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AMC and HARQ:

How to Increase the Throughput
Mohammed Jabi, Leszek Szczecinski, Mustapha Benjillali, Abdellatif Benyouss, and Benoit Pelletier

Abstract—In this work, we consider transmissions over block
fading channels and assume that adaptive modulation and
coding (AMC) and hybrid automatic repeat request (HARQ)
are implemented. Knowing that in high signal-to-noise ratio,
the conventional combination of HARQ with AMC is coun-
terproductive from the throughput point of view, we adopt
the so-called layer-coded HARQ (L-HARQ). L-HARQ allows
consecutive packets to share the channel and preserves a great
degree of separation between AMC and HARQ; this makes
the encoding and decoding very simple and allows us to use
the available/optimized codes. Numerical examples shown in the
paper indicate that L-HARQ can provide significant throughput
gains compared to the conventional HARQ. The L-HARQ is also
implemented using turbo codes indicating that the throughput
gains also materialize in practice.

Index Terms—AMC, Block Fading Channels, Channel Coding,
HARQ, Hybrid Automatic Repeat reQuest, Incremental Redun-
dancy, Rate Adaptation.

I. INTRODUCTION

IN this work, we are interested in increasing the throughput

of the physical layer (PHY) when the coded information

is transmitted using equal-length channel blocks which are

subject to independent fading. We are motivated by two

main results. First, by [1], which demonstrates that using the

conventional hybrid ARQ (HARQ) when adaptive modulation

and coding (AMC) is adopted decreases the throughput at

high signal-to-noise ratio (SNR). The second result is due

to [2], [3] which proposes layer-coded HARQ (L-HARQ) –

a simple encoding/decoding scheme tailored to improve the

throughput of HARQ. However, L-HARQ was studied when

the instantaneous channel state information (CSI) was not

available at the transmitter; i.e., without the AMC. In this work

we propose to leverage the knowledge of instantaneous CSI

and incorporate it in the coding scheme of L-HARQ.

A. Background

AMC is adopted for communications over time-varying

channels to guarantee an efficient use of channel resources. It

relies on a feedback channel over which the receiver informs

the transmitter about the “best” transmission rate to use. This

rate is evaluated by the receiver based on the estimated CSI.
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Despite this rate adaptation, transmission errors are unavoid-

able in practice, and they are handled by the retransmission

protocol, HARQ.

HARQ also uses feedback channel: one-bit messages in-

form the transmitter about the decoding success (positive

acknowledgment (ACK)) or failure (negative acknowledgment

(NACK)). After each NACK, the transmitter starts a new

HARQ round (i.e., a retransmission) which conveys additional

information necessary to decode the packet; in other words,

HARQ encodes the packet across the transmission rounds.

The HARQ cycle, defined as the sequence of transmission

rounds of the same packet, terminates if the packet is correctly

received (as indicated by ACK). If the number of rounds is

limited, HARQ is said to be truncated; then, the NACK in the

final round indicates a packet loss.

Both, AMC and HARQ may be considered as parts of PHY,

and their interaction has been addressed vastly in the literature.

For instance, [4]–[9] analyzed the throughput, while [10]–

[13] focused on the delay due to HARQ. In all these works,

a constraint on the probability of packet loss was imposed;

by doing so, the value of HARQ was highlighted as, indeed,

HARQ efficiently decreases the probability of having packets

lost at the end of the cycle. This is different from our work

because we ignore the packet loss and only sheer throughput

is considered; the rationale for such an approach is discussed

in Sec. II-E.

To meaningfully compare different AMC/HARQ strategies,

it is important to assume that the ressources used by the PHY

are fixed.1 This goal can be attained by encoding one packet

over the whole channel block in each round; such HARQ is

said to be conventional, and was often used as a basis for

theoretical analysis, e.g., [17].

However, as demonstrated in [1], this conventional approach

can actually be detrimental to the throughput; that is, AMC

alone is better than AMC combined with the conventional

HARQ. This surprising, at first sight, result is caused by the

fact that the conventional HARQ is not fully adaptive: it uses

the CSI only in the first transmission round [18] of a given

packet; reusing next the entire channel block for each round

1First, this is because the block fading model implicitly assumes that
the duration of all transmissions is the same. More importantly, from a
methodological point of view, the transmission with variable PHY resources is
more relevant in the context of multi-user communications, which also implies
some form of resource management; then, drawing useful conclusions may
be difficult analyzing solely the PHY. Thus, fixing the resources of the point-
to-point PHY, we are able to isolate HARQ from the external factors; such as
a multi-user scheduling [14], [15] or a cooperative transmission [16]; which
may be combined with HARQ but are difficult to characterize.
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causes a waste of resources.2

Indeed, the literature already recognizes that, to improve

the throughput, the coding across the HARQ rounds must be

modified. The most relevant solutions may be classified as i) a

multi-packet coding [2], [3], [20], [21], where many packets

with variable contents are jointly encoded into fixed-length

codewords which then use the fixed resources (channel blocks)

or, as ii) a variable-length coding [22]–[27], where rather the

codewords length varies throughout the HARQ rounds and the

packet content is fixed.3

We focus this work on the adaptive multi-packet coding

whose advantage over the relatively well-studied variable-

length coding will be discussed in Sec. III-A.

B. Contribution and Organization

The main difficulties of the multi packet coding are i) the

practicality of joint encoding/decoding of many packets, and

ii) the rate adaptation of this joint coding. This was already

apparent in the case of multi-packet coding when the instan-

taneous CSI was not available at the transmitter [21, Sec. V].

To make the multi-packet approach practical, we will use L-

HARQ, studied in [2], [3] and implemented via a two-step (or,

layered) approach, where the joint coding is implemented in

two independent steps: the binary packet mixing is followed by

the conventional channel coding. From the theoretical perspec-

tive, when compared to a more general joint coding/decoding

scheme [21], [30], L-HARQ does not impose any throughput

penalty [30, Th. 3]. It is also more practical as it can be

used with commercially available encoders/decoders [3]. The

remaining issue is how to use L-HARQ with AMC, that is,

how to exploit the CSI in all transmission rounds and yet

maintain the simple layered-coding strategy.

The main contribution of this work lies, therefore, in the

generalization of L-HARQ [2], [3] to take advantage of the

CSI in all rounds of HARQ. The proposed encoding scheme

yields a fully adaptive HARQ: like in [2], [3], the CSI observed

in the previous rounds of the same packet is exploited but,

unlike [2], [3], each round exploits as well the instantaneous

(possibly outdated) CSI.

The question which needs to be answered in this context is:

how to adjust the coding rates using the rich information about

the CSI? We formulate the optimization problem and propose a

framework to solve it. Concluding on the excessive numerical

complexity of the latter, we present heuristic rate-adaptation

policies inspired by the optimal adaptation policy used in the

AMC and by the results of [3]. The proposed solution leads

to a local adaptation with easily adjustable parameters and

does not require the knowledge of the entire model of the

relationship between the different HARQ rounds, the AMC,

and the fading model.

2We will comment on this in Example 2, but note here that a somehow
similar behavior of the throughput is also observed in HARQ transmissions
without CSI: for high SNR, the throughput of HARQ improves only negligibly
[19], [20] when the number of rounds increases.

3We also note that similar ideas are discussed in [28], where the fixed-

to-variable (here, variable-length) and variable-to-fixed (here, multi-packet)
coding strategies are defined. In fact, the Long Term Evolution (LTE) standard
enables the variable-length coding [29, Ch. 12.1] varying the number of the
so-called resource blocks [29, Ch. 9.1] on a per HARQ-round basis.
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Fig. 1. Model of the transmission of the packet m[n]: AMC chooses the
rate based on the CSI, csi, provided by the receiver before the transmission
begins; here, the CSI is the same as the SNR and with a finite number of
rates, it is enough to transmit the index of the rate, ℓ, and the transmission
rate is then given by R(snr) = R[ℓ]. The LLC layer implements the ARQ
which ensures the error-free transmission and makes the throughput of the
PHY the unique criterion for comparison, see Sec. II-E.

