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Abstract

Zero-forcing (ZF) precoding plays an important role for massive MIMO downlink due to its near

optimal performance. However, the high computation cost of the involved matrix inversion hinders

its application. In this paper, we adopt the first order Neumann series (NS) for a low-complexity

approximation. By introducing a relaxation parameter jointly with one selected user’s interference to

others into the precondition matrix, we propose the identity-plus-column NS (ICNS) method. By further

exploiting the multi-user diversity gain via choosing the user with the largest interference to others, the

ordered ICNS method is also proposed. Moreover, the sum-rate approximations of the proposed ICNS

method and the competitive existing identity matrix based NS (INS) method are derived in closed-form,

based on which the performance loss of ICNS due to inversion approximation compared with ideal ZF

and its performance gain over INS are explicitly analyzed for three typical massive MIMO scenarios.

Finally, simulations verify our analytical results and also show that the proposed two designs achieve

better performance-complexity tradeoff than ideal ZF and existing low-complexity ZF precodings for

practical large antenna number, correlated channels and not-so-small loading factor.
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I. INTRODUCTION

As a promising key technology for future cellular network, massive multiple-input multiple-

output (MIMO) has been widely studied in recent years [1]–[3]. By deploying large-scale

antenna array at the base station (BS), great increase in array gain and spatial resolution can be

achieved which results in higher spectrum efficiency and the capability of serving more users

simultaneously [4]–[6]. Existing works [2], [7] show that linear precoding techniques such as

zero-forcing (ZF) can achieve the performance of the capacity-approaching schemes, e.g., the

dirty paper coding or other advanced non-linear precoding methods, in the favorable channel

condition, i.e., users have asymptotic orthogonal channels as the number of BS antennas grows

large. ZF precoding has higher computational efficiency than its non-linear alternatives. However,

since it involves the inverse of the Gram matrix of all users’ channel vectors, the number

of multiplication and division operations are cubic and quadratic in the number of users [7],

[8], if conventional inversion methods are used, e.g., via orthogonal and upper triangular (QR)

decomposition using Gram-Schmidt process or Givens rotation, and Gauss-Jordan elimination

[7]. In massive MIMO systems, the user number tends to be large, making the computational

complexity of ZF precoding prohibitive.

Recently, many efforts have been endeavored to further reduce the complexity of ZF precoding.

The first class of methods uses the Neumann series (NS) expansion to transform the inverse of

the Gram matrix into that of a simple precondition matrix and some simple matrix multiplications

and summations. Two designs were studied in [7], where the precondition matrix is set to be a

scaled identity matrix (referred to as the INS design) and the diagonal matrix made up by the main

diagonal of the Gram matrix (referred to as the DNS design). The DNS design was shown to have

better performance than INS when the Gram matrix is strongly diagonal dominant. However,

when the diagonal dominance of the Gram matrix is not strong due to either high channel

correlation or limited number of BS antennas, DNS causes large performance degradation [9].

To solve this problem, a tri-digonal precondition matrix was proposed in [9] by adding secondary

diagonal lines of the Gram matrix (referred to as the TNS design). However, the complexity of

the inversion of tri-diagonal precondition matrix itself becomes a problem [10]. Consequently, a

new design was proposed in [10] where the precondition matrix is formed by the non-diagonal

elements of the first column of the Gram matrix in addition to its diagonal elements (referred to

as the CNS design). Although CNS simplifies the inverse of the precondition matrix, it also has
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non-negligible performance degradation compared with TNS. Therefore, there is still room to

improve for a better balance between the computation complexity and the precoding performance.

The second class of methods uses numerical iterative schemes for solving linear equations [11].

Instead of first computing the inverse approximation of the Gram matrix and then multiplying

it with the symbol vector to obtain the precoded vector, this kind of methods takes the symbol

vector as the input and output the precoded vector via certain number of iterations. Typical

iterative schemes include Richardson method [12], Jacobi method [13], Gauss-Seidel method

[14], successive over relaxation method [15], and symmetric successive over relaxation method

[16]. However, while its computational load is advantageous for fast-fading systems, the class

of methods has prohibitive computation overhead for systems with moderate to large channel

coherence time [16], especially for systems with large bandwidth.

Besides the low-complexity ZF precoding design itself, the related analytical performance

analysis is also important in the sense of both quantitatively understanding the performance loss

due to the inversion approximation and providing explicit expression for parameter optimization.

However, few results on performance analysis were provided in existing works. [17] studied the

effect of the loading factor on both the asymptotic convergence speed of the NS expansion with

the DNS precondition matrix design and the mean square error (MSE) between the noiseless

received signals with the ideal ZF precoding and that with the DNS procoding. In [18], a

low-complexity regularized ZF (RZF) precoding was proposed in which the matrix inversion is

replaced by a truncated polynomial expansion (TPE). An asymptotic deterministic expression

of the signal-to-interference-plus-noise ratio (SINR) was derived using random matrix theory.

Meanwhile, a closed-form expression was given for the polynomial coefficients that maximizes

this SINR expression.

In this paper, we consider the first kind of NS based low-complexity design for practical

scenarios with not-so-small loading factor and/or high channel correlation, where existing designs

suffer considerable performance degradation. Further, different from most existing works, we

focus on the case of the first-order NS. This is because when the order number of NS is

larger than one, the computational complexity is comparable to that of conventional inversion

methods [7], [19]. Specifically, by observing the good performance-complexity tradeoff of the

CNS method and the strong robustness of the INS method, we first propose the identity-plus-

column NS (ICNS) method by replacing the diagonal elements of CNS’s precondition matrix with

a relaxation parameter. Then a channel-correlation-adaptive design for the relaxation parameter
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is given. Both the relaxation parameter and the non-diagonal elements of the first column of

the precondition matrix can help to handle the effect of user interference on the inversion

approximation more carefully. Further, by choosing the user with the largest interference to

others, the ordered ICNS method is proposed to exploit the multi-user diversity.

Further, we provide comprehensive performance analysis on the sum-rate directly, while

existing performance studies were on the inversion approximation error. A sum-rate approx-

imation of the proposed ICNS scheme is derived in closed-form for the correlated massive

MIMO channel. In addition, we provide a closed-form sum-rate approximation for the most

competitive benchmark, the INS scheme. And our analytical method also applies to other existing

low-complexity ZF precodings. Based on these analytical results, the comparison between the

proposed ICNS scheme, the INS scheme, the ideal ZF and maximal ratio transmission (MRT)

are elaborated for three typical cases in massive MIMO systems, i.e., 1) asymptotically large

BS antenna number and user number with fixed ratio; 2) finite user number and large but finite

BS antenna number, and 3) finite user number and asymptotically large BS antenna number.

Comparison results show that 1) for Case 1, ICNS outperforms INS with intermediate loading

factor, while with either low or high loading factor the advantage becomes negligible. Meanwhile,

the favorable range of loading factor for ICNS to have comparable sum-rate to the ideal ZF is

derived in closed-form. 2) For Case 2, the sum-rate of ICNS is better than that of INS and the

advantage first increases with BS antenna number and then decreases to zero as BS antenna

number further grows. 3) For Case 3, the sum-rates of ICNS and INS both approach that of

the ideal ZF. However, the sum-rate of MRT has much slower convergence rate compared with

the above three schemes. Simulation results validate the derived sum-rate approximations and

the analytical comparison between ICNS and INS. Meanwhile, with the help of the complexity

analysis, it is shown that the proposed ICNS and ordered ICNS can achieve better complexity-

performance tradeoff compared with existing low-complexity ZF precodings for massive MIMO

systems with correlated channels, practical antenna number and not-so-small loading factor.

