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Abstract— In this paper, we provide a global framework
analysis of a dual-hop mixed radio frequency (RF)/free space
optical (FSO) system with multiple branches/relays wherein the
first and second hops, respectively, consist of RF and FSO
channels. To cover various cases of fading, we propose gener-
alized channels’ models for RF and FSO links that follow the
Nakagami-m and the double generalized gamma distributions,
respectively. Moreover, we suggest channel state information
(CSI)-assisted relaying or variable relaying gain based amplifiy-
and-forward amplification. Partial relay selection with outdated
CSI is assumed as a relay selection protocol based on the
knowledge of the RF CSI. In order to derive the end-to-
end signal-to-interference-plus-noise ratio statistics, such as the
cumulative distribution function, the probability density function,
the higher order moments, the amount of fading and the moment
generating function, the numerical values of the fading severity
parameters are only valid for integer values. Based on these
statistics, we derive closed-forms of the outage probability, the bit
error probability, the ergodic capacity, and the outage capac-
ity in terms of Meijer-G, univariate, bivariate, and trivariate
Fox-H functions. Capitalizing on these expressions, we derive
the asymptotic high SNR to unpack valuable engineering insights
of the system performance. Monte Carlo simulation is used to
confirm the analytical expressions.

Index Terms— Nakagami-m, double generalized gamma,
co-channel interference, outdated CSI, CSI-assisted relaying,
multiple branchs/relays.

I. INTRODUCTION

W ITH the extremely high demand for the bandwidth,
Radio Frequency (RF) technology, which is the second

mostly used for the backhaul networking after the copper
lines and represents 6% of the total used transport media in
the US [1], becomes unable to support the big data flows
of the large number of users since the spectrum is limited and
the access license is very costly. Moreover, shared utilization
of the bandwith between the primary and secondary users
based systems reaches their bottlenecks since the last ones still
suffer from the spectrum scarcity. Therefore, current RF sys-
tems cannot support the high performance requirements of the
fifth generation (5G) standards and future mobile broadband
networks such as 3GPP LTE-advanced, IEEE 802.16m, and
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IEEE 802.16j. To overtake this critical situation, recent
research attempts have proposed the usage of the optical
fibers (OF) as a way to reduce the congestion of the
backhaul networks. Unlike microwave and mmWave (from
6 to 300 GHz) channels, OF provides not only high rate
communications over long distance, e.g., 155.52 Mbit/s for
STM-1, 622 Mbit/s for STM-4, 2.4 Gbit/s for STM-16, and
9.9 Gbit/s for STM-64, but also it is immune against the
interference problems and low coverage. In addition, since
they are very expensive to be installed and need important
investment [2], the total usage of OF for backhauling in US
is below 4%. The main drawback of OF is that they cannot
be deployed in some restricted areas and applications. In this
case, OF cannot be reliable for ultra dense networks wherein
a considerable deployment of OF is required to serve the
enormous demand of microcell, picocell, and femtocell, etc.

To address this shortcoming, Free Space Optical (FSO)
communications are recently proposed as an alternative
or complementary to RF and OF solutions due its flexibility,
free spectrum access license, immunity to interference, high
security level, power efficiency, cost effectiveness, no instal-
lation restriction and most importantly it is a way to densify
the cellular networks [3]–[10]. These features make the FSO
links’ capacities 25 fold more efficient than RF technology
and essentially they are a cost-efficient solution compared
to OF [11]. Because of these advantages, FSO becomes a
promising solution for the last mile problem to bridge the
bandwidth gap between the end-users and the OF backbone
network. Based on the aforementioned points, FSO has been
used both in academia and industry such as enterprise/campus
connectivities, video surveillance, redundant links, disaster
recovery, security, and broadcasting [7].

A. Motivation
Although FSO links have recently gained enormous atten-

tion due to the aforementioned advantages, they are extremely
sensitive to atmospheric weather conditions, e.g., rain, fog,
and snow [7], [12]. Standard values of the atmospheric path
loss relative to the weather conditions are detailed and given
by [13], [14]. In addition, FSO links experience the turbulence-
induced fading of atmoshperic eddies, which can be modeled
by Log-Normal distribution. This model is widely used in
particular for weak turbulence where it provides a good
fit to the experimental data [13], [15]. As the turbulence
becomes moderate, Log-Normal model deviates from the
standard data and cannot fully characterize the turbulence
conditions. To address this limitation, Gamma-Gamma (G2)
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has been recently proposed to cover wider range of turbu-
lences from weak to moderate conditions [16], [17]. As the
turbulences become severe, G2 also loses its accuracy in
describing the experimental data in particualr at the tail data
region. To overtake this shortcoming, the so-called Dou-
ble Generalized Gamma (DGG) is recently introduced by
Kashani et. al [18], which not only reflects various ranges
of turbulence but also provides the best curve fitting to the
data mainly at the tail. In addition to the path loss and
turbulence fading, FSO links are also subject to the pointing
error, which is originated from the misalignment between
the laser-emitting transmitter and the photodetector. Various
factors such as seismic activities, building sways results in
the aforementioned misalignment. To characterize this degra-
dation, Uysal et. al [19] discuss various models for the radial
displacement of the pointing error for a Gaussian laser beam.
The most generalized model that covers various special cases
is the so-called Beckmann pointing error model. Based on this
model, related work have adopted the following choices to
model the radial displacement such as Rician [20], Hoyt [21],
NonZero-Mean and Zero-Mean Single-Sided Gaussian [22]
but the most widely used is Rayleigh [17], [23], [24] for a
reason of simplicity.

Owing to the relative atmoshperic constraints imposed on
the FSO links, the best way is to propose an adpative solution
combining both RF and FSO links within the same system.
In clear weather conditions, only FSO links are activated
to transfer the data, however as the atmospheric conditions
becomes harsh, the data is sent over RF links [12]. In this
context, mixed RF/FSO systems have recenly attracted var-
ious research fields since it combines the reliability of RF
communications in severe conditions and both cost-efficient
and capacities of FSO links [25]–[28].

