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Beam-On-Graph: Simultaneous Channel Estimation for
mmWave MIMO Systems with Multiple Users

Matthew Kokshoorn, He Chen, Yonghui Li, and Branka Vucetic

Abstract—This paper is concerned with the channel estimation
problem in multi-user millimeter wave (mmWave) wireless sys-
tems with large antenna arrays. We develop a novel simultaneous-
estimation with iterative fountain training (SWIFT) framework,
in which multiple users estimate their channels at the same time
and the required number of channel measurements is adapted
to various channel conditions of different users. To achieve this,
we represent the beam direction estimation process by a graph,
referred to as the beam-on-graph, and associate the channel
estimation process with a code-on-graph decoding problem.
Specifically, the base station (BS) and each user measure the
channel with a series of random combinations of transmit/receive
beamforming vectors until the channel estimate converges. As the
proposed SWIFT does not adapt the BS’s beams to any single
user, we are able to estimate all user channels simultaneously.
Simulation results show that SWIFT can significantly outperform
the existing random beamforming-based approaches, which use
a predetermined number of measurements, over a wide range of
signal-to-noise ratios and channel coherence time. Furthermore,
by utilizing the users’ order in terms of completing their channel
estimation, our SWIFT framework can infer the sequence of
users’ channel quality and perform effective user scheduling to
achieve superior performance.

Index Terms—Millimeter wave, multiple-input multiple-output
(MIMO), multi-user channel estimation, beamforming, analog
fountain code.

I. INTRODUCTION

Due to the increasing congestion in the microwave spec-
trum, alternative frequencies are now being considered for 5G
cellular systems [2]–[4]. More specifically, millimeter wave
(mmWave) frequencies, ranging from 30GHz to 300GHz,
have recently attracted significant attention due to the wide
expanse of underutilized bandwidth [5]–[7]. One fundamental
issue of mmWave communications stems from the large free
space propagation loss experienced by signals in the high
frequency range [8], [9]. Supplementing this issue, penetration
and reflection losses are also much more significant than those
at microwave frequencies. As such, the mmWave channel is
relatively sparse in the spatial domain, with only a limited
number of propagation path directions suitable for conveying
information. Overcoming these challenges is now more than
ever essential to best utilize the mmWave spectrum, e.g.,
the 14GHz of the unlicensed spectrum and the 3.85GHz of
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Fig. 1. An example of multi-user mmWave cellular systems.

licensed spectrum recently made available by the FCC in the
United States [10].

The most widely accepted means to overcome and even ex-
ploit the inherent mmWave weaknesses, is to implement large
antenna arrays so that narrow beams with high beamforming
gains can be generated to overcome the severe signal losses
[11]. Thanks to the small wavelength of the mmWave band,
these large arrays can still maintain a small form factor. The
general idea of mmWave communications is then to steer these
narrow beams in the direction of the available propagation
paths, effectively “bouncing” information-bearing signals off
buildings and various other scatterers. As a result, in mmWave
communication systems, the propagation paths are normally
estimated through directly finding the beam-steering directions
of each of path [12].

In conventional low-bandwidth microwave MIMO systems,
fully digital hardware with an RF chain associated with each
antenna, is able to implement digital control/sampling of the
phase and amplitude of the baseband signal from each antenna.
However, in mmWave communication systems with large an-
tenna arrays, equipping every antenna with an individual radio
frequency (RF) chain along with high frequency analog-to-
digital converter (ADC) and digital-to-analog converter (DAC)
would incur high hardware cost, complexity and power con-
sumption, particularly in the context of consumer electronics.
Fortunately, due to the limited number of propagation paths in
the mmWave links, it has been widely recognized that a fully
digital system (i.e., dedicated RF chain for each antenna) is
not necessary [12]. Instead, networks of phase shifters can be
used to adjust the phase of the transmitted or received signal
on each antenna to realize transmit or receive beamforming.
The input/output of each group of phase shifters is then tied to
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a common RF chain. Although this setup reduces the hardware
cost and complexity, it restricts the system to the use of RF
beamforming and can thus only send or receive signals with a
single beamforming vector (i.e., a set of phase shifts) for each
RF chain. To further simplify the hardware requirements, the
phase shifts are often limited to a quantized set of values [12],
[13], resulting in only a finite number of possible beamforming
directions. Some recent work has even considered reducing
hardware complexity further by using one-bit ADCs [14].

Adhering to these constraints and leveraging the sparse char-
acteristic of mmWave geometric channels, previous work has
focused on “divide and conquer” type multi-stage algorithms
to estimate mmWave channels [12], [15]–[17]. These algo-
rithms are essentially path finding schemes, which divide the
process of finding each propagation path into multiple stages.
In each subsequent stage, as the user feeds back information to
the base station (BS), the estimated angular range is refined so
that narrower beam patterns can be used in each following set
of channel measurements. These multi-stage approaches have
been shown to work efficiently for point-to-point mmWave
communications [12], [15]–[17]. However, by adapting the
BS beam patterns to a specific user, these approaches are
inherently limited to estimating only a small number of users
in each channel estimation process. As a result, for multi-user
scenarios, these types of approaches may no longer be efficient
as they could require a training overhead that scales linearly
with the number of users [18].

Different from these multi-stage adaptive channel estimation
algorithms, multi-user beamforming-based approaches are able
to carry out simultaneous channel estimation for multiple
channels. In [19], the authors proposed a frequency tone-
based estimation and ZF precoding strategy for multi-user
channels. Random compressed sensing-based channel esti-
mation approaches using random beam-directions have been
explored in [18], [20]–[23]. These random beamforming-based
channel estimation approaches generally perform a predeter-
mined number of random channel measurements before the
channel estimation decision is made. However, selecting a
fixed number of channel measurements may not work well
for all users and channel realizations, and can thus lead to
an inferior system performance. For example, in a channel
realization resulting in high signal-to-noise ratio (SNR), the
channel estimation may not require as many measurements
as they would at low SNR. This phenomenon for a multi-
user scenario has been discovered in [18], wherein different
numbers of measurements are required for users with different
lengths of coherence time and SNRs. However, in reality,
multi-user scenarios such as that in Fig. 1 can have users with
distinct SNRs as they may have different channel characteris-
tics to the BS. As such, it may not be feasible to achieve an
optimal channel training duration that is commonly suitable
for all users by adopting a fixed number of measurements.
Adding to this challenge, even in low mobility scenarios (e.g,
walking less than 1.5m/s), channel measurements for carrier
frequencies at 60 GHz have been shown to exhibit channel
coherence times less than 1ms [24]. At slightly faster speeds of
3m/s, 30 GHz measurements have also shown coherence times
of 1.5ms [25]. With proposed OFDM data symbol durations

on the order of few microseconds [26], [27], the mmWave
channel may only have coherency on the order of hundreds of
symbols [28].

In digital communication systems, the problem of adapt-
ing the mmWave channel training duration is analogous to
adapting the transmission rate of communication systems
to real-time unknown channel conditions. That is, we seek
to adapt the number of channel estimation measurements
without any prior knowledge of various channel realizations
of multiple users. The conventional rate adaptation problem
has led to the development of a powerful rateless coding
family known as fountain codes. Inspired by the principle
of analog fountain codes (AFC) [29], in this paper we de-
velop a novel Simultaneous-estimation With Iterative Fountain
Training (SWIFT) framework for the channel estimation of
multi-user mmWave MIMO systems. In SWIFT, the training
duration required for estimating the multi-user channels is
adaptively increased until a predetermined stopping criterion
has been met at each user.