The remaining of the paper is organized as follows. In Section II, the system model is

introduced along with the low-complexity ZF precoding problem and existing designs. Section

III gives the proposed low-complexity approximate designs, i.e., the ICNS and ordered ICNS

methods, and their computational complexity analysis. In Section IV, closed-form sum-rate

approximations are derived for both INS and ICNS based on which a comprehensive performance

comparison is provided. Section V shows simulations and conclusions are given in Section VI.
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In this paper, bold upper case letters and bold lower case letters are used to denote matrices

and vectors, respectively. For a matrix A, its conjugate transpose, transpose, and trace are

denoted by AH , AT and tr{A}, respectively. [A]i,j is the (i, j)th entry of A. IM denotes

the M dimensional identity matrix. ‖A‖F denotes the Frobenius norm of A. CN (0,Σ) denotes

the circularly symmetric complex Gaussian distribution with mean 0 and covariance matrix Σ.

E{·} is the mean operator. a = O (b) means that a and b have the same scaling with respect to

an asymptotic parameter given in the context. λmax(·) denotes the spectral norm operator.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a single-cell downlink system where a BS, equipped with M antennas, serves K

single-antenna users and M ≥ K ≫ 1. Let r = K/M , which is the loading factor. Let hH
k be

the downlink channel from the BS to User k which can be written as

hk = R1/2zk, (1)

where zk ∼ CN (0, IM) is the fast-fading channel vector and R ∈ CM×M denotes the channel

covariance matrix with large scale fading normalization tr{R} = M . Specifically, R is modeled

as in [20]:

R =
1

c
AAH, (2)

where the channel direction matrix A is an M × cM semi-unitary matrix and c ∈ (0, 1] indicates

the channel correlation level. For example, elements of the channel vector become independent

and identically distributed (i.i.d.) when c = 1. With the models in (1) and (2), all users’ channel

covariances are assumed to be the same, and the power beam spectrum (PBS) is assumed to be

flat along the effective channel directions. The former assumption is applicable when the antenna

correlation is mainly dependent on the BS inter-element antenna spacing as in the exponential

model [21] or the local scatterers at the BS rather than those at the users [22]. The motivation

for the latter assumption is two-fold [4]. First, while the PBS in general can have many possible

profiles in practice, the flat PBS model can serve as an approximation of the average effect of all

possible profiles. Secondly, as explained in [20, Sec. IV], when the antenna aperture increases

with each additional antenna element and c depends on the amount of scattering in the channel,

this model is applicable. Define the channel matrix as H = [h1, ...,hK ] where channel vectors

of different users are assumed to be independent.
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The received signal yk at User k is given by

yk =
√
ρth

H
k Ws+ nk, k = 1, ..., K, (3)

where ρt is the average transmit power, nk’s are i.i.d. noises each following CN (0, 1), W =

[w1, ...,wK ] ∈ CM×K is the precoding matrix, and s = [s1, ..., sK ]
T ∼ CN (0, IK) is the vector

containing all users’ symbols. The precoding matrix is normalized as

E{tr{WWH}} = 1. (4)

Consequently, the SINR at User k is

SINRk =
hH
k wkw

H
k hk

hH
k WkW

H
k hk + 1/ρt

, (5)

where Wk = [w1, ...,wk−1,wk+1, ...,wK ].

B. The Low Complexity Precoding Design Problem

The ZF precoding can be represented as

WZF = βZFH(HHH)−1, (6)

where the power normalization parameter βZF is set such that WZF satisfies the power constraint

in (4). A disadvantage of ZF precoding is its high computational load, mainly caused by the

matrix inversion. For conventional QR decomposition based methods, the matrix inversion has

the complexity of O(K3) complex multiplications and O(K2) complex divisions [7], which

can be prohibitive for massive MIMO with large K. Our main goal is to find an appropriate

approximation of the matrix inversion with low computational complexity.

Define the Gram matrix G = HHH/M . The inverse of G can be expressed as its NS:

G−1 =
∞∑

n=0

(−D−1E)nD−1 (7)

if the precondition matrix D satisfies

lim
n→∞

(
−D−1E

)n
= 0 or λmax(−D−1E) < 1, (8)

where E = G−D. Thus, a natural approximation of G−1 is

G−1 ≈
L∑

n=0

(−D−1E)nD−1, (9)
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where the approximation becomes equality when the order number L grows to infinity. The

calculations of the approximation in (9) involve the inversion of D and some matrix multi-

plications and summations. Larger L means better approximation performance but at the same

time higher complexity. Notice that for L > 1, the multiplication of K ×K dimensional square

matrices is unavoidable, making the computational complexity of the NS based approximation

comparable to that of conventional inverse methods. Thus, we consider the case of L = 1 only.

Corresponding, the approximate precoding matrix is

WZF≈W=
β

M
H
(
D−1−D−1ED−1

)
=

β

M
H
(
2D−1−D−1GD−1

)
, (10)

where β is set such that W satisfies the power constraint in (4). The choice of the precon-

dition matrix D is critical for the performance-complexity tradeoff of this approximation. A

complex structure for D may improve the approximation performance, but the corresponding

computational complexity becomes a problem.

C. Existing Designs for the Precondition Matrix

Several typical existing designs are introduced as follows.

1) INS Method: The INS method has the following precondition matrix

DI = ωIIK . (11)

To maximize the asymptotic convergence speed, i.e., minimizing λmax(−D−1
I EI), the relaxation

parameter ωI can be given as [11]

ω⋆
I =

b+ a

2
, (12)

where a and b are the smallest and largest eigenvalue of G, respectively. Since the calculation

of a and b based on instantaneous G also brings huge computation cost, it is more practical to

use the asymptotic value for large M . For i.i.d. channels, when M,K → ∞ with r = K/M

being fixed, the asymptotic value of a and b are [7]

a =
(
1−√

r
)2

; b =
(
1 +

√
r
)2

. (13)

This asymptotic value for the relaxation parameter was also shown to be effective for asymp-

totically large M with finite K [12].
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2) DNS Method: The DNS method has the following diagonal precondition matrix

DD = diag0(G), (14)

where

[diagn(G)]i,j =







[G]i,j if |i− j| = n,

0 otherwise.
(15)

3) TNS Method: Via choosing the super diagonal elements and the sub-diagonal elements

along with the main diagonal elements of G, the precondition matrix of the TNS method is

DT = diag0(G) + diag1(G). (16)

4) CNS Method: For the CNS method, its precondition matrix is composed of the diagonal

elements of G and the non-diagonal elements of the 1st column of G, i.e.,

DC = diag0(G) +Gc, (17)

where

[Gc]i,j =







[G]i,j if i > 1, j = 1,

0 otherwise.
(18)

III. PROPOSED LOW COMPLEXITY APPROXIMATE DESGIN OF ZF PRECODING

By drawing lessons from existing methods, we propose a scheme, called identity-plus-column

NS (ICNS) method. Specifically, unlike keeping the diagonal elements of G in CNS, we replace

them with a relaxation value ω. Further, the interference from a certain user (denoted as User C)

to others are also considered into the construction of the precondition matrix. For ICNS, User

C is randomly selected which is equivalent to selecting User 1 due to the homogeneous channel

distribution. The precondition matrix in ICNS can be written as

DA = ωIK +Gc. (19)

A crucial issue is the design of the relaxation parameter ω. The optimal ω is the solution for the

sum-rate maximization problem. However, the optimization problem is highly challenging due

to the difficulty in the sum-rate analysis and the complexity of the sum-rate expression. Instead,

a simple heuristic design is to use the asymptotic relaxation parameter for INS. Since ICNS is

equivalent to adding K − 1 more elements of the K ×K matrix G into the precondition matrix

of INS, which is a small change when K ≫ 1, the asymptotic relaxation parameter for INS is
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expected to have near-optimal performance for ICNS. While the asymptotic relaxation parameter

of INS for correlated channels is not available in existing work, we derive it in Lemma 1.

