
ar
X

iv
:1

80
5.

06
91

1v
1 

 [
cs

.I
T

] 
 1

7 
M

ay
 2

01
8

On the Capacity of MIMO Broadband Power

Line Communications Channels

Nir Shlezinger, Roee Shaked, and Ron Dabora

Abstract

Communications over power lines in the frequency range above 2 MHz, commonly referred to as

broadband (BB) power line communications (PLC), has been the focus of increasing research attention

and standardization efforts in recent years. BB-PLC channels are characterized by a dominant colored

non-Gaussian additive noise, as well as by periodic variations of the channel impulse response and the

noise statistics. In this work we study the fundamental rate limits for BB-PLC channels by bounding their

capacity while accounting for the unique properties of these channels. We obtain explicit expressions

for the derived bounds for several BB-PLC noise models, and illustrate the resulting fundamental limits

in a numerical analysis.

Index terms— Power line communications, MIMO systems, channel capacity.

I. INTRODUCTION

Power line communications (PLC) utilizes the existing power grid infrastructure for data

transmission. Communications over power lines in the frequency range of 2 − 100 MHz and

possibly beyond, commonly referred to as broadband (BB) PLC [1], has received a significant

research attention which has supported the development of new standards aiming at facilitating

communications at higher data rates [2]. Since the indoor power line physical infrastructure

consists of three wires, it is possible to utilize multiple input ports and/or multiple output ports

at terminals by transmitting and/or receiving over multiple differential wire pairs [3], thereby

realizing multiple input-multiple output (MIMO) communications over BB-PLC channels. The

increasing importance of BB-PLC as a high-speed communications medium constitutes a strong

motivation for characterizing the fundamental rate limits of these channels and the associated

optimal channel coding schemes.
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A major challenge in characterizing the capacity of BB-PLC channels, both for scalar and

for MIMO scenarios, follows since the additive noise in BB-PLC systems is a superposition of

several noise sources, including stationary noise, non-impulsive noise with periodic statistics,

impulsive noise with periodic statistics, and impulsive noise with non-periodic statistics [1,

Ch. 2.6]. The resulting overall BB-PLC noise is generally modeled as a non-Gaussian [4]–[9],

temporally correlated [8]–[12], non-stationary [9], [13]–[16] process, and MIMO BB-PLC noise

components at different output ports are typically assumed to be correlated [2], [3], [20]. The

channel impulse response (CIR) in BB-PLC channels is typically modeled as a multipath channel

[9], [17] with periodic variations [13], [18], [19], where the channel outputs typically contain

crosstalk from other wires [2], [3], [21]–[23]. Common models for the marginal probability

density function (PDF) of BB-PLC noise include the Nakagami-m distribution [4], the Middleton

class A distribution [24], and the Gaussian mixture (GM) distribution [8], [25]. All these models

characterize only the marginal PDF of the additive noise process, while the complete statistics of

the noise process (i.e., the joint PDF of any finite set of sample times) has not been characterized.

The temporal correlation of the stationary noise component is typically characterized via its

power spectral density (PSD), for which various models have been proposed [10]–[12]. The

statistics of the periodic noise component in BB-PLC is commonly modeled as a cyclostationary

process, see [13], [14]. Lastly, the non-periodic impulsive noise component in BB-PLC was

modeled in [15], [16] as a non-stationary process, where [15] modeled the arrival times of the

impulses using a partitioned Markov chain, while [16] modeled these arrival times as a Poisson

process.

To avoid the technical difficulties that arise when analyzing the capacity of BB-PLC channels

using the accurate statistics of the noise, previous works which attempted to characterize the

fundamental rate limits for this channel, used very simplified models which do not capture

many of the special characteristics of the noise in BB-PLC channels: The work [10] evaluated

the capacity of BB-PLC channels modeled as linear time-invariant (LTI) systems with additive

colored stationary Gaussian noise; the work [26] modeled BB-PLC channels as linear periodically

time-varying (LPTV) channels with additive white Gaussian noise (AWGN), and evaluated the

achievable rate by using a transmission scheme which utilizes orthogonal frequency division

multiplexing (OFDM) signalling; the work [7] modeled the noise of BB-PLC channels as a

Middleton class A process and used the expression for the capacity of LTI channels with colored

stationary Gaussian noise (see, e.g., [27, Eq. (9.97)]) to evaluate the capacity. As this expression
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was derived for a stationary Gaussian noise, then naturally it does not apply to Middleton class A

noise. We emphasize that all the works mentioned above, i.e., [7], [10], [26], derived expressions

assuming Gaussian noise, while major works have concluded that the noise is non-Gaussian, see,

e.g., [4], [8], [9]. We also note the work [28], which derived an approximate expression for the

achievable rates when using Gaussian inputs and when using inputs with discrete amplitudes, for

memoryless channels with additive GM noise, which were used for modelling communications in

the presence of co-channel interference. Finally, we note that the capacity of PLC channels in the

narrowband frequency range (0−500 kHz), modeled as additive noise channels in which the CIR

is modeled as an LPTV filter and the noise is a cyclostationary Gaussian process, was derived

in [29]. To the best of our knowledge, the fundamental limits for BB-PLC channels, accounting

for their unique characteristics, including the non-Gaussianity and the temporal correlation of

the noise, as well as the periodic variations of the CIR and of the noise statistics, have not been

characterized to date. In this work we aim to address this gap.

Main Contributions: In this work we study the fundamental rate limits of discrete-time (DT)

BB-PLC channels. We consider a general channel model accounting for a wide range of the

characteristics of BB-PLC channels, in which the CIR is modeled as an LPTV filter, and the

additive noise is modeled as a temporally correlated non-Gaussian cyclostationary process1.

Accordingly, we characterize an upper bound and two lower bounds on the capacity of these

channels. We note that when the noise is not a Gaussian process, obtaining a closed-form

expression for the capacity is generally a very difficult task, even for stationary and memoryless

channels, and the common approach is to characterize upper and lower bounds on the capacity,

see, e.g., [30, Ch. 7.4]. To facilitate the derivation, we first derive bounds on the capacity of a

general LTI MIMO channel with additive non-Gaussian stationary noise. Then, we prove that

the capacity of BB-PLC channels can be obtained from the capacity of non-Gaussian LTI MIMO

channels by properly setting the parameters of the model, and finally we apply the bounds on

the capacity of the latter model to obtain the bounds on the capacity of BB-PLC channels. This

approach yields capacity bounds which depend on the PDF of the noise process only through its

entropy rate and autocorrelation function. Consequently, our bounds can be obtained explicitly

whenever the entropy rate and the autocorrelation function of the noise are known, or can be

1Although the cyclostationary noise statistics does not fully capture the statistics of the non-stationary component of the

BB-PLC noise, it is considered an adequate representation of the overall temporal variations of the statistics of the additive

noise in BB-PLC, see, e.g., [14] and [2, Sec. III-F].
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well-approximated. Next, we derive explicit expressions for the entropy rates for several noise

models applicable to BB-PLC, and use them to explicitly characterize the capacity bounds. We

also identify scenarios corresponding to known BB-PLC channel models, e.g., [4]–[6], [8], in

which the capacity bounds depend only on the marginal PDF and the autocorrelation function

of the noise. In such scenarios the bounds can be explicitly obtained even when the complete

statistical characterization of the noise process is unknown. The proposed capacity bounds hold

for any noise model and distribution. As an example of our results, we numerically evaluate

the capacity for several BB-PLC noise models, including GM, Middleton Class A, and the less

common Nakagami-m model. Our results demonstrate that, in the high signal-to-noise ratio

(SNR) regime, the achievable rate of cyclostationary Gaussian signaling is within a small gap

of capacity. We also clearly show that assuming the noise is Gaussian may result in significantly

underestimating the capacity, and eventually, lead to the design of schemes whose achievable

rates are considerably lower than the maximal bit rate that can be supported by the channel.

The rest of this paper is organized as follows: Section II details the problem formulation; Sec-

tion III derives bounds on the capacity of BB–PLC channels; Section IV presents an application

of the results to the characterization of the capacity for several common BB-PLC models which

previously appeared in the literature; Section V presents numerical examples; Lastly, Section VI

provides some concluding remarks. Detailed proofs of the results are provided in the appendix.

II. PROBLEM DEFINITION

A. Notations

We use upper-case letters, e.g., X , to denote random variables (RVs), lower-case letters, e.g.,

x, to denote deterministic values, and calligraphic letters, e.g., X , to denote sets. Column vectors

are denoted with boldface letters, e.g., x for a deterministic vector and X for a random vector;

the i-th element of x (i ≥ 0) is denoted with (x)i. We use Sans-Sarif fonts to denote matrices,

e.g., A, the element at the i-th row and the j-th column of A is denoted with (A)i,j , the all-zero

k × l matrix is denoted with 0k×l, and the n × n identity matrix is denoted with In. Complex

conjugate, transpose, Hermitian transpose, Euclidean norm, stochastic expectation, covariance,

differential entropy, and mutual information are denoted by (·)∗, (·)T , (·)H , ‖·‖, E{·}, Cov(·),

h(·), and I(·; ·), respectively, and we use a+ to denote max {0, a}, and |·| to denote the magnitude

when applied to scalars, and the determinant when applied to matrices. The sets of non-negative

integers, integers, and real numbers are denoted by N , Z , and R, respectively. All logarithms are
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taken to base-2. Lastly, for any sequence, possibly multivariate, y[i], i ∈ Z , and integers b1 < b2,

yb2
b1

denotes the column vector obtained by stacking
[

(y[b1])
T
, . . . , (y[b2])

T
]T

and yb2 ≡ yb2
0 .

B. Definitions

In the work we make use of the following definitions:

Definition 1 (A MIMO channel with finite-memory). A DT nr × nt MIMO channel with

finite memory consists of an input sequence X[i] ∈ Rnt , i ∈ N , an output sequence Y[i] ∈

Rnr , i ∈ N , an initial state vector S0 ∈ S0 of finite dimensions, and a sequence of PDFs
{

pYn|Xn,S0
(yn|xn, s0)

}∞

n=0
.

