived upon the idea of the exact penalty in
which all the elements are smooth [24]. Then, an iterative
procedure is built where a second-order cone program
(SOCP), which is an inner approximate subproblem of
the regularization problem, is solved in each iteration.

• The proposed approaches are then leveraged to the sce-
nario wherein the CSI is imperfect. In particular, we
follow the regular worst case strategy to overcome the
channel uncertainty. The intractable robust counterpart
is tackled by applying the relaxation (via introducing
SD matrices and applying theS-lemma) and the safety
approximations.

C. Organization and Notations

The rest of the paper is organized as follows. Section II
describes the system model and the problem formulation of
joint beamforming design and RRH selection. Section III
presents the proposed approaches including the upper bound
and the suboptimal method for the perfect CSI scenario.
Section IV extends the methods for the case of imperfect CSI.
Section V provides the computational complexity estimation
of the proposed methods. Numerical results and discussions
are provided in Section VI. Finally, Section VII concludes the
work.

Notation: We follow the standard notations in this paper.
Bold lower and upper case letters represent vectors and matri-
ces, respectively;‖·‖2 represents thel2 norm;|·| represents the
absolute value;Ca×b represents the space of complex matrices
of dimensions given in superscript;CN (0, c) denotes a zero
mean circularly symmetric complex Gaussian random variable
with variancec; ℜ(·) represents real part of the argument;
E{·} denotes the expectation operator.A

T andA
H stand for

the transpose and the Hermitian transpose ofA, respectively;
Tr(A) andrank(A) are the trace and rank ofA, respectively.
IM represents anM×M identity matrix. The notationA � 0
means thatA is positive semidefinite. Other notations are
defined at their first appearance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider downlink transmission in C-RAN where a set
of RRHs denoted byT = {1, 2, ..., T } jointly transmit data
to a set of multicast groups denoted byG = {1, 2, ..., G}. Let
Ug = {1, 2, ..., Ug} be the set of users belonging to groupg,
g ∈ G, and each user belongs to only one group, i.e.Ug∩Uk =
∅ for all k 6= g [13], [22], [23]. We denote bygi, i ∈ Ug, user
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Figure 1. An example of collaborated transmission for multiple cochannel multicast groups in C-RAN where RRHs are connected to a BBU pool via fronthaul
links.

i in group g. An example of the considered communication
system is displayed in Fig. 1. We assume that each user is
equipped with a single-antenna, and RRHt, t ∈ T , is equipped
with Lt transmit antennas. Let us denote byhgit ∈ C1×Lt

the channel (row) vector between usergi and RRHt, and by
wgt ∈ CLt×1 the beamforming vector for groupg at RRH t.
We defineTg ⊆ T to be the set of RRHs transmitting data to
groupg. With these introduced notations and under flat fading
channels, the received signal at usergi is

ygi =
(∑

t∈Tg

hgitwgt

)

xg +
∑

k∈G\g

( ∑

m∈Tk

hgimwkm

)

xk

︸ ︷︷ ︸

interference

+ zgi

(1)
wherezgi ∼ CN (0, σ2

gi) is the additive white Gaussian noise
(AWGN) at usergi with varianceσ2

gi , andxg is the normalized
complex data symbol, i.e.E{xgx

∗
g} = 1, intended for groupg.

We assume that the cochannel interference in (1) is treated as
noise, then the signal-to-interference-plus-noise ratio(SINR)
at usergi can be expressed based on (1) as

γgi =
|∑t∈Tg

hgitwgt|2
∑

k∈G\g |
∑

m∈Tk
hgimwkm|2 + σ2

gi

. (2)

A. Fronthaul Capacity Constraint for Multicasting

We suppose that either perfect or imperfect CSI is available
at the BBU pool for central network management [17]. After
base-band processing is performed, data is delivered from the
BBU pool to the RRHs via fronthaul links. As mentioned
above, the fronthaul links are limited in capacity. Herein,
multicast data is transferred to the RRHs after the BBU pool
determined beamforming vectors{wgt}. Let Rg be the data
rate corresponding to groupg which is delivered over the
fronthaul link to RRH t (for all t ∈ Tg). We note that, in
multicasting applications, the data rate transmitted to a specific
user would be different from that to other users in the group
depending on the corresponding grades of service [13]. Thus,
Rg should be the highest data rate of the users in groupg, i.e.
Rg , max

i∈Ug

Rgi whereRgi is the data rate transmitted to user

gi. For viable transmission, the total data rate transmitted by a
RRH (to users) should be smaller or equal to the capacity of
the fronthaul link connecting to the RRH. In particular, letus

denote byCt the capacity of the fronthaul link connecting to
RRH t, and byGt ⊆ G the set of multicast groups receiving
data from RRHt. Then, constraints on data rate transmitted
over the fronthaul links can be written as [22]

∑

g∈Gt

Rg ≤ Ct, ∀t ∈ T . (3)

It can be observed from (3) that, givenCt, Rg would be
improved if Gt is grouped suitably. In other words, properly
choosing the sets of serving RRHs for the multicast groups
would improve the common information rate.

B. Problem Statement

We are interested in the problem of joint beamforming
design and RRH selection for maximizing weighted max-
min fairness transmission. In order to formulate the problem,
let us denote byΓgi the grade of service with respect to
user gi where largerΓgi corresponds to higher grade [13].
Let us also denote byγ0 the worst case scaled SINR, i.e.
γgi
Γgi

≥ γ0 for all gi [13], [14]. Based on the discussion in

the previous subsection, in order to achieve someγ0, the
data rate with respect to groupg transmitted from the BBU
pool to the serving RRHs should be larger than or equal
to Rg = log(1 + γ0Γ̄g) where Γ̄g , max

i∈Ug

Γgi . With this

observation, the problem of interest can be formulated as

maximize
{wgt},{Gt},γ0

γ0 (4a)

subject to
γgi
Γgi

≥ γ0, ∀g ∈ G, i ∈ Ug (4b)
∑

g∈Gt

log(1 + γ0Γ̄g) ≤ Ct, ∀t ∈ T (4c)

∑

g∈Gt

||wgt||22 ≤ P̄t, ∀t ∈ T . (4d)

Constraints in (4c) are arrived following (3), and that in (4d)
represents transmit power restriction whereP̄t is the maximum
transmit power at RRHt.

To solve (4) globally is a difficult task, since (4) combines
the numerical challenges of handling discrete variables and
nonconvex functions. In particular, (4) is a combinatorial
optimization problem for which an optimal solution may
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require an exhaustive search to be found. Moreover, even
if {Gt} are fixed, the resulting problem is still NP-hard
due to the nonconvex constraints in (4c) and the intractable
form of {γgi} [13]. These observations promote finding low-
complexity efficient suboptimal solutions to (4).

