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Abstract—In this paper, a novel approach, namely real-
complex hybrid modulation (RCHM), is proposed to scale up
multiuser multiple-input multiple-output (MU-MIMO) detection
with particular concern on the use of equal or approximately
equal service antennas and user terminals. By RCHM, we mean
that user terminals transmit their data sequences with a mix of
real and complex modulation symbols interleaved in the spatial
and temporal domain. It is shown, through the system outage
probability, RCHM can combine the merits of real and complex
modulations to achieve the best spatial diversity-multiplexing
trade-off that minimizes the required transmit-power given a
sum-rate. The signal pattern of RCHM is optimized with respect
to the real-to-complex symbol ratio as well as power allocation.
It is also shown that RCHM equips the successive interference
canceling MU-MIMO receiver with near-optimal performances
and fast convergence in Rayleigh fading channels. This result is
validated through our mathematical analysis of the average bit-
error-rate as well as extensive computer simulations considering
the case with single or multiple base-stations.

Index Terms—Multiuser multiple-input multiple-output (MU-
MIMO), detection, real-complex hybrid modulation (RCHM),
successive interference cancellation (SIC), widely-linear receiver.

I. INTRODUCTION

DETECTION of multiuser multiple-input multiple-output
(MU-MIMO) signals in noise is often modeled as an

integer least-squares (ILS) problem, with the goal of minimiz-
ing the Euclidean distance between noisy output and the input
signal multiplied by a channel transition matrix. Due to the
randomness of wireless channels, the MIMO channel matrix
can be badly conditioned, and in this case the performance of
MU-MIMO detection will be largely degraded. Nevertheless,
it has been shown that when the channel matrix has excess
number of rows over columns, even a very simple algorithm
(i.e. matched filter) becomes near-optimal given the hypothesis
of column-wise quasi-orthogonality. This fact has recently
motivated the concept of asymmetric MU-MIMO or massive
MIMO [1], [2]. Despite their promises, the use of large number
of service antennas (and RF chains) over user terminals (UTs)
could be an expensive solution. Moreover, linear MU-MIMO
detection algorithms have their performances quickly moved
away from the optimum with increasing the spatial-domain
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user load, and thus they face challenges arising from the
application in densely populated areas such as stadiums. All
of the above motivate us to revisit the conventional MU-
MIMO detection problem, with particular concern on equal
or approximately equal service antennas and UTs.

In the last two decades, enormous research efforts have been
paid towards achieving a good trade-off between the MU-
MIMO detection performance and computational complexity.
Notable contributions include: reduced-complexity sphere de-
coding [3], [4], lattice-reduction (LR) aided detection and its
evolutions (e.g., [5], [6]), successive interference cancellation
(SIC or equivalently V-BLAST [7]), semi-definite relaxation
[8], likelihood ascent search (LAS) [9], tabu search [10],
[11], belief propagation (BP) [12], block-iterative generalized
decision feedback equalizer (BI-GDFE) [13] as well as their
combinations [6]. A relatively comprehensive review of MU-
MIMO detection algorithms can be found in the tutorial and
survey literature [11], [14].

Despite already remarkable achievements, current MU-
MIMO technology is still challenged by the signal processing
scalability with respect to the size of MU-MIMO networks. It
has been shown that most of existing algorithms are too sub-
optimal for large MIMO systems, and some (e.g. LAS, BP)
are near-optimal only for special cases such as MU-MIMO
with very large size (e.g. 128×128 or above) and lower-order
modulations (e.g. BPSK). One of the remarkable approaches is
the combination of minimum mean-square error (MMSE), LR
and SIC algorithms [6], which generally offers near-optimal
performances. However, the combined approach features very
high computational complexity (5th ∼ 6th order of the MIMO
size). Moreover, the MMSE algorithm requires the knowledge
of signal-to-noise ratio (SNR), which might be a considerable
challenge in interference-limited wireless scenarios.

In light of the literature review, we appreciate that receiver
design for MU-MIMO detection is perhaps already a satu-
rated research topic, and thus seek for an alternative solution
through joint transmitter and receiver design. Motivated by our
earlier work [15], which shows the advantage of using real
modulations and a widely linear (WL) receiver for exploiting
a much higher spatial diversity-gain at the price of halved
spatial multiplexing-gain, the objective of this work is to
combine real modulations with spectrum-efficient complex
modulations (mainly quadrature amplitude modulation, QAM)
to achieve the best spatial diversity-multiplexing trade-off
that minimizes the required transmit-power given a sum-rate.
Such an approach is named real-complex hybrid modulation
(RCHM); and it will be shown that RCHM equips the low-
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complexity MU-MIMO receiver, the combination of WL and
SIC, with near-optimal performances. More specifically, major
contributions of this paper include:

1) The novel concept of RCHM-MIMO, where UTs trans-
mit their data sequences with a mix of real and complex
modulation symbols interleaved in the spatial and temporal
domain. The MU-MIMO receiver is suggested to employ the
WL-SIC algorithm for channel equalization and detection. For
the sake of mitigating error propagation in the SIC procedure,
every user’s decoded data is verified by cyclic redundancy
check (CRC) before interference cancellation; this is the idea
reported in [16], [17].

2) The analytical work of RCHM-MIMO system outage
probability in Rayleigh-fading channels, which shows the
spatial diversity-multiplexing trade-off as a function of real-
to-complex symbol ratio. Moreover, the outage probability is
utilized to optimize the signal pattern of RCHM with the aim
of minimizing the required transmit-power given a sum-rate
and target outage probability, through configuration of the
real-to-complex symbol ratio as well as the power allocation
between real and complex symbols.

3) The theoretical analysis of average bit-error-rate (BER)
for RCHM-MIMO in Rayleigh-fading channels considering
the receiver employs either WL or WL-SIC algorithm. Con-
cerning the exact-BER form for WL-SIC to be mathematically
intractable, an approximate-BER form is proposed using a
state-machine approach. It is shown that the approximate-
BER is very close to the BER obtained through computer
simulations. Moreover, it is found that the BER of WL-SIC
is very close to the maximum likelihood (ML) bound; and it
means that the combination of RCHM and WL-SIC yields a
near-optimal solution for MU-MIMO detection.

4) The analysis of convergence and computational com-
plexity for the WL-SIC algorithm as far as RCHM-MIMO
is concerned. It is shown that RCHM equips the WL-SIC
algorithm with fast convergence and low computational com-
plexity, comparable to the linear zero forcing (ZF) algorithm.

Furthermore, extensive computer simulations are presented
considering the case with single or multiple base-stations. The
performance evaluation involves practical coding and decoding
schemes, perfect or estimated channel information, as well
as geometric user distribution. The performance of RCHM-
MIMO is compared with state-of-the art, and the former
demonstrates remarkable advantages in terms of both the
performance and computational complexity.

The rest of this paper is organized as follows. Section
II presents the system model and preliminaries. Section III
presents the basic concept of RCHM-MIMO and correspond-
ing transceiver design. Section IV analyzes the average BER
and computational complexity of MU-MIMO detection. Com-
puter simulations and discussions are provided in Section V.
Section VI draws the conclusion.