Lemma 1: For the massive MIMO channel with correlation level c, when M,K → ∞ with

r = K/M being fixed, the relaxation parameter for INS that maximizes the convergence speed

of the NS is

ω⋆ = (b̄+ ā)/2, (20)

where

ā =

(

1−
√

r

c

)2

; b̄ =

(

1 +

√
r

c

)2

. (21)

Proof: See Appendix A.

Simulation results in Fig. 1 of Section IV-B show that ω⋆ has nearly the same performance

as the optimal ω that maximizes the sum-rate.

As explained in Section II-B, we focus on the practical case of L = 1 for complexity

consideration. Correspondingly, the precoding matrix of the ICNS method is

WA=
βA

M
H
(
D−1

A −D−1
A EAD

−1
A

)
=
βA

M
H
(
2D−1

A −D−1
A GD−1

A

)
. (22)

where βA is the power normalization parameter for WA according to (4).

A. Computational Complexity Analysis

The computational complexity of the proposed ICNS scheme is elaborated as follows. The

complexity of the comparison benchmarks, i.e., INS, CNS and TNS, is also provided. Since the

multiplication between H and D−1 −D−1ED−1 as shown in (10) and the calculation of β are

common for all methods, we focus on the calculation of D−1 − D−1ED−1 only. Meanwhile,

the numbers of multiplication and division operations are used to quantize the computational

complexity due to their dominance in computation. Since K ≫ 1, only the highest order terms

of K are kept in the following analysis.

The calculation of D−1 − D−1ED−1 can be divided into two parts, i.e., the calculation of

D−1 and that of D−1ED−1. The first part is studied as follows. From (19), we have

D−1
A =

1

ω
IK − 1

ω2
Gc. (23)

Since w can be pre-calculated, i.e., (1/ω)IK is known, the calculation of (23) needs K complex

multiplications. Comparatively, since the precondition matrix for CNS in (17) can be rewritten

as [10]

DC = diag0(G) +Gc = diag0(G)(IK + G̃c), (24)
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where

[G̃c]i,j =







[G]−1
i,i [Gc]i,j if i > 1, j = 1,

0 otherwise.
(25)

Thus,

D−1
C = (IK − G̃c)(diag0(G))−1 (26)

and the calculation of D−1
C needs K complex multiplications and K complex divisions. For INS,

since

D−1
I =

1

ωI

IK , (27)

no computation is needed.

For the second part, from (23), calculating D−1
A EA with given D−1

A needs 2K2 complex

multiplications. Then multiplying D−1
A EA with D−1

A needs another 2K2 complex multiplications.

All together, ICNS needs 4K2 complex multiplications for the second part. For the CNS method,

due to the similar structure of D−1
C to that of D−1

A , calculating D−1
C ECD

−1
C also takes 4K2

complex multiplications. As for the INS method, since D−1
I EID

−1
I = (1/ω2

I )EI , K2 complex

multiplications are needed for the second part.

For the TNS method, it has been reported in [9] that it needs 6K2 complex multiplications

for the case of L = 1. The explicit division number for D−1
T was not provided. According to

the classical Gauss-elimination method, about K complex divisions are needed. In general, the

inversion of the tri-diagonal matrix is not hardware-friendly, e.g., the modified Gauss-elimination-

based algorithm used in [9] has the sequential nature which further reduces the computation

efficiency of TNS [10]. A summary of the above computation cost can be seen in Table I.

Among the considered four schemes, INS has the lowest complexity while TNS has the highest

complexity. The complexity of ICNS is slightly lower than that of CNS. The complexity increase

for ICNS is 3K2 complex multiplications compared with INS.

TABLE I

COMPUTATIONAL COMPLEXITY OF DIFFERENT PRECODING SCHEMES

Multiplication Division

INS K2 0

CNS 4K2 K

TNS 6K2 K

ICNS 4K2
0
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B. Ordered ICNS Method

Another improvement on ICNS can be obtained via exploiting the multi-user diversity gain,

i.e., choosing the user with largest interference to others as User C. Therefore, the column with

the largest 2-norm (excluding the diagonal elements in each column) is selected to make up

the precondition matrix rather than the first column of G. We name this ordered ICNS method.

Mathematically, define G̃ = G− diag0(G), the precondition matrix DB is given as

DB = ωIK + G̃j⋆ , (28)

where j⋆ = argmaxj ||g̃j||2F with g̃j being the jth column of G̃, [G̃j⋆]i,j⋆ = [G̃]i,j⋆ and [G̃j⋆]i,j =

0, ∀j 6= j⋆, i.

For the ordered ICNS, the norm calculation of all columns of G̃ needs about K2 complex

multiplications. The max operation has significantly lower complexity which can be omitted.

Therefore, the computational complexity of the ordered ICNS is higher than that of ICNS by

K2 complex multiplications.

IV. PERFORMANCE ANALYSIS

In existing works, two criteria have been used to evaluate the performance of the low-

complexity precoding designs [17]. The first one is the asymptotic convergence speed, i.e.,

λmax(−D
−1

E). The second one is the mean square error (MSE) between the noiseless received

signals with the ideal ZF precoding and that with the approximate ZF procoding, i.e.,

E

{∥
∥
∥H

HH
(

G−1 −
∑L

n=0
(−D−1E)nD−1

)

s

∥
∥
∥

2

F

}

.

These are both indirect metrics for the network performance. In this section, we work on the direct

sum-rate performance. As there have been no sum-rate results for any of the aforementioned

schemes, we conduct derivations for both the INS scheme as the most competitive benchmark for

comparison, then for the proposed ICNS scheme. The method we use for performance analysis

can be applied to other NS based low-complexity schemes.

A. Sum-Rate Performance of INS

Based on simulation results, we found that among all existing methods, INS is the most

competitive one for comparison in terms of the tradeoff between performance and complexity.

Therefore, we conduct its performance analysis for analytical comparison.
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From (10) and (27), the precoding matrix for the INS scheme can be written as

WI =
βI

M
H

(
2

ω
IK − 1

ω2
G

)

, (29)

where βI is the power normalization parameter for WI . Notice that ωI is replaced with ω for

better presentation. Consequently, the equivalent channel matrix for the INS precoding can be

represented as

H̃I = HHWI = βI

(
2

ω
G− 1

ω2
G2

)

. (30)

By drawing lessons from [23, Lemma 1], we have the following analysis on the ergodic sum-rate

for large M in massive MIMO systems,

RINS
sum =

K∑

k=1

E

{

log2

(

1 +
|[H̃I ]kk|2

1
ρt
+
∑

j 6=k |[H̃I ]kj|2

)}

≈
K∑

k=1

log2

(

1 +
E{|[H̃I ]kk|2}

1
ρt
+
∑

j 6=k E{|[H̃I ]kj|2}

)

. (31)

A closed-form sum-rate approximation of the INS scheme is given in the following theorem.

Theorem 1: For massive MIMO systems with the BS antenna number M , the channel

correlation c, the user number K and the operation SNR ρt, when M ≫ 1, the sum-rate of

the INS precoding can be approximated as

RINS
sum ≈ K log2

(

1 +
C1

1
ρt

K
M
C2 + (K − 1)C3

)

, (32)

where

C1=

(

2− 1

ω

)2

+
4

cM

(

1− 1

ω

)2

− 2K

cMω

(

2− 1

ω

)

+
K

c2M 2ω

(

−4 +
5

ω

)

+
K2

c2M2ω2
+

K2

c3M 3ω2
, (33)

C2 =

(

2− 1

ω

)2

+
K

cMω

(

−4 +
3

ω

)

+
K2

c2M 2ω2
, (34)

and

C3 =
4

cM

(

1− 1

ω

)2

+
K

c2M 2ω

(

−4+
5

ω

)

+
K2

c3M 3ω2
. (35)

Proof: See Appendix B.

