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Interpolation-Based Low-Complexity Chase
Decoding Algorithms for Hermitian Codes

Siyuan Wu, Li Chen, Senior Member, IEEE, and Martin Johnston, Member, IEEE

Abstract—Algebraic-geometric (AG) codes have good error-
correction capability due to their generally large codeword
length. However, their decoding remains complex, preventing
practical applications. Addressing the challenge, this paper
proposes two interpolation-based low-complexity Chase (LCC)
decoding algorithms for one of the most popular AG codes -
Hermitian codes. By choosing η unreliable symbols and realizing
them with the two most likely decisions, 2η decoding test-vectors
can be formulated. The first LCC algorithm performs interpo-
lation for the common elements of the test-vectors, producing
an intermediate outcome that will be shared by the uncommon
element interpolation. It eliminates the redundant computation
for decoding each test-vector, resulting in a low-complexity. With
an interpolation multiplicity of one, the decoding is further
facilitated by removing the requirement of pre-calculating the
Hermitian curve’s corresponding coefficients. The second LCC
algorithm is an adaptive variant of the first algorithm where the
number of test-vectors is determined by the reliability of received
information. When the channel condition improves, it can reduce
the complexity without compromising the decoding performance.
Simulation results show that both LCC algorithms outperform a
number of existing algebraic decoding algorithms for Hermitian
codes. Finally, our complexity analysis will reveal the proposals’
low-complexity feature.

Index Terms—Algebraic-geometric codes, adaptive decoding,
Chase decoding, Hermitian codes, interpolation

I. INTRODUCTION

Algebraic-geometric (AG) codes, first introduced by Gop-
pa [1], are a class of linear block codes derived from an
algebraic curve. AG codes comprise a large family that include
Hermitian codes, Elliptic codes, Reed-Solomon (RS) codes,
etc. RS codes are constructed from a straight line and its
codeword length cannot exceed the size of finite field, limiting
its minimum distance and therefore error-correction capability.
In contrast, a general AG code’s length can exceed the size
of its finite field since more affine points can be found on
a curve. This grants AG codes a greater error-correction
potential compared to RS codes that are constructed over the
same finite field.
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For RS and general AG codes, the conventional unique
decoding algorithms generate a single decoded message. They
utilize syndromes to determine the error locations and error
magnitudes. In particular, the well known Berlekamp-Massey
(BM) algorithm [2] and the Sakata algorithm [3][4][5] are
the unique decoding algorithms for RS and Hermitian codes,
respectively. They have a low complexity but cannot correct
errors beyond half of the code’s minimum Hamming distance
d, i.e., ⌊d−1

2 ⌋. To correct errors beyond this bound for RS
codes, Sudan proposed an interpolation-based list decoding
algorithm [6] whose extra error-correction capability only
applies to low rate (< 1/3) codes. Guruswami and Sudan
later generalized the work to list decode both RS and AG
codes of all rates, namely the Guruswami-Sudan (GS) algo-
rithm [7]. However, this improved error-correction capability
is at the cost of a higher decoding complexity caused by the
interpolation. Converting the reliability information into the
interpolation information, Koetter and Vardy proposed a soft-
decision list decoding algorithm for RS codes, namely the KV
algorithm [8]. Soft-decision list decoding of Hermitian codes
was later proposed by Chen et al. [9] and Lee et al. [10],
independently. An alternative soft-decision list decoding is the
interpolation-based Chase decoding [11] where low complex-
ity can be realized by exploiting the similarity among the
decoding test-vectors. This so called low-complexity Chase (L-
CC) decoding algorithm can outperform various soft-decision
decoding algorithms for RS codes at a smaller computational
cost.

This paper investigates LCC decoding of Hermitian codes,
in which two algorithms will be proposed. The first LCC
algorithm extends the RS decoding mechanism [11] to decode
Hermitian codes. By choosing η unreliable received symbols,
we can formulate 2η test-vectors in which the unreliable
symbols are realized with the two most likely decisions. With
such a formulation, the complexity dominant interpolation can
be performed for the common elements and the uncommon
elements, respectively. The common element interpolation
is performed once and its outcome will be shared by the
uncommon element interpolation. Exploiting the similarity of
the test-vectors, the uncommon element interpolation can be
performed in a binary tree expansion manner, eliminating the
redundant computation for decoding each test-vector and re-
sulting in a low complexity. Since the LCC decoding performs
with an interpolation multiplicity of one, the Hermitian curve’s
corresponding coefficients do not need to be pre-calculated,
which was the key challenge in implementing GS and KV de-
coding of Hermitian codes [12]. We will show LCC decoding
of Hermitian codes yields a good performance and a lower
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complexity than several existing decoding candidates. It is
known that when the channel condition improves, e.g., signal-
to-noise ratio (SNR) increases, the received information will
be more reliable. Intuitively, less test-vectors will be needed in
the Chase decoding for message recovery. Hence, the second
LCC algorithm is an adaptive variant of the first algorithm in
which the number of test-vectors is altered according to the
reliability of the received information. It is realized by setting
a reliability threshold for determining the number of unreliable
symbols. When the SNR increases, fewer unreliable symbols
will be considered resulting in fewer Chase decoding trials
and therefore has a reduced message recovering effort. We
will show that by carefully choosing the reliability threshold,
the adaptive LCC algorithm can maintain the Chase decoding
gains with a smaller computational cost. We will also show
that both LCC algorithms can outperform a number of existing
algebraic decoding algorithms for Hermitian codes. Chase
decoding performance for RS and Hermitian codes will also
be compared showing the Hermitian codes’ error-correction
potential. A complexity analysis of the LCC decodings will
be carried out to reveal their low-complexity feature.