C. Alternative Formulation with Boolean Variables

In order to develop solutions to (4), we equivalently re-
formulate it into a more tractable form where RRH selection
is controlled by Boolean variables. In fact, this approach has
been considered in many works related to BS selection, e.g.
[18], [21], [25], [26]. For notational convenience, let us
define vectorswg , [wT

g1,w
T
g2, . . . ,w

T
gT ]

T ∈ C(L×1) and
hgi , [hgi1,hgi2, . . . ,hgiT ] ∈ C(1×L) whereL = (

∑T
t=1 Lt)

is the total number of transmit antennas at all RRHs. Then the
SINR at usergi in (2) can be rewritten as

γgi =
w

H
gHgiwg

∑G
k=1,k 6=g w

H
kHgiwk + σ2

gi

(5)

whereHgi , h
H
gihgi . To this end, let us introduce the Boolean

variables{dgt}g∈G,t∈T such thatdgt = 1 indicates that RRH
t serves groupg, anddgt = 0 otherwise. Then, problem (4)
can be equivalently reformulated as

maximize
{wg},{dgt},γ0

γ0 (6a)

subject to
γgi
Γgi

≥ γ0, ∀g ∈ G, i ∈ Ug (6b)

G∑

g=1

dgtlog(1 + γ0Γ̄g) ≤ Ct, ∀t ∈ T (6c)

||Btwg||22 ≤ dgtP̄t, ∀t ∈ T , g ∈ G (6d)
G∑

g=1

||Btwg||22 ≤ P̄t, ∀t ∈ T (6e)

dgt ∈ {0, 1}, ∀t ∈ T , g ∈ G (6f)

where Bt , [0Lt×
∑t−1

b=1
Lb
, ILt ,0Lt×

∑T
b=t+1

Lb
]. Additional

constraints in (6d) are arrived based on the Big-M formulation
[27], which indicate that RRHt, t ∈ T , does not allocate
power for groupg, g ∈ G, if the RRH does not serve the
group, i.e.wgt = 0 whendgt = 0.

It should be mentioned that a natural idea dealing with
a mixed integer problem is to solve the problem where the
integer variables are continuously relaxed, then round the
value of the relaxed variables to the nearest integers, and
subsequently solve the problem with the value of the integer
variables fixed for satisfying the constraints and refinement.
However, for (6), to relax or fix the Boolean variables does
not lead to a more tractable formulation, i.e. the problems
at the first and the third steps in the mentioned three-step
procedure are still nonconvex. More importantly, it is not
guaranteed that the value of{dgt} are close to 0 or 1 after
solving the continuous relaxation problem. And thus, the final
obtained objective value might be unacceptably deteriorated.
This motivates us to develop the methods presented in the
following sections.

III. PROPOSEDJOINT BEAMFORMING DESIGN AND RRH
SELECTION

A. Upper Bound and Suboptimal Design via SDR

A common approach tackling the intractable format ofγgi
is to lift the problem to the semidefinite domain. Let us
introduce semidefinite matricesWg , wgw

H
g , ∀g. Utilizing

the principle of the SDR [28], we arrive at a relaxation of (6)
which is written as

maximize
{Wg�0},{dgt},

γ0

γ0 (7a)

subject to
Tr (HgiWg)

∑G
k=1,k 6=g Tr (HgiWk) + σ2

gi

≥ Γgiγ0,

∀g ∈ G, i ∈ Ug (7b)
G∑

g=1

dgt log(1 + γ0Γ̄g)≤ Ct, ∀t ∈ T (7c)

Tr
(
B̄tWg

)
≤ dgtP̄t, ∀t ∈ T , g ∈ G (7d)

G∑

g=1

Tr
(
B̄tWg

)
≤ P̄t, ∀t ∈ T (7e)

dgt ∈ {0, 1}, ∀t ∈ T , g ∈ G (7f)

where B̄t , B
T
tBt. Solving (7) globally is of particular

interest. Let({W∗
g}, {d∗gt}, γ∗

0) be the optimal solution of
(7). Then γ∗

0 is the upper bound of the objective in (6).
Moreover, ifrank(W∗

g) = 1 for all g, ({w∗
g}, {d∗gt}, γ∗

0) is an
optimal solution of (6) wherew∗

g is extracted fromW∗
g using

the eigenvalue decomposition [29]. We note that (7) is still
a mixed Boolean nonconvex program. However, its optimal
solution can be obtained by the procedure presented below.

1) Optimal Solution to(7): We make some useful obser-
vations regarding to (7). First, whenγ0 is fixed, problem (7)
reduces to a mixed Boolean SDP (MI-SDP), i.e. the problem
becomes SDP as the Boolean variables are fixed or relaxed,
which can be solved globally by, e.g., BnB method [30].
Second, letQ(γ0) be the feasible set of (7) corresponding
to some fixedγ0, i.e.

Q(γ0) , {{Wg}, {dgt}|(7b)− (7f)}. (8)

Given γ0 andγ′
0 such thatγ0 < γ′

0, then we haveQ(γ0) 6= ∅
if Q(γ′

0) 6= ∅; on the other hand, ifQ(γ0) = ∅, Q(γ′
0) = ∅.

These are due to the fact thatQ(γ′
0) ⊆ Q(γ0). Consequently,

we can perform a bisection search overγ0. We develop
a method based on these two remarks which provides the
optimal solution to (7).

The main steps of the proposed method are outlined in
Algorithm 1. At the initial stage, the starting value of the
upper bound,γU

0 , and lower bound,γL
0 , of the objectiveγ0

are required. For the lower bound, we simply setγL
0 = 0

due to γ0 > 0. The transmit data rate depends not only on
the wireless channels but also on the fronthaul capacities.
Thus the upper bound can be simply determined asγU

0 =

min

({

Ptol
||hgi

||22
Γgi

σ2
gi

; exp(C̄)−1
Γgi

}

gi

)

wherePtol =
∑T

t=1 P̄t and

C̄ = max
t

Ct. The first term in the braces is arrived by apply-
ing the Cauchy-Schwartz inequality on the constraints in (7b)
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which represents the upper bound dominated by the capacity
of the wireless channels [13]. The second term represents the
bound dominated by the capacity of the fronthaul links (i.e.
(7c)) which corresponds to the case that the RRH associated to
the largest fronthaul capacity serves only one group. Parameter
ǫbs is the error tolerance, i.e. the possible maximum distance
between the obtained objective value and the optimal one. The
bisection search with respect toγ0 is performed in lines 2–5.
In line 4, a BnB algorithm is carried out to check the feasibility
and find({W∗

g}, {d∗gt}).

Algorithm 1 The proposed method for solving (7) optimally.

1: Initialization :γL
0 , γU

0 , ǫbs > 0
2: while γU

0 − γL
0 ≤ ǫbs do

3: setγ0 :=
γU
0 −γL

0

2
4: if Q(γ0) 6= ∅ then γL

0 := γ0 and update
({W∗

g}, {d∗gt}) ∈ Q(γ0) elseγU
0 := γ0 end if.

5: end while
6: Output:

(
{W∗

g}, {d∗gt}, γL
0

)

2) Suboptimal solution to(6): When W
∗
g is not rank-

1 for all g, a feasible point of (6) can be derived from
the output

(
{W∗

g}, {d∗gt}, γL
0

)
by using randomization/scaling

procedures [13], [28]. We note that the optimal value of (6)
is smaller than or equal toγL

0 . Thus the fronthaul capacity
constraints in (6c) can be ignored in the scaling step. Specif-
ically, let {wsdp

g }g be a set of beamforming vectors obtained
from the Gaussian randomization procedure. Then the scaling
problem reads [14]

maximize
{pg}g ,α

α (9a)

subject to
pgagi

∑G
k=1,k 6=g pkbgi,k + σ2

gi

≥ Γgiα, ∀gi (9b)

G∑

g=1

pgcgt ≤ P̄t, ∀t (9c)

where agi , (wsdp
g )H

Hgiw
sdp
g , bgi,k , (wsdp

k )H
Hgiw

sdp
k ,

and cgt , ||Btw
sdp
g ||22. Problem (9) is solved by applying

bisection search onα over [0, γL
0 ] where each supproblem is

a linear program.