In this paper, we represent the random beamforming process
by a graph, called beam-on-graph and match the beam-on-
graph to a code-on-graph. Specifically, we propose a Fountain
code-like channel estimation approach, in which the BS keeps
transmitting pilot signals in random beam-directions for an
indefinite period, essentially “encoding” random pieces of the
virtual channel information in each measurement. At the same
time, all users within the BS coverage keep “listening” for
these pilot signals by receiving them with random beam-
directions. After each measurement, each user estimates its
channel based on the pilot signals it has collected, and com-
pares it to the previous estimate. If the estimate is similar to the
previous estimate (i.e., the estimate has converged), the user
regards its channel estimation procedure as complete. The user
then feeds back the indices of the BS beamforming vectors to
be adopted for its data communication. We summarize the
main contributions of this paper as follows:
• We propose a novel SWIFT algorithm to realize simulta-

neous multi-user channel estimation in mmWave systems,
where the average number of channel measurements is
adapted to different channel conditions of multiple users.
We measure the mmWave channels using a variable
number of beam patterns until the channel estimate of
each user converges. We develop a framework to optimize
the random beamforming process by matching the beam-
on-graph to a code-on-graph. We formulate the estimation
of each channel as a compressed sensing problem and
implement a generalized approximate message passing
(GAMP) [30] algorithm to recover the sparse virtual
channel information.

• Although the beamforming directions at the BS cannot
be adaptive to a particular user to ensure the simultane-
ous channel estimation of multiple users, this does not
restrict the adaptation of receiving beam-directions at the
user side. Motivated by this, we propose two user-side
beamforming adaptation schemes to further improve the
estimation performance.

• We compare the proposed algorithm with the existing
random beamforming-based approaches with a predefined
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number of measurements. Simulation results show that
the proposed SWIFT algorithm can outperform random
beamforming-based approaches, over a range of SNRs
and coherence time. Furthermore, by utilizing the users’
order in terms of completing their channel estimation, our
SWIFT framework can infer the users’ channel quality
and perform effective user scheduling to achieve supe-
rior rate performance, especially for resource-constrained
scenarios where only a limited number of users can be
served.

Notations : We use letter A to denote a matrix, a to denote
a vector, a to denote a scalar, and A denotes a set. |a| is the
absolute value of a, ||A||2 is the 2-norm of A and det(A) is
the determinant of A. AT , AH and A∗ are the transpose,
conjugate transpose and conjugate of A, respectively. For
a square matrix A, A−1 represents its inverse. IN is the
N × N identity matrix and d·e denotes the ceiling function.
CN (m,R) is a complex Gaussian random vector with mean
m and covariance matrix R, and E[a] and Cov[a] denote the
expected value and covariance of a, respectively.

II. SYSTEM MODEL

Consider a multi-user mmWave MIMO system comprising
of a BS with NBS antennas and U sets of user equipment (UE),
each with NUE antennas. We consider that the BS and UE are
equipped with a limited number of RF chains, denoted by
RBS and RUE , respectively. To estimate the downlink channel
matrix, the BS broadcasts a sequence of beamformed pilot
signals to all UEs at the same time. Denote by fi the NBS×1
transmitting beamforming vector adopted by the ith RF chain
at the BS. Similarly, denote by w(u)

j , the NUE × 1 receiving
beamforming vector adopted by the jth RF chain of the uth
user.

Here, we consider the beamforming vectors, at each link
end, to be limited to networks of RF phase shifters [12]
as shown in Fig. 2. As such, all elements of fi and w(u)

i

have constant modulus and unit norm such that ||fi|| = 1,∀
i = 1, · · · , RBS , and ||w(u)

j || = 1,∀ j = 1, · · · , RUE , u =
1, · · · , U . We further assume that due to hardware constraints,
each phase shifter (i.e., the entries of fi and w

(u)
j ) is

digitally controlled and can only use quantized values from
a predetermined set given by{

1√
N

exp(jqk)

}
,∀k = 1, · · · , N, (1)

where N ∈ {NBS , NUE} is the number of antennas in the
array. The set, {qk = π − 2π(k − 1)/N∀k} describes the N
quantized phase shift angles which, by convention, are defined
to start at π and are uniformly spaced clockwise around the
unit circle. That is, each BS (UE) phase shifter can only use
one of NBS (NUE) uniformly spaced phase shifts, respectively,
and can therefore be digitally controlled by dlog2Ne bits.

Let F = [f1,f2, · · · ,fRBS ] denote the NBS × RBS BS
beamforming matrix, with columns representing the RBS RF
beamforming vectors. The corresponding NBS×1 BS transmit
signal can be represented as

x =

√
P

RBS
Fs, (2)

where P is the total transmit power of the BS and s is the
RBS × 1 vector of transmit pilot symbols corresponding to
RBS numbers of beamforming vectors with E[ssH ] = IRBS .
We adopt a widely-used block-fading channel model such that
the signal observed by the uth user can be expressed as [18]

r(u) = H(u)x+ q(u) =

√
P

RBS
H(u)Fs+ q(u), (3)

where H(u) denotes the NUE × NBS MIMO channel matrix
between the BS and the uth user, and q(u) is an NUE × 1
complex additive white Gaussian noise (AWGN) vector for
the uth user following distribution CN (0, N0INUE ).

Each user processes the received pilot signals with
each of the RUE RF chains. By denoting W (u) =

[w
(u)
1 ,w

(u)
2 , · · · ,w(u)

RUE
] as the NUE ×RUE combining matrix

at the uth user, we express the RUE×1 vector of the uth user’s
received signals as

y(u) = (W (u))HH(u)x+ n(u) (4)

where, since ||w(u)
j ||2 = 1, ∀ j, the vector n(u) =

(W (u))Hq(u) follows the distribution as that of q(u), i.e.,
n(u) ∼ CN (0, N0(W (u))HW (u)).

We follow [31] and adopt a two-dimensional (2D) sparse
geometric-based channel model. Specifically, we consider that
there are L(u) paths between the BS and the uth user, with
the uth user’s lth path having AOD, φ(u)l , and AOA, θ(u)l

with l = 1, ..., L(u). We further consider these AOD/AOA
to be uniformly distributed on the range [0, 2π). Then the
corresponding channel matrix can be expressed in terms of
the physical propagation path parameters as

H(u) =
√
NBSNUE

L(u)∑
l=1

α
(u)
l aUE(θ

(u)
l )(aBS(φ

(u)
l ))H (5)

where α(u)
l ∼ CN (0, σ

(u)
R ) is the channel fading coefficient

of the lth propagation path of the uth user, and aBS(θ
(u)
l )

and aUE(φ
(u)
l ) denote the BS and UE spatial signatures of

the lth path, respectively. For the purpose of exploration,
we consider that the BS and each UE are equipped with
linear antenna arrays (ULA). However, it is worth pointing
out that the developed scheme can be easily extended to other
antenna structures. Using ULAs, we can define aBS(φ

(u)
l ) =

u(φ
(u)
l , NBS) and aUE(θ

(u)
l ) = u(θ

(u)
l , NUE), respectively,

where

u(ε,N) ,
1√
N

[1, ej
2πdcos(ε)

λ , · · · , ej
2πd(N−1)cos(ε)

λ ]T . (6)

In (6), N ∈ {NBS , NUE} is the number of antenna elements
in the array, λ denotes the signal wavelength and d denotes
the spacing between antenna elements. With half-wavelength
spacing, the distance between antenna elements satisfies d =
λ/2. Following the practical measurements from [32], we
model the number of paths L(u), as a Poisson random variable
with the expected value E[L(u)]. Then, the probability that
there are L paths between the BS and the uth user is given
by

Pr(L(u) = L) =
(E[L(u)])L

L!
exp(−E[L(u)]). (7)
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To estimate the channel information, at each link end we
use beamforming vectors selected from a predetermined set
of candidate beamforming vectors. We define the candidate
beamfoming matrices as Fc and Wc, whose columns comprise
of all candidate beamforming vectors at the BS and UE,
respectively. For the ease of practical implementation, we
consider the candidate beams to be the set of all possible
orthogonal beamforming vectors that may later be used for
data communication, subject to the quantized phase shifting
constraints1. Following (1), this leads to NBS transmitting
candidate beams and NUE receiving candidate beams. The
NUE×NBS matrix formed by the product of the MIMO channel
and these two candidate beamforming matrices is commonly
referred to as the virtual channel matrix [12] given by