To the best of our knowledge, the literature does not provide

such a solution to adapt simultaneously the AMC and HARQ,

while keeping the channel resources fixed. The most practical

element is that the adaptation we propose relies on the error-

rate curves of the commercial encoders/decoders that can be

easily acquired. This is critical from the implementability

perspective. In fact, rare are works which include the prac-

tical encoders/decoders, mainly because the decoding error-

rate curves after many HARQ rounds are difficult to obtain

and to use; for example, a significant part of [24] (which

implements a variable-length HARQ) is dedicated to the issue

of approximating these curves and the results are limited to

three HARQ rounds.

The rest of the paper is organized as follows. In Sec. II

we introduce the adopted models while the principle of the

proposed L-HARQ is explained in Sec. III. The optimization

issues are discussed in Sec. III-D and Sec. III-E. Sec. IV

compares the proposed L-HARQ to the alternative strategies

using examples of i) the idealized encoders/decoders, and

ii) the practical turbo-codes. The conclusions are drawn

in Sec. V.

II. MODEL

A. AMC

In a point-to-point transmission over a block fading channel,

illustrated in Fig. 1, we assume that the size, Ns, of the

transmission blocks, x[n], does not change with their index

n; the transmitter encodes the packet m[n] ∈ {0, 1}RNs into a

codeword x[n] = Φ
[

m[n]
]

∈ XNs , where Φ[·] is the encoder,

R – the coding rate, and X – the constellation set of size

M = |X |.
We assume that the choice of the rate is done at the receiver

using the estimated CSI, csi, that is, R = R(csi) ∈ R, where

R is the set of available rates. To simplify the examples, we
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will consider frequency non-selective channel, where the CSI

is uniquely represented by the SNR, snr.

While, for theoretical considerations we may sometimes as-

sume a continuous-valued setR = R+ is available, in practice,

the set of available rates is discrete, i.e., R = {R[1], . . . , R[L]}
and then it is enough to transmit the index ℓ ∈ {1, . . . , L} of

the chosen rate, that is R(snr) = R[ℓ]; here, L denotes the

number of available rates.

In all examples, X will be a M -ary quadrature ampli-

tude modulation (QAM) constellation (with M = 4 or

M = 16); the empirical error-rate curves of the practical

encoders/decoders will be obtained using the turbo encod-

ing/decoding. We emphasize that, independently from how the

coded modulation is implemented, there is always a maximum

rate which cannot be exceeded; in our case, this limitation is

expressed as R[L] < log2(M).

Assuming that packets are always available at the transmit-

ter (the buffer is saturated), the codeword x[n] is transmitted

in the nth block, and the receiver observes the signal

y[n] =
√

˜snr[n]x[n] + z[n], (1)

where z[n] is a vector of realizations of zero mean, unit-

variance, complex Gaussian variables, modeling the noise.

Since x[n] are (realizations of) random variables uniformly

distributed over X , with appropriate normalization of the latter,

˜snr[n] is the SNR at the receiver experienced at the time the

transmission is carried out.

In general, ˜snr 6= snr, and this SNR “mismatch” is caused

by the estimation errors and/or by the delay between the time

the SNR, snr[n], is estimated and the time the transmission is

carried out with the experienced SNR, ˜snr[n].4

The receiver tries to decode the transmitted packet m[n]
using the channel outcome

m̂[n] = DEC
[

y[n]
]

. (2)

The decoding errors ERR[n] = {m̂[n] 6= m[n]} that occur

due to different, simultaneously occurring events (such as

e.g., atypical noise, interference, or fading) are characterized

by a packet error rate (PER) function

PER(snr;R) , Pr {ERR|SNR = snr, R} , (3)

which, for a given R, decreases monotonically with snr. This

function captures the behavior of the entire receiver from the

point of view of the transmitter and includes the effect of

the decoding, channel estimation, and synchronization. It also

captures the effect of delayed/imperfect CSI as follows

PER(snr;R) = E ˜SNR

[

PERrx( ˜SNR;R)|SNR = snr
]

(4)

where

PERrx( ˜snr;R) , Pr
{

ERR| ˜SNR = ˜snr, R
}

, (5)

4Although the time index of both SNRs refers to the same nth channel
block, the estimation must be carried out before the transmission takes place;
it has to be done sufficiently early to leave a time for a feedback of the index
ℓ and to allow the transmitter to encode/modulate the packet. Thus, there is
always a delay between the moments of estimation and transmission.

is the PER function of the receiver and depends on the SNR,

˜snr, actually observed and experienced during the transmis-

sion.

In practice, it is not necessary to estimate/measure the entire

PER function and it is sufficient to find the SNR interval limits

γ[ℓ] which satisfy a constraint on PER when transmitting with

rate R[ℓ] [1, Sec. III], i.e.,

γ[ℓ] = min
snr∈R+

{snr : PER(snr;R[ℓ]) ≤ ǫ}, (6)

where ǫ ∈ R
+ denotes a PER constraint. This approach

can be related to the calibration of the LTE receivers which,

observing the CSI (here the SNR, snr), should report the

largest rate R[ℓ] ∈ R for which the inequality condition in (6)

is satisfied with ǫ = 10−1 [31, Sec. 7.2]. That is, the calibration

process in LTE implicitly solves (6). The coding adaptation

for HARQ we will propose, exploits the PER curves (or the

SNR intervals) and thus preserves the legacy and adaptation

simplicity of current systems.

B. Channel Model

We will model snr[n] as realizations of independent, iden-

tically distributed (i.i.d.) random variables SNR[n], which is

appropriate if the transmission of the channel blocks x[n] is

well separated in time.5

The derivations will be done in abstraction of a particu-

lar fading type, but in the numerical examples, we assume

Rayleigh fading, i.e., SNR[n] is drawn from an exponential

distribution

pSNR(snr) = 1/snr exp(−snr/snr), (7)

where snr is the average SNR, and we have removed the time-

indexing [n] that is irrelevant with the i.i.d. modeling of the

SNRs.

The variables SNR[n] and ˜SNR[n] are, in general, mutually

dependent. Again, for the sake of numerical examples, we

assume that the SNR experienced during the transmission,
˜SNR, is a delayed version of the SNR estimated at the receiver,

SNR,6 and their joint probability density function (PDF) is

given by [32], [33]

p
SNR, ˜SNR

(snr, ˜snr) =
1

(1− δ)snr
I0

(

2
√
δsnr ˜snr

(1 − δ)snr

)

· exp
(

− ˜snr + snr

(1− δ)snr

)

, (8)

where I0 is the zero-order modified Bessel function of the first

kind, and δ is the correlation factor

δ = J2
0 (2πfDτ). (9)

5In the LTE, the channel blocks are attributed to many users in a time-
interleaved manner. So, here, the blocks x[n] correspond to a particular user
but are attributed in non-adjacent time instants. This time-separation allows
to account for the round-trip delay due to the propagation, and the processing
at the receiver and the transmitter.

6As we said before, snr is estimated first by the receiver, used by the
transmitter to adapt the rate R(snr), and the transmission is finally carried
out with the SNR ˜snr.
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Here, τ is the time difference between the instants of estima-

tion and transmission, fD is the Doppler frequency, and J0
is the zero-order Bessel function of the first kind. Essentially

the same relationship will be obtained if we assume that the

difference between ˜snr and snr is due to channel estimation

errors [34, eq. (20)].

Example 1 (Threshold decoding). Assume that the receiver’s

PER function is binary

PERrx( ˜snr;R[ℓ]) = I
[

˜SNR < γth
[ℓ]

]

, (10)

where the indicator function I
[

a
]

= 1 if a is true, and I
[

a
]

=
0 otherwise; and γth

[ℓ] is uniquely defined by the transmission

rate R[ℓ].

If the joint distribution of SNR and ˜SNR is defined by (8),

the PER function (3) is calculated using (4) as

PER(snr;R[ℓ]) = Pr
{

˜SNR < γth
[ℓ]|SNR = snr, R[ℓ]

}

(11)

= Q1





√

2δsnr

(1− δ)snr
,

√

2γth
[ℓ]

(1− δ)snr



 , (12)

where we used the form of the (complementary) cumulative

density function (CDF) of a non-central chi-square distribution

[35, Sec. 2.3] with Qm(·, ·) being the generalized Marcum Q-

function.