Notice that one typical massive MIMO scenario is when K increases with M with a fixed

ratio. The O(1/M) terms in (33)-(35) are kept due to the multiplication coefficient K in (32).
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B. Sum-Rate of the Proposed ICNS Scheme

From (22), the equivalent channel matrix for the ICNS precoding is

H̃A = HHWA = βA

(

2GD−1
A −

(
GD−1

A

)2
)

. (36)

By following similar procedures in the sum-rate derivations for the INS precoding, but with a

lot more involved details, a closed-form sum-rate approximation for the proposed ICNS scheme

is given in the following theorem.

Theorem 2: For massive MIMO systems with the BS antenna number M , the channel

correlation c, the user number K and the operation SNR ρt, when M ≥ K ≫ 1, the sum-

rate of the proposed ICNS precoding can be approximated as

RA
sum ≈ log2

(

1 +
C4

1
ρt

K
M
C5 + C6

)

︸ ︷︷ ︸

Rate of User 1

+(K − 1) log2

(

1 +
C7

1
ρt

K
M
C5 + C8

)

︸ ︷︷ ︸

Rate of User k, k = 2, ...,K

(37)

where

C4 =

(

2− 1

ω
+

3K

cMω

(

−1 +
1

ω

)

+
K2

c2M 2ω2

(

1− 1

ω

))2

, (38)

C5=

(

2− 1

ω

)2

+
K

cMω

(

−4+
3

ω

)

+
K2

c2M2ω2
+

2

cMω

(

−4 +
14

ω
− 11

ω2
+

2

ω3

)

+
K

c2M 2ω2

(

16−44

ω
+

27

ω2
− 4

ω3

)

+
K2

c3M 3ω3

(

−4 +
13

ω
− 8

ω2
+

1

ω3

)

+
K3

c4M 4ω4

(

1− 1

ω

)2

, (39)

C6 =
4K

cM

(

1− 1

ω

)2

− K2

c2M 2ω

(

4

(

1− 1

ω

)2

− 1

ω

)

+
K3

c3M 3ω2

(

1− 1

ω

)2

, (40)

C7 =

(

2− 1

ω

)2

− 2K

cMω

(

2− 1

ω

)

+
K2

c2M2ω2
+

2

cM

(

2− 4

ω
+

4

ω2
− 1

ω3

)

+
K

c2M2ω

(

−4 +
9

ω
− 4

ω2

)

+
K2

c3M3ω2

(

1− 2

ω

)

, (41)

and

C8 =
4K

cM

(

1− 1

ω

)2

+
K2

c2M 2ω

(

−4 +
5

ω

)

+
K3

c3M 3ω2
+

1

cM

(

4

ω2

(

−2 +
1

ω

)2

− 4

)

+
K

c2M 2ω

(

−4 +
51

ω
− 84

ω2
+

38

ω3
− 4

ω4

)

+
K2

c3M 3ω2

(

15− 66

ω
+

65

ω2
− 20

ω3
+

1

ω4

)

+
K3

c4M 4ω3

(

−8 +
21

ω
− 16

ω2
+

3

ω3

)

+
K4

c5M 5ω4

(

1− 1

ω

)2

. (42)
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Fig. 1. The effect of ω on the sum-rate of INS, ICNS and the ordered ICNS. K = 10, c = 0.5, ρt = 10. Left: M = 60.

Right: M = 100. “simu” denotes the simulated sum-rate; “simu-approx” denotes the simulated sum-rate approximation defined

in (31); “theo-approx” denotes the theoretical sum-rate approximation given in Theorem 1 and 2.

Proof: See Appendix C.

Note that for the effective SINR of User 1, the lower order O(1/M) terms in the signal power

in (38) and interference power in (40) are omitted. However, O(1/M) terms are kept in those

of the effective SINR of Users 2 to K due to the multiplication coefficient K − 1 in (37). Also,

for ICNS, while Users 2 to K have the same effective SINR, the effective SINR of User 1 is

different due to the consideration of User 1’s interference to others in the precondition matrix

design. This is different to INS, where the users are treated homogeneously.

1) The Effect of ω on the Sum-Rate: With the above derived closed-form sum-rate approxi-

mations, we can study the effect of ω on the sum-rate performance and solve the optimal ω for

the INS scheme and the proposed ICNS scheme, respectively, via one-dimensional grid search

for given channel correlation level c, the BS antenna number M , the user number K and the

operation SNR ρt. In Fig. 1, the sum-rates of the INS, the proposed ICNS and ordered ICNS

schemes are shown where c = 0.5, K = 10, ρt = 10 and M = 60 or 100. For M = 60, the

optimal ω values of INS and ICNS are both 1.3 while that of the ordered ICNS is 1.2. For

M = 100, the optimal ω values of INS and ICNS are both 1.2 while that of the ordered ICNS

is 1.1. The heuristic values, ω⋆ in Lemma 1, for M = 60 and M = 100 are 1.33 and 1.2,

respectively. First, the heuristic value is close to the optimal one, especially for INS and ICNS.

Meanwhile, this difference between ω⋆ and the optimal ω only results in small performance

degradation. The plots also show that for ω ≥ ω⋆ the gap between the sum-rates of proposed

ICNS/ordered ICNS and that of INS is relatively small, while for ω < ω⋆ this gap is larger.
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This is because that for large ω, the effect of extra non-zero and non-diagonal elements in the

precondition matrices of ICNS/ordered ICNS become negligible compared with the diagonal

elements.

C. Performance Comparison of MRT, ZF, INS and Proposed ICNS

In the section, we compare the sum-rates of MRT, ZF, INS and the proposed ICNS. Note that

the relaxation parameters in INS and ICNS are the same as given in (20). Three typical cases

are considered: 1) asymptotically large BS antenna number M and user number K with a fixed

loading factor r; 2) finite K (e.g., K = 10 as typical value) with large but finite M ; 3) finite K

with asymptotically large M . Note that Case 3 is a special case of Case 2.

The sum-rates of the ideal ZF and MRT precodings are given first. With the ideal ZF precoding

in (6) and the power normalization in (4), the sum-rate of the ideal ZF is

RZF
sum = K log2

(

1 + S̃INRZF

)

= K log2

(

1 + ρt

(
M

K
− 1

c

))

, (43)

where the effective SINR of User k follows from

S̃INRZF = ρtβ
2
ZF =

ρt
E{tr{(HHH)−1}} =

ρt

cE{tr{(Z̃HZ̃)−1}}
= ρt

cM −K

cK
, (44)

where Z̃ = AHZ is a cM ×K matrix with each column following CN (0, IcM) independently

and the last equality follows from the property of the central complex Wishart matrix [24].

By drawing lessons from [5], a tight sum-rate lower bound of MRT can be expressed as

RMRT
sum ≥ K log2

(

1 + S̃INRMRT

)

= K log2

(

1 +M
/
(
K − 1

c
+

K

ρt

))

. (45)

1) Asymptotically Large M and K with a Fixed Ratio r: Since the maximum multiplexing

gain in the channel with correlation level c is cM , the practical range of r is (0, c]. In the sum-rate

expression for INS in (32), C1 represents the normalized signal power, 1
ρt

K
M
C2 represents the

normalized noise power, and (K−1)C3 represents the normalized interference power. Similarly,

in the sum-rate expression for ICNS in (37), C4 and C7 represent the normalized signal power

and C6 and C8 represent the normalized interference power for User 1 and User 2, · · · , K,

respectively. 1
ρt

K
M
C5 represents the normalized noise power for both User 1 and User 2, · · · , K.