The rest of this paper is organized as follows. Section II
provides the preliminaries of the paper. The two proposed
LCC algorithms will be introduced in Sections III and IV,
respectively. Section V analyzes the LCC decoding complex-
ity. Section VI shows our simulation results. Finally, Section
VII concludes the paper.

II. PRELIMINARIES

This section presents the preliminaries, including the en-
coding of Hermitian codes and the interpolation-based list
decoding.

A. Hermitian Codes

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of size
q. Fq[x, y] and Fq[x, y, z] denote the bivariate and trivariate
polynomial rings over Fq , respectively. An affine Hermitian
curve1 defined over Fq can be written as [13]

Hw(x, y) = xw+1 + yw + y, (1)

where w =
√
q and the curve has a genus g = w(w−1)

2 . Note
that Hermitian codes are constructed over finite fields whose
size is a square. There are w3 affine points pj = (xj , yj) that
satisfy Hw(xj , yj) = 0, and a point at infinity p∞. Let Pw

denote the set of affine points that are found over the curve Hw

as Pw = {pj = (xj , yj) | Hw(xj , yj) = 0}, and |Pw| = w3.
The pole basis Lw of a Hermitian curve comprises a

set of bivariate monomials ϕa(x, y) = xµyν with increas-
ing pole order at the point of infinity p∞ as Lw =
{ϕa(x, y) | vp∞(ϕ−1

a (x, y)) < vp∞(ϕ−1
a+1(x, y)), a ∈ N},

where vp∞(ϕ−1
a (x, y)) = vp∞((xµyν)−1) = w ·µ+(w+1) ·ν

is the pole order of ϕa and 0 ≤ µ ≤ w, ν ≥ 0. For example,
over the affine curve H2, L2 = {1, x, y, x2, xy, y2, x2y,
xy2, y3, . . .}. In decoding a Hermitian code constructed over

1Equation (1) is an affine component of the projective Hermitian curve
Hw(x, y, z) = xw+1 + ywz + yzw .

Hw, polynomials of Fq[x, y] and Fq[x, y, z] are constituted
with monomials in the basis Lw. For each affine point pj , there
exists a zero basis which comprises bivariate polynomials with
an increasing zero order over pj . The zero basis polynomials
are defined as [14]

ψpj ,α(x, y) = (x− xj)
λ[(y − yj)− xwj (x− xj)]

δ, (λ, δ) ∈ N,
(2)

where α = λ+(w+1)δ. Polynomial ψpj ,α has a multiplicity
of α at pj .

To construct an (n, k) Hermitian code, where n and k are
the length and dimension of the code, respectively, the message
polynomial f(x, y) ∈ Fq[x, y] is defined as

f(x, y) = f0ϕ0 + f1ϕ1 + · · ·+ fk−1ϕk−1. (3)

The Hermitian codeword c = (c0, c1, . . . , cn−1) ∈ Fn
q can be

generated by

c = (f(p0), f(p1), . . . , f(pn−1)). (4)

Since there are w3 affine points pj , the codeword length can
reach w3 which exceeds the size of finite field. Hence, k <
n ≤ w3. The minimum Hamming distance of the code is
d = n− k − g + 1.

B. GS Decoding of Hermitian Codes

For GS decoding of an (n, k) Hermitian code, the following
definitions are needed.

Definition I. Trivariate monomials ϕazb are ordered under
the (1, wz)-weighted degree

deg1,wz
ϕaz

b = vp∞(ϕ−1
a ) + wzb, (5)

where wz = vp∞(ϕ−1
k−1). Consequently, the (1, wz)-

lexicographic order can be established as follows.
Given two monomials ϕa1z

b1 and ϕa2z
b2 , we claim

ord(ϕa1z
b1)< ord(ϕa2z

b2), if deg1,wz
ϕa1z

b1 < deg1,wz
ϕa2z

b2 ,
or deg1,wz

ϕa1z
b1 = deg1,wz

ϕa2z
b2 and b1 < b2.

Definition II. Given a polynomial Q(x, y, z) =∑
a,b∈NQabϕa(x, y)z

b, if ϕa′zb
′

with coefficient Qa′b′ ̸= 0
is the leading monomial, the (1, wz)-weighted degree of
Q is deg1,wz

Q = deg1,wz
ϕa′zb

′
and its leading order is

lod(Q) = ord(ϕa′zb
′
). Given two polynomials Q1 and Q2,

we claim Q1 < Q2, if lod(Q1) < lod(Q2).
The GS algorithm has two steps, interpolation and fac-

torization. The interpolation builds a polynomial Q(x, y, z)
based on the received word r = (r0, r1, . . . , rn−1) ∈ Fn

q .
It has a multiplicity of m over points (p0, r0), (p1, r1), . . .,
(pn−1, rn−1) [15]. Polynomial Q will be factorized and its z-
roots are the decoded message candidates f̂(x, y) [16][17]. For
GS decoding, interpolation dominates the complexity. Hence,
reducing the computation for Q is the key to facilitate the
decoding.