C. Throughput-Optimal Rate Adaptation

The throughput is defined as the long-term average number

of successfully received bits per transmitted symbol, or chan-

nel use, (bit/cu) and, since we use constant-length blocks, we

can write it as

η = lim
N→∞

1

N

N
∑

n=1

R[n], (13)

where R[n] denotes the number of decoded bits normalized

by the block length, Ns, i.e., R[n] ∈ {0, R(snr[n])}. It is also

called a reward in the n-th block.

The mean reward (expectation taken with respect to the

decoding error events, ERR) is given by R
(

1− PER(snr;R)
)

and, since we model snr[n] by i.i.d. random variables, the time-

average from (13) may be replaced by the expectation [1], [34]

ηamc =ESNR

[

R(SNR) ·
(

1− PER
(

SNR;R(SNR)
)

)

]

. (14)

To find the rate adaptation function R(snr) which maxi-

mizes ηamc, we can enter with the maximization under the

expectation operator in (14) and the throughput-optimal rate

adaptation function R(snr) of the AMC is then found by

solving the following one-dimensional optimization problem

(for each value of snr)

R(snr) = argmax
R∈R

R
(

1− PER(snr;R)
)

. (15)

In practice, R(snr) is monotonically increasing with snr,

which is in line with our intuition: for high SNR (or, more

generally, for high-quality CSI), a larger transmission rate is

used and a larger throughput is obtained.

So, for the discrete rates we identify the decision regions of

the SNR, [γ[ℓ], γ[ℓ+1]) such that the rate adaptation is defined

as

R[ℓ] = R(snr) ⇐⇒ snr ∈ [γ[ℓ], γ[ℓ+1]), (16)

where γ[1] , 0, γ[L+1] ,∞.

We mention briefly that the solutions of (15) and (6) do not,

in general, produce the same decision regions. The choice of

the one or the other criterion to define the SNR limits γ[ℓ] is

an implementation issue.

We emphasize here that, while the throughput (14) depends

on the distribution pSNR(snr), the optimal adaptation function,

R(snr) – does not. In fact, the distribution pSNR(snr) is most

likely not known in practice, so using the rate-adaptation (15)

or (16) which are oblivious to the knowledge of pSNR(snr) is a

desirable feature. Of course, the PER function PER(snr;Rℓ)
may depend on the probabilitic model of the relationship

between SNR and ˜SNR as we saw in Example 1; however, such

a relationship will still be captured by γ[ℓ], see (6); these SNR

interval limits are then optimal irrespectively of the marginal

distribution pSNR(snr) required to calculate the expectation in

(14).

Fine-tuning the adaptation

The rate adaptation defined by (15) is throughput-optimal,

however, we may use R(snr) with additional heuristics tar-

geting the error rates. Namely, we can artificially change the

argument of the rate-adaptation function R(·) in (16) and use

the rate

R← R(snr∆); (17)

for ∆ < 1, it provides a more “conservative” adaptation: the

same rates R[ℓ] will be used in higher SNRs (comparing to

∆ = 1), which leads to a smaller probability of decoding error.

On the other hand, the rate-adaptation is more “aggressive”

with ∆ > 1 which allows the transmitter to use higher rates at

the cost of larger probability of error. This simple modification

of the adaptation strategy which relies on a fine-tuning of one

parameter, ∆, will be exploited later.

Performance limit

Since we do not consider power adaptation in this work, the

throughput is always upper-bounded by the ergodic capacity

of the channel [17], [32], [36]

η ≤ C (18)

C , ESNR[I(SNR)], (19)

where I(snr) = I(X ;Y |snr) is the mutual information (MI)

between the random variables X ∈ X and Y modeling

respectively the channel input and output.

The limit (19) can be attained in the idealized case when

i) SNR = ˜SNR, ii) capacity achieving codes are used, iii) the

transmission rate set R is continuous, and iv) the rates are

adapted as R(snr) = I(snr) [32]; then, the receiver’s PER

function (5) is binary, i.e., PERrx( ˜snr;R) = I
[

I( ˜snr) < R
]

;

this is similar to the assumption we made in Example 1 with

γth
[ℓ] = I−1(R[ℓ]).



5

D. HARQ

If retransmissions are allowed, the packet m ∈ {0, 1}R[ℓ]·Ns

is encoded into K subcodewords, xk = Φk[m] ∈ XNs , where

Φk[·], k = 1, . . . ,K , are the encoding functions, and K is the

maximum number of transmissions for each packet. We con-

sider here incremental redundancy HARQ (IR-HARQ), that

is, all the subcodewords xk are complementary (punctured)

versions of a mother codeword, xo = [x1, . . . ,xK ].

Then, each round carries a different subcodeword xk, and

the transmission outcome of the k-th round is given by

yk =
√

˜snrkxk + zk, k = 1, . . . ,K, (20)

where we eliminate the time-index n from (1) and rather

use the “packet-centric” notation, indexing the HARQ rounds

with k; thus, ˜snrk is the SNR at the receiver in the k-th

HARQ round. The important point in the “conventional” IR-

HARQ is that the rate is chosen in the first round, i.e., R[ℓ] =
Rharq(snr1).

The question which should be answered now is: how to find

the HARQ throughput-optimal rate adaptation Rharq(snr1)?

Since HARQ introduces memory, the optimal rate-

adaptation function Rharq(snr) depends on the distribution of

the SNR and is quite difficult to find.7 This clashes with the

simplicity of the AMC rate-adaptation (15) which does not

depend on the distribution pSNR(snr), see comments after (16).

Fine-tuning strategy (17) might be used as a practical

alternative. However, optimizing/fine-tuning Rharq(snr1) is not

always worth the effort: we know from [1, Prop. 4] that,

using HARQ on top of the AMC, actually penalizes the

throughput if we consider the region of high SNR. This

happens, independently of how we choose the rate adaptation

function Rharq(snr1), because HARQ adapts the rate to the

CSI only in the first round and it ignores the CSI observed in

the subsequent rounds [1, Sec. V.D].

To remedy this problem and make HARQ aware of the CSI

in each round, various approaches have been proposed in the

literature. One simple strategy suggested in [1] relies on the

AMC rate-adaptation function, i.e., Rharq(snr) = R(snr) and

applies the so-called packet dropping, which in some cases

terminates the HARQ cycle before the K-th round is reached

and a NACK is received.

This works as follows: in each round, the rate that might be

offered by the AMC, R(snrk) is compared to the rate chosen in

the first round, R(snr1). Rather than insisting on retransmitting

the packet with a low nominal rate R(snr1), PHY is allowed

to take advantage of the observed SNR by transmitting a new

packet with a high-rate R(snrk). The packet is then dropped

before the k-th round starts (and, instead, a first round of a

new packet begins) [1, Sec. VI.A]

R(snrk) > R(snr1) =⇒ Drop the packet. (21)

The packet-dropping is also “backward compatible” in the

sense that it uses the same signaling as the conventional IR-

HARQ and occupies the same bandwidth. It eliminates the

7In particular, because the decision regions are not simply defined by the
intervals (16), [1].

throughput penalty imposed by the IR-HARQ but does not

improve the throughput significantly.

A natural question that arises is how the packet dropping

combines with a better rate-adaptation strategy Rharq(snr).
Again, we would like to avoid the formal dependence on

the channel model so we may use the simplified tuneable

adaptation defined in (17) with ∆ > 1. Indeed, by being more

aggressive, we are exposed to a higher probability of unde-

coded packet, but we will mitigate this effect by leveraging

the very principle of retransmissions proper to HARQ.

Example 2 (16-QAM, Rayleigh fading, threshold decoding).

To show an example of throughput, we have to define how the

decoding errors occur in HARQ. To this end, we adopt the

simplified threshold-decoding principle we used in Example 1

and assume that the block length, Ns, is sufficiently large so

that the error occurs if the average accumulated MI at the

receiver is lower than the transmission rate [17], that is,

ERRk =

{

k
∑

l=1

I( ˜SNRl) < R(SNR1)

}

. (22)

For 16-QAM, the MI function I(snr) can be obtained

numerically using the method from [37, Sec. 4.5]. Thus, the

values of SNRs in (22) determine the decoding error ERRk.