II. SYSTEM MODEL AND PRELIMINARIES

A. Discrete-time Equivalent Model of MU-MIMO Uplink

Consider MU-MIMO uplink communications, where a set
of UTs communicate to the network. It is assumed that the

network side has M service antennas simultaneously serving
K UTs (K ≤M ). It is also assumed that service antennas can
fully share their received waveform for joint signal processing,
and each UT has a single transmit antenna. This assumption
facilitates our technical presentation with the focus on the key
novelty and contributions.

The discrete-time equivalent model of MU-MIMO uplink is
described into the following matrix form

y = Hx + v (1)

where y = [y1, ...., yM ]T stands for the spatial-domain re-
ceived symbol block, x = [x1, ...., xK ]T for a block of
complex symbols with the covariance σ2

xI, with each symbol
selected from a finite constellation set A, with L = |A| the
number of elements in the constellation, H for the channel
transition matrix with the size of (M) × (K), v for the
additive white Gaussian noise with the covariance σ2

vI, and
the superscript [·]T for the matrix/vector transpose. Taking the
large-scale path-loss into account, the channel matrix H can
be decomposed into the Hadamard, or element-wise product
of two (M)×(K) matrices: H = G◦A, where G represents
the small-scale fading of every UT to service-antenna link, and
A the large-scale fading (consisting of path loss, shadowing,
etc.), whose elements am,k, where m ∈ [1,M ], k ∈ [1,K] ,
denote the large-scale fading coefficients from the kth UT to
the mth service antenna. This channel model is flexible in the
sense that it can represent link-level (am,k = 1,∀ m, k), single
base station (BS) (am,k = am′,k,∀ k), or multiple-BS (am,k
depend on the network setup) systems. This work considers
the case where all the large-scale fading coefficients in A are
unitary unless otherwise noted. The case of non-normalized A
is considered in the multiple base-station scenario simulations
in Section V.

B. Preliminaries of MU-MIMO Detection

The general problem of MU-MIMO detection is easy to
state. Given the channel matrix H, how to find the estimate x̂
that minimizes the Euclidean distance through the following
objective function

x̂ = arg min
x∈AK

‖y −Hx‖. (2)

This is known as the classical ILS problem, of which the
optimal solution x̂ can be obtained through the ML brute
force or sphere decoding algorithm [3]. However, optimal
algorithms are very non-linear and computationally inefficient,
and they face challenges of practical implementation for future
wireless networks with increasing the size of the channel
matrix. Moreover, other non-linear algorithms reviewed in
Section I are either too expensive in computational cost or
too suboptimal in performances.

It is our aim to find an approach that can offer comparable
receiver complexity to the linear ZF algorithm whilst near-
optimal performances. To this end, we revisit the ZF algorithm,
which employs the matrix WZF = (HHH)−1HH to equalize
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the MIMO channel 1

z = WZFy = x + (HHH)−1HHv (3)

where [·]H stands for the matrix/vector Hermitian transpose.
After the channel equalization, every user’s message is indi-
vidually decoded. The complexity of ZF channel equalization
is O(MK2), and the decoding complexity is K times the
single-user decoding complexity. In terms of the performance,
the SNR for the kth element of z is given by [18]

γk = γ0
det(HHH)

det(H̃HH̃)
, (4)

where H̃ is formed by removing the kth column of H and
γ0 = σ2

x/σ
2
v . Assuming H to be an i.i.d. complex Gaussian

matrix, γk/γ0 is shown to be chi-square distributed with
2(M −K + 1) degrees of freedom, i.e. γk/γ0 ∼ χ2(2(M −
K + 1)), and the system outage probability is approximately
[19]

P(4)
out = 1− P

(
K⋂
k=1

{
I(zk ; xk|H) ≥ R

K

})
(5)

= 1−
(
P
(

log(1 + γk) ≥ R

K

))K
(6)

≈ K P
(
γk < 2R/K − 1

)
(7)

= K F(γk/γ0)

(
2R/K − 1

γ0

)
(8)

≈ K(2R/K − 1)DCPLX

DCPLX!
γ−DCPLX

0 , (9)

where R is the target system sum-rate and thus R/K is
the target data rate of each individual user2, I(zk ; xk|H)
is the maximum instantaneous mutual information between
the k-th element of z and x. Eq.(6) is due to independence
among the K streams, (7) is obtained through the first-order
Taylor approximation, (8) from the definition of the cumulative
distribution function (CDF), (9) from the approximation of
the X 2 CDF, accurate when the argument is small [20, Eq.
(5.66)], and DCPLX = M − K + 1 is the spatial diversity
order. Comparing to the optimal algorithms with diversity
order M (or equivalently, 2M degrees of freedom), the ZF
algorithm is too suboptimal in terms of degrees of freedom
and spatial diversity order, particularly for the case of M = K
(or M ≈ K).

In our recent work [15], UTs are suggested to transmit real
symbols in order to achieve a higher spatial diversity-order
without sacrificing the computational complexity. Basically,
the linear model (1) can be written into a real-signal equivalent

1The ZF channel equalizer can be trivially replaced by the MMSE channel
equalizer. It will be shown that the ZF/WL-SIC receiver is already near-
optimal for RCHM-MIMO, and thus the use of MMSE-SIC receiver offers
almost the same performance; but the latter requires an additional computa-
tional expense for the SNR estimation. Therefore, in this paper our discussion
is focused on the ZF approach due to its simplicity.

2Here we consider an equal rate for each UT. As justified in [19], a
generalization to unequal rate assignment is immediate, since equal or unequal
rate assignments have the same diversity.

form[
<(y)
=(y)

]
︸ ︷︷ ︸

=y̆

=

[
<(H) −=(H)
=(H) <(H)

] [
<(x)
=(x)

]
+

[
<(v)
=(v)

]
︸ ︷︷ ︸

=v̆

(10)
Since x is a real vector, we have =(x) = 0 and can rewrite
(10) into

y̆ =

[
<(H)
=(H)

]
︸ ︷︷ ︸

=H̆

<(x) + v̆ (11)

Then, the ZF algorithm can be applied onto y̆ with WZF
being redefined as: WZF = (H̆HH̆)−1H̆H , and the channel
equalized signal now becomes

z̆ = <(x) + (H̆HH̆)−1H̆H v̆ (12)

The SNR for the kth element of z̆ takes the same mathematical
form as (4), with H being replaced by H̆, and H̃ formed by
removing the kth row of H̆. Since H̆ is an i.i.d. Gaussian
matrix with the size (2M)× (K), γk can be shown to be chi-
square distributed with (2M−K+1) degrees of freedom [15].
Similar to the derivation of (9), the system outage probability
is approximately

P (12)
out ≈

K(22R/K − 1)DREAL

Γ(DREAL + 1)
γ−DREAL
o (13)

where DREAL = M − K/2 + 1/2, and Γ(·) is the gamma
function. It can be concluded that the use of real modulations
effectively increases the spatial diversity-order by (K − 1)/2
without penalty to the computational complexity. On the other
hand, the spatial multiplexing-gain is reduced by K/2 in
comparison to the complex modulation.

It is worthwhile to note: 1) The procedure (10)-(12) is well
known as the WL processing, which achieves superior perfor-
mance over strictly linear filters when the signal, interference
or noise is improper [21], [22]. In communication systems,
the WL algorithm is often employed to process real signals
to exploit the signal improperness [15], [23]-[25]. Practical
use cases include GSM systems, where the WL algorithm
is employed for single-antenna interference cancellation [26]-
[28]. Moreover, WL processing has been utilized in multiple-
antenna systems including V-BLAST spatial multiplexing [25],
[29], space-time codes (STC) [27], [30], [31], and it was
shown that the use of improper signaling is able to achieve an
increased achievable rate over conventional proper Gaussian
signaling for the MIMO interference channel (MIMO-IC) in
[32] and for the MISO interference channel (MISO-IC) in [33].