H(u)
v =

1√
NBSNUE

(Wc)
HH(u)Fc. (8)

We therefore aim to estimate this matrix so that beam pairs
that result in strong channel gains can be selected out for

1Although we use the hardware limited set of beamforming vectors for
ULA, the framework developed in this paper can be used to estimate the
channel gains between any set of orthogonal candidate beamforming vectors
for arbitrary antenna arrays.

data communication. The key challenge here is how to design
a sequence of beamforming vectors in such a way that the
channel parameters can be quickly and accurately estimated,
leaving more time for data communication and thus achieving
a higher throughput. We assume a block channel fading model
with each channel realization following (5)-(7) and having
coherence time of Tc symbols. As coherence time is usually
quite low for the mmWave frequencies (e.g., in the order of
hundreds of symbols [18]) the channel estimation time needs
to be kept as short as possible to leave more time for ensuing
data communication, as illustrated in Fig. 3. Motivated by
the fact that different users may operate in different SNR
regions, in next section we develop a fountain code-inspired
channel estimation algorithm for the considered multi-user
mmWave system, which is able to adapt the number of channel
estimation pilot symbols to various channel conditions of
different users. In this paper, we consider a system with fixed
spectral efficiency, array transmit power, pilot symbol duration,
and baseband pilot bandwidth. As such, the primary perfor-
mance parameters can be adjusted to improve the estimation
performance include the total number estimation timeslots TE
and the selection of candidate beams in each measurement.
In practice, it would also be possible to consider a similar
accuracy trade off with other domains. For example, pilot
frequency division, or orthogonal pilot preambles.

III. THE SWIFT FRAMEWORK

In this section, we first design a set of candidate beam-
forming vectors to be used in our proposed channel estimation
algorithm. We then formulate the channel estimation process
as a compressed sensing problem and apply a sparse estimation
approach to recover the virtual channel information. Finally,
leveraging the introduced beam design and channel infor-
mation recovery scheme, we elaborate the proposed SWIFT
framework.

A. Candidate Beamforming Vectors

We now design two sets of candidate beamforming vec-
tors to span the full angular range using quantized phase
shifters for the BS and UEs, respectively. We express the
BS candidate beamforming matrix defined in (8) as Fc =
[fc(1), ...,fc(NBS)] and the UE candidate beamforming ma-
trix as Wc = [wc(1), ...,wc(NUE)].

We define a set of candidate beam steering angles as
ε̄n,∀ n = 1, · · · , N with N ∈ {NBS , NUE} where each corre-
sponding beam steering vector can be expressed as u(ε̄n, N)
defined in (6). Following [33], in order to satisfy the quantized
phase shifter constraint, we require each beam steering vector
to have values from the set {qk,∀k = 1, · · · , N}. Recalling
that d = λ/2, by comparing the entries in (6) with the set of
quantized phase shifts, it can be seen that each steering angle
ε̄n must satisfy the relationship{

ε̄n

∣∣∣2πd
λ
cos(ε̄n) ∈ {qk∀k}

}
(9)
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which leads to ε̄n = cos−1(qn/π). Using this result, the nth
BS candidate beamforming vector can then be described by

fc(n) = u
(

cos−1(qn/π), NBS

)
,∀n = 1, · · · , NBS (10)

and the nth UE candidate beamforming vector can be written
as

wc(n) = u
(

cos−1(qn/π), NUE

)
,∀n = 1, · · · , NUE (11)

As the quantized phase shifts are selected from a set of
equally spaced points around the unit circle, the columns in
both candidate beamforming matrices form an orthogonal set
and therefore satisfy the properties FcFHc = FHc Fc = INBS
and WcW

H
c = WH

c Wc = INUE . That is, Fc itself and its
conjugate transpose FHc , are each equal to their own inverse.
We illustrate an example set of candidate beamforming vectors
for a scenario with NBS = 16 and NUE = 8 in Fig. 4.

In the proposed SWIFT framework, we transmit and receive
with random combinations of these candidate beamforming
vectors in order to estimate the channels of multiple UEs at
the same time. By adopting a random sequence of transmit
and receive directions, each user can continue to measure
the channel for an arbitrary number of unique measurement
observations. We illustrate a graph-based model of how beams
are selected in each measurement time slot in Fig. 5. For
simplicity, the graph shows an example for the case that the
BS selects two transmit candidate beams in each measurement
time slot and each user selects just one receive candidate beam.

B. Probabilistic Beam Selection for Channel Measurements

We now can carry out channel measurements by adopting a
sequence of randomly selected candidate beamforming vectors
at both the BS and UEs. Specifically, in the mth measurement
time slot, we propose to form Fm by randomly selecting RBS

)1(cf
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Sequence
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)( BSc Nf

)1(cw
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)( UEc Nw

User U
Candidate Beams

)1(cw

)2(cw

)3(cw

)( UEc Nw

1

2

3

m

Fig. 5. Example graph-based model of how each channel measurement is
comprised of random beam selections at the BS and each user. Solid black
circles represent candidate beams at the BS and UEs, while the squares
represent the increasing sequence of channel measurements.
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transmit candidate beamforming vectors from2 Fc. Similarly,
to form W

(u)
m at the uth user, we randomly select RUE receive

candidate beamforming vectors from Wc. Following (4), we
can then express the uth user’s received signal in the mth
measurement time slot as a RUE × 1 vector given by

y(u)
m =

√
P

RBS
(W (u)

m )HH(u)Fmsm + n(u)
m . (12)

We first consider the simple case where equal probabilities of
various candidate beams are used. Then the probability that
the nth candidate vector fc(n) is included in Fm at the BS
becomes

Pr(fc(n) ∈ Fm) =
RBS
NBS

,∀n = 1, ..., NBS (13)

and the probability that the nth candidate vector wc(n) is
included in W (u)

m at the UE becomes

Pr(wc(n) ∈W (u)
m ) =

RUE
NUE

,∀n = 1, ..., NUE . (14)

In all cases, we assume that the BS uses a pseudo-random
number generator for the random beam selection process in
each measurement and that this process can be predicted by
each user, i.e., each UE knows which random beam selection
the BS has made. In practice, this may require the BS to
broadcast its pseudo-random seed before the first channel
measurement of each new estimation process. Due to the
low data requirement of this broadcast, the seed could be
transmitted through a feedback channel while incurring little
overhead.

In this section, we consider the equal probability beam
selection as described in (13) and (14) and modify the prob-
abilities later in Section IV to further improve the channel
estimation performance. Fig. 5 illustrates an example of a
random beam selection process. As can be observed in the
first measurement, the BS has selected both the first candidate
beamforming vector fc(1) and the third candidate beam-
forming vector fc(3). In the same measurement, user 1 has
selected the first UE candidate beamforming vector wc(1),
while user U has selected wc(3). We conclude this sub-section
by expressing the sequence of all measurements up to the mth
one collected at the uth user by a mRUE × 1 vector given by

y(u,m) =


y
(u)
1
...

y
(u)
m

 (15)

=

√
P

RBS


(W

(u)
1 )HH(u)F1s1

...
(W

(u)
m )HH(u)Fmsm

+


n

(u)
1
...

n
(u)
m

 .
(16)

2Alternatively, a random number of beams may be employed in each
measurement time slot, similar to concepts of the weight set and degree
distribution in analog fountain codes [29]. Here, to introduce the core idea of
SWIFT, we utilize all RF chains in each channel measurement.