Remark 1. Although γL
0 can be achieved by any

({W∗
g}, {d∗gt}) ∈ Q(γL

0 ), choosing an arbitrary feasible
point inQ(γL

0 ) might result in inefficient power performance.
This is becauseQ(γL

0 ) might contain multiple points and the
chosen one consumes more power than another. Moreover,
we numerically observe that the scaling procedure, i.e. (9),
is efficient with power-efficient points of({W∗

g}, {d∗gt}).
Therefore we propose the strategy of choosing({W∗

g}, {d∗gt})
for the considered problem such that the total transmit power
is minimized, i.e.

({W∗
g}, {d∗gt}) , argmin

({Wg},{dgt})∈Q(γL
0
)

G∑

g=1

Tr (Wg) (10)

which is also a MI-SDP. The advantages of the strategy are
numerically justified in Fig. 3 in Section VI.

B. Low-complexity Solution via Sequential Convex Approxi-
mation

The method presented in the previous subsection can pro-
vide a tight upper bound and an efficient suboptimal solution
to (6). However, this approach is not suitable for large-scale
networks due to the exponential increase in the complexity of
the BnB search and the high sensitivity of SDP with respect
to the problem dimensions [31]. We present herein a heuristic
low-complexity algorithm for practical large-scale networks
which obtains suboptimal solutions to (6) by solving a series
of SOCPs. The idea is to overcome the nonconvex problem
by resorting to the SCA framework [32], [33], which has been
widely used in wireless communications design, e.g. [12], [34].

1) Equivalent Transformation:Problem (6) is currently not
in an amenable format for using SCA due to the intractability
of nonconvex constraints in (6b) and (6c) as well as the
discrete parts in (6f). Thus, as the first step, we transform the
problem into an equivalent formulation in which its convexity
is more exposed. Let us introduce new optimization variables
{sg}g, and equivalently rewrite (6) as

maximize
{wg},{dgt},

γ0,{sg}

γ0 (11a)

subject to
w

H
gHgiwg

Γgiγ0
≥

G∑

k=1,k 6=g

w
H
kHgiwk + σ2

gi ,

∀g ∈ G, i ∈ Ug (11b)

log(1 + γ0Γ̄g) ≤ sg, ∀g ∈ G (11c)
G∑

g=1

dgtsg ≤ Ct, ∀t ∈ T (11d)

T∑

t=1

G∑

g=1

(d2gt − dgt) ≥ 0 (11e)

0 ≤ dgt ≤ 1, ∀g ∈ G, t ∈ T (11f)

(6d), (6e). (11g)

The equivalence between (6) and (11) can be easily justified
as follows. The constraints in (6c) are satisfied if and only
if there exists a point({wg}, {dgt}, γ0, {sg}) which satisfies
the constraints in (11c) and (11d). Similarly, the constraints in
(11e) and (11f) are satisfied simultaneously if and only ifdgt
is 1 or 0 for all g, t [35, Chap. 4].

2) Regularization Formulation:We note that the constraints
in (11d) can be rewritten as

∑G
g=1(dgt+ sg)

2− (dgt− sg)
2 ≤

4Ct, ∀t ∈ T . Hence, all the nonconvex constraints in (11) have
a difference-of-convex (DC) structure which can be convexly
approximated using, e.g., the first order Taylor series. How-
ever, doing this arrives at the approximated problem which is
infeasible due to (11e). Specifically, a convex approximation
of (11e) at some{d(n)gt } is given asF ({dgt}; {d(n)gt }) ,

∑T
t=1

∑G
g=1

(

2d
(n)
gt dgt −

(

d
(n)
gt

)2

− dgt

)

≥ 0. It is straight-

forward to see that the set{{dgt}|F ({dgt}; {d(n)gt }) ≥
0, (11f)} is empty for any{d(n)gt } ∈ (0, 1)GT . Inspired by
the recent results in [36], [37], we tackle this shortcoming



6

by introducing a nonnegative slack variableφ and arriving at
a regularization problem of (11) written as

maximize
v

γ0 − kφ (12a)

subject to (6d), (6e), (11b)− (11d), (11f), φ ≥ 0 (12b)
T∑

t=1

G∑

g=1

(d2gt − dgt) + φ ≥ 0 (12c)

where v = {{wg}, {dgt}, γ0, {sg}, φ}, and k > 0 is the
penalty parameter. Clearly, problem (12) reduces to (11) when
φ = 0, and thusφ represents constraint residual temperature.
From now on, we present an iterative procedure based on
the SCA technique to solve (12) which reaches a favorable
search region (for the solution) during some first iterations
and minimizes the constraint residual at convergence.

3) Proposed Iterative Procedure: Let v
(n) =

({w(n)
g }, {d(n)gt }, γ(n)

0 , {s(n)g }, φ(n)) be some feasible point of
(12). Then a convex approximation of (12) at this point is
given as

maximize
v

γ0 − τ ||v − v
(n)||22 − kφ (13a)

subject to
2ℜ

{
(w

(n)
g )H

Hgiwg

}

Γgiγ
(n)
0

− (w
(n)
g )H

Hgi(w
(n)
g )

Γgi

(
γ
(n)
0

)2 γ0

≥
G∑

k=1,k 6=g

w
H
kHgiwk + σ2

gi , ∀g, i (13b)

log(1 + γ
(n)
0 Γ̄g) +

Γ̄g(γ0 − γ
(n)
0 )

1 + γ
(n)
0 Γ̄g

≤ sg, ∀g

(13c)
G∑

g=1

(

(dgt + sg)
2 + (d

(n)
gt − s(n)g )2

−2(d
(n)
gt − s(n)g )(dgt − sg)

)

≤ 4Ct, ∀t
(13d)

∑

g,t

(

2d
(n)
gt dgt −

(

d
(n)
gt

)2

− dgt

)

+ φ ≥ 0 (13e)

(6d), (6e), (11f), φ ≥ 0 (13f)

where τ > 0. The proximal term−τ ||v − v
(n)||22 is added

to make the objective function strongly concave with respect
to v. It guarantees that the iterates{v(n)} obtained by the
proposed iterative algorithm converge to a limit points (cf.
[36], [38] for more details). The approximation functions in
(13b), (13c), (13d), and (13e) are arrived following the first
order Taylor series approach which satisfy the three conditions
mentioned in [33].