2) The use of real modulations results in performance
penalty for the ML optimal algorithms. It is shown that the
spatial diversity-order of ML is M regardless of modulations
[18], [20], then the approximate system outage probabilities
for complex and real modulations using the ML receiver are

P(cplx)
out ≈ K(2R/K − 1)M

M !
γ−M0 , (14)

P(real)
out ≈ K(22R/K − 1)M

M !
γ−M0 . (15)
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Denote γ(cplx) and γ(real) to be γ0 in the cases of complex
and real modulations, respectively. Let P(cplx)

out = P(real)
out , we

can use (14) and (15) to immediately obtain

γ(real)

γ(cplx)
=

22R/K − 1

2R/K − 1
(16)

which shows the performance penalty in SNR when real
modulations are employed in MU-MIMO communications.

As a conclusion of this section, conventional MU-MIMO
with complex modulations is not a scalable technology; as
already recognized by the technical community (e.g. [20] and
many others). The use of real modulations can improve the
spatial diversity-gain for linear MU-MIMO receivers at the
expense of multiplexing gain. In Section III, we will introduce
the concept of RCHM-MIMO, which combines the merits of
real and complex modulations to achieve a suitable spatial
diversity-multiplexing tradeoff that can largely improve the
scalability of MU-MIMO detection.

III. RCHM-MIMO SYSTEM, DIVERSITY-MULTIPLEXING
TRADE-OFF, AND WAVEFORM OPTIMIZATION

RCHM-MIMO differs from conventional MIMO systems
mainly in the sense of waveform design. In the RCHM-MIMO
system, every UT transmits a data sequence mixed with real
and complex modulation symbols. Such a scheme belongs
to the family of hybrid modulations, which include spatial
modulation [34], FSK-QAM (F-QAM) [35], interleaving mod-
ulation [36], and some others, with each having their special
use cases. For instance, the spatial modulation is proposed to
increase the multiplexing gain for multi-antenna transmitters
with low-cost RF front-end; F-QAM is proposed for cell-
edge interference mitigation; and the interleaving modulation
is proposed for blind channel estimation. Here, we stress that
RCHM is the hybrid modulation particularly designed for
enhancing the scalability of MU-MIMO uplink communica-
tions3. In this section, we will discuss about the design criteria
of RCHM-MIMO, system outage probability, spatial diversity-
multiplexing trade-off, as well as the optimization of RCHM
waveform.

A. RCHM Waveform and Design Criteria

Definition 1: Denote x̄k = [xk,0, ..., xk,N−1]T to be the
temporal symbol block sent by the kth UT, where N is
the length of the block. The spatial symbol block x in (1)
is now labelled by the time index n ∈ [0, N − 1], i.e.,
xn = [x1,n, ..., xK,n]T . Denote NC,k and KC,n to be the
number of complex symbols in x̄k and xn, respectively.
RCHM requires

0 < NC,k < N, 0 < KC,n < K, ∀k, n. (17)

Note that RCHM turns into real modulation for NC,k = 0,∀k,
or complex modulation for NC,k = N, ∀k.

3Although this paper considers only uplink MU-MIMO communications,
RCHM can be adapted for the MU-MIMO downlink, by taking advantage
of the similarity of the objective functions of MIMO detection in the uplink
(2) and MIMO precoding with vector perturbation in the downlink [37], and
replacing the WL equalizer with a WL precoder.

As far as user fairness and signalling overhead are con-
cerned, the RCHM waveform design should follow three
criteria:

C1) Every spatial block xn,∀n, shall employ the same real-
to-complex symbol ratio, i.e., αn = (K − KC,n)/(KC,n) or
equivalently, KC,n shall be identical for n ∈ [1, N ]. Such
can largely simplify the RCHM-MIMO system design and
optimization. The notations αn and KC,n can be simplified
by omitting the subscript [·]n.

C2) For the sake of user fairness, UTs should be equal
for sharing the spatial degrees of freedom. It means that the
real-to-complex symbol ratio should be identical for all users,
i.e., βk = (N − NC,k)/(NC,k) or equivalently, NC,k shall be
identical for k ∈ [1,K].

C3) UTs can have different pattern to place their real
and complex symbols in the time-domain block x̄k in order
to fulfill the criterion C2). Then, the network will have to
inform UTs regarding the pattern for them to use. The set
of patterns should be made as small as possible so as to
minimize the signalling overhead. Please see Section V for
detailed discussion.

Lemma 1: Given M the maximum of active UTs, a suffi-
cient condition for the criteria C1)-C2) to be satisfied is: N is
a common multiple of the integer set K ∈ {1, 2, ...,M}.

Proof: Denote K?
C to be the optimum of KC given

K. The criterion C1) requires every spatial block to utilize
the optimum real-to-complex ratio α? = (K − K?

C )/K?
C .

According to C2), every UT should have

NC = (NK?
C )/K (18)

where we omit the subscript [·]k for notation simplicity. Since
NC is an integer, it is necessary that (NK?

C ) is a multiple of
K to satisfy (18). This necessary condition is a bit strict since
K?

C is a function of K; as shown in Section III-C. We note
that K?

C is also an integer, hence (18) is still satisfied if N is
a common multiple for K ∈ {1, 2, ...,M}.

When the length of temporal symbol block is configured
according to Lemma 1, it is trivial to find the result α? = β?.
Then, the optimization procedure is simplified by determining
α? or K?

C only. In Sections III-B and III-C, we will introduce
the design and optimization of RCHM-MIMO with the criteria
C1)-C3) to be satisfied.

B. Outage Probability and Spatial Diversity-Multiplexing
Trade-off with ZF Equalizer

Consider the MU-MIMO receiver employing the ZF al-
gorithm for the MIMO channel equalization. The criterion
C1) requires every spatial block xn to use the same real-to-
complex symbol ratio α, hence our outage probability analysis
can ignore the subscript [·]n.

Given KC complex symbols within x, the term <(x) in
(10) remains a K × 1 real vector, and =(x) has KC non-
zero real elements. In order to simplify the notation, we
denote =(x) to be a KC × 1 vector containing only non-
zero elements. In addition, we let H̆1 = H̆ and H̆2 a
(2M) × (KC) matrix formed by collecting KC columns of
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the matrix [−=(H)T ,<(H)T ]T corresponding to =(x). The
real-signal equivalent model (10) reads as

y̆ = [H̆1 H̆2]

[
<(x)

=(x)

]
+ v̆ . (19)

This linear model shares the same form as the conventional
complex-modulated signal model, and thus all of existing
advanced MIMO detection algorithms such as ML, sphere
decoding, LR, LAS, ZF-SIC (or equivalently WL-SIC for
real signals) can be straightforwardly applied to (19). We
appreciate the nature of low computational complexity for the
WL-SIC algorithm, and will show its near-optimality when
handling the signal model (19).