C. Sparse Estimation Problem Formulation

In order to recover the virtual channel information using
compressed sensing techniques, we require a standard-form
expression [34], y(u,m) = AgA

(u,m)v(u) + n(u,m), where
A(u,m) is an mRUE ×NBSNUE sensing matrix, Ag is a scalar
constant, and v(u) = vec(H

(u)
v ) is the NBSNUE×1 vectorized

virtual channel matrix to be detected.
To achieve a standard-form expression, we first rearrange

(8) by multiplying it by the left-hand pseudo inverse of WH
c

and right-hand pseudo inverse of Fc respectively. We then have√
NBSNUEWc(W

H
c Wc)

−1H(u)
v (FHc Fc)

−1FHc = (17)

Wc(W
H
c Wc)

−1(Wc)
HH(u)Fc(F

H
c Fc)

−1FHc

which, after algebraic manipulation, becomes

H(u) =
√
NBSNUEWcH

(u)
v FHc (18)

where the simplification follows by the fact thatWc and Fc are
matrices with orthogonal columns leading to WH

c Wc = INUE
and FHc Fc = INBS . We can then substitute (18) into (12) to
give

y(u)
m =

√
PNBSNUE

RBS
(W (u)

m )HWcH
(u)
v FHc Fmsm + n(u)

m .

(19)

By noticing that y(u)
m is already a vector, we can then apply

the property vec(ABC) = (CT ⊗A)vec(B) to rewrite (19)
as

y(u)
m =Ag

(
(FHc Fmsm)T⊗(W (u)

m )HWc

)
vec(H(u)

v ) + n(u)
m

(20)

=AgA
(u)
m vec(Hv) + n(u)

m (21)

where Ag =
√
PNBSNUE/RBS and A(u)

m = (sTmF
T
mF

∗
c ) ⊗

((W
(u)
m )HWc) is the RUE ×NBSNUE sensing matrix for the

mth measurement. Finally, by substituting (21) into (15), we
get

y(u,m) = Ag


A

(u)
1
...

A
(u)
m

 vec(H(u)
v ) +


n

(u)
1
...

n
(u)
m

 (22)

= AgA
(u,m)v(u) + n(u,m). (23)

To complete the problem formulation, we now describe the
statistics of each of the unknown terms in (23). In particular,
we first focus on the virtual channel vector v(u).

Although our channel model considers AOD/AOA that
are distributed on the continuous angular range [0, 2π), for
channel recovery purposes, the proposed estimation strategy
approximates this model with a discrete set of angles that
correspond to the directions of each candidate beam in (10)-
(11). As the set of candidate beamforming vectors together
forms an orthogonal basis for the MIMO channel matrix, by
estimating the virtual channel it is sufficient to reconstruct the
channel itself. Physically, this quantization is the case where
the AOD/AOA are perfectly aligned with each pair of the
candidate beams. In this case, recalling α

(u)
l ∼ CN (0, σ

(u)
R ),
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the channel sparsity can be characterized by a Bernoulli-
Gaussian distribution, in which the ith entry of the vectorized
virtual channel matrix v(u) follows [35]

v
(u)
i ∼

{
0, with probability 1− ρ(u)

CN (0, σ
(u)
R ) with probability ρ(u)

(24)

for all i = 1, · · · , NBSNUE and ρ(u) = E[L(u)]/(NBSNUE)
characterizes the degree of the channel sparsity of the u-th
user.

We now turn our attention to the noise term n(u,m) in
(23). Recall from (4) that the noise values, after being re-
ceived with the set of beamforming vectors, follow distribu-
tion CN (0, N0(W (u))HW (u)). As the adopted UE candidate
beams are all mutually orthogonal to each other, the distri-
bution of the ith element of n(u,m) can then be simplified
to

n
(u,m)
i ∼ CN (0, N0) (25)

for all i = 1, · · · ,mRUE .
Since the channel estimation problem has now been formu-

lated as a compressed sensing problem, the beam-selection
graph in Fig. 5 can be transformed to a bipartite graph,
as shown in Fig. 6. The variable nodes and check nodes
shown on the left side and right side of Fig. 6 represent
the virtual channel gains and measurement vectors, respec-
tively. The links between the nodes depict the random beam
selection characterized by the sensing matrix A(u,m). Fig.
6 therefore elaborates on the physical relationship between
the measurements and the channel, which can be expressed
as y(u,m) = AgA

(u,m)v(u). For example, it can be seen in
Fig. 6 that the first measurement is generated by adopting
the combinations fc(1) with wc(1) and fc(2) with wc(1).
More generally, candidate beam pair fc(i) and wc(j) can be
seen to link to the virtual channel vector index v

(u)
(i−1)NUE+j .

Each new measurement will create an additional check node
on the right side, linking more variable nodes together. Similar
bipartite graphs can be seen in the design of analog fountain
codes [29]. Such a graph representation of channel estimation
process enables us to apply the mature code-on-graph theory to
tackle the challenging channel estimation problem and apply
powerful message passing decoding algorithms for channel
information recovery in the following sub-section.

D. UE Virtual Channel Information Recovery Using GAMP

We now need a method to efficiently estimate the virtual
channel information in v(u), based on the measurements
y(u,m) at each user. A maximum likelihood solution to our
estimation problem can take the form

v̂(u,m) = argmax
v

[p(y(u,m)|v)]. (26)

where v̂(u,m) is the uth user’s estimate of the virtual channel
vector, based upon all measurements obtained after m time
slots. Unfortunately, the general maximum likelihood estima-
tor does not consider the sparsity of v(u). It has been shown
in [36] that the Lasso outperforms maximum likelihood in
sparse estimation by leveraging the inherent sparsity. From
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Fig. 6. Example graph-based model after formulating the compressed sensing
problem.

a probabilistic view, the Lasso estimator is equivalent to the
maximum likelihood one under the assumption that the entries
of the estimated vector follow a Laplace distribution [37].
When it comes to our channel estimation problem, the Lasso
estimator will solve the following problem

v̂(u,m) = argmin
v

[
||y(u) −AgA(u,m)v||22 + γ||v||1

]
(27)

where ||y(u) − AgA
(u,m)v||22 is the data-promoting term to

ensure the estimate fits the observations, ||v||1 is the sparsity-
promoting term, which essentially reduces the number of
non-zero values in the solution, and γ balances the tradeoff
between these two terms. However, finding optimal solutions
to (27) generally becomes computationally expensive when
the dimension of the estimated vector is sufficiently large.
Motivated by this, generalized approximate message passing
approximation (GAMP) solutions have been developed in [30]
to approximate (27).

The general idea of GAMP is to find the approximate
solution to (27) by taking into consideration the channel
statistics (e.g., sparsity). In [30], GAMP is proposed for
arbitrary channel statistics and characterized by two functions
gout(∗) and gin(∗). These two functions essentially describe
the statistics of the estimation input and output vectors. In
our case, gin(∗) describes estimation input which refers to
our Bernoulli-Gaussian virtual channel vector with statistics
described in (24). Similarly, gout(∗) characterizes the estima-
tion output which refers to the complex AWGN channel output
vector with statistics described in (25). With these statistics, we
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can adopt the Bernoulli-Gaussian GAMP estimator described
in [34] to estimate the virtual channel vector v(u,m). We
assume that the statistics of the propagation paths, such as
the average number and path gains, are known to the receiver.
In practice, this could be obtained from previous rounds
of channel estimation. In particular, as the average channel
sparsity ρ(u) is only expected to vary over a large time-scale,
(e.g., urban, rural) and could therefore be gradually updated
over many channel realizations.

Due to space limitation, we omit the detailed discussion
of the GAMP algorithm and instead refer interested readers
to [30], [34]. For the completeness and reproducibility, we
formally describe the Bernoulli-Gaussian GAMP estimator
used in this paper in Algorithm 1. The GAMP estimator can
be seen to iteratively update its estimate until it converges
on a final output denoted by v̂(u,m). We use this estimate in
the following sub-sections to give a complete description of
SWIFT.