We also consider here the idealized case of a continuous

rates set, R = [0, 4). Then, we obtain the AMC-optimal rate

adaptation function R(snr) solving (15) with the PER function

defined by (12), where i) due to continuity of the rate set R, we

remove the index [ℓ]) and ii) we replace γth
[ℓ] by I−1

(

R(snr)
)

.8

Fig. 2 presents the throughput of the conventional IR-HARQ

compared to the ergodic capacity C. The results indicate

that increasing the number of rounds from 1 to 4 not only

does not increase the throughput but, actually, is detrimental.

Comparing with the similar results in Fig. 5 this effect is

less pronounced if we decrease the correlation between the

estimated- and the instantaneous SNRs, i.e., for a larger

normalized Doppler frequencies fDτ .

To explain these results, we can consider two successively

observed SNRs, snr1 and snr2, such that snr1 ≪ snr2 =⇒
R(snr1)≪ R(snr2). We assume that a new HARQ cycle starts

with snr1 and the first round experiences a decoding failure,

i.e., NACK is declared to the transmitter at the end of the first

round. Using HARQ, the same packet will be retransmitted

with the maximum possible reward R(snr1). On the other

hand, if only one transmission is allowed, i.e., we use the

AMC, the transmission of a new packet starts with a possible

reward R(snr2) ≫ R(snr1). Thus, the reward of the AMC is

larger than the one attainable by HARQ. It happens because

HARQ ignores the CSI in the second transmission; this effect

was analyzed in [1] where the penalty of using HARQ in high

SNR is formally demonstrated.

This also explains the rational behind the packet dropping.

If R(snr2) > R(snr1), according to (21) we start the trans-

8We note here that, since we are considering only 16-QAM modulation in
this example, “AMC” has a somehow oxymoronic meaning of “AMC with
fixed modulation”. This is not a critical issue since we are interested in using
the PER curves of the receiver, irrespectively how the coding/modulation is
implemented.
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mission of the new packet (that is, we drop/abandon the old

one). The throughput of packet dropping, η
ir,drop
4 (∆̂), is also

shown in Fig. 2, where ∆̂ > 1 is the optimal “aggressiveness”

factor, see (17), chosen to maximize the throughput for each

value of the average SNR snr, i.e., ∆̂ is obtained as follow

∆̂ = argmax
∆∈R+

η
(

R(snr∆)
)

, (23)

where η
(

R(snr)
)

is the throughput using the rate adaptation

policy R(snr). In the numerical examples, ∆̂ is obtained

through the exhaustive research above the neutral value ∆ =
1. 9

As stated before, the packet dropping removes the detri-

mental effect of HARQ but helps little in improving the

throughput in its “high” range: for ηamc > 2.5bit/cu, we

observe ηamc ≈ ηir,drop
4 (∆̂).

We also show the throughput of the conventional HARQ with

the aggressive rate adaptation denoted by ηir
4(∆̂), where no

improvement over the conventional HARQ ηir
4 is noted. Again,

this is merely a confirmation of the formal statement made

in [1], which demonstrated that, for high SNR, irrespectively

of the rate-adaptation policy, the throughput of HARQ must

deteriorate compared to the throughout of the AMC.

We see in Example 2 that being aggressive is helpful to

HARQ (and to HARQ with packet dropping) in the low range

of the throughput where we can use higher transmission rates

than those suggested by the AMC rate-adaptation R(snr).
This provides another way of looking at the problem: the

throughput cannot be improved for high throughput values

because there are no sufficiently high rates in the set R; here

max{R} = 4 since a 16-QAM modulation is used. However,

extending the range of operation, that is, adding new rates toR
will merely offset the problem: in any system, there is always

a maximum transmission rate, and HARQ will always fail to

improve the throughput in the range that is close to max{R}.

E. Upper Layers: Why We Ignore The Packet Loss at the PHY

Fig. 1 shows two layers that are responsible for the re-

transmission: LLC, which implements the ARQ protocol, and

PHY, which implements AMC (and possibly also HARQ).

Since the PHY cannot guarantee a successful transmission,

the packet contents is kept in the LLC buffer till a successful

decoding is declared. In this way, some bits may require many

PHY transmissions before being successfully decoded at the

receiver. The introduction of ARQ at LLC guarantees a zero-

outage and yet does not affect the throughput seen by the

upper layers [27, Sec. II.A]. Such a double-retransmission

mechanism is adopted in LTE [29, Ch. 12], where ARQ is

activated when dealing with loss-sensitive but delay-tolerant

applications.

9In practice, the exhaustive search is not feasible and the optimization is
implemented via the on-line adaptation: ∆ is fine-tuned using slow-feedback
trying to maximize a parameter of interest—here the throughput. While ∆
can take any positive value, the space of possible values ∆ considered in the
numerical example is logarithmically spaced between 1 and ∆max, where
∆max guarantees that RL is always available for adaptation, i.e., ∆max ·
snr ≥ γ[L] for all values of snr we consider.
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Fig. 2. 16-QAM over Rayleigh fading channels with fDτ = 0.05; the
throughput of the conventional IR-HARQ with the AMC rate adaptation,

ηir
K

as well as with the aggressive rate adaptation ηir
4(∆̂) are compared to

the throughput of IR-HARQ with packet dropping η
ir,drop
4 (∆̂). The ergodic

capacity, C (19) is shown for reference.

Another scenario where the outage can be ignored is when

the Fountain coding [38] is used at the application layer: the T
application packets b[t], t = 1, . . . , T are transformed/encoded

into a potentially unlimited number of information packets

m[1],m[2], . . .. This is done in such a way that we can

recover/decode all packets b[t] from any subset of T + τ
packets m[n], where τ ≪ T . Thus, at the receiving end, we do

not care if the decoding of each of the packets m[n] succeeds

but only require having T + τ of them decoded correctly. In

other words, the throughput is what really counts and we can

ignore the actual value of the packet loss probability.

III. AMC AND LAYER-CODED HARQ

In Example 2, we explained how the retransmissions in

HARQ could penalize the throughput. We also identified

the source of the problem: in the conventional HARQ, the

adaptation to the channel occurs only in the first transmission

round when the AMC-like behavior is used to exploit the CSI

snr1; all subsequent rounds ignore the CSIs snr2, . . . , snrK .

On the other hand, the AMC alone discards the past

channel observations y independently whether the decoding

was successful or not. This clearly is a waste of resources and

we want to combine now the adaptability of AMC and the

capacity of HARQ to exploit the past observations.

A. Variable-length HARQ vs L-HARQ

The problem of throughput penalty occurring when HARQ

is combined with the AMC was partially remedied by the

packet dropping, see Sec. II-D, where the CSI is used to

decide whether to retransmit the undecoded packet using the

entire channel block or to drop it definitely. A variable-length

HARQ (VL-HARQ), studied in e.g., [7], [13], [22]–[26], may

be seen as a compromise between the very crude adaptation of

packet dropping and non-adaptive, conventional HARQ. The

idea is to encode an information packet m into a sequence of

subcodwords x1, . . . ,xK , whose length, i.e., the number of

symbols they are composed of, Ns,k, may vary from one sub-

codeword to another. We assume that the number of symbols
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in the first codeword is fixed Ns = Ns,1, i.e., x1 ∈ R
R1Ns ,

and for convenience, we normalize the length of the remaining

ones via ℓk , Ns,k/Ns.

The optimization problem we have to solve is to find

the values R1, ℓ2, . . . , ℓK which maximize the throughput of

VL-HARQ. However, we cannot simply adopt the solutions

developed previously in [25], [26] because they did not deal

with the instantaneous CSI; others, e.g., [7], [13], targeted

particular values of the PER, which is not of concern in our

paper. More importantly, in this work we admittedly ignore

the knowledge of the distribution of the SNR; see comments

after (16).

Therefore, for comparison purpose we will propose a new

approach which is detailed in Example 4. What is important

to understand at this point is that any adaptation will be based

on the PER function which is defined for each HARQ round

PERk(snrk, ℓk; ·)
, PER

(

snrk, ℓk; { ˜snrt}k−1
t=2 , R1, {ℓt}k−1

t=2

)

(24)

and which depends on the following arguments:

• the SNR estimated before the kth transmission round,

snrk;

• the length, ℓk of the subcodeword xk used in the the kth

round;

• all past channel SNRs, ˜snr1, . . . , ˜snrk−1; and

• all transmission parameters chosen in the previous

rounds, i.e., R1(snr1), and ℓt(snrt), t = 2, . . . , k − 1.

