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Abstract—In this paper, we consider the problem of joint
secure routing and transmit power optimization for a multi-
hop ad-hoc network under the existence of randomly distributed
eavesdroppers following a Poisson point process (PPP). Secrecy
messages are delivered from a source to a destination through
a multi-hop route connected by multiple legitimate relays in
the network. Our goal is to minimize the end-to-end connection
outage probability (COP) under the constraint of a secrecy outage
probability (SOP) threshold, by optimizing the routing path and
the transmit power of each hop jointly. We show that the globally
optimal solution could be obtained by a two-step procedure
where the optimal transmit power has a closed-form and the
optimal routing path can be found by Dijkstra’s algorithm.
Then a friendly jammer with multiple antennas is applied
to enhance the secrecy performance further, and the optimal
transmit power of the jammer and each hop of the selected
route is investigated. This problem can be solved optimally via
an iterative outer polyblock approximation with one-dimension
search algorithm. Furthermore, suboptimal transmit powers can
be derived using the successive convex approximation (SCA)
method with a lower complexity. Simulation results show the
performance improvement of the proposed algorithms for both
non-jamming and jamming scenarios, and also reveal a non-
trivial trade-off between the numbers of hops and the transmit
power of each hop for secure routing.

Index Terms—Physical layer security, Poisson point process,
secure routing, ad-hoc relay network, monotonic optimization.

I. INTRODUCTION

Ad-hoc networks have gained extensive research and anal-
ysis recent years due to the characteristics of self-organization
and flexible networking [1]. However, because of the absence
of a centralized administration and limited system resources,
guaranteeing communication security in ad-hoc networks is
quite challenging. Specifically, in a multi-hop environment,
since the information needs to be transmitted and relayed
multiple times, the threat from information leakage becomes
higher and the secrecy guarantee is quite difficult. The tra-
ditional methods of interception avoidance are based on en-
cryption technologies, which may not be applicable to emerg-
ing ad-hoc networks. For instance, the time-varying network
topologies require complicated key management which is
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hard to accomplish in decentralized networks. Besides, the
computing and processing abilities of the nodes may be limited
and cannot afford the sophisticated encryption calculation.

On the other hand, physical layer security, an approach
to achieve secrecy through the aspect of information theory
by utilizing the characteristics of wireless channels, has been
widely studied for its advantages of low complexity and conve-
nient distributed implementation [2], [3]. As a result, various
network models applying physical layer security have been
investigated in the literature, such as interference channels [4],
[5], broadcast and multi-access channels [6], [7], cooperative
relay channels [8]–[10], and multi-antenna channels [11]–
[14]. The physical layer security approaches have also been
introduced into the multihop ad-hoc or relaying networks. For
instance, authors in [15] compared three commonly-used relay
selection schemes for a dual-hop network with the constraints
of security under the existence of eavesdroppers. The authors
in [16] proposed an optimal power allocation strategy for a
predefined routing path to maximize the achievable secrecy
rates under the constraint of maximum power budget. The
authors in [17] studied the secrecy and connection outage
performance under amplify-and-forward (AF) and decode-and-
forward (DF) protocols for an end-to-end route, and discussed
the trade-off between security and QoS performance. The
authors in [18] explored the method to guarantee the network
security via routing and power optimization for a network
with the deployment of cooperative jamming. In particular,
[18] assumed over-optimistically that each jammer was located
near one malicious eavesdropper to interfere the wiretapped
information, which hardly be true in practice.

However, in the aforementioned works, perfect channel
state information (CSI) and the locations of eavesdroppers
are assumed to be available at the legitimate users, which
is often impractical since the eavesdroppers usually work
passively and remain silent to hide their existence. As a
result, a general framework based on stochastic geometry
was proposed to model the uncertainty of eavesdroppers’
location [19]. In fact, Poisson point process (PPP) is the most
widely adopted distribution, and have been adopted in various
researches studying network security, e.g. [20]–[22]. Under
the framework of stochastic geometry, in [23] the authors
investigated the secure routing problem. The routing strategy
aimed to achieve the highest secure connection probability
under the DF relaying protocol. The locations of eavesdroppers
were assumed following the homogeneous PPP and both
cases of colluding and non-colluding eavesdropping were
considered. Yet, optimal power allocation was not considered
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and it is unclear how the power allocation affects the system
performance.