E. UE Stopping Criterion

As the proposed BS beam patterns do not adapt to any
particular user, our method is able to simultaneously estimate
all downlink channels for multiple users. We propose that the
BS continues to transmit pilot signals with randomly selected
beamfoming vectors, until each user’s channel estimation
has accurately converged. We follow the methods used in
sequential compressed sensing [38] and consider the estimate
complete when the current estimate has not changed signif-
icantly from the previous one. To implement this approach
in our framework, recalling (24), we binarize the estimated
virtual channel vector as

v̄
(u,m)
i =

{
0, if |v̂(u,m)

i | < Γσ
(u)
R

1, otherwise
(28)

where Γ << 1 determines the threshold of path coefficients
that can be considered to be negligible or in a deep fade3. We
then consider that the channel estimate has converged if the
new binarized virtual channel vector is equal to the previous
one. That is, the channel estimation of the uth user is deemed
as complete if v̄(u,m) = v̄(u,m−Tu), where Tu determines
how many measurements are carried out between GAMP
estimation updates. We define the time in terms of symbols
required for the uth user to reach this stopping criterion
as T

(u)
E . To prevent an infinite sequence of measurements

when the channel is in a deep fade or completely blocked,
we introduce a maximum allowed number of measurements,
denoted by Tmax.

F. UE Beam Selection for Data Communication

After meeting the channel estimation stopping criterion, the
user stops its estimation process and feeds back the indices
of beamforming vectors to be adopted by the BS for the
ensuing data communication. To determine these beamforming

3In practice, Γ could be set according to the minimum fading coefficient
that the transceiver can use for acceptable communication, and would depend
on the required rate of the system, transmit power etc.

Algorithm 1: Bernoulli-Gaussian Generalized Approxi-
mate Message Passing (GAMP) Algorithm from [34].

Input : y(u,m) → y, A(u,m) → A, Ag , ρ(u), σ(u)
R and N0.

Initialization : v̂(1) = 0, Var[v̂(1)] = 1 and ŝ(0) = 0
Define : ai is the ith entry of vector a.
Ai,j is the entry on the ith row and jth column of the matrix A.

Define Characteristic Functions :

gout(y, p̂,Var[p̂]) =
y − p̂

Var[p̂] +N0

−g′out(y, p̂,Var[p̂]) =
1

Var[p̂] +N0
,

gin(r̂,Var[r̂]) = π(r̂,Var[r̂])γ(r̂,Var[r̂])

−Var[r̂]g′in(r̂,Var[r̂]) = π(r̂,Var[r̂])
(
ν(r̂,Var[r̂]) + |γ(r̂,Var[r̂])|2

)
− (π(r̂,Var[r̂]))2|γ(r̂,Var[r̂])|2,

where

π(r̂,Var[r̂]) ,
1

1 + 1−ρ(u)
ρ(u)

CN (r̂,0,Var[r̂])

CN (r̂,0,Var[r̂]+σ(u)
R

)

,

γ(r̂,Var[r̂]) ,
r̂/Var[r̂]

1/Var[r̂] + 1/σ
(u)
R

, and

ν(r̂,Var[r̂]) ,
1

1/Var[r̂] + 1/σ
(u)
R

.

// Begin Estimation
for k = 1, 2, ... do

// Output linear step.
ẑ
(k)
i =

∑
j AgAi,j v̂

(k)
j ∀i

Var[ẑ(k)i ] =
∑
j |AgAi,j |

2Var[v(k)j ] ∀i
// Output non-linear step.
ŝ
(k)
i = gout(yi, ẑ

(k)
i − Var[ẑ(k)i ]ŝ

(k−1)
i ,Var[ẑ(k)i ]) ∀i

Var[ŝ(k)i ] = −g′out(yi, ẑi(k) − Var[ẑ(k)i ]ŝ
(k−1)
i ,Var[ẑ(k)i ]) ∀i

// Input linear step.
Var[r̂(k)j ] = 1/(

∑
i |AgAi,j |

2Var[ŝ(k)i ]) ∀j
r̂
(k)
j = v̂

(k)
j + Var[r̂(k)j ]

∑
iAgA

∗
i,j ŝ

(k)
i ∀j

// Input non-linear step.
v̂
(k+1)
j = gin(r̂

(k)
j ,Var[r̂(k)j ]) ∀j

Var[v̂(k+1)
j ] = −Var[r̂(k)j ]g′in(r̂

(k)
j ,Var[r̂(k)j ]) ∀j

// Check for convergence.
if v̂(k+1) = v̂(k) then

break
end

end
Output : v̂(k+1) → v̂(u,m).

indices, after each user converts the estimated channel vector

v̂(u,T
(u)
E ) back into its matrix form (i.e., Ĥ

(u,T
(u)
E )

v ), the
user then determines the candidate beams (for both the BS
and UE) that maximize the achievable rate. Recalling the
transceiver relationship given in (2)-(4), this involves finding
a BS beamforming matrix, Fd, and user beamforming matrix,
Wd, that maximizes the achievable rate of the uth user given
by [12]

R
(u)
opt = log2|I +

P

N0
WH

d Ĥ
(u,T

(u)
E )FdF

H
d Ĥ

HWd|. (29)
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Recalling from (17) that H(u,T
(u)
E ) =√

NBSNUEWcH
(u,m)
v FHc , we then have

{F (u)
opt ,W

(u)
opt } = argmax

Fd,Wd

log2|I+ (30)

A2
gW

H
d WcĤ

(u,T
(u)
E )

v FHc FdF
H
d Fc(Ĥ

(u,T
(u)
E )

v )HWH
c Wd|.

As the columns of the communication beamforming matrices
can only consist of candidate beamforming vectors, Fd and
Wd are constrained to finite set of vectors. Furthermore,
due to the mutual orthogonality among the candidate beams
selected in Fd and Wd, the matrix multiplication terms FHc Fd
and WH

c Wd, along with their conjugate transposes, can be
expressed as sparse matrices, with each non-zero values on the
diagonal entries corresponding to a selected candidate beam
index. As such, the optimal beam selection can be reduced
to simply finding the row and column indices of the virtual
channel estimate that maximizes the logarithm term in (30).

(30) can be reduced to finding the indexes of the largest

magnitude values in Ĥ(u,T
(u)
E )

v .
Due to the limited feedback bandwidth in the multi-user

scenario, we consider that each user is only able to feedback
the BS-side beamforming directions determined by (30), and
not the path fading coefficient. However, it is worth pointing
out that the path fading coefficient is still used for coherent
detection at the UE side. As such, we consider that the BS
allocates equal power to all identified paths. This reduces the
number of feedback bits to only dlog2(NBS)e per estimated
path. To characterize the performance of the proposed SWIFT
algorithm, we follow [18] and define the effective rate of
the uth user, given the time ratio consumed for the channel
estimation, by

R
(u)
E = R

(u)
opt

(
1−

T
(u)
E

Tc

)
, (31)

recalling that Tc is the coherence time of each channel
realization.

G. BS Stopping Criterion and User-scheduling

We consider two scenarios for the BS stopping criterion of
channel estimation, i.e., when the BS is to stop broadcasting
pilot symbols and commence data communication. The first
one is the ideal case where the BS can perform data com-
munication with users in adjacent sub-channels. In this case,
we propose that once a user believes that it has completed its
estimation and feeds back the beamforming directions, the BS
will use the feedback information and start to communicate
with this user using an adjacent sub-channel straight away.
The BS can continue to broadcast pilot signals on the previous
sub-channel for other users that have not finished their channel
estimation. Similar out-of-band estimation approaches have
also been proposed in [39]. As the relative change in frequency
for using an adjacent sub-carrier is quite low in the mmWave
band, it is reasonable to assume that the AOD/AOA directions
remain unchanged in the adjacent sub-carrier, although we
acknowledge that in practice a few initial pilots may be
required in the new sub-channel to refine the estimate of
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Fig. 7. Channel estimation flow diagram for each user in the proposed SWIFT
framework.

the fading coefficient at the user side. Extension to time and
spatial domain multiplexing may also be possible as the BS
coordinates the usage of all beamforming directions among
multiple users.