It is immediately clear that, in the case of the practical

encoders/decoders, finding empirically the PER function (24)

with so many parameters presents a considerable challenge.

This is the main reason why the previous works on the

variable-length HARQ used simplifying assumptions to take

care of its large number of arguments. For example, [26]

assumed that the receiver’s PER function is binary and the

error events are defined in a way similar to (22); [1], [13] used

analytical PER functions which have to be fit to the actual de-

coding curves. Similarly, while the empirical decoding curves

are used in [24], [25] the approximations are still necessary to

predict the performance for arbitrary values of the SNR and

the codeword length.

Besides the practical difficulty of describing the PER func-

tion, there is also another important, system-level considera-

tion: VL-HARQ uses only fraction of channel resources which

goes against the goal of assigning fixed resources to each of

the HARQ rounds. Additional assumptions are then required.

In particular, [4], [13] let the user to transmit variable number

of packets within a fixed-length frame. This, however, raises a

problem of resource assignment to many packets in the frame

as well as implies the signalling overhead: the length of the

codeword of each packet in the frame must be indicated.

L-HARQ, addresses the above difficulties as follows: in-

stead of transmitting the new (redundant) coded symbols

xk, k = 2, . . . ,K to enable the decoding of the packet m1,

transmitted in the first round, we rather transmit (some of) the

bits of the packet m1 (we denote these redundant bits as m′
1),

and we “fill” the remaining space with a fresh content m2. So

the conventional channel coding is preceded by the mixing of

the punctured information packets; this is the idea of layered-

coding, L-HARQ, proposed in [2] and modified in [3]. The

decoding is also done in layers, where the mixed packets m′
1

and m2 are decoded first and, next, the packet m1 is recovered

with the aid of m′
1.

The main advantages are that i) the channel coding is not

affected by the packet mixing and can be implemented without

joint-coding considerations, ii) the decoding is straightforward

and can be done with commercially available decoders as

demonstrated in [3], and finally iii) the decoding results are

described by one-dimensional PER curves which depend only

on one SNR; the dependence of the decoding results on other

SNRs is implicit and defined via recursive (layerer) decoding.

Using fixed resources at the PHY may be seen as a way

to reduce the signaling overhead and to ease the resource

management (required, e.g., for the scheduling in multi-user

systems [29, Ch. 12.1]). A cautionary note is in order here:

the choice of a particular transmission strategy is a complex

issue which depends on many system-level elements that are

difficult to include in the PHY-level analysis/design.

B. L-HARQ Example: K = 2

To explain the details, it is easier to start with the simplest

case of HARQ, i.e., when K = 2.

Transmitter

The first transmission is done as in the conventional AMC:

using the rate R1, the packet m1 ∈ {0, 1}R1·Ns is encoded and

the resulting codeword, x1 = Φ[m1] is transmitted over the

channel. Then, if the decoding succeeds, m̂1 = m1 (an ACK

is fed back), the earned reward is given by R[n] = R1 and we

move to the next packet. If the decoding fails, R[n] = 0. The

average reward attainable in the first round is thus the same

as in the case of the AMC: R[n] = R1

(

1− PER(snr1;R1)
)

.

When the decoding fails, i.e., ERR1 is observed, in the next

channel block, we implement the second round of HARQ.

First, we choose the channel coding rate R2. This is similar

to the conventional AMC. However, we now encode the packet

m[2] which is a mix of two subpackets: m′

[1], which contains

“old” bits taken from the unsuccessfully transmitted packet

m1,10 and the subpacket m2, composed of “new” bits

m[2] = [m′

[1],m2] ∈ B
R2Ns (25)

m′

[1] = Φb
1[m1] ∈ B

ρ1 Ns , (26)

where ρ1 is the packet-mixing rate, i.e., m′

[1] contains ρ1 Ns

bits of m1, and therefore, the natural constraint here is ρ1 <
min{R1, R2}: the packet m′

[1] cannot contain more bits that

m[2] or m1.

The channel coding is done as before, i.e., x2 = Φ[m[2]].

Receiver

At the receiver, initially, we ignore the particular structure of

the packet m[2], and we decode it as m̂[2] = DEC[y2]. Again,

we obtain the reward R[n] = R2 or R[n] = 0; this is how the

conventional AMC would work. However, if we decode the

packet m[2], we may exploit the structure (25). In particular,

10In other words, m′

[1]
is a punctured version of m1.
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m′

[1] provides a priori information about m1 and can be used

in the “backtrack” decoding

m̂b
[1] = DEC[y1;m

′

[1]] (27)

as proposed in [2]. We define the backtrack decoding error

as ERR
b
1 , {m̂b

[1] 6= m[1]} and describe its probability by the

backtrack PER function

PERb( ˜snr;R, ρ) , Pr
{

ERRb|ERR, ˜SNR = ˜snr, R, ρ
}

(28)

=
Pr
{

ERR ∧ ERRb| ˜SNR = ˜snr, R, ρ
}

Pr
{

ERR| ˜SNR = ˜snr, R
} ,

(29)

which depends on the SNR, ˜snr, that was actually observed in

the first round.

The PER function (28) must decrease with ρ: from the

information-theoretic point of view, the decoding (27) can

succeed, even if the decoding DEC[y1] has failed, because

the uncertainty about the packet m1 (i.e., the rate at which the

unknown bits are coded) is decreased. From the practitioner’s

point of view, knowing m′

[1], we have absolutely certain a

priori information about the information/systematic bits m′

[1]
from the packet m1, which improves the performance of the

decoder.11

Since we may now recover the entire packet m1 (having m′

[1]

means that m1 was partially decoded in the second round), the

reward for the second cycle is calculated as

R[n] =
[

R2 + (R1 − ρ1)
(

1− PERb( ˜snr1;R1, ρ1)
)

]

(

1− PER(snr2;R2)
)

, (30)

here, since m′

[1] is common in both transmission rounds, the

associated reward, ρ1, is already included in R2; thus, we

subtract ρ1 from R1 to avoid counting this reward twice.

The only remaining question is how to choose the rates R1,

R2, and ρ1, but we postpose the discussion untill we formulate

the solution for an arbitrary number of rounds.

C. L-HARQ: General Case

We now generalize the encoding/decoding to K > 2; we

explain and separate the encoding/decoding and adaptation

operations in the flowchart shown in Fig. 3.

Transmitter

In each round, the encoding is done in two steps. First, we

do a binary packet mixing: the old packet m[k−1] is punctured,

using rate ρk−1, yielding a subpacket m′

[k−1] = Φb
k−1[m[k−1]]

according to Eq. (i) in Fig. 3;12 the resulting m′

[k−1] is

concatenated with new information bits mk to form the packet

m[k] = [m′

[k−1],mk], see Eq. (ii). Second, the channel encod-

ing: Eq. (iii) straightforwardly encodes m[k] using the rate Rk.

Receiver

11For example, in iterative binary decoders, knowing some of systematic
bits corresponds to setting the corresponding logarithmic likelihood ratios
(LLRs) to ±∞.

12The equations on Fig. 3 are labeled with a roman numerology and this
is the reason we explicitly use the abbreviation “Eq.”.

Receiver

Transmitter

Packet mixing:

m′

[k−1] = Φb
k−1[m[k−1]] ∈ {0, 1}ρk−1 Ns (i)

m[k] = [m′

[k−1],mk] ∈ {0, 1}RkNs (ii)

Channel coding

xk = Φ[m[k]] (iii)

New HARQ cycle:

k = 1; ρ0 = 0 (iv)

New HARQ round:

k = k + 1 (v)

Channel

yk =
√

˜snrkxk + zk

Decoding

m̂[k] = DEC[yk] (vi)

ERRk

Backtrack decoding

for l = k − 1, . . . , 1

m̂b
[l] = DEC[yl,m

′

[l]], (vii)

ERR
b
l =⇒ stop (viii)

Mixing rate adapt. (HARQ)

ρk = ρk(Rk, ˜snrk) (ix)

ρk > Rk+1

Rate adapt. (AMC)

Rk+1 = R(snrk+1) (x)

no yes

yes

no

Fig. 3. Actions flow at the transmitter and the receiver in the proposed L-
HARQ. The rate adaptation at the receiver is composed of two parts: the
mixing rate adaptation (ix) proper to HARQ which follows the decoding error
ERRk , and the channel rate adaptation Eq. (x) proper to the AMC. The
adaptation results are used by the transmitter independently in two encoding
steps Eq. (i) and Eq. (ii). Their dependence shows up only if ρk > Rk+1,
which may terminate the HARQ cycle, as shown by the dashed transition line
at the receiver.