We have to point out here that for the routing security in a
multi-hop network, the performance of secure communication
is coupled with the numbers of hops and the transmit powers of
each hop. With higher (lower) transmit power, each hop can
support a larger (smaller) transmission distance so that less
(more) numbers of routing hops are required to successfully
relay messages to the destination. However, higher (lower)
transmit power increases (decreases) the probability of infor-
mation leakage while less (more) numbers of routing hops
decrease (increase) it. Hence a non-trivial trade-off naturally
exists for the secrecy performance between the numbers of
hops and the transmit powers of each hop. However, none
of the above works has revealed such an interesting trade-off,
which is the main focus of this paper. In particular, in this
paper, we investigate the secure routing and transmit power
optimization problem in DF relaying networks accompanied
with PPP distributed eavesdroppers. The routing secrecy is
evaluated by the minimum connection outage probability
(COP) subject to the constraint of secrecy outage performance.
The optimal route achieved the lowest COP is selected from all
possible routing paths and the corresponding transmit power
of each hop is also optimized. Moreover, friendly jamming is
applied to further improve the security performance. Different
from previous studies, we a) consider secure routing under
randomly distributed eavesdroppers and optimize the transmit
powers jointly, and b) solve the power optimization problem
with jamming using both the optimal monotonic optimization
and the successive convex approximation (SCA) methods. The
main contributions are summarized as follows:

1) The secure routing design for a multi-hop network
with the PPP distributed eavesdroppers is formulated as an
optimization problem which minimizes the COP under a SOP
constraint. The SOP and COP expressions for a given end-
to-end path are derived in closed form. The closed-form
expression of the optimal transmit powers is obtained. By
analyzing the expression of the minimum achieved COP for
a given route and defining the routing weights, the routing
problem can be interpreted as finding the route with the lowest
sum weights, which can be solved optimally by the Dijkstra’s
algorithm.

2) A friendly jammer with multiple antennas is introduced
to enhance the outage performance. For any fixed jamming
power, the transmit powers allocation for the legitimate nodes
on the obtained route is formulated as a monotonic optimiza-
tion problem. The outer polyblock approximation with a one-
dimension search algorithm is proposed to achieve the globally
optimal solution. Later, to strike a balance between system
performance and computational complexity, the SCA method
is used to solve the problem considering its non-convexity
feature. Though the solution derived from the SCA method
is not globally optimal, the numerical results show that it
achieves a close-to-optimal performance when it has a proper
initial point.

3) The trade-off between the numbers of hops and the
transmit powers of each hop is discussed for the routing
security. The distribution of the numbers of the hops derived

from simulation indicates that too many or few numbers of
hops increase the leakage of information and rarely guarantee
the security performance. This accentuates the importance of
the joint consideration of transmit powers and secure routing.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the system model of the multi-hop relaying
network and formulate the secure routing as an optimization
problem. In Section III, the routing and power optimization
method is provided. The power optimization problem taking
into account of friendly jamming is proposed in Section IV,
then the outer polyblock approximation algorithm and the
SCA algorithm are given in Section V. Numerical results
are presented in Section VI to illustrate the performance of
the proposed algorithms. The conclusions are summarized in
Section VII.

The following notations are used in this paper. (·)H and | · |
represent Hermitian transpose and absolute value, respectively.
P(·) denotes the probability and EA(·) denotes the mathemat-
ical expectation with respect to A. CN (µ, σ2) represents the
circularly symmetric complex Gaussian distribution with mean
µ and variance σ2. The union and difference between two sets
Ω1 and Ω2 are denoted by Ω1

⋃
Ω2 and Ω1 \Ω2, respectively.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a multi-hop wireless ad-hoc network which
consists of M legitimate nodes [23]. The distribution of the
eavesdroppers in the network follows the homogeneous PPP
denoted as Φ with density λe. Each of the legitimate nodes
and eavesdroppers is equipped with a single omnidirectional
antenna. One legitimate node aims to send messages to another
in the network. In order to transmit information from the
source node to the destination node securely, a routing path
needs to be found. As we have mentioned before, there exists a
non-trivial tradeoff between the numbers of hops and transmit
powers. Therefore the messages can be sent either directly to
the destination with a high transmit power, or through multihop
via several relays. Assuming a routing path contains N − 1
relay nodes, each hop can be denoted by ln, n = 1, ..., N , with
the transmitter and the receiver at the n-th hop denoted as Tn
and Rn, respectively. Then, the entire routing path can be
denoted by Π = {l1, l2, ..., lN}. An illustration of the system
model is shown in Fig. 1.

The wireless channels are subjected to small-scale Rayleigh
fading together with a large-scale path loss. Each Rayleigh
fading coefficient hi,j (i and j denote the transmitter and
receiver of the path, respectively) is modeled as independent
complex Gaussian with zero mean and unit variance, i.e.,
hi,j ∼ CN (0, 1), and the path loss exponent is α. We assume
that the CSI and the locations of legitimate nodes are known
while those of the eavesdroppers cannot be obtained because
the eavesdroppers work passively.