In the same context, mixed RF/FSO can operate over
long distances to serve more cells in farther areas such as
mountains and forests, etc. In reality, the coverage varies
from area to another and depends mainly on the distance
between the centralized core network and the cells or the
base stations. Over long distances, the power transmission
may suffer from decaying and attenuation due to various
factors such as ohmic resistance, thermal and radiation resis-
tance. A practical solution to address this mitigation is to
deploy relays along the intermediate paths to amplify, denoise
and improve the signal quality. In this case, the coverage
and the network scalability substantially enhances and the
system becomes reliable over long distances. Because of
the mentioned benefits, cooperative relaying communication
becomes the promising solution for mixed RF/FSO system
and the corner-stone since it provides possible coverage exten-
tion, uniform quality of service (QoS), spatial diversity gain
and hotspot throughput improvement [29]–[32]. Furthermore,
there are various relaying modes discussed in the literature
but the most widely used are Amplify-and-Forward (AF)
with fixed and variable relaying gain [33]–[36], Decode-and-
Forward (DF) [37], [38], Quantize-and-Encode (QE) [39] and
Quantize-and-Forward (QF) [40].

In practice, cellular systems require a large number of relays
wherein they could be deployed in series or parallel depending

on the topology and the network configuration. Based on the
network topology, previous attempts have proposed different
protocols to manage the relaying functioning such as all-active
relaying and selective relaying. All-active relaying consists of
simultaneous parallel transmissions to all relays [41] while
selective relaying is based on selecting one relay among the set
following predefined rules. Various relay selection protocols
have been developed in the literature such as opportunistic
relay selection [42], partial relay selection (PRS) [42], dis-
tributed switch and stay, max-select protocol, and all active
relaying [41]. Although all-active relaying seems to be more
efficient than selective relaying, it is restricted in parallel FSO
communications because of the photodetector synchronization
problem. As we mentioned, selective relaying protocols are
based on various rules and parameters but the most important
factor is the Channel State Information (CSI). The source (S)
and the Destination (D) do not always have a full knowledge
of the channels’ gains and instead they estimate the channels’
coefficients based on the CSI feedback delivered by the relays.
For low time-varying channels, the channel coherence time
is enough significant that S could easily retrieve the chan-
nels’ coefficients and then has a perfect channel estimation
based on the CSI feedback. However for rapid time-varying
channels, the channels’ coefficients are rapidly changing and
given that the CSI feedback is slowly propagating, S will
be unable to perfectly estimate the gains. In this case, it is
straightforward to assume an outdated CSI rather than perfect
estimation [17], [43].

B. Related Work
Enormous work dealing with mixed RF/FSO relaying sys-

tems have been proposed in the literature. Soleimani-Nasab
and Uysal [23] considered a dual-hop mixed RF/FSO system
with co-channel interference and line of sight where the
RF and FSO channels experience Nakagami-m and DGG,
respectively. Rayleigh is a special case of Nakagami-m as
it was considered in [40] and [42], while the Rician fading,
assumed in [62] and [41], can be approximated to have
Nakagami-m model. The mentioned work mostly assumed
G2 as an FSO fading model except in [36] where Málaga
distribution was assumed. Furthermore, Al-Quwaiee et. al
in [48] derived the statistics of the end-to-end Signal-to-Noise
Ratio (SNR) and based on that they also provided closed-
forms of the outage probability, the bit error probability and
the ergodic capacity. Besides, Yang et. al in [49] derived
the same performance achieved by [50] but they assumed
transmit diversity at the source and selection combining at
the receiver. Further work [51], [52] proposed hybrid RF/FSO
systems with multiple relays and outdated CSI assuming an
aggregate model of hardware impairments introduced at S and
the relays.

C. Contribution
In this paper, we propose a dual-hop mixed RF/FSO

system with multiple relays where RF channels experience
Nakagami-m fading and FSO links are subject to DGG fading
encompassing the turbulence-induced fading, atmospheric path
loss, and pointing error. We also consider the co-channel
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interference, which is detrimental to RF links. Besides,
the relays employ AF with CSI-assisted relaying and we
consider partial relay selection with outdated CSI based
on the RF channels information. Furthermore, the photode-
tector can detect the signal following either the coherent/
heterodyne mode or the Intensity Modulation and Direct
Detection (IM/DD). In addition, Subcarrier Intensity Mod-
ulation (SIM) is implemented into the relays to modulate
the intensity of the FSO carriers. Various binary modulation
schemes are assumed to validate the error performance of the
proposed system. To the best of our knowledge, our work is
a generalization of the existing related work. The analysis of
this paper follows these steps:

1) Present a detailed analysis of the system and channels’
models.

2) Provide the Cumulative Distribution Function (CDF) and
the Probability Density Function (PDF) of the RF and
FSO channels.

3) Derive the statistics of the end-to-end Signal-to-
Interference-plus-Noise Ratio (SINR) such as the CDF,
PDF, high order moment, amount of fading, and the
Moment Generating Function (MGF).

4) Based on the aforementioned statistics, novel closed-
forms as well as high SNR asymptotes of the outage
probability, the bit error probability, the ergodic capacity,
and the outage rate are derived.

5) Capitalizing on the asymptotic high SNR, engineering
insight into the system gains such as the diversity gain
is derived.

D. Structure

This paper is organized as follows: Section II describes
the system model while Section III provides the statistics
of the overall SINR. Performance analysis are provided in
Section IV while numerical results following their discussions
are presented in Section V. Concluding remarks are given in
Section VI.

E. Notation

For the sake of organization, we provide some useful
notations to avoid the repetition. fh(·) and Fh(·) denote the
PDF and CDF of the random variable h, respectively. Gamma
distribution with parameters α and β is denoted by G(α, β)
while the Generalized Gamma distribution with parameters α,
β and γ is given by GG(α, β, γ). In addition, the Gaussian
distribution of parameter μ, σ2 is denoted by N (μ, σ2).
The operator E [·] stands for the expectation while Pr(·)
denotes the probability measure. The symbol � stands for
“distributed as”.