Let us define H = [H̆1 H̆2]. The output of ZF channel
equalizer is

z̆ =

[
<(x)

=(x)

]
+ (H

H
H)−1H

H
v̆ (20)

with dimensions (K + KC) × 1. Furthermore, we denote z̃
to be the resulting 2K × 1 vector after reinserting the zeros
to the vector z̆ in the positions that were removed when
=(x) was formed. Moreover, the equalized signal can then
be reconstructed into its complex form, denoted as z, with
dimensions K×1, with z = z̃[1, K]+jz̃[K+1, 2K], where z̃[1, K]

and z̃[K+1, 2K] denote the first and second half, respectively,
of the elements of z̃.

Denote zk to be the kth element of z, and kR and kC the
indices of those elements that correspond to real and complex
signals, respectively. The SNR for zkR

(the elements of corre-
sponding to the real-valued streams with zero imaginary part)
is X 2-distributed with (2M−K−KC +1) degrees of freedom.
However, the SNR for the real or imaginary components of the
complex streams zkC

does not exactly follow X 2-distribution
but approximately so. Since the real and imaginary component
can exchange their positions within a complex symbol, the
components of zkC

have (2M − K − KC + 2) degrees of
freedom. Given that the elements of z follow two different
distributions, the performance analysis used for real-modulated
MU-MIMO or complex-modulated MU-MIMO having a sin-
gle distribution cannot be straightforwardly applied to the
RCHM-MIMO system.

Lemma 2: Given equal rate for each individual UT, the
system outage probability of RCHM-MIMO with the ZF
channel equalizer is approximately

P (20)
out ≈

(
(K −KC)(22R/(K+KC) − 1)DRCHM

Γ(DRCHM + 1)

+
KC(22R/(K+KC) − 1)(DRCHM+ 1

2 )

Γ(DRCHM + 3
2 )
√
γo

)
γ−DRCHM
o (21)

where DRCHM = (2M−(K+KC−1))/2 is the spatial diversity-
order of RCHM-MIMO.

Proof: For real-modulated signals, the maximum mutual
information between zkR

and xkR
is: IR(k) = 1

2 log(1 + γkR
),

where γkR
/γ0 is chi-square distributed with (2M−K−KC+1)

degrees of freedom; the complex-modulated signals carry
twice the rate of real signals, therefore the maximum mu-
tual information for the kC-th complex modulated signals is:

Fig. 1. The spatial diversity-multiplexing trade-off (GDIV, GMUX) for real,
complex and RCHM modulated MIMO using the ZF channel equalizer.

IC(k) = log(1 + γkC
), where γkC

/γ0 is approximately X 2-
distributed with (2M − K − KC + 2) degrees of freedom.
Given the system target rate R and equal rate assignment for
each element of z̆: Ro = R/(K + KC), the system outage
probability is the probability for at least one of UTs to be
outage

P (20)
out = 1− (P (IR ≥ Ro))K−KC (P (IC ≥ 2Ro))

KC (22)
≈ (K −KC)P (IR < Ro) +KCP (IC < 2Ro) (23)

In (22), we omit the user index for the mutual information
IR and IC since they are user independent in the outage
probability computation. Moreover, the approximation in (23)
is accurate when the outage probabilities for each element are
small. Following the procedure in [20], it is trivial to derive
from (23) to (21).

Lemma 2 shows that the spatial diversity-order of RCHM-
MIMO is DRCHM, which fulfills: DREAL > DRCHM > DCPLX.
Moreover, it is easily understood that the spatial multiplexing-
order of RCHM-MIMO is: (K + KC)/2, which is also in
between of real modulations (K/2) and complex modulations
(K). According to [20], [38], the spatial diversity-multiplexing
trade-off of RCHM-MIMO is given by

GDIV = DRCHM

(
1− GMUX

(K +KC)/2

)
(24)

where GDIV and GMUX stand for the diversity gain and mul-
tiplexing gain, respectively. Eqn. (24) is plotted in Fig. 1
together with the spatial diversity-multiplexing trade-off of
real and complex modulations. The solid line shows the
range where RCHM-MIMO outperforms the real-MIMO and
complex-MIMO in terms of both the spatial diversity-gain and
multiplexing-gain.

C. RCHM Waveform Design and Optimization

The objective of RCHM waveform design and optimization
involves power allocation between real and complex symbols
and real-to-complex ratio optimization, which will be mainly
based on the system outage probability. Moreover, the wave-
form should be designed to minimize the signalling overhead
as well as computational complexity.
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1) Power Allocation: The system outage probability (21)
implicitly assumes that the SNR is identical for both real
and complex symbols, or equivalently a complex symbol
doubles the transmit-power of a real symbol. When the SNR
is different for real and complex symbols, the system outage
probability reads as (cf. (21))

P (20)
out ≈

(K −KC)(22R/(K+KC) − 1)DRCHM

Γ(DRCHM + 1)
γ−DRCHM

R

+
KC(22R/(K+KC) − 1)(DRCHM+ 1

2 )

Γ(DRCHM + 3
2 )

γ
−(DRCHM+ 1

2 )
C (25)

where γR and γC are the transmit-power to noise ratio for real
and complex symbols, respectively, with the relationship

(K −KC)γR + (2KC)γC = (K +KC)γo (26)

where (K + KC)γoσ
2
v is the total transmit-power constraint.

The objective of power allocation is to solve

γ?R = arg min
γR

P (20)
out , s.t. (26) (27)

Theorem 1: Suppose DRCHM to be sufficiently large (e.g.
DRCHM � 1), the power allocation between real and complex
symbols, s.t. (26), should fulfill the condition

γC

γR
≈
(

1

2η
√
DRCHM + 1

) 1
DRCHM+1

(28)

where η =
√
γC/
√

2(2R/(K+KC)) − 1.
Proof: It is not hard to understand that P (20)

out in (25)
is a convex function of γR. Hence, the minimum of P (20)

out
is achieved when (∂P (20)

out )/(∂γR) = 0. It is tedious but
straightforward to solve the equation and obtain

γ
(DRCHM+ 3

2 )
C

γ
(DRCHM+1)
R

=
(DRCHM + 1

2 )Γ(DRCHM + 1)
√

2(2R/(K+KC)) − 1

2DRCHM × Γ(DRCHM + 3
2 )

(29)
Given DRCHM � 1, (29) can be simplified by using a good ap-
proximation: (DRCHM + 1

2 ) ≈ DRCHM. Moreover, the property of
Gamma function: Γ(DRCHM + 3

2 ) ≈ Γ(DRCHM +1)
√
DRCHM + 1

is also a good approximation for DRCHM � 1. Applying these
two approximations in (29) immediately leads to (28).

Considering RCHM-MIMO often operating in a high diver-
sity order, we can use the following limit to further simplifying
(28)

γC

γR
= lim
DRCHM→∞

(
1

2η
√
DRCHM + 1

) 1
DRCHM+1

= 1 (30)

which suggests a complex symbol double the transmit power
of a real symbol for RCHM-MIMO systems with a high
diversity-order (e.g. DRCHM > 5), and in this case we again
have γR = γC = γo.