Our proposed method is to successively solve (13) with
feasible pointv(n) and parameterk are updated after each
iteration. The main steps of the proposed iterative procedure
are outlined in Algorithm 2. At the initial stage, a feasible
point v(0) of (12) is generated and the initial value ofk is
set. Also, the upper bound and the update step ofk denoted
by kmax andλ, respectively, are given. In order to provide the
relaxation for choosing RRHs, the initial value of the penalty
parameterk and the update stepλ should be small. Parameter

Algorithm 2 The proposed iterative procedure to solve (12).
1: Initialization : Givenλ > 1,kmax. Setn := 0, generate an

initial feasible pointv(0) (of (12)), and set initial value of
k.

2: repeat
3: Solve (13) to obtain optimal valuesv∗.
4: Setn := n+1, v(n) := v

∗. Updatek := min(λk, kmax).
5: until Convergence
6: Output : (w(n)

g , {d(n)gt }, γ(n)
0 )

k is increased after each iteration until the upper boundkmax

which should be large. The purpose is to forceφ as small
as possible when the algorithm converges. The convergence
properties of Algorithm 2 are stated in the following claim.

Claim 1. The iterate{v(n)}∞n=1 is guaranteed to converge, i.e.
||v(n+1) − v

(n)||2 tends to zero whenn tends to infinity, and
v
(∞) is a Karush–Kuhn–Tucker (KKT) point of (12).

The proof for the claim follows the same arguments as
those in [32, Section 3]. It is not guaranteed that the output
of Algorithm 2 is a feasible point of (6), i.e.{d(n)gt }g,t might

be only nearly binary. If this is the case, we round{d(n)gt }g,t
to binary and run the algorithm with respect to the continuous
variables only until convergence for refinement. It is worth
mentioning that in the numerical section with the considered
simulation systems and parameters, we obtainedφ ≈ 0 when
convergence. The examples are described in Section VI and
shown in Fig. 2.

4) Discussion on Practical Implementation:As mentioned
above, the initial value ofk and the update stepλ are set
to be small. However, this might lead to the issue that the
required number of iterations for convergence is large. A
possible approach overcoming this shortcoming is to use two
different update stepsλ1 andλ2 whereλ1 < λ2; λ2 is applied
after some predefined number of iterations.

At some first iterations whenk is small, the constraint in
(12c) has an insignificant impact on the solutions. Therefore,
to arrive at a formulation which is tight as the Boolean
variables are relaxed might improve the desired performance.
A common approach is to apply perspective formulation [25],
[39], [40]. In particular, let us introduce nonnegative variables
{ρgt}gt. Then the constraints in (6d) and (6e) are replaced by

||Btwg||22 ≤ dgtρgt, ∀t ∈ T , g ∈ G (14)
G∑

g=1

ρgt ≤ P̄t, ∀t ∈ T (15)

respectively. We note that the constraints in (14) can be written
in SOC as||[

√
2Btwg; dgt; ρgt]||2 ≤ dgt + ρgt. A tighter

formulation using the quadratic form of the Boolean variables
can also be applied [39], in which (14) is substituted by
||Btwg||22 ≤ d2gtρgt. This constraint is noncovex which can be
also convexly approximated by applying the first order Taylor
series similar to those in (13).

The objective (13a) is strongly convex for allτ > 0. How-
ever, τ should be small, otherwise the algorithm converges
slowly. An alternative approach for practical implementation
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is that the proximal termτ ||v−v
(n)||22 only joins when there

is no variation inγ0 (cf. [38]).

IV. JOINT ROBUST BEAMFORMING DESIGNS ANDRHH
SELECTION UNDERCHANNEL UNCERTAINTIES

In this section, we extend the proposed solutions to systems
with imperfect channel state. This is significant because to
ensure the error-free channel is still a challenge in practice,
and the performance would be reduced due to the sensitivity
of the beamforming to the errors [41].

There exist two approaches broadly used for modeling the
channel uncertainty [42]. The first approach assumes that the
error resides in prespecified sets. Then, robust optimization is
applied with the aim at guaranteeing the performance level.
The second one is suitable for errors which are unbounded,
e.g. estimation errors. This approach assumes that the error
parts are random variables whose statistics are known. In
this case, stochastic optimization is applied exploiting the
statistical information for guaranteeing probability forsome
performance target (i.e. outage performance). However, the
reformulated problems include chance constraints which are
usually highly intractable [43]. In this paper, we considerthe
bounded uncertainty, and optimize the worst case performance.

A. Imperfect CSI Model and Robust Counterpart Formulation

We consider the common additive error model of uncertain
channels given as

hgi = h̃gi + θgi , ∀g ∈ G, i ∈ Ug (16)

where h̃gi ∈ C
(1×L) is the known value vector, andθgi ∈

C(1×L) is the vector of random errors [14], [23], [44]. We
assume that{θgi} lie in bounded sets. In particular, we
concentrate on the ellipsoidal uncertainty sets given as

Egi = {θgi | θgiEgiθ
H
gi ≤ δgi}, ∀g ∈ G, i ∈ Ug (17)

where Egi is a nonsingular positive definite matrix. The
uncertainty model (17) means that the true channelhgi ran-
domly lies in the ellipsoid parameterized byEgi andδgi and
centered at̃hgi . The motivation of considering the ellipsoidal
uncertainty sets was discussed in [41], [44], [45].

Following the worst case robust optimization strategy, which
has been broadly used in the existing literature [23], [41],[46],
the robust counterpart of (6) takes the form

maximize
{wg},{dgt},γ0

γ0 (18a)

subject to

min
θgi

∈Egi

|(h̃gi + θgi)wg|2
∑G

k=1,k 6=g |(h̃gi + θgi)wk|2 + σ2
gi

≥ Γgiγ0,

∀g ∈ G, i ∈ Ug (18b)

(6c)− (6f) (18c)

where (18b) follows from (16). To solve (18) optimally is a
major challenge because (18) inherits the numerical difficulties
of (6) in addition to the semi-infinite number of constraintsin
(18b).

B. Upper bound and suboptimal solution to(18) via SDR

A common approach overcoming the semi-infinite number
of intractable constraints in (18b) is to lift the problem to
higher dimensions with SD variables [23]. Specifically, letus
defineW̄gi = Wg − Γgiγ0

∑G
k=1,k 6=g Wk for all gi, where

the positive semidefinite matrices{Wg} have been defined in
Section III-A. We equivalently rewrite (18b) as

θgiEgiθ
H
gi ≤ δgi ⇒ θgiW̄giθ

H
gi + 2ℜ(h̃giW̄giθ

H
gi)

+ h̃giW̄gi h̃
H
gi − Γgiγ0σ

2
gi ≥ 0, ∀g, i (19)

By straightforwardly applying the well-known technique
called S-Lemma [46] on (19) and ignoring the nonconvex
rank-1 constraints on{Wg}, we arrive at a relaxation of (18)
given as

maximize
{Wg�0},{dgt},

γ0,{µgi
≥0}

γ0 (20a)

subject to
(
W̄gi + µgiEgi W̄gih̃

H
gi

h̃giW̄gi h̃giW̄gi h̃
H
gi − σ2

giΓgiγ0 − µgiδgi

)

� 0,

∀g ∈ G, i ∈ Ug (20b)

(7c)− (7f) (20c)

where{µgi}gi are additional slack variables. Since (20b) is
the exact representation of (18b), the relaxation (20) is tight
if rank(Wg) = 1 for all g. As can be observed, nonconvex
constraints in (20b) reduce to tractable linear matrix inequal-
ities (LMIs) when γ0 is fixed. Consequently, the procedure
similar to that in Algorithm 1 can achieve the optimal solution
to (20), i.e. replacingQ(γ0) in step 4 by Q̃(γ0) where
Q̃(γ0) , {{Wg}, {dgt}, {µgi}|(7c) − (7f), (20b)}. Again,
when the rank-1 constraints are not satisfied for all obtained
{Wg}, a randomization/scaling procedure is run to yield
suboptimal solutions to (18).