II. SYSTEM AND CSIS MODELS

A. System Model

The proposed system consists of M parallel relays wire-
lessly connected to S and D. Partial relay selection based
on the knowledge of the RF channels is assumed to select
one relay among the set. This protocol states that for a
given communication, S periodically receives CSI feedback
(γ1(n) for n = 1, . . . M ) from the relays, sorts them in an

increasing order of magnitude and then select the branch/relay
with the highest CSI. Hence, partial relay selection consists
of selecting the m-th worst or (M - m)-th best relay R(m).
Once S receives the feedback, a processing time is required
for resources allocation, prescheduling, etc. Given that the
channels are time-varying, the received CSIs rapidly change
after the processing time and hence the selection is achieved
based on an outdated CSI. To model the relation between the
updated and outdated CSIs, we define the time correlation
coefficient ρ as follows

γ1(m) =
√

ρ γ̂1(m) +
√

1 − ρ w, (1)

where γ1(m) is the instantaneous CSI of the mth RF channel,
w � N (0, σ2

γ1(m)
), σ2

γ1(m)
is the variance of the m-th chan-

nel/CSI γ1(m). Note that the subscript of γ1(m) contains “1(m)”
to indicate the mth channel of the first hop. The same notation
is adopted for the channels of the second hop as γ2(m). The
correlation coefficient ρ is given by the Jakes’ autocorrelation
model as follows [53]

ρ = J0(2πfdTd), (2)

where Jν(·) is the ν-th order Bessel function of the first kind,
Td is the time delay between the current and the delayed CSI
versions, and fd is the maximum Doppler frequency of the
channels.

The received RF signal at the m-th relay is given by:

y1(m) = h1(m)x +
MR∑

n=1

fndn + νSR, (3)

where h1(m) is the m-th channel gain of the first hop, x is
the information signal, dn is the modulation symbol of the
n-th interferer with an average power E

[
|dn|2

]
= PRn ,

MR is the number of interferers, fn is the fading between the
n-th interferer and the selected relay and νSR is the additive
white Gaussian noise (AWGN) of the RF channels with
variance σ2

0 . The received signal at D can be expressed as
follows

y2(m) = (ηI2(m))
r
2 GhSRx + (ηI2(m))

r
2 G

MR∑

n=1

fndn

+ (ηI2(m))
r
2 GνSR + νRD, (4)

where η is the electrical-to-optical conversion coefficient, G
is the relaying gain, I2(m) is the m-th FSO channel, νRD is
the AWGN of the FSO channels with variance σ2

0 , r = 1
and r = 2 represent the heterodyne detection and IM/DD,
respectively. An illustrative system model is given by Fig. 1,
where the mmWave channels connect the different mobile
users to the base stations. The FSO links play the role of
back-hauling to connect the various networks such as the ISP
(Internet Service Provider), mobile network, and enterprise
network to the main data centers.

B. CSIs Model

Since the outdated RF CSI � G(mSR, ΩSR/mSR), the PDF
and CDF of the instantaneous SNR are expressed as
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Fig. 1. Mixed RF/FSO relaying system.

follows

fγ̂1(m)(γ) =
αmSR

SR γmSR−1

Γ(mSR)
e−αSRγ , (5)

Fγ̂1(m)(γ) = 1 − Γ(mSR, αSRγ)
Γ(mSR)

, (6)

where αSR = mSR
ΩSR

.
To simplify the mathematical derivations, we assume that

mSR is an integer and hence the CDF can be reformulated as
follows

Fγ̂1(m)(γ) = 1 − e
−mSRγ

γSR

mSR−1∑

n=1

1
n!

(
mSRγ

γSR

)n

, (7)

where γSR is the average SNR of the RF link.
The outdated and current instantaneous SNRs are jointly

Nakagami-m distributed with the joint PDF expressed as
follows

fγ1(m),γ̂1(m)(x, y) =
(

mSR

γSR

)mSR+1 (xy
ρ )

mSR−1
2

(1 − ρ)Γ(mSR)

× e
−mSR

γSR
(x+y

1−ρ ) ImSR−1

(
2mSR

√
ρxy

γSR(1 − ρ)

)
,

(8)

After some mathematical manipulations, the PDF of the cur-
rent instantaneous SNR is given by [54, eq. (3.11)]

fγ1(m)(γ) =
mSR

Γ(mSR)

(
M

mSR

) mSR−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

(
mSR−1

n

)

×
(

i

v

) (
mSR

γSR

)mSR+v

Ξi,j
mSR−1γ

mSR+v−1

× (−1)nρvΓ(mSR + i)
(1+j(1 − ρ))mSR+v+i(1 − ρ)v−iΓ(mSR + v)

× exp
[
− mSR(j + 1)γ

(1 + j(1 − ρ))γSR

]
, (9)

where Iν(·) denotes the ν-th order modified Bessel func-
tion of first kind and the coefficients Ξi,j

m are defined and

evaluated recursively as
(∑m

i=0
xi

i!

)j

�
∑j(m−1)

i=0 Ξi,j
m xi,

Ξi,j
m �

∑n2
n=n1

Ξn1,j−1
m

(i−n1)! x
i, n1 = max(0, i − mSR), n2 =

min(i, (j − 1)(mSR − 1)) [55].
The instantaneous SNR of each interferer γR,k �

G(mR,k, 1/βR) where βR � mR,kσ
2
0

ΩR,kPRk
, (mR,k, ΩR,k) are

Nakagami-m parameters between the k-th interferer and the
relay. It has been shown in [56] that the sum of L i.i.d Gamma
random variables with shape parameter σ and scale parameter
α is a Gamma random variable with parameters σL and α.
The PDF of the total Interference-to-Noise Ratio (INR) γR �
MR∑

k=1

γR,k can be expressed as follows

fγR(γ) =
βmR

R

Γ(mR)
γmR−1e−βRγ , (10)

where mR �
MR∑

k=1

mR,k.