Definition 2 (Code). An [R, l] code with rate R and blocklength l ∈ N consists of: 1) A

message set U , {1, 2, . . . , 2lR}. 2) An encoder el which maps each message u ∈ U into an

nt × l codeword matrix X
l−1
(u) ,

[

x(u) [0] ,x(u) [1] , . . . ,x(u) [l − 1]
]

, where x(u) [i] denotes the

inputs at the nt channel input ports at time i. 3) A decoder dl which maps the channel output

sequence
[

y [0] ,y [1] , . . . ,y [l − 1]
]

∈ Rnr×l into a message û ∈ U . The encoder and decoder

operate independently of the initial state, in the sense that S0 does not affect the encoding and

the decoding operations.

The set
{

X
l−1
(u)

}2lR

u=1
is referred to as the codebook of the [R, l] code. Assuming the message U

is uniformly selected from U , the average probability of error, when the initial state is s0, is:

P l
e (s0)=

1

2lR

2lR
∑

u=1

Pr
(

dl
(

Yl−1
)

6= u
∣

∣U=u,S0=s0
)

.

Definition 3 (Achievable rate). A rate Rc is called achievable if, for every ǫ1, ǫ2 > 0, there

exists a positive integer l0 > 0 such that for all integer l > l0, there exists an [R, l] code which

satisfies sup
s0∈S0

P l
e (s0) < ǫ1, and R ≥ Rc − ǫ2.

Definition 4 (Capacity). Capacity is defined as the supremum of all achievable rates.

C. Model and Problem Formulation

We consider a DT ñr×ñt MIMO BB-PLC channel with ñr receive ports and ñt transmit ports,

modeled as a multivariate LPTV system with additive non-Gaussian cyclostationary noise2. Let

2In the following, we use the tilde notation for quantities associated with the MIMO BB-PLC channel, highlighting the fact

that this is a periodic channel model. The same notations without a tilde represent the corresponding quantities associated with

the linear non-Gaussian MIMO channel defined in Subsection III-A, which is a non-periodic channel model.
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m̃ be a non-negative integer which represents the length of the memory of the channel, p̃G be

a positive integer which represents the period of the CIR, and p̃W be a positive integer which

represents the period of the noise statistics. Let W̃[i] ∈ Rñr be a real-valued ñr-dimensional

zero-mean strict-sense cyclostationary non-Gaussian additive noise3, i.e., for any set of k integer

indexes {il}kl=1, k ∈ N , the joint PDF of W̃[i1],W̃[i2], . . . ,W̃[ik] is equal to the joint PDF

of W̃[i1 + p̃W],W̃[i2 + p̃W], . . . ,W̃[ik + p̃W]. Since the channel memory is m̃, then noise

vectors more than m̃ instances apart are mutually independent, i.e., ∀i1, i2, l1, l2 ∈ N such that

i2 > i1 + l1 + m̃, the random vectors W̃i1+l1
i1

and W̃i2+l2
i2

are mutually independent. We further

assume that there is no deterministic dependence between instances of W̃[i], i.e., ∄i0 for which

W̃[i0] can be expressed as a linear combination of
{

W̃[i]
}

i 6=i0
. Let

{

G̃[i, τ ]
}m̃

τ=0
denote the LPTV

CIR. The periodicity of the CIR implies that G̃[i, τ ] = G̃[i+ p̃G, τ ], ∀i ∈ Z, τ ∈ {0, 1, . . . , m̃}.

With the above definitions, the input-output relationship for the MIMO BB-PLC channel with

input codeword length l̃ is given by

Ỹ[i] =

m̃
∑

τ=0

G̃[i, τ ]X̃[i− τ ] + W̃[i], i ∈ {0, 1, . . . , l̃ − 1}, (1)

where the initial state of the channel (i.e., prior to the beginning of reception) is given by

S̃0 =
[

(

X̃−1
−m̃

)T
,
(

W̃−1
−m̃

)T
]T

. The channel input is subject to a time-averaged power constraint

P̃ , as in [29, Eq. (7)] and [31, Eq. (7)]:

1

l̃

l̃−1
∑

i=0

E

{

∥

∥

∥
X̃ [i]

∥

∥

∥

2
}

≤ P̃. (2)

Set p̃ to be the least common multiple4 of p̃G and p̃W which satisfies p̃ > m̃. As the CIR and

the statistics of the noise of the BB-PLC channel (1) are both periodic with period p̃, we refer

to p̃ as the period of the channel. While the above model was stated for real signals, complex

(baseband) BB-PLC channels can be accommodated by this model by representing all complex

vectors and matrices using real vectors and matrices having twice - for vectors, and four times -

3 Previous works which studied the cyclostationarity of BB-PLC noise, [13], [14], did not explicitly conclude whether the noise

process is cyclostationary in the strict-sense or in the wide-sense. We note that in [14, Sec. III-F] it is observed that the marginal

PDF of the noise is periodic, which is an indication that the noise process can be modeled as a strict-sense cyclostationary

process.

4 The common practice in BB-PLC systems, namely, sampling at a rate which is an integer multiple of twice the AC

frequency, typically results in p̃G = p̃W or p̃G = 2p̃W [13]. In this work we allow a general relationship between the periods of

the CIR and of the noise statistics, but still assume synchronized sampling, i.e., we assume that the sampling period is a rational

multiple of the period of the continuous-time CIR as well as of the period of the statistics of the continuous-time noise signal.

Allowing a general relationship facilitates accommodating additional BB-PLC scenarios, e.g., interference-limited BB-PLC, by

our framework.
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for matrices, the number of elements, corresponding to the real and to the imaginary parts of the

complex components, see, e.g., [32, Sec. I]. Accordingly, a complex MIMO BB-PLC channel

with an ñC
t × 1 complex input X̃C[i], an ñC

r × 1 complex output ỸC[i], an ñC
r × 1 complex

additive noise W̃C[i], and an ñC
r × ñC

t CIR
{

G̃
C[i, τ ]

}m̃

τ=0
, can be equivalently represented as a

real MIMO BB-PLC channel corresponding to (1), via the statement in (3).





Re
{

ỸC[i]
}

Im
{

ỸC[i]
}



 =
m̃
∑

τ=0





Re
{

G̃C[i, τ ]
}

−Im
{

G̃C[i, τ ]
}

Im
{

G̃C[i, τ ]
}

Re
{

G̃C[i, τ ]
}









Re
{

X̃C[i− τ ]
}

Im
{

X̃C[i− τ ]
}



+





Re
{

W̃C[i]
}

Im
{

W̃C[i]
}



 .

(3)

In the following section we study the capacity of the MIMO BB-PLC channel defined above

subject to a time-averaged power constraint P̃ . The capacity of this channel is denoted as CPLC.

III. THE CAPACITY OF MIMO BB-PLC CHANNELS

Our main result is the characterization of upper and lower bounds on the capacity of MIMO

BB-PLC channels, defined in (1). This result is obtained via the following three steps:

• First, in Subsection III-A, we define a general LTI nr × nt MIMO channel with stationary

non-Gaussian noise, to which we refer as the linear non-Gaussian MIMO channel (LNGMC).

We express the capacity of the LNGMC as a limit of the maximum mutual information

between its input and its output as the blocklength increases to infinity.

• Next, we derive computable upper and lower bounds on the capacity of the LNGMC, which

are stated in terms of the CIR, and of the entropy rate and autocorrelation of the noise.

• Lastly, in Subsection III-B, we prove that the capacity of the BB-PLC channel can be

obtained as the capacity of an equivalent p̃ × p̃ LNGMC, and use the bounds obtained to

state the corresponding capacity bounds for the BB-PLC channel.

A. Analysis of the Capacity of the LNGMC

We begin with the definition of the LNGMC: Let m be a non-negative integer which represents

the length of the memory of the channel, and let {G[τ ]}mτ=0 denote a set of m + 1 real-valued

nr × nt LTI channel transfer matrices. Let W[i] ∈ Rnr be a multivariate, real-valued, strict-

sense stationary non-Gaussian additive noise process, whose mean is zero and whose temporal

dependence spans a finite interval of length m, i.e., ∀i1, i2, l1, l2 ∈ N such that i2 > i1+ l1+m,

the random vectors Wi1+l1
i1

and Wi2+l2
i2

are mutually independent. For the transmission of a

block of l symbols, the input-output relationship for the channel is given by
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Y[i] =
m
∑

τ=0

G[τ ]X[i− τ ] +W[i], i ∈ {0, 1, . . . , l − 1}, (4)

where the initial state of the channel is given by S0 =
[

(

X−1
−m

)T
,
(

W−1
−m

)T
]T

. The channel input

is subject to a time-averaged power constraint P , i.e.,

1

l

l−1
∑

i=0

E
{

‖X [i]‖2
}

≤ P. (5)

While the definition of the LNGMC in (4)–(5) can be obtained as a special case of the definition

of the MIMO BB-PLC channel in (1)–(2) by setting the period to unity, we use Eqs. (4)–(5)

to highlight the fact that the LNGMC is non-periodic and to introduce the different quantities

associated with the model separately from the periodic MIMO BB-PLC channel model.

The capacity of the LNGMC defined above is stated in the following proposition:

Proposition 1. The capacity of the LNGMC defined in (4) subject to (5) is given by

CL = lim
n→∞

1

n
sup

p(Xn−1): 1
n

n−1∑

i=0
E{‖X[i]‖2}≤P

I
(

Xn−1;Yn−1|X−1
−m = 0nt·m

)

. (6)

Proof: Note that (6) corresponds to the capacity of an information stable channel [33].

Information stable channels can be roughly described as having the property that the input

which maximizes the mutual information and its corresponding output behave ergodically, thus

information stability depends on the conditional PDF of the channel output given the channel

input. Since stationary channels with finite memory are known to be information stable5, see,

e.g., [33, Sec. 1.5], the proposition follows.