2) Real-to-Complex Symbol Ratio Optimization: Suppose
DRCHM to be large enough to enable the condition γR = γC =
γo, we can utilize the outage probability (21) to study the
real-to-complex symbol ratio. With the approximation used in
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Fig. 2. Minimum SNR required for RCHM-MIMO to achieve a 1% outage
probability, for real, complex and RCHM modulation. The plots are for a
system with 20 BS antennas and three system loading scenarios with K =
{20, 18, 10}.

the proof of Theorem 1, the outage probability (21) can be
simplified into

P (20)
out ≈

(
(K −KC)η

√
DRCHM + 1 +KC

ηΓ(DRCHM + 1)
√
DRCHM + 1

)
× (22R/(K+KC) − 1)DRCHMγ−DRCHM

o , (31)

or reversely

γo≈ (22R/(K+KC) − 1)(
(K −KC)η

√
DRCHM + 1 +KC

P (20)
out ηΓ(DRCHM + 1)

√
DRCHM + 1

) 1
DRCHM

(32)

Theorem 2: Given the outage probability P (20)
out , M , K, the

optimal real-to-complex ratio is achieved through

K?
C = arg min

KC

γo (33)

and α? = (K −K?
C )/K?

C .
We recognize that (32) is mathematically intractable, and

thus employ a numerical approach to study the optimum ratio
(33). First of all, our numerical results (omitted due to limited
space) have shown that γo is a convex function of KC given
the parameters P (20)

out , M , K. Based on this observation, we
can utilize (32) to find the minimum γo as a function of the
system overall rate R; as a numerical example shown in Fig.
2.

This numerical example delivers some interesting implica-
tions:

i) In fully-loaded systems (M = K = 20), the con-
ventional complex-modulated MU-MIMO always performs
the worst. There is at least 20 dB SNR difference between
the conventional MU-MIMO and the RCHM-MIMO. This is
not surprising as conventional MU-MIMO is not scalable in
the fully-loaded case. The real-modulated MU-MIMO pro-
posed in [15] offers very close SNR to the RCHM-MIMO
at low data rate (e.g. 40 bit/s/Hz or lower), and the SNR
gap grows quickly with the increase of data rate. This is
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TABLE I
DIVERSITY, PAPR, AND # OF INVERSIONS FOR A 20× 20 MU-MIMO WITH MODULATION SCHEMES WITH AN AVERAGE OF 6 BIT/SYMBOL (SUM-RATE

OF 120 BIT/S/HZ).

RCHM Scheme Diversity PAPR # Channel Inversions

Case 1: RCHM 16ASK/256QAM, KC/K = 0.5 5.5 2.73 (4.4 dB) 2
Case 2: null/256QAM, KC/K = 0.75 6 3.53 (5.5 dB) 4

also expected since RCHM-MIMO is designed to achieve
the best spatial diversity-multiplexing trade-off by configuring
KC. It is observed that K?

c is small at the low data rate
(K?

c /K = 10%), and it generally grows with the increase
of data rate. This clearly indicates that RCHM takes more
advantages from complex modulation at higher data rates, and
from real modulations at lower data rates.

ii) In heavily-loaded systems (M = 20,K = 18), the SNR
gap between the conventional MU-MIMO and RCHM-MIMO
reduces to 3− 5 dB, and the gap between the real-modulated
MU-MIMO and RCHM-MIMO gets largely increased (up to
13 dB at the data rate of 120 bit/s/Hz). Again, K?

C/K generally
increases from 22.2% to 77.8% with the increase of data rate.

iii) In lightly-loaded systems (M = 20,K = 10), the spatial
multiplexing-gain becomes more important than the spatial
diversity-gain. This is the case where the real-modulated MU-
MIMO performs the worst, and RCHM-MIMO switches to the
complex-modulated MU-MIMO (i.e. K?

C/K = 100% in most
of cases).

Remark 1: The optimization so far is based on the outage
probability (25), which assumes the doubled rate for complex
symbols over real symbols. More generally, we define a ratio
β = RC/(2Ro) with RC denoting the rate for complex
symbols. Then, the outage probability (25) becomes

P (20)
out ≈

(K −KC)(22RR − 1)DRCHM

Γ(DRCHM + 1)
γ−DRCHM

R

+
KC(22βR/(K+KC) − 1)(DRCHM+ 1

2 )

Γ(DRCHM + 3
2 )

γ
−(DRCHM+ 1

2 )
C

(34)

where RR = R(K + KC(1 − 2β))/(K2 − K2
C ). This result

renders (27) and (33) a complex multi-parameter optimization
problem. Nevertheless, we are able to numerically study the
optimization issue, and find the best performance achieved at:
RR = 0, γR = 0; and the optimum ratio KC/K varies with
respect to K and R; similar to the result depicted in Fig.
2. It suggests the use of null real symbols for the RCHM-
MIMO system. However, we argue that the use of null real
symbols largely increases the peak-to-average power ratio
(PAPR), which is a considerable problem particularly for the
uplink power efficiency. Table I compares the cases with or
without using the null real symbol given the sum rate of 120
bit/s/Hz, β and the power allocation; both are optimized in
terms of the ratio KC/K. Given the comparable diversity-
order (performance), Case 2 shows much higher PAPR than
Case 1. In fact, the PAPR difference increases with the sum
rate since Case 2 has considerably fewer temporal degrees-of-
freedom for the power loading. The other remarkable issue
is that Case 2 costs doubled complexity for the channel

inverse in comparison with Case 1. This is because the ratio
KC/K = 0.5 only introduces two different RCHM patterns,
and KC/K = 0.75 introduces four different RCHM patterns
(see the discussion on RCHM pattern in Section V-A).

IV. BER ANALYSIS FOR RCHM-MIMO WITH ASK-QAM
MODULATION AND ZF-SIC RECEIVER

The theoretical work in Section III is implicitly based on the
assumption of real and complex modulations with Gaussian
codebook, and the detection algorithm after the ZF channel
equalization is assumed to be optimum. In this section, the real
and complex modulations are replaced by LR-ary amplitude
shift keying (LR-ASK) and LC-ary LC-QAM, respectively, and
the receiver employs the ZF-SIC algorithm. We will investigate
the average BER for ASK-QAM modulated MU-MIMO in
i.i.d. Rayleigh-fading channels, and the theoretical result will
be confirmed by simulation results presented in Section V.

A. Briefing The Transmitter-Receiver Chain

The signal model of ASK-QAM MU-MIMO does not have
fundamental difference to the RCHM signal model in Section
III. Apart from using practical modulation schemes, every UT
employs CRC to enable error detection at the receiver side.
Practical forward error correction (FEC) codes can be utilized
to protect the message.

At the receiver side, the ZF-SIC detection procedure is
summarized as follows:

s1) Perform the ZF channel equalization on y̆ in (19);
s2) Perform detection on the output of the channel

equalizer z̆ in (20). This step can be conducted in
parallel for a receiver supporting parallel computing;

s3) Perform CRC check on every detected data se-
quences. Those passed CRC will be subtracted from
the received signal y̆;

s4) Repeat s1)-s3) until: 1) all sequences are successfully
reconstructed, or 2) no new sequence is successfully
reconstructed in the current iteration.

This algorithm is not novel, and it was originally reported for
MIMO detection with QAM modulations [16], [17].

B. Average BER Analysis for ZF-SIC Receiver with ASK-QAM
Hybrid Modulation

Our BER analysis starts from the initial state of the ZF-SIC
process, i.e., the first attempt of signal detection right after the
ZF channel equalization. Considering an ASK-QAM sequence
consisting of NR ASK symbols and NC QAM symbols, the
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average BER of ASK-QAM for the initial state, denoted by
P(0)

e,AQAM, is simply the weighted average

P(0)

e,AQAM =
NR log2(LR)P(0)

e,ASK +NC log2(LC)P(0)

e,QAM

NR log2(LR) +NC log2(LC)
(35)

where P(0)

e,ASK and P(0)

e,QAM denote the average BER for ASK
and QAM, respectively.