The FSO fading encompasses the turbulence-induced fad-
ing (Ia), the atmospheric path loss (Il) and the pointing
errors (Ip). The m-th channel gain I2(m) can be written as
follows

I2(m) = IaIlIp, (11)

In Table I summarizes the parameters of the optical part.
Using the Beers-Lambert law, the path loss can be expressed

as follows [17, eq. (12)]

Il = exp(−σL), (12)

The pointing error Ip made by Jitter can be given as
[13, eq. (9)]

Ip = A0 exp

(

−2R2

ω2
Leq

)

, (13)
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The atmoshperic turbulence fading Ia consists of small
scale (Ix) and large scale (Iy) where Ix � GG(α1, m1, Ω1)
and Iy � GG(α2, m2, Ω2), m1 and m2 are the shaping
parameters defining the atmospheric turbulence fading. More-
over, α1, α2, Ω1, and Ω2 are defined using the variances of
the small and large scale fluctuations from [18, eqs. (8.a),
(8.b), (9), (10)]. Thereby, the PDF of the turbulence-induced
fading Ia can be given by [18, eq. (4)]

fIa(Ia)

=
α2p

m2+
1
2 qm1− 1

2 (2π)1−
p+q
2

Γ(m1)Γ(m2)Ia

×G0,p+q
p+q,0

(
ppqqΩq

1Ω
p
2

mq
1m

p
2I

α2p
a

∣
∣
∣∣
Δ(q : 1 − m1), Δ(p : 1 − m2)

−

)

,

(14)

where Gm,n
p,q (·) is the Meijer-G function, p and q are positive

integers satisfying p
q = α1

α2
and Δ(j; x) � x

j , . . . ,
x + j − 1

j .
In case of the heterodyne detection, the average SNR μ1 is

given by μ1 =
ηE

[
I2(m)

]

σ2
0

. Regarding the IM/DD detection,

the average electrical SNR μ2 is given by μ2 =
(ηE

[
I2(m)

]
)2

σ2
0

,

while the instantaneous optical SNR is γ2(m) =
(ηI2

2(m))
σ2

0

.

Unifying the two detection schemes and applying the transfor-

mation of the random variable γ2(m) =
(ηI2(m))r

σ2
0

, the unified

PDF of the m-th instantaneous SNR γ2(m) can be expressed
as follows

fγ2(m)(γ)

=
ξ2pm2− 1

2 qm1− 1
2 (2π)1−

p+q
2

rΓ(m1)Γ(m2)γ

×G0,p+q+α2p
p+q+α2p,α2p

(
ppqqΩq

1Ω
p
2

mp
1m

q
2

(A0 Il)α2p

(
μr

γ

)α2p
r

∣
∣
∣∣

κ1

κ2

)

,

(15)

where κ1 = Δ(α2p : 1− ξ2), Δ(q : 1−m1), Δ(p : 1−m2),
and κ2 = Δ(α2p : −ξ2).

The average SNR γr can be expressed as follows:

γr =
E [Ir]
E [I]r

μr, (16)

The average electrical SNR μr can be expressed as follows:

μr =
ηr

E [I]r

σ2
0

, (17)

After some mathematical manipulation, the CDF can be
expressed as follows:

Fγ2(m)(γ)

=
ξ2pm2− 3

2 qm1− 1
2 (2π)1−

p+q
2

α2Γ(m1)Γ(m2)

×Gα2p,p+q+α2p
p+q+2α2p,2α2p

(
ppqqΩq

1Ω
p
2

mp
1m

q
2

(A0 Il)α2p

(
μr

γ

)α2p
r

∣
∣∣
∣
κ3

κ4

)

,

(18)

TABLE I

PARAMETERS OF THE FSO PART

where κ3 = κ1, [1]α2p, κ4 = [0]α2p, κ2, and [x]j is defined
as the vector of length j and its components are equal to x.

III. END-TO-END SINR STATISTICS

For CSI-assisted relaying, the overall SINR (γe2e) can be
expressed as follows

γe2e =
γ1(m)γ2(m)

γ1(m) + γ2(m) + γ2(m)γR + γR + 1

=
γeff
1(m)γ2(m)

γeff
1(m) + γ2(m) + 1

, (19)

where γeff
1(m) is the effective RF SNR including both the

interferer and the RF fadings, which can be expressed as

γeff
1(m) =

γ1(m)

γR + 1
, (20)

Given that γ1(m) and γR are independent, the CDF of γeff
1(m)

is given by

F eff
γ1(m)

(γ) = Pr[γe2e ≤ γ] = Pr[γ1(m) ≤ γ(1 + γR)]

=

∞∫

0

Fγ1(m)(γ(1 + γR))fγR(γR) dγR, (21)

Using the identity [57, eq. (3.381.4)], and after some mathe-
matical manipulations, the CDF of γeff

1(m) can be expressed as
follows

F eff
γ1(m)

(γ) =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

A0

[

1 −
mSR+v−1∑

l=0

l∑

s=0

A2γ
l

× (A1γ + βR)−(s+mR)e−A1γ

]

, (22)
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where A0, A1, and A2 are given by

A0 =
(

M

m

)(
m − 1

n

)(
i

v

)

×
m Ξi,j

mSR−1Γ(mSR + i)(−1)nρv(1 − ρ)i−v

Γ(mSR)[1 + j(1 − ρ)i](j + 1)mSR+v , (23)

A1 =
mSR(j + 1)

[1 + j(1 − ρ)]γ1

, (24)

A2 =
(

l

s

)
βmR

R Γ(mR + s)Al
1

l!Γ(mR)
, (25)

A. Cumulative Distribution Function

Since the CDF of γe2e is not tractable, we refer to the
following approximation

γe2e
∼=

γeff
1(m)γ2(m)

γeff
1(m) + γ2(m)

∼= min(γeff
1(m), γ2(m)), (26)

The approximate CDF can be expressed as follows

Fγe2e(γ) = 1 − Pr(min(γeff
1(m), γ2(m)) ≥ γ)

= F eff
γ1(m)

(γ) + Fγ2(m)(γ) − F eff
γ1(m)

(γ)Fγ2(m)(γ),
(27)

B. Probability Density Function

After some mathematical manipulations, the PDF of γeff
1(m)

can be expressed as

fγ1(m)(γ) =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

mSR+v∑

u=0

A5γ
mSR+v−1e−A1γ ,

(28)

where A5 is given by

A5 =
(

M

m

)(
m − 1

n

)(
i

v

)(
mSR + v

u

) (
mSR

γ1

)mSR+v

× m(−1)nβmR
R ρv(1 − ρ)i−v

[1 + j(1 − ρ)]mSR+v+i(A1 + βR)mR+u−1

× Γ(mSR + i)Γ(mR + u)
Γ(mSR)Γ(mR)Γ(mSR + v)

, (29)

After deriving the CDF (27), the PDF can be expressed as
follows

fγe2e(γ) = fγ1(m)(γ) + fγ2(m)(γ) − fγ1(m)(γ)Fγ2(m)(γ)