Comment 1. Previous works on the capacity of finite-memory channels with Gaussian noise,

e.g., [31], [36], obtained a capacity result in the frequency domain, by transforming the channel

into a set of parallel independent channels, which allows expressing capacity as an explicit

integral. When the noise is non-Gaussian, switching to the frequency domain still results in the

noise components at different frequency bins having statistical dependence (even if the noise

samples are independent in the time domain), and consequently switching to the frequency-

domain in such cases will typically not yield a set of parallel independent channels. For this

reason, our analysis is carried out in the time domain, and the capacity has to be stated in terms

5 The information stability of stationary channels with finite memory, in which the input and the output are taken from discrete

and finite alphabets, was shown in [34], see also [33, Sec. 1.5]. This results also holds for arbitrary alphabets, see [35, Thm. 6].
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of an asymptotic limit. Nonetheless, the bounds on the capacity of LNGMCs, derived in Props.

2 and 3, are stated explicitly (not as limit expressions) in the frequency domain.

Prop. 1 implies that the capacity of the LNGMC can be computed by setting X−1
−m = 0nt·m.

We note that setting the signal component in the initial state to zero was used as a model

assumption in [36] and [37], which studied the capacity of point-to-point channels with memory

and Gaussian noise. Note that by defining the l · nr × l · nt matrix G̃l such that

G̃l,





















G[0] · · · 0 · · · 0
...

. . .
. . .

...

G[m] · · · G[0] · · · 0
...

. . .
. . .

...

0 · · · G[m] · · · G[0]





















, (7)

and setting X−1
−m = 0nt·m, the received signal samples can be expressed as

Yl−1 = G̃lX
l−1 +Wl−1. (8)

Next, based on the capacity expression in Prop. 1, we derive upper and lower bounds on CL,

which depend on the distribution of the non-Gaussian noise W[i] only through its autocorrelation

function, CW[τ ] , E

{

W[i+ τ ]
(

W[i]
)T
}

, and its entropy rate, H̄W , lim
l→∞

1
l
h
(

Wl−1
)

. Note

that the strict-sense stationarity and finite temporal dependence of W[i] imply that the entropy

rate limit exists and that it equals H̄W = h (W[m]|Wm−1) [27, Ch. 12.5].

In the statement of the bounds we make use of the following additional definitions: For

any ω ∈ [−π, π), we define the nr×nt matrix G′(ω) ,
m
∑

τ=0

G[τ ]e−jωτ , and the nr×nr matrix

C′
W
(ω),

m
∑

τ=−m

CW[τ ]e−jωτ , and we let {α′
k(ω)}

nr−1
k=0 and {λ′

k(ω)}
nr−1
k=0 denote the eigenvalues of

G
′(ω)

(

G
′(ω)

)H
and of

(

G
′(ω)

)H(
C
′
W
(ω)
)−1

G
′(ω), respectively. Next, let H̄G,W be the entropy

rate of a zero-mean nr × 1 multivariate Gaussian process with autocorrelation function CW[τ ],

and let CG be the capacity of the channel defined in (4) subject to the constraint (5) and to the

setting X−1
−m = 0nt·m, when the noise W[i] is Gaussian. From [38, Sec. III] the entropy rate

H̄G,W can be expressed as

H̄G,W =
1

4π

π
∫

ω=−π

log |2πeC′
W
(ω)| dω. (9a)

In [37, Eqn. (9)] the capacity of MIMO channels with an LTI CIR and additive stationary
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Gaussian noise was characterized6, assuming the signal component in the initial state is zero

(i.e., X−1
−m = 0nt·m). Using [37, Eqn. (9)] we can write the capacity of the channel (4) when

W[i] is replaced by a zero-mean stationary Gaussian process with the same autocorrelation, as

CG =
1

4π

nr−1
∑

k=0

π
∫

ω=−π

(

log
(

∆′ · λ′
k(ω)

)

)+

dω, (9b)

where ∆′ is selected to satisfy 1
2π

nr−1
∑

k=0

π
∫

ω=−π

(

∆′ − (λ′
k(ω))

−1
)+

dω = P .

Note that H̄G,W and CG, defined in (9), correspond to the entropy rate of a Gaussian noise

process, and to the capacity of a channel with additive Gaussian noise, respectively. These

quantities are used for facilitating the characterization of the bounds on the capacity of the

LNGMC in which the noise is a non-Gaussian process.

We next state an upper bound and two lower bounds on the capacity of the LNGMC using

H̄W, H̄G,W, and CG. First, the upper bound is stated in the following proposition:

Proposition 2. The capacity of the LNGMC defined in (4), subject to the constraint (5), satisfies

CL ≤ CG + H̄G,W − H̄W. (10)

[A proof is given in Appendix A]

Next, two lower bounds on the capacity of the LNGMC are stated in the following Prop. 3:

Proposition 3. The capacity of the LNGMC defined in (4) subject to the constraint (5) satisfies

CL ≥ CG. (11a)

Moreover, if nr = nt and G[0] is invertible, then CL also satisfies

CL ≥
nr

2
log





2πeP

nt
· 2

1
2π·nt

nr−1∑

k=0

π∫

ω=−π

log(α′
k(ω))dω

+ 2
2
nr

H̄W



− H̄W. (11b)

[A proof is given in Appendix B]

6We note that [37, Thm. 1] is stated for a per-codeword power constraint. However, it follows from [37, Sec. 3.1] and from

[30, Ch. 7.3, pgs. 323-324] that the proof of [37, Thm. 1] also holds subject to the time-averaged power constraint (5).
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B. Capacity Analysis for MIMO BB-PLC Channels

In order to obtain bounds on the capacity of MIMO BB-PLC channels, we first prove that any

ñr × ñt MIMO BB-PLC channel, in which the CIR and the noise statistics are periodic with a

period of p̃, can be equivalently represented (in terms of the achievable rates) as an p̃ · ñr× p̃ · ñt

LNGMC, in which the CIR is time-invariant and the noise is stationary. Then, we apply the

capacity bounds derived for the LNGMC to bound the capacity of the original MIMO BB-PLC

channel by considering its equivalent LNGMC with the appropriate dimensions. To that aim,

define two p̃ · ñr × p̃ · ñt matrices, GDCD[0] and GDCD[1], as follows:

GDCD[0],





















G̃[0, 0] · · · 0 · · · 0
...

. . .
. . .

...

G̃[m̃, m̃] · · · G̃[m̃, 0] · · · 0
...

. . .
. . .

...

0 · · · G̃[p̃−1, m̃] · · · G̃[p̃−1, 0]





















, GDCD[1],





















0 · · · 0 G̃[0, m̃] · · · G̃[0, 1]
...

...
. . .

...

0 · · · 0 0 G̃[m̃−1, m̃]
...

...
...

...

0 · · · 0 0 · · · 0





















,

and also define the p̃ · ñr×1 random vector WDCD

[

ĩ
]

, W̃
(̃i+1)·p̃−1

ĩ·p̃
. As WDCD

[

ĩ
]

is given by

the decimated components decomposition (DCD) [42] of W̃[i], the strict-sense cyclostationarity

of W̃[i] induces a strict-sense stationarity of WDCD

[

ĩ
]

. Using these definitions, we construct

an LNGMC with a p̃ · ñt × 1 input XDCD

[

ĩ
]

and a p̃ · ñr × 1 output YDCD

[

ĩ
]

which satisfies

the following input-output relationship for a sequence of l channel inputs:

YDCD

[

ĩ
]

=

1
∑

τ̃=0

GDCD [τ̃ ]XDCD

[

ĩ− τ̃
]

+WDCD

[

ĩ
]

, ĩ ∈ {0, 1, . . . , l − 1}, (12)

where the channel input to the LNGMC (12) has to satisfy an average power constraint

1

l

l−1
∑

ĩ=0

E

{

∥

∥XDCD

[

ĩ
]∥

∥

2
}

≤ PDCD = p̃ · P̃. (13)

Since p̃ > m̃, the initial state of the LNGMC is S0,DCD =
[

XT
DCD[−1],WT

DCD[−1]
]T

. Let CDCD

be the capacity of the LNGMC defined in (12)–(13). The relationship between the capacity of

the BB-PLC channel in (1)–(2) and the LNGMC in (12)–(13) is stated in the following theorem:

Theorem 1. The capacity of the BB-PLC channel, defined in (1), subject to (2) satisfies

CPLC =
1

p̃
CDCD. (14)

[A proof is given in Appendix C]
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Based on Thm. 1 and Props. 2 and 3, we obtain lower and upper bounds on the capacity of

the BB-PLC channel. To that aim, define the p̃ · ñr× p̃ · ñr autocorrelation function CWDCD
[τ̃ ] ,

E
{

WDCD

[

ĩ+ τ̃
]

WT
DCD

[

ĩ
]}

, the entropy rate H̄WDCD
, lim

n→∞

1
n
h
(

Wn−1
DCD

)

, the p̃ · ñr × p̃ · ñt

matrix G′
DCD(ω),

1
∑

τ̃=0

GDCD[τ̃ ]e
−jωτ̃ , and the p̃·ñr×p̃·ñr matrix C′

WDCD
(ω),

1
∑

τ̃=−1

CWDCD
[τ̃ ]e−jωτ̃ .

Next, let
{

α′
DCD,k(ω)

}p̃·ñr−1

k=0
and

{

λ′
DCD,k(ω)

}p̃·ñr−1

k=0
be the eigenvalues of G′

DCD(ω) (G
′
DCD(ω))

H

and of
(

G
′
DCD(ω)

)H(
C
′
WDCD

(ω)
)−1

G
′
DCD(ω), respectively, and, in addition, let H̄G,WDCD

denote

the entropy rate of a zero mean p̃·ñr×1 Gaussian process with autocorrelation function CWDCD
[τ̃ ].

H̄G,WDCD
can be computed via (9a) with C′

WDCD
(ω) instead of C′

W
(ω). Finally, let CDCD,G be

the capacity of the LNGMC (12) when the noise WDCD

[

ĩ
]

is Gaussian with autocorrelation

function CWDCD
[τ̃ ]. Thus, CDCD,G is obtained using (9b) with λ′

DCD,k(ω) and PDCD replacing

λ′
k(ω) and P , respectively. Noting that GDCD[0] has a full rank if and only if G̃

[

ĩ, 0
]

has a full

rank for every ĩ ∈ {0, 1, . . . , p̃− 1} , P̃ [51, Ex. 3.7.4], then, by combining Thm. 1 with Prop.