First, the normalized noise power in the SINR of ICNS and that of INS are compared.

1

ρt

K

M
C5−

1

ρt

K

M
C2=

1

ρt
r

[
2

cMω

(

−4 +
14

ω
− 11

ω2
+

2

ω3

)

+
r

c2Mω2

(

16− 44

ω
+

27

ω2
− 4

ω3

)
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Fig. 2. The gap between the normalized signal/interference power of ICNS and INS for User 1 (left) and k = 2, ..., K (right).

+
r2

c3Mω3

(

−4 +
13

ω
− 8

ω2
+

1

ω3

)

+
r3

c4Mω4

(

1− 1

ω

)2]

=O
(

1

ρtM

)

. (46)

Comparisons of the normalized signal power and interference power are then conducted for

User 1 and User k = 2, ..., K, separately, due to their different forms in the ICNS scheme. For

User 1, the gap between the normalized signal power of ICNS and INS is

C4−C1=
r

c

(

− 8

ω
+

16

ω2
− 6

ω3

)

+
r2

c2

(
12

ω2
− 24

ω3
+
11

ω4

)

+

(

− 6r3

c3ω3
+

r4

c4ω4

)(

1− 1

ω

)2

+O
(

1

M

)

,(47)

and the gap between the normalized interference power is

C6 − (K − 1)C3 =
4r2

c2ω2

(

1− 1

ω

)

+
r3

c3ω3

(
1

ω
− 2

)

+O
(

1

M

)

. (48)

Recall that ω = ω⋆ = 1 + r/c. The values of the two gaps in (47) and (48) with respect to

r/c are shown in the left sub-figure of Fig. 2, where the effective loading factor r/c is used

for better clarification. It can been seen that for User 1, the normalized signal power of ICNS

is larger than that of INS when r ≤ 0.61c; while as r further increases the gap decreases to a

negative value. On the other hand, the normalized interference power of ICNS is always larger

than that of INS and the gap increases as r increases.

For ρt ≫ 1, which is favorable for ZF-like precodings, the gap between the normalized noise

power of ICNS and INS can be ignored. Therefore, for r > 0.61c, the effective SINR of User

1 with ICNS is smaller than that with INS. Further for r ∈ [0.22c, 0.61c], as r decreases, the

effective SINR of User 1 with ICNS approaches or even surpass that with INS due to its larger

signal power increment and smaller interference power increment compared with INS.

For User k = 2, ..., K, the gap between the normalized signal power of ICNS and INS is

C7 − C1 =
1

cM

2

ω2

(

2− 1

ω
+
2r

c

(

1− 1

ω

)

− r2

c2ω

)

, (49)



17

and the gap between the normalized interference power is

C8−(K − 1)C3=
1

cM

[
4

ω

(

1− 1

ω

)2(

−2 +
1

ω

)

+
1

ω

(

−8 +
56

ω
− 84

ω2
+

38

ω3
− 4

ω4

)
r

c

+
1

ω2

(

16− 66

ω
+

65

ω2
− 20

ω3
+

1

ω4

)
r2

c2
+

1

ω3

(

−8 +
21

ω
− 16

ω2
+

3

ω3

)
r3

c3
+

1

ω4

(

1− 1

ω

)2
r4

c4

]

.(50)

The normalized values of the two gaps (via multiplying by cM to focus on the effect of r/c)

are shown in the right sub-figure of Fig. 2. It can be seen that for User k = 2, ..., K, ICNS

results in larger signal power for the whole r range and smaller interference power for r ≤ 0.8c.

For r > 0.8c, ICNS brings slightly higher interference power. Recall that the gap between the

normalized noise power of ICNS and INS can be ignored for ρt ≫ 1. Therefore, for r ≤ 0.8c,

ICNS results in larger effective SINR for User k = 2, ..., K.

Remark 1: Based on the above discussions, for the case of asymptotically large M and K

with a fixed non-zero r and ρt ≫ 1, ICNS outperforms INS in sum-rate for r ∈ [0.22c, 0.8c]

due to the SINR increase for K − 1 users. Moreover, the advantage is larger for small r. This

is because that as r decreases, i.e., smaller K for any given M , the ratio of the number of

interference terms that are considered in ICNS, i.e., K− 1, to the whole number of interference

terms, i.e., K2 − K, becomes larger. For r > 0.8c, the sum-rate gap between ICNS and INS

decreases to some extent. For r < 0.22c, ICNS may still have higher sum-rate than INS, while

for r → 0, since the Gram matrix approaches the identity matrix, ICNS and INS both approaches

ZF precoding and thus have the same performance.

Next, we derive the favorable r range of the INS and ICNS, i.e., the range of r that makes

their sum-rates approach or even surpass that of the ideal ZF and no worse than that of MRT

simultaneously. The second condition follows from that for certain large r, even MRT can

outperform ZF in terms of sum-rate due to the large cost of degrees of freedom for interference

cancellation in ZF. Since for the proposed ICNS, the SINR of User 1 is different from those

of Users 2 to K, we study the above problem with the help of the analytical results on INS

and deduce the conclusion for ICNS based on their relationship. First we give the following

corollary.

Corollary 1: For massive MIMO systems with channel correlation level c, SNR ρt and

asymptotically larger M and K with fixed ratio r, the sum-rate of INS is larger than that

of MRT when ρt > rc/(r + c) and approximates that of ideal ZF when r equals to

r∗ =

√

9c2 + 4cρt + 4ρ2t − 3c

2 (c+ ρt)
c. (51)
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Fig. 3. The effect of r on the ratio of the SINR of INS to that of the ideal ZF. c = 0.5

Proof: See Appendix D.

Since rc/(r + c) < 1, it can be known from Corollary 1 that INS has higher sum-rate than

MRT for ρt > 1 (i.e., more than 0 dB). Notice that r∗ < c. Moreover, with the help of the

following plots in Fig. 3, we know that the favorable r range is [r∗, c] if ρt > 1. Specifically,

Fig. 3 demonstrates the relationship between the ratio of the effective SINR of INS to that of the

ideal ZF PrINS and r where c = 0.5, ρt = 10, 13, 16, 20 dB and the corresponding values of r∗

are 0.9071c, 0.9517c, 0.9753c and 0.9901c, respectively. It can be seen that 1) the closed-form

expression for r∗ in (51) is accurate; 2) INS has no smaller sum-rate than the ideal ZF for

r ∈ [r∗, c]. Moreover, r∗ increases as ρt increases. Since the proposed ICNS has higher sum-rate

than INS for r ∈ [0.22c, 0.8c] and ρt ≫ 1 as discussed above, an conservative estimation of the

favorable range r of ICNS is about [max(r∗, 0.22c), 0.8c] if r∗ ≤ 0.8c.

2) Finite K with Large but Finite M: Now we consider large but finite M and finite K

(e.g., K = 10) which is the most general and practical case. For the INS sum-rate result in

Theorem 1, the terms with M2 or higher order term in their denominators, e.g., K2/M2, can be

omitted in the effective SINR components, since they are lower order terms with respect to M

compared with the remaining terms with 1/M or K/M . The terms with 1/M are kept due to

their non-negligible effect on the comparison for Users k = 2, ..., K. Thus, from (33)-(35), the

SINR components for INS can be first approximated as

C1 ≈
(

2− 1

ω

)2

+
4

cM

(

1− 1

ω

)2

− 2

ω

K

cM

(

2− 1

ω

)

, (52)

1

ρt

K

M
C2 ≈ K

Mρt

(

2− 1

ω

)2

, (53)
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(K − 1)C3 ≈ (K − 1)

cM
4

(

1− 1

ω

)2

. (54)

Similarly for ICNS whose sum-rate result is given in Theorem 2, the terms with M2 or higher

order term in their denominators are omitted in the effective SINR components for each user.