C. Low-complexity Robust Designs via SCA

We now apply the SCA framework to design low-
complexity robust solution to (18). To be consistent with the
worst case strategy, we consider a safety approximation of
(18b) given as

min
θgi

∈Egi

|(h̃gi + θgi)wg|2

max
θgi

∈Egi

∑G
k=1,k 6=g |(h̃gi + θgi)wk|2 + σ2

gi

≥ Γgiγ0,

∀g ∈ G, i ∈ Ug. (21)

By using the triangle and the Cauchy-Schwarz inequalities
(c.f. [47] for details) for the numerator in the left side
and introducing nonnegative slack variables{νgi}gi , we can
equivalently rewrite (21) for eachgi as follows

max
θgi

∈Egi

G∑

k=1,k 6=g

|(h̃gi + θgi)wk|2 ≤ ν2gi (22)

([
|h̃giwg| −

√
δgi ||E−1/2

gi wg||
]+

)2

Γgiγ0
≥ ν2gi + σ2

gi (23)
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where[x]+ denotesmax(x, 0). To deal with the semi-infinite
set of constraints in (22), we first rewrite it as

θgiEgiθ
H
gi ≤ δgi ⇒ ||(h̃gi + θgi)Ŵg||2 ≤ ν2gi (24)

whereŴg = [w1, ...,wg−1,wg+1, ...,wG]. Then, by apply-
ing the Schur’s complement lemma and theS-lemma on (24)
(similar to the arguments in [46, Chap. 6.3]), this constraint
is equivalent to

∃κgi ≥ 0 :






νgiI
√
δgi

(

E
−1/2

gi Ŵg

)H
Ŵ

H
g h̃

H
gi

√
δgiE

−1/2

gi Ŵg κgiI 0

h̃giŴg 0 νgi − κgi







� 0

(25)

which is a LMI with respect to(νgi , κgi , {wk}k 6=g). We
now focus on the nonconvex constraints in (23) which are
equivalent to the following set of constraints

α2
gi

Γgiγ0
≥ ν2gi + σ2

gi , ∀g, i (26)

|h̃giwg| ≥ α̃gi , ∀g, i (27)

α̃gi − αgi ≥
√

δgi ||E−1/2
gi wg||, ∀g, i (28)

where{αgi ≥ 0}gi , and {α̃gi ≥ 0}gi are newly introduced
slack variables. We can see that the nonconvex parts lie in
(26) and (27) which can be convexly approximated as

2
α
(n)
gi

Γgiγ
(n)
0

αgi −
(α

(n)
gi )2

Γgi

(

γ
(n)
0

)2 γ0 ≥ ν2gi + σ2
gi , ∀gi (29)

(w(n)
g )H

H̃giw
(n)
g

+ 2ℜ
{
(w(n)

g )H
H̃gi(wg −w

(n)
g )

}
≥ α̃2

gi , ∀g, i, (30)

respectively, wherẽHgi , h̃
H
gi h̃gi . At this point, we are ready

to arrive at the problem solved in each iteration of the SCA
procedure which is written as

maximize
v̂

γ0 − τ ||v̂ − v̂
(n)||2 − kφ (31a)

subject to (13c)− (13f), (25), (29), (30), (28) (31b)

where v̂ , {v, {αgi}, {α̃gi}, {νgi}, {κgi}}. We remark that
to find initial points for starting the iterative procedure
is not straightforward, since it requires that|h̃giw

(0)
g | ≥

√
δgi ||E−1/2

gi w
(0)
g || for all gi. However, we can overcome

this issue by using variableφ, i.e. (28) is replaced by
α̃gi − αgi + φ ≥

√
δgi ||E−1/2

gi wg||. In fact, this technique of
finding feasible point was used in [48].

Problem (31) is a SDP, and thus the computational com-
plexity might become high when the problems are large-scale.
In order to reduce computational effort, let us consider another
approximation of (18b) given as

min
θgi

∈Egi

|(h̃gi + θgi)wg|2
∑G

k=1,k 6=g max
θgi

∈Egi

|(h̃gi + θgi)wk|2 + σ2
gi

≥ Γgiγ0,

∀g ∈ G, i ∈ Ug (32)

We remark that (21) is tighter than (32). However, (32) leads
to the algorithm where a SOCP is solved in each iteration. In
particular, by again using the triangle and the Cauchy-Schwarz
inequalities, (32) is equivalent to

([
|h̃giwg| −

√
δgi ||E−1/2

gi wg||
]+

)2

∑G
k=1,k 6=g(|h̃giwk|+

√
δgi ||E−1/2

gi wk||)2 + σ2
gi

≥ Γgiγ0,

∀gi. (33)

Let us introduce some slack variables{αgi ≥ 0}gi ,
{α̃gi}gi ,{νgik}gi,k 6=g, and {ν̃gik}gi,k 6=g. Then (33) is equiv-
alent to the following sets of constraints

α2
gi

Γgiγ0
≥

G∑

k=1,k 6=g

ν2gik + σ2
gi , ∀g, i (34)

|h̃giwg| ≥ α̃gi , ∀g, i (35)

α̃gi − αgi ≥
√

δgi ||E−1/2
gi wg||, ∀g, i (36)

|h̃giwk| ≤ ν̃gik,
√

δgi ||E−1/2
gi wk|| ≤ νgik − ν̃gik, ∀g, i, k 6= g

(37)

where the nonconvex parts in (34) and (35) can be convexly
approximated as those in (29) and (30), respectively. To
summarize, the SOCP solved in iterationn + 1 of the SCA
procedure is given as

maximize
ṽ

γ0 − τ ||ṽ − ṽ
(n)||2 − kφ (38a)

subject to

2
α
(n)
gi

Γgiγ
(n)
0

αgi −
(α

(n)
gi )2

Γgi

(

γ
(n)
0

)2 γ0 ≥
G∑

k=1,k 6=g

ν2gik + σ2
gi , ∀g, i

(38b)

(13c)− (13f), (30), (36), (37) (38c)

whereṽ , {v, {αgi}, {α̃gi}, {νgik}, {ν̃gik}}. The theoretical
complexity of the presented methods will be discussed in the
following section.