Using only the observation yk, the receiver starts the first

step of the decoding process Eq. (vi).

• If the packet m[k] is decoded correctly in the k-th round,

i.e., m̂[k] = m[k], we recover the message m′

[k−1] and mk

according to Eq. (ii). With m′

[k−1] and yk−1 known in

the k-th round, we “backtrack” decode the packet m[k−1]

according to Eq. (vii). If the backtrack decoding m[k−1]

is successful, i.e., m̂b
[k−1] = m[k−1], we then recover

mk−1 and m′

[k−2] according to Eq. (ii). In this way,

we continue the backtrack decoding to recover all the

packets mk−2, . . . ,m1. However, if a backtrack decoding

error, ERRb
l = {m̂b

[l] 6= m[l]}, is observed for any packet

l ∈ {k−1, . . . , 1}, we abandon the decoding and declare

the packets from the previous rounds, ml,ml−1, . . . ,m1

lost.

• If an error

ERRk = {m̂[k] 6= m[k]} (31)

is observed, we have to prepare the packet m[k+1] for

the next HARQ round. To this purpose and according
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to Eq. (i) and Eq. (ii), we need to determine the mix-

ing ρk and the transmission rate Rk+1, respectively. In

particular, we consider that ρk is a function of Rk and

˜snrk, i.e., ρk ≡ ρk(Rk, ˜snrk) and the way to obtain

the adaptation function ρk(Rk, ˜snrk) will be explained in

Sec. III-E. On the other hand, the transmission rate Rk+1

is available only after the receiver observes/estimates

snrk+1, see Eq. (x). Finally, we compare ρk to the rate

of the next transmission Rk+1 in order to decide whether

the new HARQ round can be done, see Eq. (v), or the

HARQ cycle should be restarted, see Eq. (iv).

We emphasize here that the two-steps decoding adopted in

L-HARQ is not the only option: it is possible for instance, to

perform the joint decoding of all packets m1, . . . ,mk using all

channel outcomes y1, . . . ,yk as proposed in [21].13 However,

motivated by the fact that the simplified encoding-decoding

schemes adopted in L-HARQ do not impose any throughput

penalty [30, Th. 3], and to keep the backtrack decoding simple,

we do not consider any of those possibilities here.

D. Optimal Rate Adaptation

While the operations of the transmitter and the receiver are

simple, we still must adapt the transmission rates Rk and

the mixing rates ρk. For the purpose of the discussion, it is

convenient to write clearly the rewards earned in each round,

which generalizes (30). Namely,

Rk = (Rk + Jk)
(

1− PER(snrk;Rk)
)

(32)

Jk = (Jk−1 +Rk−1 − ρk−1)
(

1− PERb( ˜snrk−1;Rk−1, ρk−1)
)

, (33)

where Jk is the reward that can be obtained in the k-th HARQ

round thanks to the backtrack decoding.

The above allows us to formulate the problem using a

Markov decision process (MDP) formalism, where we define

the states as a tuplet

sk , (Jk−1, snrk, ˜snrk−1, Rk−1), (34)

and the objective is to find the optimal actions for each state

sk

ak , (Rk, ρk−1) = π(sk), (35)

where π(·) is the adaptation function or – the policy. Since

knowing the action ak determines the transition probability

from state sk to state sk+1, and the reward depends solely on

the state and the action, the optimal policy which maximizes

the reward can be found using known algorithms, such as

policy iteration or value iterations [39, Chap. 7].

While, the MDP leads to a very efficient optimization, its

implementation may still be challenging if the dimension of

the space is large. Here, unfortunately, this is the case: even

if we assume that the available transmission rates, Rk, are

discrete, the three arguments remaining in (34) are continuous.

The problem is thus hardly tractable numerically.

Moreover, we can argue that, while finding the optimal rate

adaptation functions is theoretically interesting, its practical

13Another decoding scheme was also proposed in [3, footnote 2].

value is much less important because i) the optimal solution

would depend on the fading distribution, e.g., defined by (7),

which we consider impractical since the latter is not known,

see comments after (15); and ii) the rate adaptation function

would be multidimensional (would depend on as many param-

eters as there are dimensions in the state of the MDP; here,

four dimensions), which is not only tedious to implement but

also makes the AMC and HARQ adaptations coupled; which

goes against the simplicity of the AMC adaptation which we

consider a valuable feature.

Therefore, the simplifications and the heuristic solutions we

propose may turn out to be not only viable but also more

practical alternatives to the complex solutions that can be ob-

tained from the optimization defined by the MDP framework.

Having said this, we believe it would be interesting to find

these optimal solutions; first, to verify how far our heuristic

solution falls from the optimality; second, to obtain a better

insight into the importance of the observed parameters of the

state sk and, possibly, to derive other useful heuristics.

E. Simplified Rate Adaptation

We will propose simple, and intuitively justified heuristics,

where we target the independence of adaptation strategies

between AMC (here, the choice of Rk) and HARQ (here,

the choice of the packet mixing rate ρk−1).

First of all, we decide to adapt the coding rates in the same

way irrespectively of the past HARQ transmission rounds

Rk(snr) = R(snr), (36)

where R(snr) is the AMC rate-adaptation policy we found

in (15) and which we can also eventually enhance with the

fine-tuning (17). This can be seen as a maximization of the

instantaneous reward Rk in (32) setting Jk = 0.

Second, we have to decide what packet mixing rate ρk−1

should be used in the k-th round. The first simplification due

to the AMC approach (36) is that we make ρk−1 independent

of snrk, i.e.,

ρk = ρk(Rk, ˜snrk). (37)

Next, from (33), we see that small ρk−1 increases the

potential reward (given by Rk−1 − ρk−1 in (33)), yet it

has to be sufficiently large to make the backtrack PER,

PERb( ˜snrk−1;Rk−1, ρk−1), low. The latter requiremement is

also needed to recover all the packets from the previous rounds

because we decided to abandon all of them once we observe

the backtrack decoding error, ERRb, see Eq. (viii).

To strike a balance between these two requirements, we

decide to choose the minimum packet-mixing rate to attain

the prescribed value of the backtrack PER, ǫb

ρk−1 =

{

0 if PERb( ˜snrk−1;Rk−1, Rk) > ǫb

min
ρ<Rk

{ρ ∈ Rb : PERb( ˜snrk−1;Rk−1, ρ) ≤ ǫb} o.w.

(38)

where the first condition line in (38) takes care of the case

when it is impossible to attain the PER value of ǫb;14 then, we

14The PER function PERb( ˜snrk−1;Rk−1, ρ) is decreasing with ρ, and
attains its minimum for the maximum admissible value of ρ = Rk .
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Channel

Channel

Channel

Φ2 Decoder

Φb
1

Φ1 Decoder

Φ3 Decoder

Φb
2
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Controller
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Controller
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Controller
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m′
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Fig. 4. Encoding and decoding in L-HARQ. The AMC controller adjusts the
rate of the channel encoder, Φk , independently of the HARQ which selects
the packet-mixing rate (i.e., the rate of the puncturer Φb

k
[·]) . The decoding

is done block-by-block using the channel outcome yk and m̂′

[k]
, i.e., m̂b

[k]
=

DEC[yk, m̂
′

[k]
]. We assume here that K = 3 rounds are carried out, where

ERR1 and ERR2 are observed (the first and the second rounds are in error)
and the third HARQ round is successful, i.e., m̂[3] = DEC[y3] = m[3];

the backtrack decoding is then successful as well, which means that m̂b
[k]

=

DEC[yk; m̂
′

[k]
] = m[k], k ∈ {2, 1}.

set ρ1 = 0, which means that m[k] = mk, see Eq. (i)–Eq. (ii),

and this is equivalent to dropping the packet m[k−1] and

starting a new HARQ cycle; Rb denotes the set of available

mixing rates.