2, the following upper bound on CPLC is obtained:

Corollary 1. The capacity of the BB-PLC channel defined in (1), subject to (2), satisfies

CPLC ≤
1

p̃

(

CDCD,G + H̄G,WDCD
− H̄WDCD

)

. (15)

Lastly, combining Thm. 1 with Prop. 3, the following lower bounds on CPLC are obtained:

Corollary 2. The capacity of the BB-PLC channel defined in (1), subject to (2), satisfies

CPLC ≥
1

p̃
CDCD,G. (16a)

Moreover, if ñr = ñt and G̃
[

ĩ, 0
]

is non-singular for every ĩ ∈ P̃ , then CPLC also satisfies

CPLC ≥
ñt

2
log

(

2πeP̃

ñt

· 2
1

2π·p̃·ñt

p̃·ñr−1∑

k=0

π∫

ω=−π

log(α′
DCD,k(ω))dω

+ 2
2

p̃·ñr
H̄WDCD

)

−
1

p̃
H̄WDCD

. (16b)

Comment 2. From the proof of Prop. 3 in Appendix B we note that the lower bounds (11b)

in Prop. 3 also lower bound the achievable rate of the LNGMC with stationary multivariate

Gaussian input. This implies that (16b) constitutes a lower bound on the achievable rate of BB-

PLC channels with cyclostationary Gaussian input. Consequently, when (16b) coincides with the

upper bound in (15), then cyclostationary Gaussian inputs are optimal.
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IV. APPLICATION: CAPACITY BOUNDS FOR SEVERAL BB-PLC CHANNEL MODELS

The capacity bounds derived in Section III depend on the marginal distribution of the noise

in the BB-PLC channel, W̃[i], only through its entropy rate. In this section we derive explicit

expressions for the entropy rates of two common non-Gaussian BB-PLC noise models: The

Nakagami-m model [4], and the GM7 model [8]. We first consider the case in which the noise

is an i.i.d. process, and thus its entropy rate is equal to the differential entropy of a single

sample [27, Ch. 4.2]. In such cases, the entropy rate of the noise process can be computed using

only the marginal distribution of the noise. When the noise is correlated, then the derivation

of the entropy rate requires the characterization of the complete statistics of the noise process,

which is typically unavailable for the current BB-PLC channel models. Thus, in this work we

incorporate periodically time varying noise autocorrelation functions by applying LPTV filtering

to an i.i.d. noise process, and using the entropy rate of the resulting output process in our

expressions. In order to apply this approach, we first derive a relationship between the entropy

rates at the input and at the output of LPTV filters, when the input is an i.i.d. process. We

note, however, that for non-Gaussian processes, LPTV filtering typically does not preserve the

marginal distribution of the input process at the output, hence the resulting output process will

typically have a mismatched marginal distribution w.r.t. that of the input process. Accordingly,

the bounds obtained using the proposed approach should be considered as an indication of the

bounds on the capacity of BB-PLC channels with correlated noise. In the following we propose

exact expressions and bounds on the entropy rate H̄WDCD
. These expressions and bounds can

be used in Corollaries 1 and 2 to obtain bounds on the capacity of several BB-PLC models.

A. i.i.d. Complex Nakagami-m Noise

The complex Nakagami-m noise model is a model for the additive noise in baseband BB-PLC

channels [4], accommodated by our real multivariate model (1) by representing complex signals

using real multivariate signals. To facilitate the introduction of this noise model, we recall the

definition of the real-valued Nakagami-m distribution:

Definition 5 (Real-valued Nakagami-m distribution). A real-valued scalar RV is said to follow

a Nakagami-m distribution with shape parameter m ≥ 1
2

and second-order moment Ω > 0 if its

PDF is given by [53, Ch. 4.18]

7The Middleton class A distribution, which is another important BB-PLC noise model, can be approximated using a GM

distribution [8], thus the entropy rate of a Middleton class A noise can be approximated using the entropy rate of a GM process.
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fX (x)=
2

Γ (m)

(m

Ω

)m

x2m−1e−
mx2

Ω , x ≥ 0, (17)

where Γ(·) denotes the Gamma function. We denote this distribution with X ∼ KG (m,Ω).

The real-valued Nakagami-m distribution is commonly used to model the distribution of the

amplitude of the noise in baseband BB-PLC channels [4]–[6], for which the marginal distribution

of the baseband noise is a complex-valued Nakagami-m PDF [4], defined as follows:

Definition 6 (Complex-valued Nakagami-m distribution [4]). Let X ∼ KG (m,Ω), and let Θ

be an RV uniformly distributed over [0, 2π], mutually independent of X . Then, W = XejΘ is a

complex Nakagami-m RV with zero mean and variance Ω, and is denoted by W ∼ CKG (m,Ω).

Letting Ψ(·) denote the Digamma function [53, Tbl. 0.1], the differential entropy of a complex

Nakagami-m RV is stated in the following proposition:

Proposition 4. The differential entropy of W ∼ CKG (m,Ω) is given by:

h (W ) =
1

2 ln(2)
Ψ (m) + log

(

πΩ

m
Γ (m) e

2m−(2m−1)Ψ(m)
2

)

(18)

[A proof is given in Appendix D]

Now, for scalar BB-PLC channels in which the noise is modeled as an i.i.d. complex Nakagami-

m process, the entropy rate H̄WDCD
is given by (18), which can be used in (15)-(16) to obtain

upper and lower bounds on the capacity.

B. i.i.d. Gaussian Mixture Noise

Next, we consider an additive multivariate real-valued GM noise, which is another common

model for BB-PLC noise, see, e.g., [8]. This model is again obtained by representing the complex-

valued baseband channel as a real-valued channel of extended dimensions.

Let fGñr

(

u;m,C
)

denote the PDF of an ñr×1 real Gaussian random vector with mean vector

m ∈ Rñr and covariance matrix C ∈ Rñr×ñr , where u denotes the realization of the random

vector, i.e., fGñr

(

u;m,C
)

= |2πC|−1/2e−(u−m)TC
−1(u−m). The distribution of a GM random

vector W ∈ Rñr is determined by the number of Gaussians nG, nG ≥ 1, the set of positive

mixing parameters {γn}
nG

n=1 satisfying
nG
∑

n=1

γn = 1, the set of mean vectors {mn}
nG
n=1, and the set

of covariances matrices {Cn}
nG

n=1. Using these parameters, the PDF of W is given by:

fW (w) =

nG
∑

n=1

γn · fGñr

(

w;mn,Cn

)

. (19)
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While there is no closed-form analytic expression for the differential entropy of GM random

vectors [50], upper and lower bounds on the differential entropy of GM random vectors can be

obtained as stated in [50, Thm. 2-3], repeated here for convenience:

Theorem. [50, Thms. 2-3]. The differential entropy of a random vector with PDF (19) satisfies

−
nG
∑

n=1

γn·log

(

nG
∑

m=1

γm · fGñr

(

mn;mm,Cm+Cn

)

)

≤ h(W) ≤
nG
∑

n=1

γn·
(1

2
log |2πeCn|−log (γn)

)

.

The bounds in [50, Thms. 2-3] are tight when the number of Gaussian components is small8

and when the Gaussians are well separated from each other [50], which applies to the GM

BB-PLC noise model in [8]. As for i.i.d. noise H̄WDCD
= h (W), [50, Thms. 2-3] provide tight

bounds on the entropy rate of i.i.d. GM noise for small nG and sufficiently separated Gaussians.

C. Correlated Non-Gaussian Cyclostationary Noise

In the previous subsections we studied the differential entropy of two i.i.d. BB-PLC noise

models. As in many BB-PLC systems the noise process is modeled as a temporally correlated [8]–

[12] cyclostationary process [9], [13], [14], we propose an approach for extending the derivation

of the differential entropy for i.i.d. noise models studied in Subsections IV-A–IV-B to correlated

non-Gaussian cyclostationary noise models.

In order to compute the capacity bounds in (15)-(16), it is required to compute 1
p̃
H̄WDCD

,

which is the entropy rate of the multivariate noise process WDCD

[

ĩ
]

. As the noise W̃[i] is

a temporally and spatially correlated non-Gaussian cyclostationary process, then computing the

entropy rate of WDCD

[

ĩ
]

requires the complete statistics of the noise process. We note, however,

that complete statistical models for the noise in BB-PLC channels are currently not available for

most typical BB-PLC scenarios [8]. In the following we apply the widely acceptable practice

of generating a correlated noise process via filtering an appropriate i.i.d. process. Accordingly,

we propose to obtain an explicit expression for the entropy rate by modeling the noise process

as the output of an LPTV filter with an i.i.d. non-Gaussian input. This model accounts for

the non-Gaussianity of the noise, as well as for its cyclostationarity, temporal correlation, and

spatial correlation. We note that the approach has been applied previously in the context of noise

generation for narrowband PLC systems in [46], [47]. The noise signal is generated as described

below: First, we let Ũ[i] ∈ Rñr be an i.i.d. random process, and let
{

F̃[i, τ ]
}m̃

τ=0
be the CIR of

8In the case of nG = 1, i.e., a multivariate Gaussian distribution, the upper bound is the differential entropy.
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an ñr × ñr LPTV filter with period p̃ and memory m̃, where F̃[i, 0] is non-singular ∀i ∈ P̃ . The

noise process is then generated via

W̃ [i] =

m̃
∑

τ=0

F̃[i, τ ]Ũ [i− τ ] . (20)

Note that the resulting noise process W̃ [i] is a strict-sense cyclostationary process with a period

of p̃ samples and a temporal correlation which spans an interval of m̃ samples, hence it satisfies

the model assumptions in Subsection II-C.

We next consider blocks of p̃ · ñr samples of W̃ [i], and restate the LPTV filtering of (20) as a

multivariate LTI filtering of extended dimensions. To that aim, define the p̃ · ñr × p̃ · ñr matrices

F[0] and F[1]:

F[0],





















F̃[0, 0] · · · 0 · · · 0
...

. . .
. . .

...

F̃[m̃, m̃] · · · F̃[m̃, 0] · · · 0
...

. . .
. . .

...

0 · · · F̃[p̃−1, m̃] · · · F̃[p̃−1, 0]





















, F[1],





















0 · · · 0 F̃[0, m̃] · · · F̃[0, 1]
...