Given the instantaneous SNR ρk for the kth LR-ASK
symbol within z̆ in (20), the instantaneous BER of LR-ASK
is given by [39]

P(0)
e,ASK(ρk) ≈ 1

log2 LR

(
2(LR − 1)

LR
Q

(√
6ρk

L2
R − 1

))
(36)

where Q(·) is the Gaussian-Q function, and the approxima-
tion in (35) comes from the employment of log−1

2 (LR) for
converting the symbol error rate to the BER.

When the MIMO channel is i.i.d. complex Gaussian with
zero mean, the instantaneous SNR ρk is chi-square distributed
with ρk ∼ χ2(2DRCHM) [18]. Following the procedure in [15],
[40], the average BER over fading channels is

P(0)

e,ASK= E
ρk

(Pe,ASK(ρk)) (37)

≈ 1

log2 LR

(
LR − 1

LR
− 2(LR − 1)

LR

√
3γo

π(L2
R − 1)

×
Γ(DRCHM + 1

2 )

Γ(DRCHM)
2F1

(
1

2
, DRCHM +

1

2
;

3

2
;
−3γo
L2

R − 1

))
where 2F1( , ; ; ) is the hypergeometric function, E(·) the
expectation, and E(ρk) = γo assuming the power allocation
suggested by (30). Similarly, the average BER for LC-QAM
symbol within z̆ can be derived following the procedure in
[41]

P(0)

e,QAM≈
1

log2(
√
LC)

(√
LC − 1√
LC

− 2(
√
LC − 1)√
LC

√
3γo

π(LC − 1)

× Γ(DRCHM + 1)

Γ(DRCHM + 1
2 )

2F1

(
1

2
, DRCHM + 1;

3

2
;
−3γo
LC − 1

))
(38)

Plugging (37)-(38) into (35) gives the average BER for the
initial state of ZF-SIC.

To facilitate our BER analysis for the iterative process,
we propose a state transition diagram; as shown in Fig.
3. Basically, the notation Sk, k∈[0,K], denotes the transition
states, where k ASK-QAM sequences have been successfully
reconstructed and subtracted. For instance, S0 is the initial
state of the ZF-SIC receiver, where no sequence is subtracted
yet, and SK is which all sequences have been successfully
reconstructed. The notation Ek, k∈[0,K−1], denotes the error
state related to the corresponding state Sk. For instance, E0 is
the error state for the initial state of the ZF-SIC process, and
the state EK−1 represents the error state for the last residual
sequence. According to the algorithm description s1)-s4), the
iterative process starts from S0 and can terminate at any other
states.

Fig. 3. State transition diagram for the BER analysis considering ZF-SIC
receiver.

According to the state transition diagram, the overall aver-
age BER for the ZF-SIC process is given by

Pe,AQAM =

K∑
k=1

P(Ek) · P(k)

e,AQAMf(k) (39)

where P(k)

e,AQAMf(k) is the average BER at Ek, P(k)

e,AQAM the
average BER at Sk 4, and f(k) is defined by

f(k) =

{
(K − k)/K, k 6= K
1, k = K

(40)

Note that the BER forms (35), (37)-(38) also hold for P(k)

e,AQAM

with changes applying to the diversity parameter DRCHM, which
should now be labeled with the superscript (·)(k), i.e., D(k)

RCHM.
This is because successfully reconstructed sequences have
been removed from the input waveform, and such changes
the parameter K to (K − k). We notice that, after removing
k sequences, spatial blocks might not have identical real-
to-complex symbol ratio, and thus D(k)

RCHM can vary between
spatial blocks. This phenomenon largely complicates the BER
analysis. Nevertheless, we can simplify the analysis using

D
(k)
RCHM = M −

K +KC − 1− k
K (K +KC)

2
(41)

which assumes even reduction of real and complex symbols
for every spatial block. Our simulation results in Section V
confirms this assumption to be sufficiently accurate. In addi-
tion, the term γo should be replaced by: γ(k)

o = γo(K−k)/K,
which reflects the signal power reduction due to the sequence
subtraction. In order to prevent possible over-approximation
throughout the above BER analysis, we let

P(k)

e,AQAM = max(P(k)

e,AQAM,Pe,ML) (42)

where Pe,ML is the ML lower bound for the average BER.
According to [18], it is obtained by applying the maximal
diversity-order DRCHM = M in (35), (37)-(38).

Now, our interest moves to the term P(Ek) in (39). As
illustrated in Fig. 3, it is given by

P(Ek) = P(Ek|Sk)P(Sk) (43)

where P(Ek|Sk) is the probability of Ek conditioned on Sk,
and P(Sk) the probability of reaching the state Sk, which can

4The BER at Sk is the number of error bits to all the bits within the (K−k)
remaining sequences, and the BER at Ek is the number of error bits to the
bits within all the K sequences.
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be expressed in a recursive form

P(Sk) =

k−1∑
j=0

P(Sk|Sj)P(Sj) (44)

with P(S0) = 1. The conditional probabilities P(Ek|Sk)
and P(Sk|Sj) are related to the block error rate (BLER) on
the corresponding states, which vary with respect to MIMO
channel realizations. Hence, we utilize the approximate BLER
on state Sj [42]

BLERj ≈ 1− (1− P(j)

e,AQAM)Nb (45)

where Nb = NR log2(LR) + NC log2(LC) is the number of
bits per sequence. Section V will confirm (45) to be suffi-
ciently accurate. Finally, the conditional probability P(Sk|Sj)
is equivalent to the probability of all possible combinations
of (k − j) out of (K − j) ASK-QAM sequences that can be
successfully reconstructed. Hence, it is given by

P(Sk|Sj) =

(
K − j
k − j

)
(1− BLERj)

k−jBLERK−k
j (46)

and accordingly we have

P(Ek|Sk) = 1−
K∑

k=j+1

P(Sk|Sj) = BLERK−k
k . (47)

Such concludes the average BER analysis of the ZF-SIC
receiver for ASK-QAM modulated MU-MIMO systems.

C. Receiver Complexity

The computational complexity of ZF-SIC receiver mainly
comes from the channel matrix inverse and the iterative
interference cancellation process. Considering the ith iteration,
there are Qi different patterns for the spatial blocks, and
the channel matrix H in (19) has Qi different corresponding
forms. Then, the overall computational cost for channel matrix
inverse is

I∑
i=0

O(QiK
2
iM) (48)

where I denotes the number of iterations, and Ki the number
of residual sequences for the ith iteration.

Comparing with the linear ZF receiver, the ZF-SIC receiver
for RCHM-MIMO introduces extra computational complexity
due to the parameters I and Q. Section V will show that the
ZF-SIC receiver features fast convergence (i.e., I � K), and
we can carefully design the pattern of spatial block so as to
make Q� K.