With the received word r, the Hamming distance between
c and r is

dH(c, r) = |{j|cj ̸= rj , ∀j}|. (6)
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Theorem 1 [18]. Given a polynomial Q ∈ Fq[x, y, z] that
has a zero of multiplicity m over the n points (pj , rj), if
m(n − dH(c, r)) > deg1,wz

Q, then Q(x, y, f) = 0 or (z −
f)|Q(x, y, z).

The interpolation constraint for a polynomial in Fq[x, y, z]
is explained as follows. Given an interpolation point (pj , rj),
polynomial Q can be written as

Q(x, y, z) =
∑

α,β∈N

Q
(pj ,rj)
α,β ψpj ,α(x, y)(z − rj)

β , (7)

where Q
(pj ,rj)
α,β ∈ Fq and Q

(pj ,rj)
α,β = 0 for α + β < m, Q

interpolates (pj , rj) with a multiplicity of m. Since there are(
m+1
2

)
nonnegative integer pairs (α, β) satisfying α+β < m,

interpolating point (pj , rj) with a multiplicity of m implies(
m+1
2

)
constraints.

From [14], [19]

ϕa(x, y) =
∑
α∈N

γa,pj ,αψpj ,α(x, y), (8)

where γa,pj ,α ∈ Fq are the corresponding coefficients, and

zb = (z − rj + rj)
b =

∑
β≤b

(
b

β

)
rb−β
j (z − rj)

β , (9)

Q
(pj ,rj)
α,β can be derived by substituting the above two equations

into Q =
∑

a,b∈NQabϕaz
b and

Q
(pj ,rj)
α,β =

∑
a,b≥β

Qab

(
b

β

)
γa,pj ,αr

b−β
j . (10)

It can be seen that to determine polynomial Q’s interpolation
condition, the corresponding coefficients γa,pj ,α are needed.
To facilitate the interpolation, they need to be pre-calculated.
The following lemma shows an exception when m = 1.

Lemma 2. If the interpolation multiplicity m = 1, we have

Q
(pj ,rj)
0,0 =

∑
a,b∈N

Qabϕa(xj , yj)r
b
j . (11)

Proof: When m = 1, α = β = 0. Based on (2), we know
ψpj ,0 = 1. Further, based on (8), we have ϕa(x, y) = γa,pj ,0+
γa,pj ,1ψpj ,1 + γa,pj ,2ψpj ,2 + · · · . Since ψpj ,α(xj , yj) = 0 for
all α, then γa,pj ,0 = ϕa(xj , yj).

Lemma 2 implies that when m = 1, pre-calculation of the
corresponding coefficients can be removed and Q’s interpola-
tion condition at (pj , rj) can be simplified into its evaluation
at that point. The proposed algorithms utilize this advantage
to facilitate the decoding.

III. THE LCC ALGORITHM

With the above preliminaries, we begin introducing the
LCC algorithm for Hermitian codes. The decoding begins by
formulating the interpolation test-vectors.

A. Test-vector Formulation

In this paper, it is assumed that a Hermitian codeword is
transmitted using binary phase shift keying (BPSK) modu-
lation over a memoryless channel, e.g., the additive white
Gaussian noise (AWGN) channel.

Given a received vector R = (R0,R1, . . . ,Rn−1) ∈ Rn,
the reliability matrix Π(πij)q×n ∈ Rq×n can be obtained. Its
entries are the a posteriori probabilities (APPs) 2 defined as

πij = Pr[cj = σi | Rj ], i = 0, 1, . . . , q−1, j = 0, 1, . . . , n−1.
(12)

Let iIj = argmax{πij , ∀i}, where function
argmax returns the desirable index i. Further let
iIIj = argmax{πij , ∀i and i ̸= iIj}. Consequently, the
most likely and the second most likely hard-decisions for cj
are rI

j = σiI
j

and rII
j = σiII

j
, respectively. In order to assess

the reliability of each symbol’s decision, we define [11]

γj =
πiII

jj

πiI
jj

, (13)

where γj ∈ (0, 1). When γj → 0, the decision of cj is
more reliable, and vice versa. By sorting all γj values in
ascending order, we obtain a refreshed symbol index sequence
j0, j1, . . . , jn−1, where γj0 < γj1 < · · · < γjn−1 . Choosing η
(η < n) unreliable symbols, which can be realized as either
rI
j or rII

j , the indices of those symbols are contained in the set

Θ = {jn−η, jn−η+1, . . . , jn−1}. (14)

Its complementary set

Θc = {j0, j1, . . . , jn−η−1} (15)

collects the reliable symbol indices. Consequently, the inter-
polation test-vectors can be formulated as

ru = (r
(u)
j0
, r

(u)
j1
, . . . , r

(u)
jn−η−1

, r
(u)
jn−η

, . . . , r
(u)
jn−1

), (16)

where

r
(u)
j =

{
rI
j , if j ∈ Θc,

rI
j or rII

j , if j ∈ Θ.
(17)

Since there are two decisions for each of the η unreliable
symbols, 2η interpolation test-vectors will be formulated and
u = 1, 2, . . . , 2η. This test-vector formulation underpins the
complexity reduction that is realized by the LCC algorithms.