...
. . .

...

0 · · · 0 0 F̃[m̃−1, m̃]
...

...
...

...

0 · · · 0 0 · · · 0





















,

and let F′(ω) ,
1
∑

τ=0

F[τ ]e−jωτ . Also, recall that WDCD

[

ĩ
]

, W̃
(̃i+1)·p̃−1

ĩ·p̃
and let U

[

ĩ
]

,

Ũ
(̃i+1)·p̃−1

ĩ·p̃
. From (20) we obtain the following relationship between WDCD

[

ĩ
]

and U
[

ĩ
]

:

WDCD

[

ĩ
]

=

1
∑

τ̃=0

F[τ̃ ]U
[

ĩ− τ̃
]

. (21)

Since Ũ[i] is an i.i.d. process, it follows that the entropy rate of U
[

ĩ
]

is given by p̃ ·h
(

Ũ
)

. We

can now obtain the time-averaged entropy rate of WDCD

[

ĩ
]

as stated in the following lemma:

Lemma 1. The time-average of the entropy rate of WDCD

[

ĩ
]

is given by

1

p̃
H̄WDCD

=
1

2π · p̃

2π
∫

ω=0

log |F′ (ω)| dω + h
(

Ũ
)

. (22)

[A proof is given in Appendix E]

We note that modeling the noise via (20) allows us to evaluate the entropy rate for non-

Gaussian, temporally correlated, and cyclostationary BB-PLC noise models. It should be noted

that, in general, the marginal distribution of W̃[i] may be different than the marginal distribution
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of the i.i.d. signal Ũ[i], e.g., when Ũ[i] follows a complex Nakagami-m distribution, yet, when

Ũ[i] is a GM process, then the filtered process in (20) is also a GM process, but the number of

Gaussians and their parameters may change [43].

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section we numerically evaluate the capacity bounds derived in Section III for various

BB-PLC channels. The simulation study consists of two parts: First, in Subsection V-A we

illustrate the effect of the non-Gaussianity of the noise on the capacity of the channel. Then, in

Subsection V-B we evaluate the capacity bounds for some BB-PLC channel models, considering

both scalar as well as MIMO models, and discuss the tightness of these bounds.

To compute the capacity bounds for the GM noise, we first compute upper and lower bounds

on the differential entropy H̄WDCD
, denoted H̄

(up.)
WDCD

and H̄
(low.)
WDCD

, respectively, as detailed in Sub-

section IV-B. Then, we compute the upper bound in (15) by replacing 1
p̃
H̄WDCD

with 1
p̃
H̄

(low)
WDCD

,

and the lower bound in (16b) (denoted Lower bound 2) is computed with 1
p̃
H̄WDCD

replaced

with9 1
p̃
H̄

(up.)
WDCD

. Lastly, we note that the lower bound in (16a) (denoted Lower bound 1) does not

depend on the entropy rate. As BB-PLC channels exhibit a broad range of signal attenuation and

noise power values, depending on the topology of the power line network and on the appliances

connected to the network [4], [9], [10], [13], we consider a wide range of SNR values.

A. Evaluating the Effect of the non-Gaussianity of the Noise

As noted in Section I, previous works on the fundamental rate limits of BB-PLC channels, e.g.,

[7], [10], [26], assumed that the additive noise is Gaussian, which facilitated obtaining an explicit

expression for the capacity. Nonetheless, BB-PLC noise is typically modeled as a non-Gaussian

process, and two common models for its marginal PDF are the Nakagami-m distribution [4]

and the GM distribution [8]. In the following we illustrate the effect of the non-Gaussianity

of the additive BB-PLC noise on the capacity of the channel, and numerically evaluate the

mismatch induced by assuming that the noise is Gaussian (e.g., as done in some previous works,

including [10], [26]) compared to the actual capacity. To that aim, we consider a memoryless

(m̃ = 1), time-invariant (p̃ = 1), scalar baseband channel, in which the additive noise W̃ [i] is

an i.i.d. process. We consider two marginal distributions of the noise: The first noise process

9Since for a, b > 0, the function f(x) = a · log
(

b + 2x/a
)

− x is monotonically non-decreasing w.r.t. x, then, computing

(16b) with 1
p̃
H̄

(low.)
WDCD

instead of 1
p̃
H̄WDCD

results in a lower bound on the capacity.
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follows a complex GM distribution. In this case, in order to generate W̃ [i], we let Z̃[i] be an

i.i.d. complex process such that
[

Re
{

Z̃[i]
}

, Im
{

Z̃[i]
}

]T

is a 2 × 1 GM random vector with

parameters nG = 3, {γn}3n=1 = {0.7, 0.2, 0.1}, {mn}3n=1 = {[5, 4]T , [−8,−16]T , [−19, 4]T}, and

{Cn}
3
n=1 = {5, 2, 1} · I2, following [8, Fig. 3a]. Then, we set α = E{|Z̃[i]|2}−1/2, and obtain the

noise as W̃ [i] = α · Z̃[i]; We also consider noise with a complex Nakagami-m distribution with

parameters m = 0.8 and Ω = 1, as in [4]. Note that both noise models have a zero mean and a

unit variance. This scenario accounts only for the non-Gaussianity of the noise in the channel

model, and neglects the effects of the channel memory and of the non-stationarity of the noise.

Fig. 1 depicts the capacity bounds for this scenario vs. SNR, defined here as SNR = P̃
E{|W̃ [i]|2}

.

Note that the lower bound in (16a) (Lower bound 1 in Fig. 1), which represents the capacity

of the channel assuming that the noise is Gaussian, does not depend on the actual distribution

of the noise, and is therefore the same for both simulated noise distributions. Observing Fig. 1,

we note that for GM noise, there is a substantial gap between the actual capacity of the channel

and the capacity computed assuming that the noise is Gaussian, especially in high SNR. For

example, at SNR of 12 dB, capacity is not less than 7 bps/Hz, while assuming Gaussian noise,

the SNR has to be increased by at least 9 dB in order to obtain the same capacity of 7 bps/Hz.

A less notable gap is observed for Nakagami-m noise, where an SNR gap of 0.7 dB is observed

for capacity of 7 bps/Hz. Moreover, we note that for the Nakagami-m noise, the lower bound in

(16b) numerically coincides with the upper bound for SNRs greater than 10 dB. As discussed

in Comment 2, this implies that Gaussian inputs are optimal at high SNR for the Nakagami-m

noise channel. For the GM noise model, we observe a gap of 0.5 bps/Hz between the lower

bound (16b) and the upper bound (15), for SNRs above 10 dB. Consequently, as (16b) lower

bounds the achievable rate with Gaussian inputs, we conclude that for the GM noise model, the

achievable rate of Gaussian inputs is at most 0.5 bps/Hz less than capacity at high SNR.

B. Capacity of BB-PLC Channels with Correlated Non-Gaussian Noise

We now use the results in Corollaries 1 and 2 to characterize bounds on the capacity of

practical BB-PLC channel models. The channel models considered here are taken from the recent

literature on BB-PLC channel modeling, and are selected to represent actual BB-PLC channels.

We first study the capacity of the scalar passband BB-PLC scenario: The LPTV CIR is generated
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Fig. 1. Capacity bounds for the i.i.d. noise channel, with

complex Nakagami-m (CKG) and GM noise models.
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Fig. 2. Capacity bounds for the scalar BB-PLC channel,

with the GM1 noise model.

with period a p̃G = 240 and memory length10 m̃ = 4 using the channel generator proposed in

[19], where the parameters used by the channel generator were set to the default values. The

additive noise is a non-Gaussian temporally correlated cyclostationary process, generated using

the approach described in Subsection IV-C: First, an i.i.d. scalar process Ũ [i] is generated, where

we consider three PDFs for Ũ [i]:

• GM1 - a GM PDF based on [8, Fig. 3a] with parameters nG = 3, {γn}3n=1 = {0.7, 0.2, 0.1},

{mn}3n=1 = {5,−8,−19}, and {cn}3n=1 = {5, 2, 1};

• GM2 - a GM PDF based on [40, Fig. 2] with parameters nG = 3, {γn}
3
n=1 = {0.9, 0.07, 0.03},

{mn}3n=1 = {0, 0, 0}, and {cn}3n=1 = {1, 100, 1000};

• MCA - a GM PDF approximating a Middleton Class A PDF as in [41, Ch. 2.7.2] with

parameters based on [40, Fig. 3], i.e., letting A = 0.1 and Ω = 0.01, and setting nG = 10,

γn = e−AAn

n!
, mn = 0, and cn = n/A+Ω

1+Ω
, n ∈ {0, 1, . . . , nG − 1}.

The process Ũ [i] is normalized to have a unit variance, and is then filtered via a spectral shaping

LPTV filter to obtain the scalar BB-PLC noise W̃ [i]. Two spectral shaping LPTV filters with

period p̃W = 120 and memory length m̃ = 4 are used: The first is a filter designed to generate the

periodically time-varying BB-PLC ‘medium disturbed’ correlation profile. This filter is applied

to the GM1 and GM2 noise signals. The second spectral shaping filter is designed to generate

the periodically time-varying BB-PLC ‘heavily disturbed’ correlation profile, and is applied

to the MCA noise model. Both correlation profiles were obtained from actual BB-PLC noise

10Note that the root mean-square (RMS) delay spread in BB-PLC channels is typically on the order of several microseconds,

i.e., around 0.1% of the channel period [3, Tbl. 1]. Thus, following the typical relationship between RMS delay spread and

memory length, see, e.g., [39, Ch. 3.3.1], the memory length is on the order of 1% of the channel period.
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measurements via the procedure detailed in [14]11. Note that for the values selected for p̃G and

p̃W, then p̃, which is the least common multiple of p̃G and p̃W not smaller than m̃, equals

p̃ = 240.