For User 1, the terms with 1/M are omitted as well. From (38)-(42), we have

C4 ≈
(

2− 1

ω

)2

− 6

ω

(

2− 1

ω

)(

1− 1

ω

)
K

cM
, (55)

1

ρt

K

M
C5 ≈ K

Mρt

(

2− 1

ω

)2

≈ 1

ρt

K

M
C2, (56)

C6 ≈ K

cM
4

(

1− 1

ω

)2

, (57)

C7 ≈
(

2− 1

ω

)2

+
4

cM

(

1− 1

ω

)2

− 2

ω

K

cM

(

2− 1

ω

)

+
1

cM

2

ω2

(

2− 1

ω

)

, (58)

C8 ≈ 4

(

1− 1

ω

)2
K

cM
+

(

4

ω2

(
1

ω
− 2

)2

− 4

)

1

cM
. (59)

To compare the effective SINR of User 1 with ICNS and that with INS, we further neglect

the terms with 1/M in the approximations of C1 and (K − 1)C3 in (52) and (54), respectively.

Thus, the gap of the normalized signal power and that of normalized interference power for

ICNS and INS are

C4 − C1 ≈ − 2

ω3

K

cM

(
4(ω − 1)2 − 1

)
, C6 − (K − 1)C3 ≈ 0, (60)

respectively. Recall that ω = 1+K/(cM) and K/(cM) ≪ 1 for the considered case which means

w ≈ 1. Since − 2
ω3

K
cM

(
4(ω − 1)2 − 1

)
= − 2

ω3 (ω − 1)
(
4(ω − 1)2 − 1

)
> 0 for ω ∈ (1, 1.5), it

can be concluded that ICNS results in larger signal power than INS for User 1, and consequently

larger effective SINR due to the same interference power. Meanwhile, in the interval ω ∈ (1, 1.5),

C4 − C1 first increases and then decreases as ω decreases (via the increase of M) where the

maximum point is reached at ω = 1.21 (i.e., M = K/(0.21c)). Thus, as M grows, the gap

between the effective SINR of User 1 with ICNS and that with INS first increases for relatively

small M and then decreases as M further grows.

To compare the effective SINR of User k = 2, ..., K with ICNS and that with INS, from

(52)-(59) we have C7 − C1 ≈ 1
cM

2
ω2

(
2− 1

ω

)
= ω−1

K
4
ω3

(
ω − 1

2

)
> 0 for ω = 1 +K/(cM) > 1

and it decreases to zero as M grows. Meanwhile, C8− (K − 1)C3 ≈ 4
ω

(
1
ω
− 2
) (

1− 1
ω

)2 ω−1
K

is

negative and increases to zero as M grows. Therefore, the effective SINR of User k = 2, ..., K

with ICNS is larger than that with INS and the gap decreases as M grows large. An example
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for the comparison between the sum-rate of ICNS and that of INS with finite K and large but

finite M is given in Fig. 4 where c = 0.5, ρt = 10 and K = 10. From the ratio of the sum-rate

of INS to that of ICNS, it can be seen that the sum-rate of ICNS is better than that of INS and

as M grows, the gap first increases for relatively small M and then decreases to zero. The initial

increasing trend is in accordance with the trend of SINR gap for User 1, while the decreasing

trend is intuitive, i.e., as M grows large, the Gram matrix G approaches the identity matrix well

and difference between ICNS and INS becomes negligible.

3) Finite K with Asymptotically Large M: This is actually the asymptotic case of the above

where M can further grow infinitely. Correspondingly, ω = 1 + K/(cM) → 1. Based on the

analysis for the above case, we know that with any given K, the sum-rates of ICNS and INS

become the same as M grows very large. Furthermore, they both grow to infinity as M grows

to infinity. This can be easily seen via further neglecting the terms with K/M and 1/M in all

SINR components of INS and ICNS in (52)-(59). In existing work, finer observations on the

behavior of sum-rates of ideal ZF and MRT are based on the following approximations of (43)

and (45):

RZF
sum ≈ K log2

(

1 +
Mρt
K

)

, RMRT
sum ≈ K log2

(

1 +
Mρt

(K−1)ρt
c

+K

)

. (61)

Using a similar approximation, i.e., ω ≈ 1 and the terms with K/M and 1/M and non-zero

coefficient in (55)-(59) are kept intact, we have

RA
sum ≈ log2

(

1 +
Mρt
K

)

+ (K − 1) log2

(

1 +
Mρt
K

(

1− 2(K − 1)

cM

))

. (62)
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Fig. 5. Comparison between the proposed schemes and existing ones for finite K in terms of the ratio of their sum-rates to

that of the ideal ZF. c = 0.5, ρt = 10, K = 10.

It can be seen that the sum-rates of ICNS (the same as that of INS) and the ideal ZF have the

similar increasing speed with respect to M , while the speed for MRT is smaller especially for

more correlated channel (smaller c) and/or high transmission power. An example with c = 0.5,

ρt = 10 and K = 10 is given in Fig. 4 where both the sum-rates of ICNS and INS approach

that of the ideal ZF for large M while the sum-rate of MRT has much slower convergence rate.

V. NUMERICAL RESULTS

In this section, simulation results are given to show the performance of the proposed schemes

and its comparison with benchmarks, i.e., INS, DNS, TNS and CNS. The relaxation parameters

in the proposed schemes and INS are all set according to (20). Meanwhile, the analytical results

in Theorem 1 and 2 will be verified. We consider two practical cases, i.e., 1) finite K and

growing large but finite M and 2) growing K and M with fixed ratio.

For the case of fixed user number K and increasing BS antenna number M , the ratios of

the sum-rates of proposed and existing low-complexity schemes to that of the ideal ZF are

shown in Fig. 5 where the channel correlation level c = 0.5, the transmission power ρt = 10

and K = 10. It can be seen that 1) with the designed relaxation parameter in (20), INS can

outperform DNS and CNS for correlated channels and practical M and the advantage becomes

more significant as M decreases. This is not explicitly shown in existing works. 2) The proposed

schemes outperform all existing schemes except TNS. Compared with TNS which has higher

complexity, the proposed schemes are largely better for small M , but TNS is slightly better

in sum-rate than ICNS and the ordered ICNS for M > 100 and M > 130, respectively. 3)
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Fig. 6. Comparison between proposed schemes and existing
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sum-rates to that of the ideal ZF. c = 0.5, ρt = 10, r = 0.1.
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Fig. 7. Comparison between proposed schemes and existing

ones for increasing K with M in terms of the ratio of their

sum-rates to that of the ideal ZF. c = 0.5, ρt = 10, r = 0.2.

The sum-rate of the ordered ICNS is better than that of ICNS while the latter is better than

that of INS. This validates the advantage resulted from the more careful handling of the user

interference on the inversion approximation in ICNS as analytically proved in Section IV-C2

and shows the benefit of further exploiting the multi-user diversity in the ordered ICNS.

For the case of increasing M and K with fixed r = K/M , the ratios of the sum-rates of

these low-complexity schemes to that of the ideal ZF are shown in Fig. 6 and 7 where c = 0.5,

ρt = 10 and r = 0.1, 0.2, respectively. It can be seen that 1) the proposed ICNS and ordered ICNS

schemes are superior over most existing ones and the advantage becomes larger for larger r. 2)

Further, both proposed schemes outperform INS, but the advantage becomes smaller for larger r

and larger M . This is because that the advantage of the proposed schemes over INS results from

adding the non-diagonal elements of one column into the precondition matrix. Specifically, the

number of interference terms that are considered in the proposed design is K−1 whose ratio to

the whole number of interference terms K2 −K becomes negligible when K and M increase.