−Fγ1(m)(γ)fγ2(m)(γ), (30)

To simplify the derivation, we reformulate the CDF of γ2(m)

as follows

Fγ2(m)(γ) = A3 Gα2p,p+q+α2p
p+q+2α2p,2α2p

(

A4γ
−α2p

r

∣
∣∣
∣

κ3

κ4

)

, (31)

where A3 and A4 are defined by

A3 =
ξ2pm2− 3

2 qm1− 1
2 (2π)1−

p+q
2

α2Γ(m1)Γ(m2)
, (32)

A4 =
(

qΩ1

m1

)q (
pΩ2

m2

)p

(A0Il)α2pμ
α2p

r
r , (33)

We also reformulate the PDF of γ2(m) as follows

fγ2(m)(γ) =
A6

γ
G0,p+q+α2p

p+q+α2p,α2p

(

A4γ
−α2p

r

∣
∣
∣
∣

κ1

κ2

)

, (34)

where A6 is given by

A6 =
ξ2pm2− 1

2 qm1− 1
2 (2π)1−

p+q
2

rΓ(m1)Γ(m2)
, (35)

C. Moments
The ν-th moment is defined as follows:

E [γν ] =

∞∫

0

γνfγ(γ)dγ, (36)

After replacing the PDF expression (30) in Eq. (36),
the moments are expressed as follows

E [γν ] = I1 + I2 − I3 − I4, (37)

Using the identity [57, eq. (3.381.4)], the term I1 can be
expressed as follows

I1 =

∞∫

0

γνfγ1(m)(γ)dγ

=
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

mSR+v∑

u=0

A5

AmSR+ν+v
1

Γ(mSR + v + ν),

(38)

After changing the variable of integration (x = γ−α2p

r ) and
using the identity [58, eq. (2.24.2.1)], the term I2 can be
obtained by eq. (39), as shown at the bottom of this page.

After changing the variable of integration (x = γ−1) and
using the identity [58, eq. (2.24.1.1)], the term I3 is given
by Eq. (40), as shown at the top of the next page, where
ζ1 =

∑2α2p
j=1 κ4,j −

∑p+q+2α2p
j=1 κ3,j + p+q

2 + 1,, κ5 = Δ(r :
α2p : 1 − ξ2), Δ(r : q : 1 − m1), Δ(r : p : 1 − m2),
Δ(r : α2p : 1), and κ6 = Δ(α2p : mSR + v + ν), Δ(r :
α2p : 0), Δ(r : α2p : −ξ2).

I2 =

∞∫

0

γνfγ2(m)(γ)dγ =
rA6

α2pA
rν

α2p +2

4

p+q+α2p∏

j=1

Γ
(
− rν

α2p
− κ1,j − 1

)

α2p∏

j=1

Γ
(
− rν

α2p
− κ2,j − 1

) , (39)
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I3 =

∞∫

0

γνfγ1(m)(γ)Fγ2(m)(γ)dγ =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

mSR+v∑

u=0

A3A5r
ζ1(α2p)

2(mSR+v+ν)−1
2

AmSR+v+ν
1 (2π)

α2p+(r−1)(p+q)−1
2

×G
α2p,r(p+q+α2p)
r(p+q+α2p),(r+1)α2p

(
(
A4r

p+q
)r

(
A1

α2p

)α2p ∣
∣
∣
∣

κ5

κ6

)

, (40)

I4 =

∞∫

0

γνFγ1(m)(γ)fγ2(m)(γ)dγ =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

A0

[

I2 +
rA6

α2p

mSR+v−1∑

l=0

l∑

s=0

A2A−(n+l)
1

βs+mR
R Γ(s + mR)

×H0,1:1,1:0,p+q+α2p
1,0:1,1:p+q+α2p,α2p

(
(1 − l − ν; 1, 1)

−
∣
∣
∣(1−s−mR,1)
(0,1)

∣
∣
∣
(κ1,[− r

α2p ]p+q+α2p)

(κ2,[− r
α2p ]α2p)

∣∣
∣
∣
∣

1
βR

,
A

− r
α2p

4

A1

)]

, (41)

J1 =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

A0

[

1 −
mSR+v−1∑

l=0

l∑

s=0

tA2β
l−mR−s+1
R

Γ(l + 1)
Al+1

1

Ψ
(

l + 1, l + 2 − mR − s;
βR(A1 + t)

A1

)]

, (43)

J2 =
A3r

ζ1
√

α2p

(2π)
α2p+(r−1)(p+q)−1

2

G
α2p,r(p+q+α2p)
r(p+q+α2p),(r+1)α2p

(
(
A4r

p+q
)r

(
t

α2p

)α2p ∣
∣
∣
∣

κ5

κ7

)

, (44)

J3 =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

tA0

[

J2 +
mSR+v−1∑

l=0

l∑

s=0

rA2A3

α2pβs+mR
R (A1 + t)l+1Γ(mR + s)

×H0,1:1,1:0,p+q+α2p
1,0:1,1:p+q+α2p,α2p

(
(−l; 1, 1)

−
∣
∣∣(1−s−mR,1)
(0,1)

∣
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(κ1,[− r

α2p ]p+q+α2p)

(κ2,[− r
α2p ]α2p)

∣
∣
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∣

A1

βR(A1 + t)
,
A

− r
α2p

4

A1 + t

)]

, (45)

Gα2p,p+q+α2p
p+q+2α2p,2α2p

(

A4γ
−α2p

r

∣
∣
∣
∣
κ3

κ4

)
∼=

μr�1

p+q+α2p∑

k=1

p+q+α2p∏

j=1 j �=k

Γ(κ3,k − κ3,j)
α2p∏

j=1

Γ(1 − κ3,k + κ4,j)
(
A4γ

−α2p
r

)κ3,k−1

2α2p∏

j=1α2p+1

Γ(κ3,k − κ4,j)
p+q+2α2p∏

j=p+q+α2p+1

Γ(κ3,j − κ3,k+1)

, (47)

After reproducing the same derivation steps as
I2 and using the identities [58, eq. (8.4.3.1)], [59,
eq. (07.35.03.0001.01), (07.35.26.0003.01)], and [60,
eq. (2.3)], the term I4 can be expressed by Eq. (41), as
shown at the top of this page, where Hm1,n1:m2,n2:m3,n3

p1,q1:p2,q2:p3,q3
(·)

is the bivariate Fox-H function. An efficient implementation
of this function is provided by [54] and [55].