B. Common Element Interpolation

Since all test-vectors share n−η common symbols, interpo-
lation for points (pj0 , r

I
j0
), (pj1 , r

I
j1
), . . ., (pjn−η−1 , r

I
jn−η−1

)
can be performed once and its outcome will be utilized by the
following interpolation for each test-vector.

At the beginning, a set of polynomials are initialized by

2It is assumed that Pr[cj = σi] are equal for all i.
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G = {Qλ+wδ = yλzδ, 0 ≤ λ < w, δ = 0 or 1}
= {1, y, . . . , yw−1, z, yz, . . . , yw−1z}. (18)

Note that |G| = 2w. For each point (pj , rI
j) and j ∈ Θc, all

polynomials’ interpolation conditions are tested. In particular,
given a polynomial Qt ∈ G, it can be denoted as

Qt(x, y, z) = Q̃t,0(x, y) + z · Q̃t,1(x, y). (19)

Based on Lemma 2, its interpolation condition can be tested
by ∆t = Qt(pj , r

I
j) and

∆t = Q̃t,0(xj , yj) + rI
j · Q̃t,1(xj , yj). (20)

Those polynomials with ∆t = 0 interpolate the point and do
not need to be modified. The others with ∆t ̸= 0 do not hold
the interpolation constraint and modification is needed. For
these polynomials, we first identify the minimal candidate as

t′ = argmin{Qt | ∆t ̸= 0}. (21)

Afterwards, the polynomials with ∆t ̸= 0 but t ̸= t′ will be
modified by

Q′
t = ∆tQt′ −∆t′Qt, (22)

and polynomial Qt′ will then be modified by

Q′
t′ = (x− xj)Qt′ . (23)

After the modifications, all polynomials of the set interpolate
point (pj , r

I
j) since Q′

t(pj , r
I
j) = 0, ∀t. Iterating the above

process for all the common points, we obtain

G = {Qt |Qt(pj , r
I
j) = 0, ∀j ∈ Θc and t = 0, 1, . . . , 2w−1}.

(24)
The result will be utilized by the following uncommon element
interpolation.

C. Uncommon Element Interpolation

Uncommon element interpolation completes the construc-
tion of the interpolated polynomial for each test-vector. Be-
cause binary decisions were made for each unreliable symbol,
the uncommon element interpolation can be performed in a
binary tree expansion manner, as shown in Fig. 1. It starts
with the outcome of the common element interpolation, i.e.,
G

(1)
0 inherits the polynomial set G of (24). Including G

(1)
0 ,

there are η + 1 layers in the binary tree. We use G
(s′)
s to

denote the polynomial sets at layer s and s = 0, 1, . . . , η,
while s′ identifies a particular polynomial set at the layer
and s′ = 1, 2, . . . , 2s. In general, polynomials of G

(s′)
s

will interpolate points (pjn−η+s , r
I
jn−η+s

) and (pjn−η+s , r
II
jn−η+s

),

resulting in G
(2s′−1)
s+1 and G

(2s′)
s+1 , respectively. Based on (19),

we know that for each polynomial Qt of G(s′)
s , its evaluation

at points (pjn−η+s , r
I
jn−η+s

) and (pjn−η+s , r
II
jn−η+s

) can be written
as

∆t=Q̃t,0(xjn−η+s , yjn−η+s)+r
I
jn−η+s

·Q̃t,1(xjn−η+s , yjn−η+s) (25)

(1)

0G

(1)

1G

(2)

1G

-1(2 )

-1

h

h
G

(1)

-1h
G

(2 -1)h

h
G

(2 )h

h
G

(1)

h
G

(2)

h
G

(1)

2G

(2)

2G

(3)

2G

(4)

2G

I( )
n-η n-ηj j
p ,r

II( )
n-η n-ηj j
p ,r

1 1

I( )
n-η+ n-η+j j
p ,r

1 1

I( )
n-η+ n-η+j j
p ,r

1 1

II( )
n-η+ n-η+j j
p ,r

1 1

II( )
n-η+ n-η+j j
p ,r

1 1

I( )
n- n-j j
p ,r

1 1

I( )
n- n-j j
p ,r

1 1

II( )
n- n-j j
p ,r

1 1

II( )
n- n-j j
p ,r

Fig. 1. Uncommon element interpolation.

and

∆t=Q̃t,0(xjn−η+s , yjn−η+s)+r
II
jn−η+s

·Q̃t,1(xjn−η+s , yjn−η+s), (26)

respectively. Hence, Q̃t,0(xjn−η+s , yjn−η+s) and Q̃t,1(xjn−η+s ,
yjn−η+s) can be computed once and utilized by the evaluations
of (25) and (26). The remaining polynomial update will be
identical to that described by (21)-(23), yielding polynomial
sets G

(s′)
s+1.