However, for practical range of M , this advantage for ICNS/ordered ICNS with affordable small

extra complexity cost compared with INS is desirable.

For the verification of the analytical results in this paper, due to space limit, we only consider

the closed-form sum-rate approximations given in Theorem 1 and 2 in Fig. 8 and Fig. 9,

respectively. It can be seen that for both the case of fixed K and growing large M and the case of

increasing K and M with fixed ratio r, the derived closed-form sum-rate approximations (denoted
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Fig. 8. Validation of sum-rate approximations of INS and

ICNS in terms of their ratio to the sum-rate of ideal ZF for

finite K. c = 0.5, ρt = 10, K = 10.
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Fig. 9. Validation of sum-rate approximations of INS and

ICNS in terms of their ratio to the sum-rate of ideal ZF for

increasing K with M . c = 0.5, ρt = 10, r = 0.2.

as theo-approx) well match the simulated approximations as given in (31) (denoted as simu-

approx). Meanwhile, the gap between the simulated sum-rates (simu) and the approximations

itself is small and decreases as M grows, which shows the effectiveness of the derived results

and corresponding comparison analysis.

VI. CONCLUSION

For massive MIMO downlink, we studied the first-order NS expansion based low-complexity

approximate ZF prcoding. Different from existing NS based schemes, for the proposed ICNS

scheme, an effective relaxation parameter and one user’s channel interference to others are jointly

introduced into the construction of its precondition matrix. The proposed ordered ICNS further

exploits the multi-user diversity gain based on ICNS. To study the performance loss of ICNS

due to the matrix inversion approximation compared with the ideal ZF and its performance gain

over the competitive benchmark INS, closed-form sum-rate approximations of ICNS and INS

were derived based on which explicit analysis for three typical massive MIMO scenarios were

provided. Finally, simulations verify our analytical results and the better performance-complexity

tradeoff of the proposed schemes over the ideal ZF, INS and other existing low-complexity

ZF precodings for massive MIMO systems with correlated channels, practical large number of

antennas, and not-so-small loading factor.

Appendix A: The Proof of Lemma 1
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For the massive MIMO channel with correlation c, from (1), we have

H = R1/2Z, (63)

where Z = [z1, ..., zK ] whose columns are independent from each other. Then

G =
ZHR1/2R1/2Z

M
=

Z̃HZ̃

cM
, (64)

where the second equality follows from (2) and the definition of Z̃ = AHZ. Notice that Z̃ is a

cM ×K matrix, which is different to H. Since the k-th column of Z̃ satisfies z̃k ∼ CN (0, IcM),

with the help of the Marchenko-Pastur distribution [7], the asymptotic maximum and minimum

eigenvalue of G can be expressed respectively as ā and b̄ in (21). From (12), the relaxation

parameter for INS that maximizes the asymptotic convergence speed of the NS is as in (20).

Appendix B: The Proof of Theorem 1

First we give Lemma 2 as the preliminary for the subsequent derivations. Recall that Z̃ = AHZ

and z̃i is the i-th column of Z̃ in (64).

Lemma 2: For all i 6= j,

E
{∣
∣z̃Hi z̃j

∣
∣
2
}

=cM, E
{∣
∣z̃Hi z̃j

∣
∣
2
z̃Hi z̃j

}
M→∞−→
a.s.

0, (65)

E
{∣
∣z̃Hi z̃j

∣
∣
4
}

/M2 M→∞−→
a.s.

2c2, E
{∣
∣z̃Hi z̃j

∣
∣
6
}

/M3 M→∞−→
a.s.

6c3, (66)

where a.s. denotes the almost sure convergence. For all i,

E
{∣
∣z̃Hi z̃i

∣
∣
2
}

=c2M2 + cM, (67)

E
{∣
∣z̃Hi z̃i

∣
∣
3
}

=c3M3 + 3c2M2 + 2cM, (68)

E
{∣
∣z̃Hi z̃i

∣
∣
4
}

=c4M4 + 6c3M3 + 11c2M2 + 6cM, (69)

E
{
z̃iz̃

H
i z̃iz̃

H
i

}
=(cM + 1) IcM , E

{
z̃iz̃

H
i z̃i
}
= 0. (70)

Proof: Based on the central limit theorem [5], z̃Hi z̃j/
√
cM ∼ CN (0, 1) when M → ∞.

Thus the second formula in (65) and (66) are derived with the help of the moments of nor-

mal distribution. Since z̃Hi z̃i follows the Gamma distribution with shape cM and scale 1,

|z̃Hi z̃i|n, n = 2, 3, 4 follow the generalized gamma distribution and (67)-(69) are obtained via

calculating their expectations. For the first equation in (70), since the (l, k)-th element of

z̃iz̃
H
i z̃iz̃

H
i is

∑cM
n=1 z̃i,lz̃

∗
i,nz̃i,nz̃

∗
i,k, its expectation is calculated with the help of the moments

of normal distribution. The derivation for the last equation in (70) is similar.
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Define F1 =
2
ω
G− 1

ω2G
2, we have

[F1]kj =
2

ω
[G]kj −

1

ω2

K∑

n=1

[G]kn[G]nj , ∀k, j. (71)

Recall that [G]kj = z̃Hk z̃j/(cM), ∀k, j (refer to (64)), thus

E
{
|[F1]kk|2

}
= E

{
|[F1]11|2

}
, ∀k = 2, ..., K,

E

{∣
∣
∣[F1]kj

∣
∣
∣

2
}

= E
{
|[F1]12|

2} , ∀k 6= j. (72)

Based on Lemma 2, E
{
|[F1]11|

2}
and E

{
|[F1]12|

2}
can be derived via some tedious calculations.

For βI , from (4) and (29) we have

E{tr{WIW
H
I }} = E

{

tr

{

βI

M
H

(
2

ω
IK − 1

ω2
G

)
βI

M

(
2

ω
IK − 1

ω2
G

)H

HH

}}

=
β2
I

M
E

{

tr

{(
2

ω
G− 1

ω2
G2

)(
2

ω
IK − 1

ω2
G

)H
}}

=
β2
I

M
E

{

tr

{

F1

(
2

ω
IK − 1

ω2
G

)H
}}

= 1. (73)

Then, from (71) we have
[

F1

(
2

ω
IK − 1

ω2
G

)H
]

kk

=

(

2

ω
[G]kk −

1

ω2

K∑

n=1

[G]kn[G]nk

)(
2

ω
− 1

ω2
[G]kk

)

+

K∑

j=1,j 6=k

(

2

ω
[G]kj −

1

ω2

K∑

n=1

[G]kn[G]nj

)(

− 1

ω2
[G]jk

)

, ∀k. (74)

Since

E

{[

F1

(
2

ω
IK − 1

ω2
G

)H
]

kk

}

= E







[

F1

(
2

ω
IK − 1

ω2
G

)H
]

jj






, for k 6= j, (75)

we have

E

{

tr

{

F1

(
2

ω
IK − 1

ω2
G

)H
}}

= KE

{[

F1

(
2

ω
IK − 1

ω2
G

)H
]

11

}

(76)

which can be obtained via some tedious calculations based on Lemma 2. Finally, from (73), βI

can be obtained. Based on the results of E
{
|[F1]11|

2}
and E

{
|[F1]12|

2}
and βI , (33)-(35) can

be obtained via eliminating the common factor 1/ω2 with the help of (30) and (31).