V. COMPLEXITY ESTIMATE

A. Solutions for Perfect CSI

We first make some observations on the analytical complex-
ity of the upper bound and the suboptimal solution developed
via the SDR. The number of iterations related to the bisection
search isNbi =

⌈
log2(γ

U
0 /ǫbs)

⌉
. The complexity is mainly

caused by solving MI-SDPs. Particularly, the number of the
Boolean variables isGT leading to2GT combinations. The
worst case complexity solving the problem with the Boolean
variables are fixed using a general interior point solver is
O(G3.5L6.5 + UG1.5L2.5 + G2.5L2.5T ) [13]. This number
is dominated by the total number of transmit antennas at
RRHs and the number of multicast groups. When the ran-
domization/scaling procedure is used to extract a suboptimal
solution, the maximum number of solved linear programs
(LPs) is Nrand

⌈
log2(γ

L
0 /ǫbs)

⌉
where Nrand is the size of
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the randomization. The complexity of solving each LP is
O(G2(U + T +G)1.5) [49], which does not depend onL.

We now consider the SCA design. Since there exists no
result of the bound of the required number of iterations,
we focus on the complexity of solving a SOCP in each
iteration. Specifically, (13) containsG(2L + T + 1) + 2
real variables andU + G(T + 1) + 2T SOC constraints of
different dimensions. Thus, the upper bound complexity is
O((U +GT + T )0.5G2(L+ T )2G(U + L)). As the numbers
of multicasting groups and total transmit antennas are large,
the upper bound reduces toO(G3.5L3) showing that the SCA
design is less sensitive toL compared to that of the solution
derived via SDR.

B. Solutions for Imperfect CSI

In case of the upper bound and SDR solution, the com-
plexity of solving the problem as the Boolean variables and
variableγ0 are fixed isO(L0.5(G+U)0.5(GL2+U)2(GL2+
UL2 + (G+ 1)T )). The number has the same order of mag-
nitude with respect toG andL compared to that for the per-
fect CSI. When randomization/scaling procedure is used, the
complexity of solving a scaling problem isO(L0.5U0.5(G +
U)2(UL2 + T )) which depends onL (different from that in
case of perfect CSI).

For the SCA designs, the complexity of solving
the problem (31) is O((GL + LU + UG)0.5G2

L2(TG2L2
t + UL2 + UGL)). Focusing onL, the number

reduces toO(L4.5) which is lower (in order of magnitude)
compared to that of the design via the SDR. This is
because there is no introduction of SD matrices{Wg}
in (31). The upper bound complexity of solving (38) is
O(G0.5(U + T )0.5G2(L + T + U)2(G(U + L) + UL)).1

VI. N UMERICAL RESULTS

In this section, we report simulation results to evaluate
the performances of the proposed methods. We consider the
simulation model based on those in [18], [22], [23]. In
particular, for each multicast group, the positions of the users
are uniformly and independently generated in a circle of radius
15 meters. Similarly, the positions of the RRHs and that of the
centers of multicast groups are uniformly and independently
generated in a circle of radius300 meters. The numbers of the
RRHs and multicast groups are changed in the experiments.
The system parameters are set as follows. The system band-
width is 10 MHz, and the noise power density is -174 dBm/Hz.
The 3GPP path loss model in dB is145.4 + 37.5 log10(l)
where l is the distance in kilometers, and the log normal
shadowing standard deviation is 4 [50]. The channel vector
from RRH t and usergi is generated ashgit = βgith̄git where
βgit represents path loss and shadowing, andh̄git follows
CN (0, I). The maximum transmit power and the number of
antennas at the RRHs are set toP̄t = 32 dBm andLt = 2,
for all t. The number of users in a multicast group isUg = 4
for all g. Without loss of generality, we setΓgi = 1 for all

1We provide the computational time of different schemes in Subsection
VI-C, Table I, for numerically comparing the complexity among the schemes.

gi. This network setting is considered unless otherwise stated.
Other parameters will be specified in each experiment.

The initial points for starting the proposed iterative proce-
dures are generated as follows. First, we setd

(0)
gt = 0.5 for

all g, t. Then the beamforming vectors{w(0)
g }g are created

randomly which are scaled (if necessary) such that the power
constraints are satisfied. Based on those,γ

(0)
0 , {s(0)g }, andφ(0)

are determined such that (11b), (11c), (11d), and (12c) are
satisfied. For penalty parameterk, the initial value is set as
10−3, and the maximum valuekmax is set as104; the updated
constantλ is set as 3. The parameterτ (of the proximal term)
is set as10−7.

In this section, beside the derived upper bound serving as
a benchmark, we also compare the schemes of joint RRH
selection and beamforming design to the conventional scheme
of joint cooperation, i.e.dgt = 1 for all g, t. The beamforming
vectors of the scheme are derived based on the SDR-based
method presented in [14]. We refer this scheme as ‘FullCo’ and
‘FullCoRo’ in perfect and imperfect CSI systems, respectively.
To this end, for convenience, we denote by ‘JBR-SDR’ and
‘JBR-SCA’ the proposed suboptimal solutions obtained from
Algorithm 1 (with the randomization/scaling procedure is ap-
plied if neccessary) and Algorithm 2, respectively. Similarly, in
the case of the imperfect CSI, we denote by ‘JBRRo-SDR’ and
‘JBRRo-SCA’ the solutions derived based on SDR and SCA,
respectively. To solve SOCPs and SDPs, we use the modeling
package YALMIP [51] with the inner solver MOSEK [52]; to
solve MI-SDPs, inner solver BNB (of YALMIP) is used.

A. Performances under Perfect Knowledge of Channel States

In the first experiment, we study the convergence behavior
of Algorithm 2 (JBR-SCA) over two randomly generated
channels. Specifically, Fig. 2(a) depicts the convergence with
respect to the value ofγ0, and Fig. 2(b) shows the value ofφ
over iterations. As can be seen, the value ofγ0 converges to the
points close to the corresponding upper bounds. The value of
φ converges to zero which implies that the obtained{dgt}gt
are binary, i.e. the outputs of Algorithm 2 are the feasible
solutions to (6). We also observe that the value ofγ0 is larger
than the derived upper bound during some iterations. This is
due to the relaxation of the discrete constraints. Therefore,
we can see in Fig. 2(b) that the value ofφ (representing
the constraint residual temperature) is also large during these
iterations. Another observation is that the algorithm converges
within 25 iterations with the both channels.

In Fig. 3 we investigate the average performances of the
considered schemes as the functions of the fronthaul capacity
with network configuration(G, T ) set as(3, 4) and(4, 5). The
error tolerance of the bisection searchǫbs is 10−2. The size
of the randomization procedureNrand is 100. For JBR-SDR,
we provide the performances of two different strategies of
choosing feasible points inQ(γ) (i.e. step 4 of Algorithm
1); the first strategy follows (10); the second one is choosing
random feasible points.2 The iterative procedure of Algorithm
2 stops when the condition|ϕ(n+1) − ϕ(n)| ≤ 10−4, where

2The first feasible points obtained by the branch and bound procedure are
chosen.



10

1 5 10 15 20 25
0

2

4

6

8

10

Number of iterations

V
al

ue
of

γ
0

JBR-SCA, random channel 1
Upper bound, random channel 1
JBR-SCA, random channel 2
Upper bound, random channel 2

(a) Convergernce in value ofγ0

1 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Number of iterations

V
al

ue
of

φ

Random channel 1
Random channel 2

(b) Convergernce in value ofφ

Figure 2. Convergence performances of Algorithm 2 (i.e. JBR-SCA) over two
random channel realizations (with perfect CSI). The network configuration
(G, T ) of random channel 1 is(3, 4), and that of random channel 2 is(4, 5).
The fronthaul capacity is set asCt = 80 Mbits/s,∀t.