When the binary tree of Fig. 1 has grown, there are 2η

polynomial sets G
(s′)
η at layer η. They correspond to the 2η

test-vectors defined by (14)-(17). The minimal polynomial is
chosen from each of the sets as

Q(s′)(x, y, z) = min{Qt | Qt ∈ G(s′)
η }. (27)

Q(s′) is the interpolation outcome for test-vector rs′ and s′ =
1, 2, . . . , 2η . They will then be factorized to find the message
candidates f̂(x, y). Among all the decoded candidates, the one
whose re-encoding produces the most likely codeword will be
selected as the decoding output.

Algorithm 1 summarizes the above mentioned LCC decod-
ing for Hermitian codes.

The above description shows that the LCC algorithm e-
liminates the redundant decoding computation among all test-
vectors. With a multiplicity of one, the number of interpolation
constraints that the decoding satisfies is equivalent to the
number of distinct interpolation points implied by all test-
vectors, i.e.,

C = (n− η) +

η∑
s=1

2s = n− η + 2η+1 − 2. (28)

It increases exponentially with the number of unreliable sym-
bols η, so does the decoding complexity.

IV. THE ADAPTIVE LCC ALGORITHM

In order to find the intended message, the above mentioned
LCC algorithm needs to decode 2η test-vectors. However,
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Algorithm 1 The LCC algorithm for Hermitian codes
Input: The matrix Π and a positive integer η;
Output: The message candidate f̂(x, y);

1: Determine metrics γj as in (13) and define sets Θ and
Θc as in (14) and (15);

2: Initialize polynomial set G as in (18);
3: For points (pj , r

I
j) with j ∈ Θc do

4: Test the interpolation condition for each polynomial
of G as in (20);

5: Update the polynomials as in (21)-(23);
6: End for
7: Let G(1)

0 = G and s = 0;
8: While s < η do
9: Test the interpolation condition for each polynomial

of G(s′)
s as in (25)-(26);

10: Update the polynomials as in (21)-(23);
11: Update s = s+ 1;
12: End while
13: Find polynomial Q(s′) as in (27);
14: Factorize all 2η polynomials Q(s′) and select the message

candidate f̂(x, y).

if the channel condition improves, received information will
become more reliable. Maintaining 2η decoding test-vectors
will be unnecessary since the intended message can often
be retrieved by decoding fewer test-vectors. Therefore, we
have designed an adaptive variant of the LCC algorithm, in
which the number of unreliable symbols is determined by the
reliability of the received information. Instead of maintaining
η unreliable symbols, the metrics γj of (13) will be used to
assess each symbol’s reliability in determining whether binary
decisions on the symbol should be made. Consequently, the
number of test-vectors will be determined by the received
information’s reliability. This enables the decoding complexity
to be significantly reduced when the channel condition im-
proves, e.g., the SNR increases.

Let Ω denote the symbol wise reliability threshold and
Ω ∈ (0, 1). Recalling γj of (13), if γj < Ω, we consider the
decision on cj to be reliable and the symbol will be realized by
the most likely decision. If γj ≥ Ω, we consider the decision
on cj to be unreliable and binary decisions will be made
on the symbol. We will show that by carefully choosing Ω,
the adaptive LCC algorithm is able to maintain the decoding
performance of the LCC algorithm. For practical concerns, we
also define Γ as the maximal number of unreliable symbols
where Γ ≤ n. Therefore, the number of unreliable symbols
η ∈ [1,Γ] and the number of test-vectors varies between 2
and 2Γ. Note that having at least one unreliable symbol is
necessary to maintain the Chase decoding gain.

Hence, after sorting the symbol indices based on γj , ΘΩ,Γ

is defined as the index set of the unreliable symbols, i.e.,

ΘΩ,Γ = {jn−1, jχ | γjχ > Ω and n− Γ ≤ χ < n− 1}. (29)

There are η = |ΘΩ,Γ| unreliable symbols. The complementary
set

Θc
Ω,Γ = {0, 1, . . . , n− 1} \ΘΩ,Γ (30)

collects the indices of the reliable symbols. Therefore, in the
adaptive LCC algorithm, the test-vectors can be reformulated
as

r(u) = (r
(u)
jχ

; χ = 0, 1, . . . , n− 1), (31)

where

r
(u)
j =

{
rI
j , if j ∈ Θc

Ω,Γ,

rI
j or rII

j , if j ∈ ΘΩ,Γ.
(32)

There are 2η = 2|ΘΩ,Γ| test-vectors. Furthermore, by apply-
ing the LCC algorithm of Section III, the common element
interpolation will be performed for points (pj , r

I
j) where

j ∈ Θc
Ω,Γ. Its outcome will be utilized by the uncommon

element interpolation for each test-vector during which points
(pj , r

I
j) and (pj , r

II
j ) are interpolated where j ∈ ΘΩ,Γ.

Summarizing the above description, the adaptive LCC al-
gorithm is presented in Algorithm 2.

Algorithm 2 The adaptive LCC algorithm for Hermitian codes
Input: The matrix Π, the threshold Ω and the maximum
number Γ;
Output: The message candidate f̂(x, y);

1: Determine metrics γj as in (13) and define sets ΘΩ,Γ and
Θc

Ω,Γ as in (29) and (30);
2: Let η = |ΘΩ,Γ|;
3: Perform decoding as in Steps 2 - 14 of Algorithm 1

where sets Θ and Θc are replaced by ΘΩ,Γ and Θc
Ω,Γ,

respectively.