The capacity bounds for the scalar BB-PLC channel vs. SNR, defined here as SNR =

P̃

1
p̃

p̃∑

i=1
E{|W̃ [i]|2}

, are depicted in Figs. 2-4, for the GM1 noise, GM2 noise, and MCA noise,

respectively. Observing Figs. 2-4, we note that the lower bound in (16b) (Lower bound 2 in

Figs. 2-4) is much tighter than the lower bound in (16a) (Lower bound 1 in Figs. 2-4) for

all the noise models considered. Consequently, assuming that the noise is Gaussian results in

a capacity expression which is strictly smaller than the actual capacity, and for most SNR

values, this expression is considerably less than the actual capacity. It thus follows that using

the Gaussian noise assumption leads to schemes whose achievable rates are far from achieving

the maximal bit rate that can be supported by the BB-PLC channel. Additionally, we note that

for SNRs higher than 10 dB, the lower bound (16b) is lower than the upper bound (15) by only

0.25 bps/Hz, 0.8 bps/Hz, and 0.6 bps/Hz, for the the GM1 noise, the GM2 noise, and the MCA

noise, respectively. We conclude that, for the tested scenarios at high SNRs, the bounds in (16b)

and (15) are relatively tight, hence Corollaries 1 and 2 provide a reliable characterization of the

capacity. We also conclude that at high SNRs the achievable rate obtained with cyclostationary

Gaussian inputs is within a small gap from capacity.

Next, we consider a passband 2 × 2 MIMO BB-PLC scenario. The multivariate LPTV CIR

G̃[i, τ ] was generated using the method proposed in [22] for generating MIMO BB-PLC channels

based on the characteristics of the scalar channel. Specifically, we first generate four real LPTV

CIRs with period p̃G = 240 and memory length m̃ = 4 using the channel generator proposed in

[19]. We denote the generated channels as {g̃k[i, τ ]}4k=1. Then, setting ρ = 0.9 [22, Sec. V-B],

the multivariate LPTV CIR is obtained via

G̃[i, τ ] =





1 ρ

ρ 1





1/2 



g̃1 [i, τ ] g̃2 [i, τ ]

g̃3 [i, τ ] g̃4 [i, τ ]









1 ρ

ρ 1





1/2

.

The additive multivariate noise W̃[i] is generated using the model detailed in Subsection IV-C:

First, a real i.i.d. 2×1 process Ũ[i] is generated, normalized to having a unit variance. We used

11The ‘medium disturbed’ and ‘heavily disturbed’ correlation profiles obtained following [14] are available on

http://www.plc.uma.es/channels.htm.
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two different PDFs for Ũ[i]:

• MIMO GM - a GM PDF based on [8, Fig. 3a] with parameters nG = 3, {γn}3n=1 =

{0.7, 0.2, 0.1}, {mn}3n=1 = {[5, 4]T , [−8,−16]T , [−19, 4]T}, and {Cn}3n=1 = {5, 2, 1} · I2.

• MIMO MCA - a GM PDF approximating a Middleton Class A PDF as in [41, Ch. 2.7.2]

with parameters based on [40, Fig. 3], i.e., letting A = 0.1 and Ω = 0.01, such that nG = 10,

γn = e−AAn

n!
, mn = [0, 0]T , and Cn = n/A+Ω

1+Ω
· I2, n ∈ {0, 1, . . . , nG − 1}.

Next, we generate a spectral shaping multivariate LPTV filter, F̃[i, τ ], with period p̃W = 120

(i.e., p̃ = 240) and memory length m̃ = 4, based on the construction of a spectral correlation

profile for MIMO BB-PLC channels detailed in [20]: Let ρW(ω) be a 2π-periodic function

representing the spectral variations in the spatial correlation. Following [20, Fig. 5], we set

ρW(ω) = 0.7 − |ω|
2π

for |ω| < π. Let s[i, ω] be the instantaneous PSDs, corresponding to the

‘heavily disturbed’ profile12. Lastly, set

F̃
′[i, ω] =





1 ρw (ω)

ρw (ω) 1





1/2 



s [i, ω] 0

0 s [i, ω]





1/2

.

The CIR of the multivariate filter F̃[i, τ ] is obtained via the inverse Fourier transform F̃[i, τ ] =

1
2π

π
∫

ω=−π

F̃′[i, ω]ejωτdω. Finally, the additive noise signal W̃[i] ∈ R2 is obtained as the output of

F̃[i, τ ] as in (20).

The capacity bounds for the MIMO BB-PLC channel vs. SNR, defined here as SNR =

P̃

1
p̃

p̃∑

i=1
E{‖W̃[i]‖2}

, are depicted in Figs. 5-6 for the MIMO GM and for the MIMO MCA noise

models, respectively. Similarly to the capacity of the scalar BB-PLC channel, the lower bound in

(16b) is tighter than the lower bound in (16a) for almost the entire SNR range. We also note that

the gap between the tighter lower bound and the upper bound in Figs. 5-6 is larger than in the

scalar case in Figs. 2-4, varying from 3.05 bps/Hz at SNR of 0 dB to 0.45 bps/Hz at high SNRs

for the MIMO GM noise model, while for the MIMO MCA noise model the corresponding

gap varies from 4.5 bps/Hz at SNR of 0 dB to 1.1 bps/Hz at high SNRs. Comparing the capacity

of MIMO BB-PLC channels in Figs. 5-6 with their scalar counterparts in Figs. 2-4, respectively,

indicates that the potential rate gains of using MIMO techniques for BB-PLC can range between

40% − 90%. Recall that the optimal rate gain of a 2 × 2 configuration over the scalar channel

for spatially independent noise is 100% [44, Ch 9]. Hence, by using two transmit ports and

12The instantaneous PSDs are taken from http://www.plc.uma.es/channels.htm, which is based on [14].
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Fig. 3. Capacity bounds for the scalar BB-PLC channel,

with the GM2 noise model.
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Fig. 4. Capacity bounds for the scalar BB-PLC channel,

with the MCA noise model.
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Fig. 5. Capacity bounds for the MIMO BB-PLC channel,

with the MIMO GM noise.
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Fig. 6. Capacity bounds for the MIMO BB-PLC channel,

with the MIMO MCA noise.

two receive ports, one can achieve gains which are close to the maximal gain. For example, at

an SNR of 20 dB, we observe in Fig. 5 that the capacity of the MIMO GM noise channel is

between 6.2 − 6.9 bps/Hz, while for the scalar case, we observe in Fig. 2 that the capacity is

between 3.8− 4 bps/Hz. Thus, the MIMO configuration can achieve a rate gain of 55%− 81%

over the scalar channel. For the MIMO MCA noise the corresponding rate gain is 38%− 88%.

This indicates that MIMO BB-PLC configurations can achieve significant rate gains over scalar

BB-PLC channel at manageable computational complexity [44, Ch. 7], [39, Ch. 10]. Finally, we

note that for the considered channel models, it follows from our capacity analysis that a BB-PLC

system with a configuration similar to the ITU-T G.9963 standard [45], namely, a system which

utilizes two transmit ports and two receive ports, over a frequency band of 100 MHz, can achieve

data rates approaching and even surpassing one Gbps at high SNRs.

Our results lead to several insights on practical channel coding for BB-PLC channels: First,

observe that at high SNRs for both scalar and MIMO BB-PLC channels, there is a rather
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small gap between the achievable rate of cyclostationary Gaussian inputs and capacity. This

indicates that at high SNR, cyclostationary Gaussian codes can closely approach the optimal

performance. For lower SNR values, guidelines to a possible code construction can be obtained

from the equivalence between BB-PLC channels and LNGMCs, which belong to the class of

time-invariant MIMO channels, as noted in Subsection III-B. Consequently, any code for time-

invariant MIMO channels, can be used in BB-PLC channels, by applying the inverse DCD to the

transmitted codeword and the DCD to the channel output, achieving the same average probability

of error of the code.

VI. CONCLUSIONS

In this paper we characterized upper and lower bounds on the capacity of MIMO BB-PLC

channels, accounting for the unique characteristics of these channels and the non-Gaussianity

of the additive noise. We derived capacity bounds which depend on the noise distribution only

through its entropy rate and autocorrelation function, and obtained explicit expressions for the

entropy rates of several BB-PLC noise models. Our numerical evaluations demonstrate the

tightness of the proposed bounds, and illustrate the significant loss resulting from assuming

that the noise is Gaussian in the computation of the capacity, which may lead to the design of

inherently suboptimal schemes.

APPENDIX

A. Proof of Proposition 2

In order to prove (10), let WG[i] be a zero-mean Gaussian process with an autocorrelation

function CW[τ ], defined after (8), s.t. WG[i] is mutually independent of the channel input. Note

that the mutual information in (6) can be written as

1

n
I
(

Xn−1;Yn−1|X−1
−m = 0nt·m

)

=
1

n
h
(

Yn−1|X−1
−m = 0nt·m

)

−
1

n
h
(

Wn−1
)

=
1

n

(

h
(

Yn−1|X−1
−m = 0nt·m

)

− h
(

Wn−1
G

)

)

+
1

n
h
(

Wn−1
G

)

−
1

n
h
(

Wn−1
)

. (A.1)

Since, for a given correlation function, Gaussian distribution maximizes the differential entropy

[27, Thm. 8.6.5], h (Yn−1) is maximized for a Gaussian distribution of Yn−1 with the same first

and second-order moments as the original vector Yn−1. By letting
{

YG[i]
}n−1

i=0
be a Gaussian

process with the same first and second-order statistical moments as
{

Y[i]
}n−1

i=0
, we have that
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lim
n→∞

1

n
sup

p(Xn−1): 1
n

n−1∑

i=0
E{‖X[i]‖2}≤P

h
(

Yn−1|X−1
−m = 0nt·m

)

− h
(

Wn−1
G

)

(a)

≤ lim
n→∞

1

n
sup

Cov(Xn−1):Tr
(

Cov(Xn−1)
)

≤nP

h
(

Yn−1
G |X−1

−m = 0nt·m

)

− h
(

Wn−1
G

) (b)
= CG, (A.2)

where Tr(·) denotes the trace of a matrix, (a) follows from [27, Thm. 8.6.5], and since the

differential entropy of a Gaussian random vector depends only on its covariance matrix [27, Thm.