D. Moment Generating Function
The moment generating function can be expressed in terms

of the CDF as follows [44, eq. (12)]:

Mγ(t) = E
[
etγ

]
= t

∞∫

0

etγFγ(γ)dγ, (42)

After replacing the CDF (27) in Eq. (42), the MGF can be
expressed as the summation of three terms J1, J2, and J3.

Using the identities [57, eq. (3.381.4)], [63, eq. (2.3.6.9)]
and after some mathematical manipulation, the term J1 can
be given by Eq. (43), as shown at the top of this page, where
Ψ(· : · ; ·) is the Tricomi confluent hypergeometric function.

After applying the identity [58, eq. (2.24.3.1)], the term J2

can be obtained by Eq. (44), as shown at the top of this page,
where κ7 = Δ(α2p : 1), Δ(r : α2p : 0), Δ(r : α2p : −ξ2).

Following the same derivation steps for I4, the term J3 can
be given by Eq. (45), as shown at the top of this page.

IV. PERFORMANCE ANALYSIS

A. End-to-End Outage Probability

The end-to-end outage probability is the probability that
the overall SINR falls below a given threshold γT. For
CSI-assisted relaying, the outage probability can be given
using (27).

Pout(γT) = Pr[γ ≤ γT] = Fγe2e(γT), (46)

B. High SNR Analysis

To get the diversity gain Gd, we derive the asymptotic
high SNR by expanding the Meijer-G function in (31) using
[59, eq. (07.34.06.0044.01)]. The expression is given by
Eq. (46). For infinite RF, and FSO average SNR, and after
applying partial fraction expansion on (22), it can be shown
that the diversity gain Gd is given by Eq. (48).

Note that the diversity gain for partial relay selection of the
RF branches is equal to mSR regardless of the correlation
coefficient value ρ, unlike the case of opportunistic relay
selection protocol wherein the correlation affects the diversity
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TABLE II

PARAMETERS OF BINARY MODULATIONS

gain.

Gd = min
(

ξ2

r
,
m1α1

r
,
m2α2

r
, mSR

)
, (48)

C. Higher-Order Amount of Fading

The amount of fading is mathematically defines as follows

AF (ν)
γ =

E [γν ]
E [γ]ν

− 1, (49)

Replacing (37) in (49) yields to the ν-th order of the amount
of fading.

D. Average Bit Error Probability

For the most binary modulations, the bit error probability
is expressed as follows

Pe =
δτ

2Γ(τ)

∞∫

0

γτ−1e−δγFγ(γ)dγ, (50)

where τ and δ are the parameters of the modulation, which
can be summarized in Table II.

For CSI-assisted relaying of the proposed system, the bit
error rate can be given by replacing (27) in (50). In this case,
it can be expressed as follows

Pe = T1 + T2 − T3, (51)

Using the identities [57, eq. (3.381.4)] and [63, eq. (2.3.6.9)],
the term T1 can be derived as follows

T1 =
δτ

2Γ(τ)

∞∫

0

γτ−1e−δγFγ1(m)(γ)dγ =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

A0

2t

×
[

1 −
mSR+v−1∑

l=0

l∑

s=0

A2δ
τβl+τ−mR−s

R Γ(l + 1)
Al+τ

1 Γ(τ)

×Ψ
(

l + τ, l + τ − mR − s + 1;
βR(A1 + δ)

A1

)]
,

(52)

After changing the variable of integration (x = γ−1),
and using the identities [59, eqs. (01.03.26.0004.01),
(07.34.16.0002.01)], and [58, eq. (2.24.1.1)], the term T2 can
derived as follows

T2 =
δτ

2Γ(τ)

∞∫

0

γτ−1e−δγFγ2(m)(γ)dγ

=
A3r

ζ1(α2p)(l+τ−1)

2(2π)
α2p+(r−1)(p+q)−1

2 Γ(τ)

×G
α2p,r(p+q+α2p)
r(p+q+α2p),(r+1)α2p

(
(
A4r

p+q
)r

(
δ

α2p

)α2p ∣
∣
∣
∣
κ5

κ8

)

,

(53)

where κ8 = Δ(α2p : τ), Δ(r : α2p : 0), Δ(r : α2p : −ξ2).
After reproducing the same derivation steps for I4, term T3

can be expressed by (57), as shown at the bottom of the next
page.

E. Ergodic Capacity

The channel capacity, expressed in (bit/s/Hz), is defined as
the maximum error-free data rate transmitted by the system.
It can be written as follows

C = E [log2(1 + �γ)] =

∞∫

0

log2(1 + �γ)fγ(γ)dγ, (54)

� = 1 or e
2π , respectively, for heterodyne and IM/DD

detection.
After replacing the PDF (30) in (54), the ergodic capacity

can be expressed as follows

C = C1 + C2 − C3 − C4, (55)

After applying [58, eqs. (8.4.6.5), (2.24.3.1)], and [59,
eq. (07.35.03.0001.01), (07.35.26.0003.01)], the term C1 can
be derived in terms of the univariate Fox-H function (58), as
shown at the bottom of the next page.

Reproducing the same proceduces for C1, the term C2 can
be obtained by (59), as shown at the bottom of the next page.

Using the identities [58, eqs. (8.4.3.1), (8.4.6.5)],
[59, eq. (07.35.03.0001.01), (07.35.26.0003.01)], and
[60, eq. (2.3)] and after some mathematical manipulations,
the term C3 can be derived by (60), as shown at the bottom
of the next page.

The term C4 can be derived in terms of the trivariate
Fox-H function (61), as shown at the bottom of the next page,

Proof: The derivation steps of C4 are provided in Appen-
dix A. The Python implementation of the multivariate Fox-H
function is given by [64].