ϕ(n) = γ
(n)
0 − τ ||v(n) − v

(n−1)||2 − kφ(n), is satisfied.
Figures 3(a) and 3(c) show the performances in terms of
average achieved minimum data rate. The first observation
from these figures is that the achieved minimum data rate of
all considered schemes increases whenCt increases indicating
that the network performance does not only depend on the
capacity of wireless channels but also on that of the fronthaul
links. An expected result is that remarkable gains are achieved
by jointly designing beamforming vectors and selecting RRH,
especially when the fronthaul capacity is small. On the other
hand, whenCt is large enough, the performances of the
proposed schemes close to that of FullCo. This is because the
network performance now is mainly dominated by the capacity
of the wireless channels which is maximized when the RRHs
fully cooperate. As such, further increasingCt does not change
the performances. We can also see that the performances of
suboptimal schemes JBR-SDR and JBR-SCA are quite close to
the upper bound. Another observation is that the performance
of JBR-SDR with (10) almost agree with the upper bound
whenCt is small and there is a small gap between them when
Ct is large. The results can be explained as follows. WhenCt

is small, the consumed power corresponding to the obtained
SD matrices{W∗

g} is small. As the beamforming vectors are
extracted from{W∗

g}, it is likely that there exist points in
the feasible set of the scaling problem (9) which satisfy the
obtained upper boundγL

0 . On the other hand, whenCt is large,

the consumed power corresponding to{W∗
g} is large, and thus

the probability of existing a feasible point of (9) satisfying
γL
0 is small. This also explains that JBR-SDR with (10)

outperforms JBR-SDR with random chosen (feasible) points.
Figures 3(b) and 3(d) depict the average consumed power
of the considered schemes. We observe that if beamforming
design ignores the limitation of fronthaul capacity, i.e. the
scheme labeled ‘ [14] w/o fronthaul constraints’ in the figures,
the consumed power is always large while the achievable
desired performance is inferior. This result again confirmsthe
necessity of taking into account the capacity of fronthaul links
in design. The scheme FullCo consumes the smallest power
compared to the others due to the full connection and the low
achieved data rate. The figures clearly show the advantage of
the strategy in (10) in terms of power efficiency.

In Fig. 4, we show the average achieved minimum data
rate performance regarding to different number of RRHs. In
particular, we consider a network scenario where RRHs and
the centers of multicast groups are randomly placed inside a
circle of radius500 meters. The number of multicast groups
is fixed atG = 10 (i.e. 40 users), and the number of RRHs
is taken asT = {12, 16, 20}. For the such scenario, we focus
on the low-complexity scheme JBR-SCA, and also provide
the performance of FullCo for comparison. It is observed
that, with large values ofCt, the two schemes provide better
performance when more RRHs are added. This is due to the
cooperation gain, i.e. the wireless channel capacity increases
with respect toT . In addition, it is interesting to observe that
the gap between the performance of JBR-SCA and FullCo
is larger whenT increases. On the other hand, whenCt is
small, to add more RRHs does not improve the performance
with scheme FullCo. Meanwhile, JBR-SCA can exploit the
selection gain, which results in better performance whenT
increases.

B. Performances under Channel Uncertainties

We now investigate the performance of the robust designs
under imperfect CSI conditions. For simplicity, we select the
error sets as follows. We first define the uncertainty parameter
δ′ > 0 and letα , max

∀gi,t
βgit; we then setδgi = δ′/α and

Egi = I for all gi. Other parameters are set as those in the
experiments in the previous subsection.

Similar to the case of perfect CSI, we investigate the
convergence behavior of the proposed iterative procedures
over two random channel realizations which are shown in
Fig. 5. We set the network configuration(G, T ) as(3, 4) and
the uncertainty parameterδ′ as 0.3. Again we can observe
that φ goes to zero in all cases. The procedures converge
within 10 and 25 iterations with the random channel 1 and
the random channel 2, respectively. We can also observe that
the convergence points ofγ0 of scheme (31) are better than
those of scheme (38). This is because the approximation in
(21) is tighter than that in (32). The reason thatγ0 is larger
than the upper bound during some iterations is the same as
that for the results in Fig. 2.

Fig. 6 depicts the average performances in terms of the
worst case minimum data rate of the considered robust
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(c) Average minimum data rate with(G, T ) = (4, 5)
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Figure 3. Average performances of the considered schemes versus different fronthaul capacities with two different network configurations of(G,T ) those
are (3, 4) and (4, 5).
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Figure 4. Average achieved minimum data rate of JBR-SCA and FullCo
versus different fronthaul capacities for three number of RRHs: T = 12,
T = 16, andT = 20. The number of multicast groups isG = 10.

schemes as functions of uncertainty parameterδ′. It is ob-
served that the performances of all the proposed schemes
reduce whenδ′ increases due to the effect of the channel
uncertainty. Although the safety approximations are used in
(21) and (32), JBRRo-SCA schemes (with (31) and (38)) are
able to achieve more than 90% of the upper bound. We also
see that the performance of FullCoRo does not change over
the considered range ofδ′. This is because the performance

of this scheme is mainly dominated by the fronthaul capacity
with respect to the simulation setup, i.e. although the wireless
channel capacity reduces because of the uncertainty, it is still
higher than the limitation caused by the fronthaul capacity.
Clearly, there are remarkable gaps between FullCoRo and the
proposed schemes.

Fig. 7 shows the average worst case minimum performance
of the considered robust schemes against the fronthaul capacity
Ct. We set the network configuration as(G, T ) = (3, 4) and
the uncertainty parameter asδ′ = 0.3. We can see that the
performance of all considered schemes increase with respect
to Ct. This result is similar to that in the case of perfect CSI.
As expected, the joint beamforming design and RRH selection
schemes outperform FullCoRo whenCt small. WhenCt is
large, the performances of JBRRo-SDR, JBRRo-SCA with
(31), and FullCoRo are close to each other and slightly higher
than that of JBRRo-SCA with (38). This is because the impact
of the safety approximation used in (32). However, as will be
seen in Subsection VI-C, the numerical effort for computing
JBRRo-SCA with (38) is remarkably lower compared to that
for the others.