V. SIMULATION RESULTS AND DISCUSSION

A. Configuration of Key Parameters for RCHM-MIMO

The primary objective of computer simulations is to evaluate
RCHM-MIMO uplink communications with emphasis on the
use of equal service antennas and UTs (M = K); as this
is the case that motivates the RCHM-MIMO design. The
modulation schemes employed for RCHM are LR-ASK and
LC-QAM. According to the theoretical work in Section III,
the real-to-complex symbol ratio is set to: α = β = 1, which

is optimized for higher data-rate such as 4 − 6 bit/s/Hz/UT
(see Fig. 2). Moreover, the equal use of real and complex
modulations can largely simplify the transceiver design. In our
simulation examples, UTs have binary option for their signal
pattern transmissions, which remain unchanged during each
temporal block: one follows the pattern [ASK, QAM, ..., ASK,
QAM], and the other follows [QAM, ASK, ..., QAM, ASK]. The
network will inform UTs regarding their pattern with 1-bit
signalling, and this is already the minimal signalling overhead
fulfilling the design criterion C3). When signal patterns are
equally assigned to UTs, the design criteria C1)-C2) are also
satisfied. It is worth noting that the proposed signal pattern is
not the only one that can fulfill the design criteria, and our
simulation results show that this proposed signal pattern is
already near-optimal.

B. Simulations and Performance Evaluation
The key metric utilized for performance evaluation is the

average BER (or average BLER in the case of FEC) as a
function of average received information bit-energy to noise
ratio per receive antenna (i.e., Eb/N0). At the transmitter,
equal power allocation is applied at the bit level, which is
in line with the power allocation strategy suggested by (30).
The channel model of small-scale fading is the Extended
Pedestrian-A (EPA) specified by 3rd Generation Partnership
Project (3GPP) [43], with each tap independently generated
according to the complex Gaussian distribution. Despite the
channel frequency selectivity, our investigation is conducted
only on one of frequency flat sub-channels in an OFDM
system; as this helps to have a better demonstration of the
spatial diversity-multiplexing gain as well as the technical
implication of RCHM-MIMO. Specifically, our computer sim-
ulations include five experiments.

Experiment 1: The aim of this experiment is to examine the
average BER performance of RCHM-MIMO at the link level,
where each UT-to-receiver link has the identical large-scale
path loss, and the MIMO channel matrix H is normalized;
such is the commonly utilized configuration for MU-MIMO
link-level simulations (e.g. [4], [6], [9], [11], [15] and many
others.) In this experiment, we consider every data sequence
having 64 uncoded bits, and 8-bit CRC with the polynomial
‘0x97’ (see [44]) is employed for error detection at the se-
quence level. The average bit/symbol is: 3 (4-ASK/16-QAM),
4 (4-ASK/64-QAM) or 6 (16-ASK/256-QAM), respectively.
We have tested all possible combinations of LR-ASK and LC-
QAM for each considered bit/symbol and found these the best
combinations in terms of the performance. Hence, they will
be utilized throughout Section V.

In Fig. 4, we compare simulation results with the theoretical
BER (39) and the ML lower bound for 20-by-20 RCHM-
MIMO. It is observed that the theoretical BERs are very
close to their corresponding simulations results (< 0.5 dB),
and in general the theoretical BERs are lower than their
corresponding simulation results. This is mainly due to the use
of approximated BLER in (45). Moreover, it is observed that
the difference between simulation results and the ML lower
bound is also very close (< 1 dB). This clearly indicates that
the ZF-SIC receiver is near-optimal for RCHM-MIMO.
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Fig. 4. average BER as a function of Eb/N0 for uncoded 20-by-20 RCHM-
MIMO system.

Fig. 5 demonstrates the average BER performances for
various sizes of RCHM-MIMO. It is observed that, at high
SNRs (e.g., Eb/N0 > 10 dB in the case of 3 bit/symbol),
the BER performances improve with the increasing size of
RCHM-MIMO. It means that the ZF-SIC receiver can effi-
ciently exploit the spatial diversity gain of a larger MU-MIMO
system. Here, we stress that most of low-complexity MU-
MIMO receivers can enjoy the spatial diversity gain only when
they have the knowledge of SNR (or SINR in the presence
of interferences, e.g. [6], [12]), which is not needed at all
in the RCHM-MIMO system. It is also observed that BER
curves with the same bit/symbol are very close to each other
at low SNRs. This phenomenon coincides with the well-known
conclusion that diversity gain appears only at high SNRs [20].

Another remarkable phenomenon is: when the size of
RCHM-MIMO gets sufficiently large (e.g. M = K = 64
or 128), the average BER is very close to the BER of
single-antenna point-to-point (i.e., SISO) communication in
the AWGN channel. The difference between them is less than
0.8 dB in SNR. This is another evidence that the ZF-SIC
receiver is near optimal for RCHM-MIMO. It is perhaps worth
noting that the small gap between the BERs of 128-by-128
RCHM-MIMO and SISO AWGN is mainly due to the CRC
overhead, which results in more than 0.5 dB loss in SNR.

In Fig. 6, we compare the average BER performances
between RCHM-MIMO and conventional MU-MIMO. Due to
the limited space, we only use the average spectral efficiency
of 4 bit/symbol as an example, where correspondingly 16-
QAM is considered for conventional MU-MIMO systems. Our
simulation results are coincide with the well-known conclusion
in the literature that conventional MU-MIMO is not a scalable
technology. Both the ZF-SIC and LR-ZF receivers are too
sub-optimal in MU-MIMO systems (10 − 15 dB away from
the RCHM-MIMO result), and their performances get worse
with the increase of MIMO size. We also compare RCHM-
MIMO with 16-QAM SISO in an AWGN channel; the latter
serves as the BER lower bound for conventional MU-MIMO
systems. We can see that the difference between two systems is
around 5 dB in SNR, which is mainly due to the multiplexing

0 5 10 15 20 25 30

Eb/N0 (dB)

10
-4

10
-3

10
-2

10
-1

10
0

A
v
e

ra
g

e
 B

E
R

12x12

20x20

32x32

64x64

128x128

AWGN

4 bit/symbol

6 bit/symbol

3 bit/symbol

Fig. 5. average BER as a function of Eb/N0 for uncoded RCHM-MIMO
system of different size.
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Fig. 6. Performance comparison between RCHM-MIMO and baselines. For
baseline techniques, 16-QAM is utilized as an example; and correspondingly
the RCHM technique adopts 4 bits/symbol.

inefficiency of using LR-ASK modulation. Nevertheless, to the
best of our knowledge, such is the best performance that a
low-complexity approach can offer.

Experiment 2: The objective of this experiment is to demon-
strate the convergence of ZF-SIC receiver, of which the impact
on the receiver complexity is also discussed.

Fig. 7 shows the average number of iterations required
for the ZF-SIC receiver to reach the end of the iterative
process. Generally, RCHM-MIMO of a larger size requires
more iterations. For instance in the case of 4 bits/symbol, the
peak of average iterations is around 4.5 for 20-by-20 RCHM-
MIMO, and increases to 6 for 32-by-32 MIMO or 13 for 128-
by-128 RCHM-MIMO. Such a difference occurs only at the
peak or a small range around (e.g., Eb/N0 ∈ [13, 16] dB in the
case of 4 bits/symbol). At higher SNRs, the average number
of iterations decreases considerably.