8.4.1], hence the supremum is carried out over the covariance of the input; and (b) follows from

[37, Lemma 3], noting that h
(

Yn−1
G |X−1

−m = 0nt·m

)

−h
(

Wn−1
G

)

denotes the mutual information

between the input and the output of an LTI MIMO channel with additive Gaussian noise Wn−1
G

and Gaussian output Yn−1
G = G̃nX

n−1+Wn−1, as in (8). Plugging (A.1)–(A.2) into (6) yields

CL < CG + lim
n→∞

(

1

n
h
(

Wn−1
G

)

−
1

n
h
(

Wn−1
)

)

=CG + H̄G,W − H̄W, (A.3)

which proves the upper bound in (10).

B. Proof of Proposition 3

The bound in (11a) follows since it can be concluded from [55], [30, Thm. 7.4.3]13, that

for a given noise covariance matrix, then Gaussian noise is the worst-case noise distribution

in terms of capacity, i.e., it results in the smallest capacity. Specifically, the supremum of

I
(

Xn−1;Yn−1|X−1
−m = 0nt·m

)

= I
(

Xn−1; G̃nX
n−1+Wn−1

)

over all input distributions is lower

bounded by the mutual information between the channel inputs and the channel outputs in

which the additive non-Gaussian noise is replaced with an additive Gaussian noise with the

same second-order moments as that of the non-Gaussian noise. Consequently, in the limit of

n → ∞, Eq. (11a) directly follows from (6).

Next, from (8) we note that since both Xn−1 and Wn−1 are independent of X−1
−m, then

h
(

Yn−1|X−1
−m=0nt·m

)

=h
(

G̃nX
n−1+Wn−1

) (a)

≥
n · nr

2
log

(

2
2h(G̃nX

n−1)
n·nr +2

2h(Wn−1)
n·nr

)

, (B.1)

where (a) follows from the entropy power inequality [27, Thm. 17.7.3]. Thus, we have that

13While [30, Thm. 7.4.3] is stated for scalar channels, the same proof also applies to MIMO channels.
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sup

p(Xn−1): 1
n

n−1∑

i=0
E{‖X[i]‖2}≤P

1

n
I
(

Xn−1;Yn−1|X−1
−m = 0nt·m

)

= sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

1

n
h
(

Yn−1|X−1
−m = 0nt·m

)

−
1

n
h
(

Wn−1
)

(a)

≥ sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

nr

2
log

(

2
2h(G̃nX

n−1)
n·nr + 2

2h(Wn−1)
n·nr

)

−
1

n
h
(

Wn−1
)

, (B.2)

where (a) follows from (B.1). Note that for any positive constants a1, a2, a3 and a real constant

t, the function log (a12
a2t + a3) is monotonically increasing w.r.t. t, therefore

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

nr

2
log
(

2
2

n·nr
h(G̃nX

n−1) + 2
2

n·nr
h(Wn−1)

)

=
nr

2
log



2

sup

p(Xn−1): 1nE{‖Xn−1‖2}≤P

2
n·nr

h(G̃nX
n−1)

+ 2
2

n·nr
h(Wn−1)



 . (B.3)

Next, consider Eq. (B.3): Note that when nt=nr and G[0] is invertible, it follows from (7) that

G̃n is also invertible, hence, by letting Mn·P be the set of nt × nt positive semi-definite real

symmetric matrices CX such that Tr (CX) ≤ n · P , we have that

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

2

n · nr

h
(

G̃nX
n−1
)

(a)
=

2

n · nr

log |G̃n|+
2

n · nr

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

h
(

Xn−1
)

(b)
=

1

n · nr
log |G̃n|

2 +
1

n · nr
sup

Cov(Xn−1)∈Mn·P

log (2πe)n·nr
∣

∣Cov
(

Xn−1
)∣

∣

=
1

n · nr

log |G̃nG̃
T
n |+ log (2πe) +

1

n · nr

sup
Cov(Xn−1)∈Mn·P

log
∣

∣Cov
(

Xn−1
)∣

∣ , (B.4)

where (a) follows from [27, Eq. (8.71)], and (b) follows from [27, Thm. 8.6.5]. Since Cov (Xn−1)

is positive semi-definite, it follows from the inequality of the arithmetic and geometric means

[48, Pg. 326] that |Cov (Xn−1)| ≤
(

1
n·nt

Tr
(

Cov (Xn−1)
))n·nt

, and thus 1
n·nt

log |Cov (Xn−1)|≤

log
(

1
n·nt

Tr
(

Cov (Xn−1)
))

. Consequently,

1

n · nt
sup

Cov(Xn−1) ∈Mn·P

log
∣

∣Cov
(

Xn−1
)∣

∣ ≤ sup
Cov(Xn−1)∈Mn·P

log

(

1

n · nt
Tr
(

Cov
(

Xn−1
)

)

)

(a)

≤ log

(

P

nt

)

, (B.5)

where (a) follows since log(·) is monotonically increasing over R+. Note that for Cov (Xn−1)=

P
nt

· In·nt the right hand side of (B.5) is obtained with equality. Plugging this assignment into
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(B.4), and recalling that nt=nr, yields

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

2

n · nr
h
(

G̃nX
n−1
)

=
1

n · nr
log |G̃nG̃

T
n |+ log (2πe) + log

(

P

nt

)

=log

(

2πe
P

nt

)

+
1

n · nr
log |G̃nG̃

T
n |. (B.6)

Combining (B.6), (B.3), and (B.2) results in 1
n
I
(

Xn−1;Yn−1|X−1
−m=0nt·m

)

≥ nr

2
log

(

2πeP
nt

·

2
1

n·nr
log |G̃nG̃

T
n |+2

2
n·nr

h(Wn−1)
)

− 1
n
h (Wn−1), for any input distribution satisfying 1

n
E
{

‖X [i]‖2
}

≤

P and for any n. Lastly, we note that in the limit as n → ∞, it follows from the exten-

sion of Szego’s theorem to block-Toeplitz matrices [37, Appendix A.2], [49, Thm. 5] that

lim
n→∞

1
n
log
∣

∣

∣
G̃nG̃

T
n

∣

∣

∣
= 1

2π

nt−1
∑

k=0

π
∫

ω=−π

log (α′
k(ω)) dω, therefore, since 2t is continuous w.r.t. t ∈ R,

letting n tend to infinity in (B.2), it follows from (6) and [48, Pg. 224] that

CL ≥ lim
n→∞

nr

2
log

(

2πeP

nt
· 2

1
n·nr

log |G̃nG̃
T
n | + 2

2
n·nr

h(Wn−1)
)

−
1

n
h
(

Wn−1
)

=
nr

2
log





2πeP

nt

· 2
1

2π·nr

nt−1∑

k=0

π∫

ω=−π

log(α′
k(ω))dω

+ 2
2
nr

H̄W



− H̄W, (B.7)

which completes the proof of (11).

C. Proof of Theorem 1

The outline of the proof is as follows: First, in Lemma C.1 we show that the capacity of the

MIMO BB-PLC channel (1), can be characterized by considering only codes whose blocklength

is an integer multiple of p̃. Then, we show that the capacity of MIMO BB-PLC channels

constrained to using only codes whose blocklength is an integer multiple of p̃ satisfies (14).

Lemma C.1. The capacity of the MIMO BB-PLC channel is identical to the maximum achievable

rate obtained by considering only codes whose blocklength is an integer multiple of p̃.

Proof: The proof follows by first showing that any rate achievable for the MIMO BB-PLC

channel can be achieved by considering only codes whose blocklength is an integer multiple of

p̃, and then showing any rate achievable for the MIMO BB-PLC channel when considering such

codes, is an achievable rate for the MIMO BB-PLC channel. As these steps are essentially the

same as in the proof of [56, Lemma 1], they are not repeated here.

Next, we note that the MIMO BB-PLC channel (1) subject to the constraint that only codes

whose blocklength is an integer multiple of p̃ are used, i.e., l̃= l·p̃ where l∈N , can be represented
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as an equivalent p̃× p̃ LNGMC with code blocklength l via the following assignments: Let the

p̃ · ñt × 1 vector XDCD [i],X̃
(i+1)·p̃−1
i·p̃ be the input to the transformed channel and the p̃ · ñt × 1

vector YDCD [i],Ỹ
(i+1)·p̃−1
i·p̃ be the output of the channel. The transformation is clearly bijective

as for the BB-PLC channel we consider only codes whose blocklength is an integer multiple of

p̃. For each blocklength l, the input to the equivalent LNGMC satisfies

1

l

l−1
∑

i=0

E
{

‖XDCD [i]‖2
}

=
1

l

l−1
∑

i=0

p̃−1
∑

k=0

E

{

∥

∥

∥
X̃ [i · p̃+ k]

∥

∥

∥

2
}

=
p̃

l̃

l̃−1
∑

ĩ=0

E

{

∥

∥

∥
X̃
[

ĩ
]

∥

∥

∥

2
}

(a)

≤ p̃ · P̃,

where (a) follows from (2). Consequently, the equivalent LNGMC input is subject to a maximal

power constraint PDCD= p̃ · P̃ . Next, we note that the input-output relationship of the BB-PLC

channel (1) implies that the input-output relationship of the transformed channel is given by (12),

and that the equivalent LNGMC noise WDCD [i] appearing in (12), is a zero-mean strict-sense

stationary process. Moreover, as p̃ > m̃, it follows that the temporal dependence of WDCD [i]

spans an interval of length m=1. Recall that CDCD denotes the capacity of the channel (12)–(13).

As each channel use in the equivalent LNGMC (12)–(13) corresponds to p̃ channel uses in the

BB-PLC channel (1)–(2), it follows that the maximal achievable rate of the BB-PLC channel,

measured in bits per channel use, subject to the restriction that only codes whose blocklength is

an integer multiple of p̃ are allowed, can be obtained from the maximal achievable rate of the

equivalent LNGMC as CPLC=
1
p̃
CDCD. Finally, from Lemma C.1, we conclude that CPLC is the

maximum achievable rate for the BB-PLC channel, thus proving the theorem.