In the second case, we consider the BS and UE channel
estimation and data communication to occur in the same
frequency band and communicate in different time intervals. In
this case, we propose that the BS can perform user scheduling
by leveraging SWIFT’s capability of inferring the channel
quality sequences of multiple users based on the sequences
that the users finish their channel estimation. Specifically,
those users that complete (feedback) their channel estimation
earlier normally have better channel conditions than those
finish the channel estimation later, and thus are more suitable
to communicate with BS in the current channel realization. In
this sense, once the BS has collected Ns ≤ U user’s channel
feedbacks, it can stop broadcasting pilot symbols and begin
communication with selected users. As we show later in our
numerical results (particularly, 10. 8), users who complete their
channel estimation early are expected to have better channels
than those who finish later. Intuitively speaking, this follows
from the stability of the estimation process in different SNR
ranges. Based on this observation, it can be deduced that
UE with better channel conditions will, on average, compete
their channel estimation before those with worse channel
conditions.
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H. A Summary of SWIFT

We are now ready to summarize the proposed SWIFT
framework. To this end, we provide a flow diagram of the
complete SWIFT algorithm at user side in Fig. 7. We also
elaborate each step in SWIFT as follows:

Step 1: In each measurement time slot, the BS randomly
selects RBS candidate beamforming vectors to transmit
the pilot signals. At the same time, each user randomly
selects RUE candidate beamforming vectors to receive
the pilot signals.

Step 2: Each user implements the GAMP algorithm to esti-
mate its channel information based on all the collected
measurements until the current time slot.

Step 3: If the estimated channel has converged to the prede-
fined accuracy or if the maximum estimation time Tmax
has been reached, the channel estimation is considered
to be complete and this user can proceed to Step 4.
Otherwise go back to Step 1.

Step 4: The user determines the optimal beamforming vectors
to be used for data communication and feeds back
the beamforming indices for the BS to perform data
transmission in the remaining Tc − TE time slots.

At the beginning of each transmission block, the process re-
turns to Step 1 and repeats. We end this section by highlighting
several key benefits of the proposed SWIFT scheme as follows:

• Due to the stochastic nature of when each user com-
pletes its channel estimation, user feedback events are
distributed randomly throughout the whole estimation
procedure, resulting in less pressure on the bandwidth
of feedback channels.

• As our algorithm is inherently designed for various chan-
nel estimations with different estimation times, the exten-
sion to include a range of different number of antennas
and RF chains at the UEs is straightforward. However,
in this case, the proposed user-scheduling scheme would
also need to consider this to provide fairness toward users
with more complex MIMO channels.

• As the time occurrence of user feedbacks gives an insight
into channel quality, without any additional feedback
other than directions of paths. This implicit channel
quality information could be leveraged to achieve certain
QoS requirements.

• The probabilistic feature of the beam selection naturally
allows any prior/partial channel knowledge to be applied
to improve channel estimation performance, e.g., allocat-
ing a higher probability of beam selection to beams nearer
to the previously identified AOD/AOA.

IV. NON-UNIFORM BEAM PROBABILITIES

Inspired by the concept of unequal error protection in
fountain codes, in this section we propose two modifica-
tions to the initially defined uniform beam probabilities
in (13)-(14). To proceed, we define the vector δ(m) =

[δ
(m)
1 , · · · , δ(m)

n , · · · , δ(m)
NBS

] to describe the probability of each
candidate beam being selected for use by the first RF chain in

mth measurement4. Similarly, we denote the beam selection
probability vector at the uth user for the mth measurement as
ε(u,m) = [ε

(u,m)
1 , · · · , ε(u,m)

n , · · · , ε(u,m)
NUE

]. The first modifica-
tion is used to avoid the case that a given beam combination
is not selected at least once before Tmax. This is done by
introducing a forcing approach that decreases the average
number of measurement time slots required to span all beam
combinations at least once. In the second modification, we
propose a user-side partially estimated probability adaptation
(PEPA) scheme to adjust the beam probabilities based upon
the estimated channel available in the previous time slot.

A. Forcing Probability Adaptation (FPA)

In this subsection, we address the non-zero probability that
a given transmit and receive beam combination is not spanned
at least once before the maximum estimation time has been
reached. To this end, after each measurement time slot, we
propose to set the BS beam selection probability vector for
the next measurement to be inversely proportional to the total
number of times that a given beam has already been selected.
We denote N (m)

f (n) as the number of times the nth candidate
beamforming vector fc(n) has been used at the BS after the
mth measurement. We can then express the beam selection
probability vector for the (m+ 1)th measurement as

δ(m+1) =

[
cδ

N
(m)
f (1) + η

,
cδ

N
(m)
f (2) + η

, · · · , cδ

N
(m)
f (NBS) + η

]
.

(32)

where cδ = (
∑
n(N

(m)
f (n) + η)−1)−1 is a scalar constant

that ensures that the sum of the entries in δ(m+1) add to
one and η is a sufficiently small positive value that prevents
the occurrence of a zero denominator. It is worth noting that,
although (32) affects which BS beams are selected at the BS, it
does not depend on any information that is not known by each
user. As such, each user can still predict the beam selection
at the BS for each subsequent measurement.

On the user-side, this type of adaptation is not as straight-
forward as in (32). This is because no user can affect the
beam selection at the BS. To increase the chance that each
candidate beam combination is spanned at least once, each
user should ensure that there is at least one non-zero entry
in each column of the sensing matrix, A(u,m). As such, each
user should take into consideration the BS beams to be used
in the next time slot (i.e., Fm+1) when modifying its beam
selection probability. Specifically, we denote N (m)

w (n|fc) as
the number of times that the nth candidate beam wc(n) has
been used at the UE in conjunction with candidate beam fc
being used at the BS, after the mth measurement time slot.

4It is worth noting that the probability of each beam being selected for use
with subsequent RF chains is impacted by the beams that have been selected
previously and therefore cannot be selected again. This leads to a “weighted
random selection without replacement” process.
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We can then propose to update the beam selection probability
vector at the u-th user for the (m+ 1)th measurement as

ε(u,m+1) =[
cε

min
fc∈Fm+1

N
(m)
w (1|fc) + η

, · · · , cε

min
fc∈Fm+1+η

N
(m)
w (NBS |fc) + η

]
.

(33)

where cε is a scalar constant that ensures that the sum of the
entries in ε(m+1) add to one. Equation (33) essentially sets
the probability of each UE candidate beamforming vector in
the next time slot according to the number of times it has
been used together with the candidate beams that are about to
be adopted by the BS. The “min” operation emphasizes the
BS candidate beam that has been used with each UE candidate
beam the least. By adopting the FPA approach as described by
(32) and (33), the average number of measurement time slots
required to span all beam combinations can be significantly
reduced, compared to the default scheme with uniform beam
probabilities. Note that similar forcing strategies are normally
applied in fountain codes to avoid an error floor at high SNR
[40].

B. Partially Estimated Probability Adaptation (PEPA)

In this subsection, we propose to exploit the estimated vir-
tual channel matrix obtained from all previous measurements,
to increase the power of the received signal in the subsequent
measurements. To achieve this, we propose that once all beam
possible combinations have been spanned at least once, each
user modifies its beam selection probabilities based on its
recently estimated channel information, which is referred to as
partially estimated probability adaptation (PEPA) in this paper.
This information can be used in such a way to maximize the
received signal power and therefore maximize the amount of
channel information carried by the signal. In particular, we
note that after time slot m, the user knows the beamforming
matrix to be used by the BS in the next measurement time slot
(i.e., Fm+1) and also has an estimate of the channel based
on all previous measurements Ĥ(u,m). Based on these two
important pieces of information, each user can then make an
estimate of the signal to be received by each antenna in the
next time slot. From (3) we then can express the signal to be
received for the (m+ 1)th measurement as

r̂
(u)
m+1 =

√
P

RBS
Ĥ(u,m)Fm+1sm+1. (34)

Using this prediction, each user can then estimate the expected
received measurement given the nth candidate beamforming
vector as (wc(n))H r̂

(u)
m+1. To maximize the expected signal

power in the next time slot, we then propose to update
the beam probabilities for each user in the next time slot
proportional to the expected signal power for each candidate
beamforming vector. Mathematically, we have

ε(u,m+1) = cε

[
(wc(1))H r̂

(u)
m+1(r̂

(u)
m+1)Hwc(1), · · · ,

(wc(NUE))H r̂
(u)
m+1(r̂

(u)
m+1)Hwc(NUE)]