V. COMPLEXITY ANALYSIS

This section analyzes the complexity of the proposed LCC
algorithms, where we will look into the number of finite
field multiplications in a decoding event. Note that during the
decoding, multiplication dominates the finite field arithmetic
operations. Based on the above descriptions, we know that
the LCC algorithms have three steps including the common
element interpolation, the uncommon element interpolation
and the factorization. We will show the complexity of each
step, so that an overview of the algorithms’ complexity can
be reached.

A. Common Element Interpolation Complexity

In order to analyze the common element interpolation, the
following lemma is needed.

Lemma 3. For a polynomial Qt in the set G of (24),
degy Qt < n+ w − η.

Proof: The common element interpolation has n − η
iterations. Based on the polynomial update rule of (23), we
know the x-degree of Qt can reach n−η. After the update, if
the polynomial has x-degree greater than w, the transform of
xw+1 = yw + y is needed to refine the polynomial in the ring
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Fq[x, y, z]. Considering the initial polynomial set of (18), we
know that degy Qt ≤ w − 1 + (n− η) w

w+1 < n+ w − η.
With Lemma 3, the following theorem can be introduced.
Theorem 4. The common element interpolation has a com-

plexity of O((n− η)3).
Proof: There are 2w polynomials in the set G par-

ticipating in n − η iterative updates. Complexity of this
process is incurred by testing the interpolation condition as
in (20) and updating the polynomials as in (22) or (23). Since
degx ϕa ≤ w, based on Lemma 3, we know that evaluating
ϕaz

b over (pj , rj) requires at most n+2w−η multiplications.
For a polynomial in the set G, it has one nonzero coefficient
at the beginning and gains at most one more coefficient in
each iteration. Hence, the interpolation condition test requires
at most

2w(n+ 2w − η)

n−η∑
ϱ=1

ϱ

= w(n− η + 1)(n− η)(n− η + 2w)

≈ w(n− η)3

multiplications. The polynomial update requires at most

2w · 2
n−η∑
ϱ=1

ϱ = 2w(n− η + 1)(n− η)

≈ 2w(n− η)2

multiplications.

B. Uncommon Element Interpolation Complexity

We now start to characterize the uncommon element inter-
polation complexity with the following lemma.

Lemma 5. For a polynomial Qt in the set G(s′)
η , degy Qt <

n+ w.
Proof: The proof is similar to Lemma 3. Considering

both the common and uncommon element interpolations, there
are n iterations for each test-vector. With the transform of
xw+1 = yw+y, we know degy Qt ≤ w−1+n w

w+1 < n+w.

The following theorem characterizes the uncommon element
interpolation complexity.

Theorem 6. The uncommon element interpolation has a
complexity of O(2η+1n2).

Proof: We begin the analysis by looking into the com-
plexity of updating a polynomial set G(s′)

s into G
(s′)
s+1. Assume

that a polynomial of set G(s′)
s has at most ϱ coefficients and

ϱ = n− η + 1+ s. Based on Lemma 5, we know that testing
the interpolation condition for polynomials of G

(s′)
s requires

at most 2w(ϱ(n + 2w) + 2) multiplications. Based on (25)
and (26), we know this computation will be shared by two
newly formed polynomial sets. Hence, on average each set
has w(ϱ(n+ 2w) + 2) multiplications. Updating polynomials
for each set requires at most 4wϱ multiplications. Therefore,
updating G

(s′)
s into G

(s′)
s+1 requires at most w(ϱ(n+2w+4)+2)

multiplications.

Now, let ϱ′ = n−η+1 and ϱ = ϱ′+s. Fig. 1 shows there are
2s polynomial sets at layer s. Therefore, fully expanding this
binary tree requires at most

∑η
s=1 2

sw((ϱ′+s)(n+2w+4)+2)
multiplications. Since

∑η
s=1 2

s = 2η+1 − 2 and
∑η

s=1 2
ss =

2η+1(η − 1) + 2, we have

η∑
s=1

2sw((ϱ′ + s)(n+ 2w + 4) + 2)

= (n+ 2w + 4)(2η+1w(ϱ′ + η − 1)− 2w(ϱ′ − 1))

+2w(2η+1 − 2).

Replacing ϱ′ by n− η + 1, we have

(n+ 2w + 4)(2ηwn− 2w(n− η)) + 2w(2η+1 − 2)

≈ w(2η+1 − 2)(n(n+ 2w + 4) + 2),

where the approximation is made by assuming n− η ≈ n.

C. Overall Complexity
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Fig. 2. LCC decoding complexity for the (64, 29) and (64, 49) Hermitian
codes.

Factorization is often implemented by the recursive coeffi-
cient search algorithm [16] [17] which incurs a complexity of
O(nk). In the proposed Chase decoding, there are at most 2η

factorizations in each decoding event. Hence, the factorization
complexity will be O(2ηnk).