In Fig. 8 we study the behavior of the proposed schemes
JBRRo-SCA with (31) and (38) when the size of the uncer-
tainty sets considered in the designs are smaller than that of the
actual uncertainty sets. For this purpose, let us introducethe
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Figure 5. Convergence performances of the proposed iterative procedures,
i.e. JBRRo-SCA with (31) and (38), over two different randomly generated
channel realizations (under imperfect CSI). The network configuration is
(G, T ) = (3, 4), and the uncertainty parameterδ′ is 0.3. The capacity of
the fronthaul links isCt = 80 Mbits/s for all t.
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Figure 6. Average worst case minimum data rate of the considered robust
schemes versus uncertainty parameterδ′ . The network configuration(G, T )
is (3, 4) and the capacity of the fronthaul links isCt = 60 Mbits/s for all t.
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Figure 7. Average worst case minimum data rate of the considered robust
schemes versus the fronthaul capacityCt. The networks configuration(G, T )
is (3, 4), and the uncertainty parameterδ′ is 0.3.

parameterξ ∈ [0, 1) which represents the degree of reduction
in size of the uncertainty sets in the designs (compared to
that of the actual uncertainty sets), i.e. the error vectorsin
the designs are assumed to lie in hyperspheres of radius
(1 − ξ)

√
δgi for all gi. We run the algorithms over 1000

channel realizations where the uncertainty parameter is taken
as δ′ = 0.5. Fig. 8(a) shows the worst case minimum data
rate obtained by the algorithms. Fig. 8(b) depicts the actual
average minimum data rate. In this figure, if any constraint
in (6b) is violated, there will be an outage and the (actual)
minimum data rate is set as zero. The probability of outage
is showed in Fig. 8(c). As expected, the worst case minimum
data rate obtained by the algorithms increases whenξ increases
due to the reduction in size of the uncertainty sets (considered
in the designs). The important observation is that the actual
average minimum data rate first increases then decreases with
the increase ofξ. This is because, whenξ is small, the
probability of outage is small. Thus, the average minimum
data rate performance is improved due to the increase of
the worst case minimum data rate. However, after a certain
value of ξ, the probability of outage becomes larger leading
to performance loss in terms of average minimum data rate.
Clearly, the results indicate that there exists a tradeoff between
the worst case minimum data rate and the average minimum
data rate performances.

We use JBRRo-SCA with (38) to evaluate the average worst
case minimum data rate performance in a large scale scenario.
The results are illustrated in Fig. 9. In particular, we adopt
the same network settings as those in Fig. 4. We takeG =
10, T = {12, 14, 16}, and δ′ = {0.1, 0.5}. On one hand,
we can observe similar results as in Figs. 6 and 7 that the
performance improves regarding to the increase ofCt, and the
largerδ′ results in the lower performance in all cases ofCt. On
the other hand, adding more RRHs provides improvement in
performance. This is due to the cooperation gain and selection
gain exploited by the scheme. We can also see that the gap
between the curves ofδ′ = 0.1 and δ′ = 0.5 in the regime
of small Ct is smaller than that in the regime of largeCt.
Again, this is because, in the regime of smallCt, a reduction
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Figure 8. Performances of the proposed robust schemes, i.e.JBRRo-SCA with
(31) and (38), as functions ofξ. The network configuration is(G,T ) = (4, 6).
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Figure 9. Average worst case minimum data rate of JBRRo-SCA with (38)
versus the fronthaul capacityCt in a large scale scenario whereG = 10, and
T = 12, 14, and16. We takeδ′ = 0.1 and0.5.

in wireless channel capacity (due to the uncertainty) does not
result in a performance loss if the wireless channel capacity is
still higher than the limitation caused by the fronthaul capacity.

C. Numerical Efficiency

We now numerically investigate the computational complex-
ity of the proposed solutions. Since the complexity of JBR-
SDR and JBRRo-SDR are quite high due to the BnB methods,
we mainly focus on the SCA-based designs and compare them
to the existing solutions (i.e. FullCo and FullCoRo). TableI
presents the average run time (in second) for solving the cor-
responding convex problems of the considered schemes with
different network configurations. Notably, the shown numbers
account the total run time of iterations for the algorithms to
converge. In order to clarify the effectiveness of the proposed
solutions, we also provide the desired performances, i.e. the
average (worst case) minimum data rate. We can observe from
the table, in case of the perfect CSI, that the average run time
of JBR-SCA is smaller than 2 seconds, and that of FullCo
is smaller than 3 seconds. Thus, by JBR-SCA, we can yield
remarkable gain in terms of the desired performance without
putting more computational effort (compared to the existing
solution). In case of the imperfect CSI, due to arriving at SOCP
in each iteration, the complexity of JBRRo-SCA with (38)
is significantly lower compared to the others. On the other
hand, the complexity of FullCoRo is much higher than that
of FullCo. This is because of the additionalU LMIs in (20b)
and, more importantly, the randomization/scaling procedure,
i.e. the scaling power problems corresponding to FullCoRo
are SDPs. This is also the reason that JBRRo-SCA with (31)
requires lower computational effort than FullCoRo. Another
observation is that the average running time of JBRRo-SCA
with (38) is larger than that of JBR-SCA. This is reasonable
since the numbers of variables and constraints in (38) are larger
than those in (13).

VII. C ONCLUSION

We have investigated multicasting transmission in C-RAN
where multiple RRHs controlled by a BBU collaborate in
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Table I
AVERAGE RUN TIME (IN SECOND) AND AVERAGE (WORST CASE) MINIMUM DATA RATE (IN MBITS/S) OF THE PROPOSED LOW-COMPLEXITY SCHEMES

COMPARED TO THE EXISTING SOLUTION(I .E. [14]) WITH DIFFERENT NETWORK CONFIGURATIONS OF(G, T ) AND Ct . FOR THE PERFORMANCES UNDER

IMPERFECTCSI, THE UNCERTAINTY PARAMETERδ′ IS SET AS0.3.

(G, T ) (3,5) (4,4) (4,6)
Ct (Mbits/s) 60 80 160 60 80 160 60 80 160

JBR-SCA avg. min. rate 28.4 36.8 45.9 20.6 22.4 26.4 25.5 27.6 37.4
avg. run time 1.10 1.09 0.51 1.09 0.78 0.56 1.94 1.71 0.51

FullCo [14] avg. min. rate 20.0 26.7 45.5 15.0 20.0 26.2 15.0 20.0 37.2
avg. run time 0.65 1.22 2.99 1.15 1.41 1.92 1.18 1.01 2.28

JBRRo-SCA (38)
avg. worst case min. rate 28.1 31.1 39.5 17.8 20.1 22.4 21.6 23.6 32.0

avg. run time 2.04 1.80 1.23 1.83 1.17 1.65 4.08 2.40 1.85

JBRRo-SCA (31) avg. worst case min rate 28.4 31.4 40.6 18.1 20.2 23.4 21.8 24.6 33.5
avg. run time 33.2 27.7 14.5 23.2 11.1 16.4 58.5 38.4 20.3

FullCoRo [14] avg. worst case min rate 20.0 26.7 40.6 15.0 19.7 23.5 15.0 20.0 33.6
avg. run time 65.7 109.2 230.7 83.2 115.7 131.3 100.2 117 226.3

transferring data to multiple cochannel multicast groups.Tak-
ing into account the limitation of the fronthaul capacity, we
explored the joint RRH selection and beamforming vectors
with the aim on weighted max-min fairness among users. In
particular, we have formulated the problem as mixed Boolean
nonconvex programs. A tight upper bound and an efficient
solution have been derived based on the combination of the
SDR, bisection search, and branch-and-bound techniques. In
addition, we have also developed a low-complexity iterative
procedure based on the SCA framework in which a SOCP is
solved in each iteration. Afterwards, we have leveraged our
proposed methods to the context where the CSI is uncertain.
The issue of erroneous CSI has been tackled by the regular
robust worst case strategies those are relaxation (via theS-
lemma) and safety approximations. The numerical results have
clearly demonstrated that the proposed solutions outperform
the existing ones in the regions of limited fronthaul capacity.
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