]
(35)

= cεdiag
(
WH

c r̂
(u)
m+1(r̂

(u)
m+1)HWc

)
. (36)

Substituting (34) into (36) and recalling from (18) thatH(u) =

WcH
(u)
v FHc , we then have

ε(m+1) = cεAgdiag
(
WH

c Ĥ
(u,m)Fm+1sm+1

(Ĥ(u,m)Fm+1sm+1)HWc

)
(37)

= cεAgdiag
(
WH

c WcĤ
(u,m)
v FHc Fm+1sm+1s

H
m+1

FHm+1(WcĤ
(u,m)
v Fc)

HWc

)
(38)

= cεAgdiag
(
Ĥ(u,m)
v Qm+1(Ĥ(u,m)

v )H
)

(39)

where the matrix Qm+1 = FHc Fm+1sm+1s
H
m+1F

H
m+1F

H
c is

a sparse diagonal matrix with only RBS non-zero elements.
By using the PEPA approach, users are able to utilize

partially estimated channel information to achieve a stronger
estimate of the channel in the subsequent measurements. This
can be considered analogous to the concept of unequal error
protection through intermediate feedback in fountain codes
[41]. Unlike fountain codes, as our beam combinations are
jointly determined by both link ends, we are able to implement
this adaptive concept of “unequal beam protection” without
incurring any additional feedback overhead. It is also worth
noting that in the single user regime, the use of partial channel
feedback during the estimation process may enable the BS to
also adapt its beam probabilities to maximize the signal power
to be delivered to the user. As we have mainly focused on a
multi-user scenario in this paper, we do not consider this BS-
side beam adaptation here. However, in the multi-user regime,
unequal beam protection at the BS may resemble to Fountain
Codes in multi-cast scenarios [42], which is out of the scope
of this paper and has been left as a future work.

V. CONVERGENCE ANALYSIS

To verify whether the proposed algorithm can converge
for any arbitrary number of antennas and RF chains, we
can consider whether the corresponding measurement matrix,
A(u,m) satisfies the reconstruction criterion for the GAMP
estimation. Specifically, if the matrix satisfies the restricted
isometric property (RIP) then it can be guaranteed that the
channel can be reconstructed by L1-minimization such as
GAMP [43]. Following [43] we define the restricted isometry
constant δL of matrix A(u,m) as the smallest δL ≥ 0 that
satisfies

(1− δL)
∥∥∥v(u,m)

∥∥∥2
2
≤
∥∥∥A(u,m)v(u,m)

∥∥∥2
2

≤ (1 + δL)
∥∥∥v(u,m)

∥∥∥2
2
,∀ v(u,m) (40)

across all possible L-sparse UE channels, v(u) satisfying∥∥v(u,m)
∥∥
0

= L. Informally, the matrix A(u,m) is then said to
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possess the RIP if δL is small for sufficiently large L. More
rigorously, the RIP will be satisfied if all sub matrices formed
by L columns of A(u,m) are well conditioned.

Unfortunately, the evaluation of RIP across all possibilities
is a non-trivial problem [44]. In addition to the stochastic
process in A(u,m), the considered model also has random
sparsity in the number paths with each path also following
a Gaussian distribution. This makes it difficult to precisely
evaluate the RIP across all possible random sensing matrices
A(u,m), although it is widely accepted that random matrices
are a good choice [43].

However, in order to develop an expression to quantify
the convergence criterion, we can leverage the sparsity in the
rows of our sensing matrix A(u,m) , which is due the limited
number of RF chains. To this end, by neglecting the phase of
the pilot symbols in the sensing matrix, we can focus on the
convergence criterion for a pessimistic case where information
recovery depends only on the non-zeros elements in each
column (i.e., the random beam selections).

We can then claim that the RIP is met with submatrix
conditioning owing to at least one pilot symbol separation
between columns, if the following are met:

1) There is at least a single non-zero value in each column
of A(u,m) .

2) No two columns of A(u,m) are identical.
For the first of these conditions, recall that FPA was already
proposed to reweight the candidate beam selection probabili-
ties and ensure that A(u,m) has at least one non-zero value in
each column. As such, the first condition is always met before
attempting estimation with GAMP, and therefore can always
be guaranteed in our results.

Turning to the second condition, consider that in each
length-NBSNUE row of the sensing matrix, there are RBS non-
zero elements that are randomly selected. As the FPA approach
works to spread the non-zero elements uniformly across each
column, we can approximate the probability that any column
has a non-zero entry in any given row as

Pr
( ∣∣∣A(u,m)

r,c

∣∣∣ > 0
)
∼=

RBS

NBSNUE
∀ c = 1, . . . NBSNUE

(41)

Then for any arbitrary number of measurements m = TERUE,
we can express the expectation of the number of non-zero
entries in each column as

ENZ =

TERUE∑
r=1

Pr
( ∣∣∣A(u,m)

r,c

∣∣∣ > 0
)

=
RBSRUE

NBSNUE
TE , (42)

∀ c = 1, . . . NBSNUE. For each column with length-
TERUE and with ENZ non-zero entries, the number of uniquely
possible combinations is given by

CNZ =
(TERUE)!

ENZ! (TERUE − ENZ)!
. (43)

Relating this back to the convergence, we can now find the
probability all columns in A(u,m) are unique.

Although FPA will inherently reweight the probabilities to
reduce the chance of identical columns, we take a pessimistic
approach and consider the distribution of non-zero elements in

each column to be independent. With this simplification, the
probability that all NBSNUE of the columns in A(u,m) are
selected uniquely can be expressed by

PU =
CNZ

CNZ
× . . .× CNZ − (NBSNUE − 1)

CNZ

=

NBSNUE−1∏
n=0

(
1− n

CNZ

)
(44)

By substituting CNZ and ENZ and relaxing the factorials to
gamma functions, PU then provides an upper bound for the
probability of convergence after TE time slots, denoted by Pc,
as (45) on top of the next page.

It is worth noting that although this analysis has not directly
considered the proposed PEPA strategy, because PEPA is only
ever applied after FPA has forced the convergence conditions
and it also follows the same upper bound.

VI. NUMERICAL RESULTS

We now provide some numerical results to evaluate the
performance of our proposed SWIFT algorithm. We consider
a mmWave system with NBS = 32 antennas at the BS
and NUE = 16 antennas at each user. We further consider
the BS to be equipped with RBS = 8 RF chains and
each user to be equipped with RUE = 4 RF chains. We
consider the expected number of paths to be E[L(u)] = 3
with AOD and AOD uniformly distributed on the continuous
range [0, 2π]. We also set the maximum allowed number
of measurements the same as the exhaustive search-based
approach, i.e., Tmax = NBSNUE/RUE . We update the channel
estimate every Tu = NUE/RUE = 4 measurements and use
Γ = 10−1 in the binarization process of the estimated channel
vector. We show two variants of the SWIFT algorithm. The
first uses the forcing probability adaptation approach proposed
in Sec. IV-A and is labeled as SWIFT-FPA, whereas the second
variant uses the partially estimated probability adaptation from
Sec. IV-B and is labeled as SWIFT-PEPA.

Recall that single-user oriented angular refinement ap-
proaches such as [12], [16] are no longer suitable for simulta-
neous multi-user estimation. In order to compare our proposed
algorithm to a simultaneous estimation scheme, we consider a
random beamforming-based channel estimation approach that
uses a predetermined number of measurements. As these fixed-
number random beamforming (FNRB) approaches do not
target any specific user, the training overhead does not scale
as the number of users is increased [18]. The adopted GAMP
estimator used in SWIFT is also applied in the FNRB schemes
to estimate the channel information. We also compare our
scheme with a benchmark exhaustive search-based approach,
in which an estimate of the virtual channel can be found by
individually measuring the gains between all combinations of
the candidate vectors (i.e., transmitting with only a single
beamforming vector but receiving with RUE beamforming
vector(s) in each measurement). We represent this approach
by exhaustive search (ES) in all figures.