To explain this phenomenon, we study Fig. 5 and Fig. 7
together. It can be observed that the peak of iteration numbers
appears at the SNR range where the spatial diversity gain
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Fig. 7. Average number of iterations of the ZF-SIC receiver vs. Eb/N0 for
various RCHM-MIMO sizes

emerges. For smaller SNRs outside this range, MU-MIMO
systems of different sizes have almost identical and large
BERs. In this case, it is hard to have a single RCHM
sequence to be successfully recovered at the initial widely-
linear processing state, i.e., P(E0) is close to 1 (see Fig. 3);
and thus the detection process terminates after the initial stage
with a large probability. For larger SNRs outside the peak
range, the BERs decrease quickly to a small value (e.g., 0.1%
or below) thanks to the large spatial diversity gain. In this case,
for most of channel realizations, all ASK-QAM sequences are
successfully recovered at the initial ZF channel equalization
stage or the first two iterations, i.e., the receiver only needs a
small number of iterations to reach the state SK (see Fig. 3)
with a large probability.

Moreover, we take 20-by-20 MU-MIMO as an example, and
plot in Fig. 8 the average BER with respect to the number of
iterations. Note that this result reflects the statistical behaviour
of convergence in fading channels. It is observed that the
average BER performance is saturated after three iterations,
and further iteration does not considerably improve the BER
performance. The same conclusion can be drawn for other
sizes of RCHM-MIMO. Then, the computational complexity
of ZF-SIC receiver is now approximately equal to (derived
from (48) with I = 3):

∑3
i=0O(QiK

2
iM).

Experiment 3: This experiment aims to demonstrate the
impact of using different real-to-complex ratio (i.e., α) on
the performance of RCHM-MIMO. The system is 24 × 24
RCHM-MIMO without FEC. The modulation scheme is the
hybrid of 16-ASK and 256-QAM with the real-to-complex
ratio: α = 2/1, 1/1, 1/2, 1/3. Fig. 9 shows the throughput vs.
Eb/N0. It is observed that the peak throughput is inversely
proportional to α. On the other hand, the cases with larger
α offers better throughput at relatively lower SNRs. These
results are fully in line with the spatial diversity-multiplexing
trade-off discussed in Section III-B.

Experiment 4: This experiment aims to demonstrate the
performance of FEC-coded RCHM-MIMO systems as well
as the impact of channel estimation errors. In this experiment,
every block has 640 information bits. The CRC code is CRC-
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24 specified in the LTE standard [45], and the FEC code is
turbo code (TC) with the code-rate of 1/3 or 5/6. The rate-
1/3 TC is constructed according to the structure recommended
by LTE, and the rate-5/6 TC is constructed using the rate-
match method also specified in the LTE standard [45]. The
demodulator utilizes the soft de-mapping approach proposed
in [46] to form soft decision with approximate log-likelihood
ratio (LLR), of which the output is then fed into the turbo
decoder. By this means, the SNR/SINR knowledge is not
needed in the demodulation and decoding process.

Fig. 10 illustrates the average-BLER as a function of
Eb/N0. In contrast with the uncoded results in Fig. 4, we
can observe 6 dB or more gain with rate-1/3 TC and 2.5 dB
or more gain with rate-5/6 TC. It is also observed that the
BLER curves are very steep, and very low BLER (e.g. 1%
or smaller) can be achieved at moderate SNRs (e.g. Eb/N0

∈ [5, 20] dB).
Fig. 10 also illustrated the average-BLER performance

when the least-squares (LS) channel estimation is employed
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Fig. 11. Three cooperating BSs in an edge-excited cell setup.

to obtain the channel state information (CSI). According to
the information-theoretic result in [47], [48], we employ 20
pilots per UT for the LS channel estimation. Pilots and payload
symbols have identical power. By this means, the accumulated
variance of channel estimation errors at each receive antenna
is equal to the noise variance. In this case, the impact of
channel estimation errors is theoretically equivalent to 3 dB
degradation in SNR. This theoretical result is well confirmed
by simulation results depicted in Fig. 10.

Experiment 5: The aim of this experiment is to compare the
average-BLER performances of RCHM-MIMO and conven-
tional MU-MIMO considering an edge-excited cell [49], where
three cooperating BSs with a 100 meter inter-BS distance,
send their baseband signals to a network processing unit that
performs the joint detection, assuming perfect front-hauls; as
shown in Fig. 11. Each BS contains an linear array with 8
semi-directional antennas (M = 3 × 8 = 24) with a 60◦

aperture, oriented towards the center of the cell. Co-located
receive antennas at each BS are correlated with the correlation
coefficient of 0.6, and an exponential correlation model [50]
is used in our simulations. Receive antennas belonging to dif-
ferent BSs are uncorrelated. The cell serves 24 UTs (K = 24)
that are uniformly distributed within the coverage area. The
channel model incorporates both the small-scale fading and
large-scale path loss with shadowing. The small-scale fading
uses the same channel model as used in Experiments 1-4 with
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Fig. 12. Average BLER vs. UT transmit power (dBm/bit) with the cell-
excited setup.
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Fig. 13. The average BLER of each individual user for RCHM-MIMO (left)
and conventional MU-MIMO (right).

the additional consideration of antenna correlation. The large-
scale effects are incorporated in the matrix A described in
(1), with each element of A to be distributed according to the
UMi open square, with the path-loss exponent to be 2.8 and a
shadowing standard deviation of 8.3 dB; as described in [51]
for 5G scenarios. Other key parameters include: 6 bit/symbol
ASK-QAM hybrid modulation; rate-5/6 TC; UT height of
1.65m and BS height of 10m; 2 GHz carrier frequency with 20
MHz signal bandwidth; −174 dBm/Hz noise spectral density;
640 uncoded bits per block, and CRC-24.

Fig. 12 shows that RCHM-MIMO generally outperforms
the conventional MU-MIMO in terms of the transmit-power
efficiency. The only exceptional case is at lower transmit-
power regime (< 3 dBm/bit), where conventional MU-MIMO
with CRC-enhanced ZF-SIC receiver outperforms RCHM-
MIMO. To understand this interesting phenomenon, we plot
in Fig. 13 the BLER results for each individual user. It is
observed that: UTs in the conventional MU-MIMO system
have relatively close BLERs, while in RCHM-MIMO, UT’s
BLER is very location dependent, i.e., UTs close to a BS have
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much better performance than those located at the center of the
edge-excited cell. This clearly indicates that UTs in the con-
ventional MU-MIMO have the performance limited by their
mutual interference, and those in RCHM-MIMO have their
performances limited by the noise. In other words, RCHM-
MIMO has much stronger capability for mutual interference
cancellation, and the BLER at lower transmit-power regime
can be improved through uplink power control.

VI. CONCLUSION

This paper has introduced a novel RCHM-MIMO tech-
nology that can significantly improve the scalability of MU-
MIMO uplink communications particularly for fully-loaded or
heavily-loaded systems. The performance of RCHM-MIMO
has been carefully evaluated through the theoretical analysis
of the system outage probability, average BER or BLER, as
well as extensive computer simulations considering a net-
work with single or multiple BSs. The RCHM pattern has
been carefully designed in terms of the minimized outage
probability, transmit-power efficiency, or minimized signaling
overhead. It has been shown that the ZF-SIC receiver is near
optimal for RCHM-MIMO systems, and the RCHM-MIMO
system as a whole can offer near-optimal MU-MIMO uplink
communications with the receiver complexity comparable with
the linear ZF algorithm.
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