The above analysis shows that when n is sufficiently large
and η is small, the common element interpolation domi-
nates the decoding complexity. However, by increasing η,
the uncommon element interpolation and factorization will
eventually dominate. In order to validate the above analysis,
Fig. 2 shows the LCC decoding complexity for the (64, 29) and
the (64, 49) Hermitian codes. We measure the number of finite
field arithmetic operations that are required by the common
element interpolation, the uncommon element interpolation
and the factorization, respectively. It shows that the complex-
ity of the uncommon element interpolation and factorization
increases exponentially with η. For both codes, when η < 5,
the common element interpolation dominates the complexity.
However, when η ≥ 5, the complexity is mainly caused by
the uncommon element interpolation and factorization.
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VI. DECODING PERFORMANCE

This section shows the decoding performance of the LCC
algorithms. Our simulations are performed over the AWGN
channel using BPSK modulation. In the following discussions,
we refer to the LCC algorithm (Algorithm 1) and the adaptive
LCC algorithm (Algorithm 2) as LCC-1 and LCC-2, respec-
tively.

A. Performance of the LCC-1 Algorithm
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Fig. 3. LCC decoding performance of the (64, 49) Hermitian code.

Fig. 3 shows the LCC decoding performance of the (64,
49) Hermitian code that is defined in F16. It is compared
with the Sakata algorithm, the GS algorithm with m = 1 and
the KV algorithm with a maximum factorization output list
size (l) of 2 and 3. It can be seen that the LCC-1 algorithm
outperforms the Sakata and GS algorithms and its performance
can be further improved by increasing the number of unreliable
symbols η. The LCC-1 (η = 2) and LCC-1 (η = 3) decoding
yield a similar performance as KV (l = 2) and KV (l = 3)
decoding, respectively. However, Table I shows that the LCC-
1 algorithm is less complex and shows the number of finite
field arithmetic operations that are needed by several decoding
approaches.

B. Comparison Between the LCC-1, LCC-2 and KV Algo-
rithms

Fig. 4 compares the performance of the two proposed LCC
algorithms. It shows that by carefully choosing the reliability
threshold Ω, the LCC-2 algorithm maintains the decoding
performance of the LCC-1 algorithm. For example, with
Ω = 0.1 and Γ = 3, the LCC-2 decoding performance matches
that of the LCC-1 (η = 3). However, the LCC-2 algorithm is
simpler since its number of decoding test-vectors is not always
maintained at eight. Table II compares the complexity of the
two LCC algorithms under different SNRs. It shows that by
increasing the SNR, the complexity of the LCC-2 algorithm
decreases and becomes less complex than the LCC-1 (η = 3)
decoding. Fig. 4 also shows that by further increasing the
maximum number of unreliable symbols, the LCC-2 algorithm
outperforms the LCC-1 algorithm. For example, the LCC-2
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Fig. 4. Performance comparison between the LCC-1 and the LCC-2
algorithms for the (64, 49) Hermitian code.
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Fig. 5. Average number of unreliable symbols, Γ = 10.

(Ω = 0.2,Γ = 4) decoding outperforms the LCC-1 (η = 3)
decoding. Table II shows the LCC-2 (Ω = 0.2,Γ = 4)
decoding becomes less complex when the SNR ≥ 6.25dB.
With Γ > η, the LCC-2 algorithm can decode more test-
vectors than the LCC-1 algorithm, achieving an enhanced
performance. As the SNR increases, its decoding test-vectors
can be less than 2η, leading to a smaller complexity. However,
as SNR → ∞, the LCC-2 algorithm will decode at most two
test-vectors as |ΘΩ,Γ| = 1. The LCC-2 algorithm’s asymptotic
performance will converge to that of the LCC-1 (η = 1)
algorithm. Fig. 5 shows how the average number of unreliable
symbols changes with the channel condition. We can see
that by decreasing the reliability threshold Ω, the average
number converges with a higher SNR. This explains why our
simulation shows that with the same Γ, a smaller Ω yields a
better LCC-2 decoding performance.

Fig. 6 compares the decoding performance of the LCC-1,
the LCC-2 and the KV algorithms for the (64, 39) Hermitian
code. In particular, the LCC-1 algorithm is compared with the
KV algorithm under the benchmark that they both satisfy the
same number of interpolation constraints described by (7) and
(10). Based on (28), we know LCC-1 decoding of the (64,
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TABLE I
DECODING COMPLEXITY FOR THE (64, 49) HERMITIAN CODE

Sakata GS (m = 1) KV (l = 2) KV (l = 3) LCC-1 (η = 2) LCC-1 (η = 3) LCC-1 (η = 6)
2.00× 104 1.56× 105 1.40× 106 5.13× 106 1.97× 105 2.56× 105 1.06× 106

TABLE II
COMPLEXITY COMPARISON OF LCC DECODINGS FOR THE (64, 49) HERMITIAN CODE

XXXXXXXXAlgs.
SNR(dB) 5.25 5.75 6.25 6.75 7.25

LCC-1 (η = 3) 2.46× 105 2.55× 105 2.57× 105 2.56× 105 2.55× 105

LCC-2 (Ω = 0.1,Γ = 3) 2.46× 105 2.52× 105 2.43× 105 2.21× 105 1.96× 105

LCC-2 (Ω = 0.2,Γ = 4) 3.32× 105 3.06× 105 2.56× 105 2.12× 105 1.84× 105

TABLE III
DECODING COMPLEXITY FOR THE (64, 39) HERMITIAN CODE

XXXXXXXXAlgs.
SNR(dB) 5.5 5.75 6 6.25 6.5

LCC-1 (η = 5) 4.75× 105 4.70× 105 4.66× 105 4.59× 105 4.54× 105

LCC-2 (Ω = 0.4,Γ = 6) 5.36× 105 4.32× 105 3.42× 105 2.64× 105 2.09× 105

KV (C = 121) 2.21× 105 2.19× 105 2.17× 105 2.15× 105 2.12× 105
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Fig. 6. Performance comparison between the LCC algorithms and the KV
algorithm for the (64, 39) Hermitian code.