We first show simulation results for the single-user case in
Fig. 8 over a range of different SNR values. It is worth noting
that the single-user case is the equivalent to the multi-user case
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PU =

NBSNUE−1∏
n=1

1− n
Γ
(
TERUERBS
NUENBS

+ 1
)

Γ
(
TERUE

(
1− RBS

NUENBS

)
+ 1
)

Γ (TERUE + 1)

 ≥ Pc. (45)
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Fig. 8. Average number of measurements required for channel estimation
when the BS is equipped with NBS = 32 antenna and RBS = 8 RF chains
and the user is equipped with NUE = 16 antenna and RUE = 4 RF chains.
We assume the number of paths is E[L(u)] = 3 and update the channel
estimate every Tu = 4 measurements.

where the BS can communicate with each user in an adjacent
dedicated sub-channel, as discussed in Sec. III-G. Fig. 8 shows
the average number of channel measurements by each of the
aforementioned approaches. We can see that both variations
of the SWIFT algorithm are able to adaptively increase the
number of measurements at low SNR values in order to meet
the required channel estimation convergence criterion. As all
other algorithms use a fixed number of measurements, their
average number of measurements remains unchanged across
the whole SNR range. Comparing the two SWIFT approaches,
we see that SWIFT-PEPA requires less measurements at low
SNR. We also see that the two schemes converge to a similar
average number of channel measurements at high SNRs.

Fig. 9 shows the resulting average effective rate as defined
by (31) of various schemes with different length of coherence
time5. More specifically, Fig. 9 (a) considers a coherence time
of Tc = 200 and Fig. 9 (b) considers Tc = 400 symbols. As
the adopted performance metric of effective rate considers both
the training quality and overhead, it more accurately reflects
the channel estimation performance. From Fig. 9 (a), we can
observe that both SWIFT approaches are able to achieve a
superior effective rate over a large range of SNR values. We
also see that different FNRB schemes using a fixed number of
measurements can outperform each other depending on both
the value of SNR and coherence time. In particular, this can
be seen in Fig. 9 (b) where FNRB with TE = 60 is the

5Although MSE is a common estimation performance metric, for channels
with both strong and even imperfect sparsity, it can often favor conservative
algorithms that yield weak and incorrect results over ones that actually attempt
to provide a solution.

best performing scheme at high SNR, but the worst at low
SNR. In contrast, SWIFT-PEPA is always the best performing
scheme. It is worth noting that the complexity of SWIFT-PEPA
is slightly higher than SWIFT-FPA, as the beam selection
probability vector is based on the channel measurements and
therefore cannot be computed offline.

In order to gain an insight into when a user is likely
to complete its channel estimation, we plot in Fig. 10 the
cumulative distribution function (CDF) that a user completes
its channel estimation before a given duration TE for both
SWIFT approaches with various SNR values. From Fig. 10,
we can first see that users at a larger SNR are more likely to
estimate their channel before those with low SNR. With a large
number of users distributed across all SNRs, we can infer that
the occurrence of channel estimation feedback events would
be spread over a large number of different times. As a result,
this would alleviate pressure on the feedback channel (used
by each user to feedback beamforming directions to the BS)
as the number of users needing to communicate at any given
time would be significantly reduced. It is also interesting to
compare the differences in CDFs for both SWIFT variations.
It can be seen that at high SNR, both approaches have similar
CDFs which is consistent with the observation in Fig. 8 where
both approaches are seen to have the same average number of
measurements. At low-to-medium SNR, it can be seen that,
by adopting SWIFT-PEPA, users having a greater probability
of completing their estimation with a shorter duration. This
is again consistent with Fig. 8, where SWIFT-PEPA has a
lower average number of measurements in the low-to-medium
SNR ranges. To validate our convergence analysis, Fig. 10
also shows the upper bound for the probability of convergence
in (45). As can seen, both SWIFT-FPA and SWIFT-PEPA
satisfy the bound. At larger values of TE , the numerical
CDFs do not approach the convergence bound due to the
non-zero probability of the channel either being in a deep
fade or having no paths, which were not considered in this
convergence bound.

We now turn to a multi-user scenario with U users in a
single cell of radius R. We assume that the uth user has
a distance d(u) from the BS and this distance is uniformly
distributed within the range [0, R]. We then model the variance
of the fading coefficient for the uth user as a function of dis-
tance by σ(u)

R = (d(u))−β , where β is the path loss exponent.
As the distances between BS and users are not expected to
change rapidly relative to the cell size, we consider that σ(u)

R

is known to each user from experience of previous channels6.
We set the BS transmit power P = 20dBm, the noise power
N0 = −60dBm, the path loss exponent β = 4 and the cell

6It is worth pointing out that the channel estimation tools used in this paper
can also be extended to jointly estimate the channel statistics in a similar way
as in [34].
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Fig. 9. Single-user effective rate for (a) Tc = 200 and (b) Tc = 400 when the BS is equipped with NBS = 32 antennas and RBS = 8 RF chains and the
user is equipped with NUE = 16 antennas and RUE = 4 RF chains. We assume the number of paths is E[L(u)] = 3 and update the channel estimate every
Tu = 4 measurement time slots.
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completing their channel estimation before TE .

radius R = 200m. For example, this configuration leads to
Pσ

(u)
R /N0 = −12dB at d = 200m and Pσ(u)

R /N0 = 12dB at
d = 50m.

We evaluate the multi-user performance when the channel
estimation and data communication share the same frequency,
i.e., all BS pilots must stop in order for communication to
commence. To this end, we consider that the BS is only able to
communicate with Ns = 10 users in a given coherence block.
Note that the other schemes only know the beamforming
directions, they randomly select Ns = 10 users from those
who send back the beamforming directions. In contrast, the
SWIFT approaches wait until the first Ns = 10 users have
fed back requests for communication and then the BS begins
communicating with them. For simplicity, in all schemes, we
consider that the BS divides the remaining communication
time equally among the users.

Fig. 11 shows the average effective rate as the number

of users increase for two scenarios with (a) Tc = 200 and
(b) Tc = 400. We first see that the average effective rate
increases significantly as the number of users increases. This is
because the SWIFT algorithm is capable of selecting out users
with channels better suited for data communication based on
the sequence that users feedback their channel estimation. In
contrast, the other schemes remain unchanged as the number
of users increases. Furthermore, the effective rate of the
SWIFT schemes begins to saturate from about U = 17. That
is, as the BS only communicates with the first Ns = 10 users,
it only needs to neglect a little more than one third of these
users to achieve a significant performance gain. Given the
system model, these neglected users may be near the cell edge
and may have a more favorable channel with an adjacent cell.
However, in other cases, to more generally provide fairness
among all UE, a more advanced scheduling approach may be
required to favor those with poorer channels. As our scheme
has focused on improving the overall network performance as
opposed to individual UE, this has been left as a future work.

VII. CONCLUSIONS

In this paper we have proposed a novel Simultaneous-
estimation With Iterative Fountain Training (SWIFT) frame-
work for multi-user channel estimation in mmWave MIMO
communication systems. In the proposed algorithm, additional
measurements are carried out in an adaptive manner when
required, allowing the channel estimate to converge to the
predetermined accuracy. We have shown that the proposed
approach yields superior effective rate performance when
compared to those random beamforming-based approaches
with fixed number of measurements. By utilizing the users’
order in terms of completing their channel estimation, we have
also shown our SWIFT framework can infer the sequence
of users’ channel quality and perform the associated user
scheduling to achieve superior performance, especially for
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Fig. 11. Average per-user effective rate for multi-user scenario in Fig. 1 with (a) Tc = 200 and (b) Tc = 400 when the BS is equipped with NBS = 32
antennas and RBS = 8 RF chains and the user is equipped with NUE = 16 antennas and RUE = 4 RF chains. We assume the number of paths is E[L(u)] = 3
and update the channel estimate every Tu = 4 measurement time slots.

resource-constrained scenarios where only a limited number
of users can be served.
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