Since, after the k-th round, the receiver knows both the

value of ˜snrk and Rk = R(snrk), it can calculate also ρk via

(38), and, before the round k+1 starts, ρk can be sent to the

transmitter together with Rk+1 using the feedback F .

The structure of the transmitter and the receiver is shown

in Fig. 4. The important element is that the coding and the

adaptation to the CSI/SNR is done by the AMC independently

of the operation of HARQ. We also note that we still maintain

a certain degree of adaptability with a fine-tuning (17) for the

rate-adaptation in the AMC controller, and with the possible

adjustment of the target backtrack PER, ǫb.

IV. EXAMPLES

We note first that the operation of the L-HARQ is solely

based on the conventional AMC and the added step of packet

mixing. We emphasize again that the formulas presented up

to now do not take into account any prior knowledge about

the statistical behavior of the channel. That is, while we will

use Rayleigh fading (7) to model the SNRs, we do not exploit

this knowledge in the design of HARQ.15

Example 3 (16-QAM & 64-QAM, Rayleigh fading, threshold

decoding, continuation of Example 2). Using the threshold

decoding approach from Example 2, the decoding errors are

deterministically defined by the MI in (22) and interpreting the

15Although the joint distribution (8) is used in (4) to define the PER
function, this is done for the sake of numerical comparison. In practice we
will rather use the thresholds γ[ℓ] estimated by the transmitter as in (6); this
can be done via slow-feedback adaptation measuring the value of the PER
without knowing the entire PER function.
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Fig. 5. 16-QAM & 64-QAM transmission over Rayleigh fading channels;
threshold decoding model. Throughput of the proposed L-HARQ, ηL

K(∆), is

compared to the conventional IR-HARQ, ηir
K , when a) fDτ = 0.1, i.e., δ ≈

0.8, and b) fDτ = 0.05, i.e., δ ≈ 0.95.

knowledge of m′

[1] as decrease of the information rate from R1

to R1 − ρ1, the error event is defined as

ERR
b
k = {I( ˜snrk) < Rk − ρk}. (39)

Consequently, we can transform (38) into

ρk = Rk − I( ˜snrk), (40)

which holds for any ǫb ≥ 0 if we assume that the set of

backtrack rates, denoted Rb, is continuous, i.e., Rb ∈ [0, Rk).
This idealized assumption will be relaxed in Example 5.

With the AMC-optimal rate-adaptation policy R(snr), hav-

ing the rate-mixing function (40), as well as the decoding

error events defined by (22) and (39), we can run the Monte-

Carlo simulation. The throughput of the proposed L-HARQ,

ηL
K is shown in Fig. 5, where we compare it with IR-HARQ

for two different values of the normalized Doppler frequency,

fDτ ∈ {0.1, 0.05}. We assume that both 16 and 64-QAM

constellations are used, i.e., the set of available rates is defined

as R =
{

RcM | M ∈ {4, 6}, Rc ∈ (0, 1]
}

. Here, Rc may be

understood as a the rate of a binary encoder whose output is

interleaved and then used by the modulator; thus we assume a

bit-interleaved coded modulation (BICM) is implemented [37].

We can see clearly that allowing modulation order adap-

tation does not change the conclusions drawn in Example 2,
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i.e., adding the conventional IR-HARQ on top of AMC does

not provide gains from throughput of view. However, the

gains provided by L-HARQ over the conventional IR-HARQ

are notable already for K = 2. For instance, for a target

throughput value of η ∈ (2.5, 5)bit/cu, the SNR gap between

the conventional IR-HARQ and the ergodic capacity is reduced

by approximately 2dB. On the other hand, increasing the

number of transmissions to K = 4 does not increase the

gains. This is because the rate-adaptation policy of AMC is set

irrespectively of the fact that HARQ takes care of undecoded

packets; it is thus defined conservatively to avoid “too many”

decoding errors.

To take advantage of HARQ, and improve the throughput,

AMC must use a more aggressive rate adaptation; this can

be done via fine-tuning defined in (17). The throughput of

such aggressive L-HARQ, ηL
K(∆̂) is also shown in Fig. 5,

where we see that by allowing for more rounds, e.g., K = 4,

L-HARQ yields results even closer to the ergodic capacity,

gaining another 1–2dB. This is achieved by using rates that

are higher than those indicated by AMC as shown in Fig. 6;

we can see clearly that the optimal ∆̂ tends to increase when

K increases. The transmission rate becomes more aggressive

with larger K because more errors can be tolerated initially

and the decoding is postponed to the later rounds.

We observed that the optimal value ∆̂ increases slowly in

low-to-medium snr but tends to increase faster for high SNR.

For instance, in the case of K = 4 and fDτ = 0.05, we

obtained ∆̂ ∈ (1.2, 3.4) for snr ∈ (−5, 20)dB while for snr =
36dB, we had ∆̂ ≈ 50. However, using ∆ ≈ 4 even for high

SNR does not cause a notable throughput penalty compared

to ∆̂.

Example 4 (L-HARQ and previous works). The threshold

decoding assumption used in the Example 3 provides us with

the framework suitable for comparison with previous works

which were also based on the similar assumption. Since, using

various constellations does not alter the main conclusions we

consider only 16-QAM modulation i.e., R =
{

4Rc | Rc ∈
(0, 1]

}

.

We start by comparing L-HARQ and VL-HARQ introduced

in Sec. III-A. As we said in Sec. III-A we have to devise a

strategy to adapt the lengths ℓk, k = 2, . . . ,K in each HARQ

round. Because we want the adaptation to be independent of

the distribution of the CSI, we continue in the spirit of equation

(15). Namely, we propose to determine R1 as in AMC,

i.e., exactly following (15), and find ℓ2, . . . , ℓK by maximizing

the per-round (instantaneous) throughput, which boils down to

solving the following one-dimensional optimization problem:

ℓk(snrk) = argmax
ℓ∈(0,1)

R1(snr1)

ℓ

(

1− PERk(snrk, ℓ; ·)
)

, (41)

where PERk(snrk, ℓ; ·) is defined by (24) and, using the
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Fig. 6. Example of the optimal rate policy of L-HARQ when fDτ = 0.05
and snr = 20 dB. ∆ = 0 means that the AMC policy (16) is used; ∆ = ∆̂
means aggressive adaptation (17) with an optimized aggressiveness factor.

threshold decoding model, it is given by

PER
(

snrk, ℓ; { ˜snrt}k−1
t=1 , R1,{ℓt}k−1

t=2

)

= Pr
{

k−1
∑

l=1

ℓl(snrl)I( ˜snrl) + ℓI( ˜SNRk) < R1(snr1)

∣

∣SNRk = snrk

}

(42)

and can be find using Monte-Carlo simulations for any given

R1 and snrk. Despite the simplifying threshold decoding

assumption, this is still a tedious exercise.

For completeness, we show also the results where the CSI

is not available at the transmitter which should highlight the

value of combining HARQ and AMC. We use here the cross-

packet HARQ (XP-HARQ) derived in [21, eq. (37)].

The results are shown in Fig. 7, where we can see that L-

HARQ and VL-HARQ are practically the same for K = 4.

It is also clear that the XP-HARQ without CSI is equivalent

to the conventional IR-HARQ at low-medium snr. However,

since in very high SNR regime the highest available rate is

practically always used, XP-HARQ results (without CSI) are

the same as those of L-HARQ (with CSI).

We emphasize that, while we made the operation conditions

as similar as possible, the results of VL-HARQ and XP-HARQ

should be seen as a “ballpark” figure rather than the rigorous

comparison. As for VL-HARQ, this is because we do not

consider any contraints on the lengths, i.e., we ignore the issue

of sharing the constant-length frame between many packets (of

different lengths). As for XP-HARQ, the comparison is not fair

neither because, in the absence of the instantaneous CSI, we

adapt the length using the distribution of the CSI.