F. End-to-End Outage Capacity

The outage capacity is defined as the probability that the
overall throughput falls below a given outage rate CT. This
metric is very important since it describes clearly the average
throughput outage of the proposed system. Mathematically,
the outage rate can be expressed as follows:

R(CT) = Pr[C ≤ CT] = Fγ

(
2CT − 1

�

)
(56)

After replacing the CDF (27) in (56), the outage rate is finally
derived. Note that κ = [1]length(κ) − κ.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we compare the analytical expressions of
the system performance against the Monte Carlo simulations.
The correlated RF CSI is generated using relation (1), while
the atmospheric turbulences samples are generated using the
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TABLE III

MAIN SIMULATION PARAMETERS

product of two independent random variables (Ia = IaX×IaY )
following the Generalized Gamma distribution. In addition,
the pointing error samples are generated by firstly generating
the radial displacement R following the Rayleigh distribution
with scale equal to the jitter standard deviation (σs) and then
we generate the samples using (13). Since the path loss is
deterministic, it can be generated using relation (12). Table III
summarizes the main simulation parameters.

Fig. 2 shows the end-to-end outage performance for various
profiles of interferers. As a special case, we assume that

Fig. 2. Effects of the interferers’ powers on the outage probability.

the RF channels experience Rayleigh fading (mSR = 1).
We observe that more interferers’s powers yields worse outage
performance. In this case, to improve the network coverage
and scalability in farthest areas, it is better to implement useful
techniques to eliminate or reduce the interference impacts
such as the partial interference cancellation. Interference-free
case illustrates the best performance compared to the other
ones.

The impacts of the pointing error on the outage probability
for heterodyne and IM/DD detection modes are illustrated
by Fig. 3. As expected, the system works better under the

T3 =
δτ

2Γ(τ)

∞∫

0

γτ−1e−δγFγ1(m)(γ)Fγ2(m)(γ)dγ =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

A0

[

T2+
mSR+v−1∑

l=0

l∑

s=0

rδτ

2α2pβmR+s
R (A1+δ)l+τ

× A2A3

Γ(τ)Γ(mR+s)
H0,1:1,1:α2p,p+q+α2p

1,0:1,1:p+q+2α2p,2α2p

(
(1−l−τ ; 1, 1)

−
∣
∣
∣(1−s−mR,1)
(0,1)

∣
∣
∣
(κ3,[− r

α2p ]p+q+2α2p)

(κ4,[− r
α2p ]2α2p)

∣
∣
∣
∣∣

A1

βR(A1+δ)
,
A
− r

α2p

4

A1+δ

)]

,

(57)

C1 =

∞∫

0

log2(1+�γ)fγ1(m)(γ)dγ =
m−1∑

n=0

j(mSR−1)∑

i=0

i∑

v=0

mSR+v∑

u=0

A5

log(2)AmSR+v
1

H1,3
3,2

(
(1 − mSR−v, 1)(1, 1)(1, 1)

(1, 1)(0, 1)

∣
∣
∣
∣
�

A1

)
,

(58)

C2 =

∞∫

0

log2(1 + �γ)fγ2(m)(γ)dγ = − rA6

α2p log(2)
H2,p+q+α2p+1

p+q+α2p+2,α2p+2

(
(κ1, [− r
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(0, 1)(0, 1)(κ2, [− r
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∣∣
∣
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∣
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− r
α2p

4

�

)

, (59)

C3 =

∞∫

0

log2(1 + �γ)fγ1(m)(γ)Fγ2(m)(γ)dγ = − r

α2p log(2)
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n=0
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−
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α2p
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, (60)

C4 =

∞∫

0

log2(1 + �γ)Fγ1(m)(γ)fγ2(m)(γ)dγ =
m−1∑

n=0

j(mSR−1)∑
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(61)
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Fig. 3. Effects of the pointing error on the outage performance.

Fig. 4. Bit error probability for various binary modulation schemes.

coherent detection rather than IM/DD for negligeable pointing
error. In addition, the system performance is very sensitive
to the pointing error coefficients. In fact, we observe that
as the pointing error coefficient ξ decreases (severe pointing
error fading), the effect becomes more pronounced and the
performance gets worse. We also note that for severe pointing
fading, the system performance assuming coherent detection is
worse compared to the case of IM/DD for less pointing error
fading. Thereby, the coverage reliability depends to a large
extent on the misalignment between the relays and the front
photodetector.

Fig. 4 shows the variations of the bit error probability for
various binary modulation schemes. The graph shows clearly
the agreement between the derived analytical results and the
Monte Carlo simulation. Therefore, these results confirm the
accuracy of the performance metrics derived of the proposed
system. Furthermore, we note that the best performance is
achieved by CBPSK, however, it becomes completely bad for
NBFSK modulation.

Fig. 5 illustrates the variations of the average capacity for
different values of the atmospheric weather attenuation (path
loss). We observe that for lower path loss value roughly
0.4 dB/km, which describes a clear air weather, the system
achieves better throughput. As the path loss becomes moderate

Fig. 5. Effects of the atmospheric path loss on the average capacity.

Fig. 6. Effects of the time correlation on the ergodic capacity.

for rainy weather around 2.7 and 4.5 dB/km, the system still
operates in acceptable conditions but with lower throughput
compared to the case of clear air condition. However, as the
atmospheric attenuation becomes more severe, which is the
case of foggy weather, the average capacity substantially gets
worse. We also observe that for an average SNR around
45 dB, the throughput is roughly 3.2 bps/Hz for severe
path loss (σ = 7 dB/km) while for moderate path loss
(σ = 4.5 dB/km), the achievable rate is around 6.8 bps/Hz.
Consequently, the effect of the atmospheric attenuation on
the system throughput is substantially pronounced mainly at
high SNR.

Fig. 6 illustrates the effects of the time correlation coeffi-
cient ρ on the ergodic capacity. We observe that the average
rate gets better as the correlation between the RF CSIs
increases. In fact, for higher correlation, the source gets
better estimation of the channels’ coefficients and based
on that, the best branch will be selected for the transmis-
sion. However, as the RF CSIs become completely outdated
(ρ ∼= 0.001), the source gets bad estimation of the channels’
coefficients and hence the selection of the best branch is uncer-
tainly achieved. Generally speaking, the throughput basically
improves as the instantaneous CSI of the branch becomes
stronger. Consequently, to realize a stable and satisfied average
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Fig. 7. Average capacity performance for various number of relays.