39) Hermitian code with η = 3 and 5 needs to satisfy 75
and 121 interpolation constraints, respectively. The number
of interpolation constraints for the KV algorithm is defined
by (20) in [9]. Fig. 6 shows that with the same number of
interpolation constraints, the LCC-1 algorithm outperforms the
KV algorithm, demonstrating performance advantage of the
Chase type decoding. Note that the KV decoding performances
do not differ with C = 75 and C = 121. This is because the
KV decoding performance is primarily determined by its max-
imal factorization output list size l. For this Hermitian code,
C = 121 does not incur a greater l than C = 75. Table III
further compares the complexity of the three algorithms. Fig. 6
shows that with the same number of interpolation constraints
the LCC decodings outperform the KV decoding. The LCC-
1 algorithm is more complex than the KV algorithm, due to
the fact that it has to perform 2η factorizations while the KV
algorithm performs once. The LCC-2 algorithm becomes less
complex than the KV algorithm when SNR = 6.5dB.

C. Comparison Between Hermitian and RS Codes
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Fig. 7. LCC-1 decoding performance comparison of the (64, 49) Hermitian
code and (63, 49), (15, 11) RS codes.
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Fig. 8. LCC-1 decoding performance comparison of the (512, 409) Hermitian
code and (511, 409), (63, 50) RS codes.
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Finally, in order to demonstrate the Hermitian code’s per-
formance advantage over RS codes, Figs. 7 and 8 compare the
(64, 49) and the (512, 409) Hermitian codes with their relevant
RS codes using the LCC-1 algorithm. The two Hermitian
codes are defined in F16 and F64, respectively. The RS codes
have similar rates as the Hermitian codes. In Fig. 7, the
(15, 11) RS code is defined in the same finite field as the
(64, 49) Hermitian code, while the (63, 49) RS code has a
similar symbol wise codeword length as the Hermitian code.
The two RS codes shown in Fig. 8 are also chosen under
the same motivation when the (512, 409) Hermitian code
is considered. Figs. 7 and 8 show that the (63, 49) and
(511, 409) RS codes outperform the (64, 49) and (512, 409)
Hermitian codes, respectively. This is because the RS codes
are defined in a larger finite field with much larger bit wise
codeword length. On the other hand, over the same finite field,
the Hermitian codes are longer with greater error-correction
capability. Hence, the two Hermitian codes outperform the
(15, 11) and (63, 50) RS codes, respectively. It is important
to point out that the Chase type decoding is search oriented.
It aims to find the intended codeword through decoding trials.
Intuitively, the performance gain achieved by increasing the
number of decoding trials will favor codes with a smaller
codebook cardinality. This conjecture is vindicated by our
results. For example, in Fig. 7 the (15, 11) RS code has the
smallest codebook cardinality. The LCC-1 decoding yields the
largest performance gain for the code by increasing the number
of unreliable symbols.

VII. CONCLUSION

This paper has proposed two interpolation-based LCC de-
coding algorithms for Hermitian codes. By identifying η
unreliable symbols and realizing them with the two most likely
decisions, the LCC algorithms will formulate 2η interpolation
test-vectors. Exploiting the similarity among the test-vectors,
interpolation is performed w.r.t. the common element segment
and the uncommon element segment of the test-vectors, re-
spectively. The outcome of the common element interpolation
will be shared by the uncommon element interpolation that
grows the polynomial sets in a binary tree fashion. It reduces
redundant computations ensuring a low-complexity feature of
the decoding. With an interpolation multiplicity of one, the
LCC algorithms also remove the pre-calculation of the Hermi-
tian curve’s corresponding coefficients, further facilitating the
decoding. The adaptive LCC algorithm has been proposed to
adjust the number of Chase decoding trials based on the relia-
bility of the received information. Decoding complexity can be
reduced with an improved channel condition. Our complexity
analysis has shown that the common element interpolation
complexity is O((n − η)3), while the uncommon element
interpolation complexity is O(2η+1n2). Therefore, by increas-
ing η, the uncommon element interpolation will dominate the
overall complexity. This has been validated by our numerical
results. Simulation results on the LCC decoding algorithms
have also been presented, showing the LCC algorithms can
outperform the existing decoding algorithms for Hermitian
codes. By carefully choosing the reliability threshold, the

adaptive LCC algorithm can achieve an enhanced performance
over its prototype with a smaller computational cost. LCC
decoding performances for RS and Hermitian codes have also
been compared, demonstrating Hermitian codes’ performance
advantage over RS codes.
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