D. Proof of Proposition 4

In order to derive the differential entropy of complex Nakagami-m RVs, we use the following

lemma, which states the PDF of a family of complex RVs:

Lemma D.1. Let W be a complex RV given by W =XejΘ, where X is a non-negative real RV,

and Θ is an RV uniformly distributed over [0, 2π], mutually independent of X , then, the PDF

of W is given by fW (w)= fX(|w|)
2π|w|

, and its differential entropy is given by

h(W )=log(2π) + E
{

log(X)
}

+ h(X). (D.1)

Proof: Let WR,WI be the real and imaginary parts of W , respectively, and recall that the

PDF of a complex RV W = WR + jWI is given by fW (w=wR + jwI) = fWR,WI
(wR, wI)

[52, Pg. 188]. Consequently, letting arg(z) denote the phase of a complex number z, the PDF

fWR,WI
(wR, wI) is obtained using the transformation of RVs theorem as in [52, Pg. 146]:
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fWR,WI
(wR, wI)=

fX,Θ

(

√

w2
R + w2

I , arg
(

wI

wR

))

√

w2
R + w2

I

(a)
=

fX

(

√

w2
R + w2

I

)

2π
√

w2
R + w2

I

=
fX (|w|)

2π |w|
, (D.2)

where (a) follows since X and Θ are mutually independent, thus fX,Θ (x, θ) = fX (x) fΘ (θ),

and from the uniform distribution of Θ. It thus follows that fW (w)= fX(|w|)
2π|w|

.

Using (D.2), we next derive the differential entropy of W as:

h(W )=−

∫

R2

fX

(

√

w2
R + w2

I

)

2π
√

w2
R + w2

I

log





fX

(

√

w2
R + w2

I

)

2π
√

w2
R + w2

I



 dwRdwI

(a)
= −

2π
∫

θ=0

∞
∫

x=0

x
fX (x)

2πx
log

(

fX (x)

2πx

)

dxdθ=−

∞
∫

x=0

fX (x) log

(

fX (x)

2πx

)

dx, (D.3)

where (a) is obtained by switching the integration variables from (wR, wI) to (x, θ), given by

x=
√

w2
R + w2

I and θ=tan−1
(

wI

wR

)

. Note that (D.3) can be written as

−

∞
∫

x=0

fX (x)log

(

fX (x)

2πx

)

dx=

∞
∫

x=0

fX (x) log(2π)dx+

∞
∫

x=0

fX (x) log(x)dx−

∞
∫

x=0

fX (x) log (fX (x)) dx

=log(2π) + E {log(X)}+ h(X). (D.4)

Plugging (D.4) into (D.3) we obtain (D.1).

For a complex Nakagami-m RV W , we have that the PDF of X is given by (17). Plugging

the PDF (17) into (D.2) we obtain the PDF of W as: fW (w) = 2
2π·Γ(m)

(

m
Ω

)m
|w|2m−2

e−
m|w|2

Ω .

To obtain the differential entropy of the complex Nakagami-m RV W = XejΘ, we note that

for X ∼ KG (m,Ω), E {log(X)}=
∞
∫

x=0

2
Γ(m)

(

m
Ω

)m
x2m−1e−

mx2

Ω log(x)dx. Setting t , mx2

Ω
as the

integration variable, we have dt=2mx
Ω
dx, log(t)= log

(

m
Ω

)

+2 log(x), and x2= Ω
m
t, resulting in:

E {log(X)}=

∞
∫

t=0

1

2Γ(m)
tm−1e−t

(

log(t)− log
(m

Ω

)

)

dt

=
1

2 ln(2)

∞
∫

t=0

1

Γ(m)
tm−1e−t ln(t)dt−

1

2Γ(m)
log
(m

Ω

)

∞
∫

t=0

tm−1e−tdt

(a)
=

1

2 ln(2)
Ψ(m)−

1

2
log
(m

Ω

)

, (D.5)

where (a) follows since Ψ(x) = d
dx

(

ln
(

Γ(x)
)

)

= 1
Γ(x)

∞
∫

t=0

tx−1e−t ln(t)dt [53, Tbl. 0.1]. Next,

recall that the differential entropy of a real-valued Nakagami-m RV is given by [53, Ch. 4.18]:
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h(X)=log
(

Γ(m)
2

√

Ω
m
e

2m−(2m−1)Ψ(m)
2

)

. Plugging this and (D.5) into (D.1), we have that

h (W ) = h(WR,WI)=log(2π)+
1

2 ln(2)
Ψ(m)−

1

2
log
(m

Ω

)

+ log

(

Γ(m)

2

√

Ω

m
e

2m−(2m−1)Ψ(m)
2

)

=
1

2 ln(2)
Ψ(m) + log

(

πΩ

m
Γ(m)e

2m−(2m−1)Ψ(m)
2

)

, (D.6)

proving the proposition.

E. Proof of Lemma 1

To prove Lemma 1, we first state Lemma E.1, which characterizes a relationship between the

entropy rate of an i.i.d. process U[i], H̄U=h
(

U
)

, and the entropy rate of W [i], H̄W, obtained

by LTI filtering of U[i]:

Lemma E.1. Let U[i] ∈ Rnr be an i.i.d. multivariate process, {F[τ ]}mτ=0 be a set of nr × nr

matrices s.t. F[0] is non-singular. Define W[i] =
m
∑

τ=0

F[τ ]U[i−τ ], and F′(ω),
m
∑

τ=0

F[τ ]e−jωτ , and

let H̄W and H̄U denote the entropy rates of W[i] and U[i], respectively. Then, we have

H̄W =
1

2π

2π
∫

ω=0

log |F′ (ω)| dω + H̄U. (E.1)

Comment E.1. For nr=1, (E.1) specializes the entropy gain of scalar filters in [54, Thm. 14].

Proof: Since we are interested in the entropy rate we may assume that the blocklengths are

sufficiently large and consider n > 2m. Define the n · nr × n · nr matrix F̃a
n, the m · nr ×m · nr

matrix F̃b
m, and the n · nr ×m · nr matrix F̃c

n, via

F̃
a
n,





















F[0] · · · 0 · · · 0
...

. . .
. . .

...

F[m] · · · F[0] · · · 0
...

. . .
. . .

...

0 · · · F[m] · · · F[0]





















, F̃
b
m,











F[m] · · · F[1]
...

. . .
...

0 · · · F[m]











, F̃
c
n,





F̃b
m

0(n−m)·nr×m·nr



 . (E.2)

Note that F̃a
n is block-Toeplitz and non-singular (hence, invertible), as F[0] is non-singular. Using

(E.2), we can write Wn−1= F̃a
nU

n−1 + F̃c
nU

−1
−m = F̃e

nU
n−1
−m . As U[i] is i.i.d., then F̃a

nU
n−1 and

F̃c
nU

−1
−m are mutually independent. Hence, h

(

Wn−1
∣

∣F̃c
nU

−1
−m

)

=h
(

F̃a
nU

n−1
)

, and we can write
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h
(

Wn−1
)

− h
(

F̃
a
nU

n−1
)

=I
(

F̃
c
nU

−1
−m;W

n−1
)

(a)
= I

(

F̃
b
mU

−1
−m;W

n−1
)

(E.3)

= I
(

F̃
b
mU

−1
−m; F̃

a
nU

n−1 + F̃
c
nU

−1
−m

)

= h
(

F̃
b
mU

−1
−m

)

− h
(

F̃
b
mU

−1
−m|F̃

a
nU

n−1 + F̃
c
nU

−1
−m

)

(b)

≤ h
(

F̃
b
mU

−1
−m

)

− h
(

F̃
b
mU

−1
−m|F̃

a
nU

n−1 + F̃
c
nU

−1
−m,U

n−1
m

)

(c)
= h

(

F̃
b
mU

−1
−m

)

− h
(

F̃
b
mU

−1
−m|F̃

a
2mU

2m−1 + F̃
c
2mU

−1
−m,U

n−1
m

)

(d)
= h

(

F̃
b
mU

−1
−m

)

− h
(

F̃
b
mU

−1
−m|F̃

a
2mU

2m−1 + F̃
c
2mU

−1
−m,U

2m−1
m

)

= I
(

F̃
b
mU

−1
−m; F̃

a
2mU

2m−1 + F̃
c
2mU

−1
−m,U

2m−1
m

)

= I
(

F̃
b
mU

−1
−m;W

2m−1,U2m−1
m

)

, (E.4)

where (a) follows from the definition of F̃c
n in (E.2); and (b) follows as conditioning decreases

the entropy; in (c) the matrix F̃a
2m is an 2m · nr × 2m · nr matrix in which each row consists

of the first 2m elements of the corresponding row of F̃a
n, and F̃c

2m is a matrix which consists of

the first 2m rows of F̃c
n. Lastly, (d) follows as U

[

ĩ
]

is an i.i.d. sequence. Noting that Eq. (E.3)

implies that h (Wn−1) ≥ h
(

F̃a
nU

n−1
)

, we have that

0 ≤ h
(

Wn−1
)

− h
(

F̃
a
nU

n−1
) (a)

≤ I
(

F̃
b
mU

−1
−m;W

2m−1,U2m−1
m

)

, (E.5)

where (a) follows from (E.4).Observing that the right hand side of (E.5) is a finite value which

does not depend on n, then, dividing both sides of (E.3) by n and letting n tend to infinity yields

lim
n→∞

1
n
h (Wn−1)− lim

n→∞

1
n
h
(

F̃
a
nU

n−1
)

= 0. Therefore,

H̄W= lim
n→∞

1

n
h
(

F̃
a
nU

n−1
)

(a)
= lim

n→∞

(

1

n
log
∣

∣

∣
F̃
a
n

∣

∣

∣
+

1

n
h
(

Un−1
)

)

(b)
=

1

2π

2π
∫

θ=0

log |F′ (θ)| dθ + H̄U,

where (a) follows from [27, Eq. (8.71)] as F̃a
n is invertible, and (b) follows from the extension

of Szego’s theorem to block-Toeplitz matrices [49, Thm. 5].

Since by (21), WDCD

[

ĩ
]

is the output of an LTI filter with i.i.d. input U
[

ĩ
]

, and as that

the entropy rate of U
[

ĩ
]

is given by p̃ · h
(

Ũ
)

, it follows from Lemma E.1 that H̄WDCD
=

1
2π

2π
∫

ω=0

log |F′ (ω)| dω + p̃ · h
(

Ũ
)

, proving the lemma.
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