Fig. 8. Effects of the capacity threshold on the end-to-end outage rate.

throughput, a better channel estimation (higher correlation)
must be achieved first.

The variations of the ergodic capacity for various number
of relays is illustrated by Fig. 7. We clearly note that a large
number of relays yields better throughput. In fact, increasing
the number of the relays means that the source has better
chance to select a branch with a stronger CSI. Therefore,
to serve the densified cells without throughput perturbation,
the number of the relays implemented must be large enough
to deal mainly with the power shortage/outage that may occur
for farther communications. Moreover, for a given throughput
equal to 3 bps/Hz, the proposed system requires 30 dB and
25 dB for M = 1 and 5, respectively. Thereby, the system
achieves a power gain of 5 dB.

Another important metric used to evaluate the system
performance is the outage capacity whose variations with
respect to the outage threshold, and the atmospheric turbu-
lence are shown in figures 8, and 9, respectively. We clearly
note in Fig. 8 that lower threshold yields better through-
put coverage. However, as the throushold becomes stronger,
the throughput quickly saturates and reaches the bottleneck.
In addition, the variations of the outage capacity for var-
ious atmospheric turbulence conditions are illustrated by
Fig. 9. As expected, weaker atmospheric turbulence conditions

Fig. 9. End-to-end outage capacity under various turbulence conditions.

(higher values of α1 and α2) yields lower outage throughput.
For moderate turbulence (α1 = 3 and α2 = 1.5), the sys-
tem still achieves acceptable performance but a little worse
compared to the case of weak turbulence. However, as the
turbulences become severe (α1 = 0.5 and α2 = 0.25),
the average throughput is not stable anymore and experiences a
substantial outage/shortage yielding to the worst performance.
As a result, the system performance depends to a large extent
on the state of the optical channel.

VI. CONCLUSION

In this work, we proposed a dual-hop mixed RF/FSO system
with multiple relays under the effects of the co-channel inter-
ference. Partial relay selection with outdated CSI is assumed as
a protocol to select the best branch/relay. The results show that
the coverage reliability is very sensitive to the interferers’ pow-
ers. Moreover, a large number of relays and higher correlation
substantially improves the system throughput under weak and
moderate atmospheric conditions. However, the contributions
of these parameters become less pronounced as the state of
the optical channel (path loss, pointing error and atmospheric
turbulences) becomes instable. The most challenging part of
FSO system is the strong dependence on the severity of fading
and possible enhancements are very limited. As an extention
of this work, we intend to propose sophisticated techniques
to mitigate or compensate for the loss introduced by the FSO
channel disturbance.

APPENDIX A
DERIVATION OF TERM C4

Term C4 consists of two integral expressions where the left
hand side is term C2 and the right hand side is C5 given by

C5 =

∞∫

0

γl(A1γ + βR)−(s+mR) log(1 + �γ)e−A1γ

×G0,p+q+α2p
p+q+α2p,α2p

(

A4γ
−α2p

r

∣
∣∣
∣

κ1

κ2

)

dγ, (62)

The argument of the Meijer-G function in the aforemen-
tioned integral must be inverted using [59, eq. (8.2.2.14)].
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C5 =
1

Γ(s + mR)βs+mR(2πi)3

∫

L1

∫

L2

∫

L3

Γ(−s1)Γ(s + mR + s1)
p+q+α2p∏

j=1

Γ(1 − κ2,j − s2)Γ(1 − s3)Γ2(s3)

α2p∏

j=1

Γ(1 − κ1,j − s2)Γ(s3 + 1)

×
(
A1

βR

)s1

A−s2
4

∞∫

0

γl+s1+s3+
α2ps2

r e−A1γdγ

︸ ︷︷ ︸
I

ds1 ds2 ds3, (70)

After referring to the identities [60, eqs. (07.34.03.0271.01),
(07.35.03.0001.01), (07.35.26.0003.01)], the Logarithm and
the fraction terms can be transformed into Meijer-G functions
as follows

log(1 + �γ) = G1,2
2,2

(

�γ

∣
∣
∣
∣

1, 1
1, 0

)

, (63)

(A1γ + βR)−(s+mR) =
1

βmR+s
R Γ(mR + s)

×G1,1
1,1

(
A1

βR
γ

∣
∣
∣
∣

1 − s − mR

0

)

, (64)

Using [60, eq. (07.34.16.0002.01)], we invert the argument of
the Meijer-G function as follows:

G0,p+q+α2p
p+q+α2p,α2p

(

A4γ
−α2p

r

∣
∣
∣
∣

κ1

κ2

)

= Gp+q+α2p,0
α2p,p+q+α2p

(
γ

α2p
r

A4

∣
∣
∣
∣

[1]length(κ1) − κ1

[1]length(κ2) − κ2

)

, (65)

After this transformation, the term C5 consists of three
Meijer-G functions. The next step is to expand these three
functions using the general definition of the line integral in
the complex plane [60, eq. (07.34.02.0001.01)] as follows

G1,1
1,1

(
A1

βR
γ

∣∣
∣
∣

1 − s − mR

0

)

=
1

2πi

∫

L1

Γ(−s1)Γ(s + mR + s1) ×
(
A1

βR

)
γs
1 ds1, (66)

G1,2
2,2

(

�γ

∣
∣
∣
∣

1, 1
1, 0

)

=
1

2πi

∫

L2

Γ(1 − s2)Γ2(s2)
Γ(s2 + 1)

�s2γs2ds2, (67)

Gp+q+α2p,0
α2p,p+q+α2p

(
γ

α2p

r

A4

∣∣
∣
∣

[1]length(κ1) − κ1

[1]length(κ2) − κ2

)

=
1

2πi

∫

L3

p+q+α2p∏

j=1

Γ(1 − κ2,j − s3)

α2p∏

j=1

Γ(1 − κ1,j − s3)

A−s3
4 γ

α2ps3
r ds3, (68)

The term C5 can be given by Eq. (70), as shown at the top
of this page. Using [58, eq. (3.351.3)], the integral I is given
by

I = Γ(l + s1 + s2 +
α2p

r
s3 + 1)A−(l+s1+s2+

α2p

r s3+1)
1 , (69)

Finally, using the identities [65, eqs. (28), (29a), (29b), (30)],
the final result can be expressed in terms of the trivariate
Fox-H function.
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