The results in the previous example indicate that L-HARQ

presents a notable gain compared to conventional IR-HARQ

assuming that i) the sets of transmission, R, and backtrack,

Rb, rates are continuous, ii) the error event ERRk is fully

described by the accumulated MI, cf. (39), which also allows

us to determine the optimal backtrack rates ρk in closed-form,

see (40). The purpose of the next example is to compare L-

HARQ with IR-HARQ when these idealized assumptions are



12

-5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

PSfrag replacements

snr [dB]

T
h

ro
u

g
h

p
u

t
[b

it
/c

u
]

C
ηamc

ηir
4

ηL
2

ηL
4

ηL
2 (∆̂2)

ηL
4 (∆̂4)

ηVL
2

ηVL
4

ηVL
2 (∆̂2)

ηVL
4 (∆̂4)

ηxp
4 (∆̂4)

Fig. 7. 16-QAM transmission over Rayleigh fading channels; threshold
decoding model. Throughput of the proposed L-HARQ, ηL

K
(∆), is compared

to VL-HARQ, ηVL
K

(∆), to XP-HARQ, η
xp
K
(∆), and to the conventional IR-

HARQ, ηir
K ; fDτ = 0.05, i.e., δ ≈ 0.95.

abandoned and practical encoders/decoders are used.

We immediately say that we cannot follow the idea of

comparing L-HARQ with VL-HARQ or XP-HARQ. While

we could do it in Example 4, this was done only thanks to the

assumption of the idealized threshold decoding. The similar

comparison is simply out of reach with current computational

resources and time-constraints when we use the practical

encoders and decoders.

Example 5 (Practical implementation using turbo codes). We

consider encoding of information packets using the 1
3 -rate 3rd

generation partnership project (3GPP) turbo-code followed by

a 3GPP rate matching which allows us to obtain rates from

R = {1.5, 2.25, 3, 3.75}. The encoded bits are then mapped to

symbols using a Gray mapping [37, Sec. 2.5.2]. The block size

is Ns = 1024. In this example again, we use only 16-QAM

for X constellation (i.e., AMC is used with fixed modulation,

see footnote 8). At the receiver the LLRs are calculated [37,

Sec. 3.3] and fed to the 6-iterations binary decoder based on

the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm implemented

in the log domain using the library [40]. The example of the

PER curves obtained via simulations are shown in Fig. 8.

After each NACK message, m′

[k] is a punctured version

of mk, i.e., m′

[k] = Φb
k[mk] which means that ρk ≤ Rk by

construction. For each available transmission rate R, we use

uniformly distributed backtrack rates. Namely, we consider

Rb(R) = {kR/F, k ∈ {0, 1, . . . , F}} where log2(F ) is the

number of the additional feedback bits needed to send the

index of the chosen ρk to the transmitter. In the numerical

example, we choose log2(F ) = 4.

Fig. 9 shows Pr{ERRk ∧ ERR
b
k| ˜SNRk = ˜snrk, Rk, ρk} as

a function of the SNR experienced in the k-th round, ˜snrk
for different values of ρk when Rk = 3. We recall that the

event {ERRk ∧ ERRb
k} means that both the “direct” and the

“backtrack” decoding of the packet mk failed. It is clear that

as the number of known bits m′

[k] increases, i.e., when ρk
increases, the probability of a failure in the backtrack decoding

decreases. We note that when ρk = 0 we have ERRk = ERRb
k.

The mixing rate policy is defined via (38) with ǫb = 0.1,

2 4 6 8 10 12 14 16 18 20

10-3

10-2

10-1

100

PSfrag replacements

snr [dB]

P
r{
E
R
R
|S
N
R
=

sn
r,
R
}

R = 1.5
R = 2.25
R = 3
R = 3.75

Fig. 8. PER(snr;R) = Pr {ERR|SNR = snr, R} is shown for different
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threshold decoding we use in Example 3.
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different values of ρk , allows us to calculate the backtrack PER function (29).
The solid lines correspond to a turbo-code transmission wih 16-QAM as in
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in Example 3.

which follows [3, Sec. V.B] and the results of L-HARQ are

compared to IR-HARQ in Fig. 10a and Fig. 10b for fDτ = 0.1
and fDτ = 0.05, respectively. As already highlighted in Ex-

ample 2, IR-HARQ is counterproductive in the region of high

values of SNR, especially when the estimated snrk tends to

be reliable (large Doppler, fDτ = 0.05); here, this conclusion

is confirmed in the practical setup as well. Furthermore, the

gains of L-HARQ with respect to IR-HARQ, theoretically pre-

dicted, still materialize in the considered practical scenarios.

For instance, when fDτ = 0.1, the SNR gain of L-HARQ over

the conventional IR-HARQ is around 1.5dB for a throughput

equal to η = 3bit/cu and K = 2. This gain can be increased

by using K = 4, but the improvement is less important than

in the case of the idealized threshold decoding we have shown

in Example 3.

This can be understood observing Fig. 9 where we see

that for the same value of the SNR ˜snrk, to make the ide-

alized threshold decoding succeed, the required value of the

mixing rate ρk is smaller than in the case of the practi-
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Fig. 10. Turbo-coded 16-QAM transmission over Rayleigh fading channels:
throughput of the proposed L-HARQ, ηL

K
(∆), compared to the conventional

IR-HARQ, ηir
K

, when a) fDτ = 0.1, i.e., δ ≈ 0.8, and b) fDτ = 0.05,
i.e., δ ≈ 0.95.

cal codes. This is measured by the SNR-shift of the curve

Pr
{

ERRk ∧ ERRb
k| ˜SNRk = ˜snrk, Rk, ρk

}

with respect to the

curve Pr
{

ERRk ∧ ERRb
k| ˜SNRk = ˜snrk, Rk, 0

}

; for example,

the idealized threshold decoding curve is shifted to the left by

∼ 2.5dB for ρk = 0.5, while using the turbo-code, this shift is

only equal to ∼ 1dB. Smaller shift means that higher values

of ρk must be used to provide the similar guarantees for a

successful backtrack decoding, and this translates also into a

smaller throughput.

This effect highlights the importance of the suitable coding

design which takes into account the reality of the backtrack

decoding as it was studied in [3, Sec. IV.B].

We also observed that the aggressivity factor ∆̂ tends to

be much smaller in the case of practical decoder/encoder. For

instance, ∆̂ ≤ 2 for all values of SNR when K = 4 and

fDτ = 0.05.

V. CONCLUSIONS

This work is motivated by the fact that combining the

conventional HARQ with AMC transmissions over i.i.d. block

fading channels is detrimental to the throughput when the

transmission resources are fixed. As a remedy to this problem,

we proposed and analyzed a coding strategy designed to

increase the throughput of HARQ allowing it to exploit the

CSI observed at the receiver. The proposed coding strategy is

simple to implement because the coding is separated into two

logical steps: the channel coding as done in the conventional

AMC and the packet mixing done at the bit-level which may

be associated with HARQ.

The optimization problem, formulated to find the

throughput-maximizing rate adaptation functions, turns

out to be infeasibly complex to solve. The heuristic solutions

are then proposed and analyzed on examples. Using the

information-theoretic approach to coding, and Rayleigh

block-fading channels, the throughput obtained thanks to

the proposed L-HARQ, shows a gain of 2dB to 4dB when

compared to the conventional AMC. In a similar setup, but

using the practical, 3GPP turbo-code, the proposed solution

shows notable gains of 2dB to 2.5dB. Since these gains are

obtained using additional bits in the feedback channel, the

tradeoff between the additional signaling and the throughput

improvement should be further assessed using system-level

considerations.

We conjecture also that the gap between the practical codes

and the theoretical limits is due to the particular coding

strategy adopted here. The optimization of the coding scheme

which would take into account the structure of the decoding

scheme, would improve the results as already shown in [3].

Since the proposed adaptation strategy maintains constant

resources allocated to each user, we argue that it may be

particularly suitable to combine the analysis with the multi-

user resource management procedures, a problem which is left

for further investigation. Moreover, it would be interesting to

compare VL-HARQ and L-HARQ from a system point of

view, taking into account additional practical constraints such

as feedback costs and channel resource granularity.
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