Appendix C: The Proof of Theorem 2
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Define F2 = 2GD−1
A −

(
GD−1

A

)2
. From (23) we have

[F2]11 =
2

ω

(

[G]11 −
1

ω

K∑

k=2

|[G]1k|
2

)

− 1

ω2





(

[G]11 −
1

ω

K∑

k=2

|[G]1k|
2

)2

+

K∑

n=2

[G]1n

(

[G]n1 −
1

ω

K∑

k=2

[G]nk[G]k1

)

 , (77)

[F2]1j =
2

ω
[G]1j −

1

ω2

(

− 1

ω

K∑

k=2

|[G]1k|2[G]1j +
K∑

k=1

[G]1k[G]kj

)

, ∀j ≥ 2, (78)

[F2]j1 = 2
1

ω

(

[G]j1 −
1

ω

K∑

k=2

[G]jk[G]k1

)

− 1

ω2







(

[G]j1 − 1
ω

K∑

k=2

[G]jk[G]k1

)(

[G]11 − 1
ω

K∑

k=2

|[G]1k|2
)

+
K∑

n=2

[G]jn

(

[G]n1 − 1
ω

K∑

k=2

[G]nk[G]k1

)







, ∀j ≥ 2, (79)

[F2]jj =
2

ω
[G]jj −

1

ω2

((

[G]j1 −
1

ω

K∑

k=2

[G]jk[G]k1

)

[G]1j +

K∑

k=2

[G]jk[G]kj

)

, ∀j ≥ 2, (80)

and

[F2]jm =
2

ω
[G]jm − 1

ω2

((

[G]j1 −
1

ω

K∑

k=2

[G]jk[G]k1

)

[G]1m+

K∑

k=2

[G]jk[G]km

)

,

∀j ≥ 2, m ≥ 2, m 6= j. (81)

It can be seen from (77)-(81) that

E
{
|[F2]1k|

2} = E
{
|[F2]12|

2} , ∀k ≥ 2, (82)

E
{
|[F2]k1|

2} = E
{
|[F2]21|

2} , ∀k ≥ 2, (83)

E
{
|[F2]kk|2

}
= E

{
|[F2]22|2

}
, ∀k ≥ 2, (84)

E
{
|[F2]km|

2} = E
{
|[F2]23|

2} , ∀k ≥ 2, m ≥ 2, k 6= m. (85)

Thus the problem of calculating E
{
|[F2]km|

2} , ∀k,m can be transformed to that of E
{
|[F2]11|

2}
,

E
{
|[F2]12|

2}
, E
{
|[F2]22|

2}
, E
{
|[F2]23|

2}
and E

{
|[F2]21|

2}
. These terms can be derived via

some tedious calculations based on Lemma 2, the observation that cM
∑K

k=2 |[G]1k|2 follows

the Gamma distribution with shape K−1 and scale 1, and three assumptions which are explained

in the following.
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Recall that [G]ij = z̃Hi z̃j/(cM). Since E{[G]ii} = 1, ∀i and its variance is 1/(cM), i.e., the

ratio of its variance to its mean square is negligible for large M , [G]ii can be approximated as

a deterministic value [5], i.e.,

[G]ii ≈ 1, ∀i, when M ≫ 1. (86)

Meanwhile, for K ≫ 1, we have

|[G]12|2 +
∑K

k=3
|[G]1k|2 ≈

∑K

k=3
|[G]1k|2. (87)

which follows from 1) the means of the left and right sides of the equation differ by a factor

of (K − 1)/(K − 2); 2) the ratio of their variances to their mean squares decrease linearly

with K (i.e., approximately deterministic for K ≫ 1). These two assumptions are used in the

calculations of E{|[F2]21|
2}. For the calculation of E{|[F2]11|

2}, besides the assumption in (86),

another used assumption is

K∑

n=2

K∑

k=2,k 6=n

[G]n1[G]1k[G]kn ≈ K − 2

cM

K∑

k=2

|[G]1k|
2, (88)

which follows from

K∑

k=2,k 6=n

[G]1k[G]kn = z̃H1

(
K∑

k=2,k 6=n

z̃kz̃
H
k

c2M2

)

z̃n = z̃H1
K − 2

c2M2

1

K − 2

(
K∑

k=2,k 6=n

z̃kz̃
H
k

)

z̃n

≈ K − 2

c2M2
z̃H1 z̃n =

K − 2

cM
[G]1n, when K ≫ 1. (89)

For βA, from (4) and (22) we have

E
{
tr
{
WAW

H
A

}}
=E

{

tr

{

βA

M
H
(
2D−1

A −D−1
A GD−1

A

)
(
βA

M
H
(
2D−1

A −D−1
A GD−1

A

)
)H
}}

=
β2
A

M
E
{

tr
{(

2GD−1
A −GD−1

A GD−1
A

) (
2D−1

A −D−1
A GD−1

A

)H
}}

=
β2
A

M
E
{

tr
{

F2

(
2D−1

A −D−1
A GD−1

A

)H
}}

. (90)

Further, from (23) we have

F2

(
2D−1

A −D−1
A GD−1

A

)H
=
2

ω
A− 1

ω2
B, (91)

where

[A]11 = [F2]11, [A]kk = [F2]kk −
[G]1k
ω

[F2]k1, k ≥ 2, (92)

[B]11 = [F2]11

(

[G]11 −
K∑

k=2

[G]k1
[G]1k
ω

)

+

K∑

k=2

[F2]1k [G]k1, (93)
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and

[B]kk = [F2]k1

(

− [G]1k
ω

[G]11 + [G]1k −
K∑

n=2

(

− [G]1k
ω

[G]n1 + [G]nk

)
[G]1n
ω

)

+

K∑

n=2

[F2]kn

(

− [G]1k
ω

[G]n1 + [G]nk

)

, k ≥ 2. (94)

Therefore, the calculation of βA is transformed to the calculations of E {[A]11}, E {[A]kk} , k ≥ 2,

E {[B]11} and E {[B]kk} , k ≥ 2. Further, since for k ≥ 2, j ≥ 2 and k 6= j, E {[A]kk} =

E
{

[A]jj

}

and E {[B]kk} = E
{

[B]jj

}

, only E {[A]11}, E {[A]22}, E {[B]11} and E {[B]22}
need to be calculated. These can be obtained via some tedious calculations based on Lemma

2. Note that for E {[B]22}, the approximations in (86) and (87) are also used to simplify the

derivation procedure with negligible difference.

Appendix D: The Proof of Corollary 1

Since the effective SINR for all users with INS are the same, the comparison of sum-rates

can be transferred to the comparison of effective SINRs. Recall that ω = 1+ r/c. The effective

SINR of INS in (32) can be approximated as

S̃INR
I

≈ ρt
r

1

1+ rc
(r+c)2

+ρt
r/c
r+c

, (95)

where O(1/M) terms are omitted in the numerator and denominator of S̃INR
I

. By replacing

K − 1 with K in (45), we have S̃INRMRT ≈ ρt
r/c

1
ρt+c

and

(

1+
rc

(r + c)2
+ρt

r/c

r + c

)

− ρt + c

c
=

(c− ρt) r − ρtc

(r + c)2
< 0, if ρt > rc/(r + c). (96)

The ratio of the effective SINR of INS to that of the ideal ZF in (44) can be written as

PrINS =
S̃INR

I

ρt
(
1
r
− 1

c

) . (97)

From (95), (97) can be transformed to

r3

c3
PrINS

(

−1− ρt
c

)

+
r2

c2
(−2PrINS − 1) +

r

c

(

2PrINS + PrINS
ρt
c
− 2
)

+ PrINS − 1 = 0 (98)

which is a standard cubic equation. For PrINS = 1 and r > 0, (98) becomes a quadratic equation,

i.e.,

− r2

c2

(

1+
ρt
c

)

− 3
r

c
+

ρt
c
= 0. (99)
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It can be easily know that the only positive real root of this quadratic equation is

r∗ =
3−

√

9 + 4ρt
c
+ 4

ρ2
t

c2

−2(1 + ρt
c
)

c (100)

which can be simplified to (51).
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