Since each route Π from the source to the destination is
composed of several hops, under DF relaying scheme, a widely
adopted protocol in literature [15]–[18], we first consider the
transmission of hop ln from Tn to Rn. Let xTn denote the
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Source Destination

Route 1

Route 2

Route 3

Legitimate node

Eavesdropper

Fig. 1: The system model with multiple legitimate nodes and
eavesdroppers.

symbol transmitted by Tn, then the received signals at the
legitimate receiver Rn and the eavesdroppers are given by

yRn =

√
P

(Π)
Tn

hTnRn

d
α/2
TnRn

xTn + nRn and (1)

yEi =

√
P

(Π)
Tn

hTnEi

d
α/2
TnEi

xTn + nEi , (2)

where yRn and yEi denote the received signals at receiver
Rn and eavesdropper Ei ∈ Φ, respectively. P (Π)

Tn
denotes the

transmit power of node Tn in route Π. di,j denotes the distance
between i and j. nRn and nEi are the noises at Rn and Ei
following CN (0, σ2).

Now we can derive the expressions of SNR at Rn and Ei,
which are given by

SNRRn =
P

(Π)
Tn
|hTnRn |2

dαTnRnσ
2

and (3)

SNREi =
P

(Π)
Tn
|hTnEi |2

dαTnEiσ
2

, (4)

respectively.
In this paper, we adopt connection outage probability (COP)

and secrecy outage probability (SOP) as performance metrics
to measure the routing security. To improve security, we let
transmit nodes use different codebooks to retransmit the signal,
so that the eavesdroppers cannot combine the wiretapped
signals from multiple hops and could only decode these signals
individually1 [24]. For an entire routing path, an end-to-end
connection outage refers to the situation that the received SNR
at any hop in the route is less than a predefined threshold γc,
thus the receiver cannot decode the message successfully and

1The problem with colluding eavesdroppers requires the CDF of the sum of
a number of independent but not identical distributed variables which subject
to exponential distribution and whose number follows a PPP distribution,
which is quite complicated. Due to the space limitation, here we only focus
on the non-colluding cases.

the corresponding probability of this event is called connection
outage probability. Secrecy outage occurs when the SNR of
at least one eavesdropper at any hop surpasses the predefined
threshold γe, hence the message can be intercepted by the
eavesdropper(s). The probability of secrecy outage is called
secrecy outage probability2. The COP and SOP are denoted
as Pco and Pso, respectively.

We consider the problem of finding the optimal routing
path and transmit powers of each hop to achieve the lowest
COP subject to a constraint that the SOP is no more than a
predetermined value. Denote Ψ as the set of all feasible routing
paths from the source to the destination and ζ as the maximum
tolerable SOP, the optimization problem can be defined as:

min
Π∈Ψ,P

(Π)
Tn

Pco

s.t. Pso ≤ ζ.
(5)

The objective function is equivalent to optimizing the route
and transmit powers sequentially, that is

min
Π∈Ψ,P

(Π)
Tn

Pco = min
Π∈Ψ

(
min
P

(Π)
Tn

Pco(Π)
)
. (6)

Therefore, in the following section, a secure routing method
is proposed to solve this problem. The method can be divided
into two parts: First, we optimize the transmit powers for any
given route; then we find the optimal secure route from the
source to the destination.

III. POWER OPTIMIZATION AND SECURE ROUTING

In this section, we study problem (5) and propose a method
finding a secure route with power optimization strategy for the
considered multi-hop network. The closed-form expressions of
COP and SOP are derived first and then be used to facilitate
the optimization of transmit power. Finally the optimal secure
routing path is obtained.

A. Connection and Secrecy Outage Probabilities

First, we derive the exact expressions of COP and SOP for
a given route. According to the definition of COP and the
assumption of independent fading in Section II, the COP for
route Π denoted as Pco(Π) can be written as

Pco(Π) = 1−
∏
ln∈Π

P {SNRRn > γc}

= 1−
∏
ln∈Π

P

{
P

(Π)
Tn
|hTnRn |2

dαTnRnσ
2

> γc

}

= 1−
∏
ln∈Π

exp

{
−
γcσ

2dαTnRn

P
(Π)
Tn

}
, (7)

where (7) holds since the fading coefficient |hTnRn |2 follows
an exponential distribution with E{|hTnRn |2} = 1.

On the other hand, due to the usage of different codebooks
at each hop and since the distribution of eavesdroppers follows

2The traditional SOP defined as P{Cs < Rs} is equivalent to our definition
P{SNRe > γe} when γe , 2Ct−Rs − 1.
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a homogeneous PPP, the SOP for route Π denoted as Pso(Π)
is given by

Pso(Π) = 1− EΦ

{∏
ln∈Π

∏
Ei∈Φ

P(SNREi < γe)

}
. (8)

To facilitate the derivation of a concise SOP expression, the
distribution of eavesdroppers for each hop is assumed to
be uncorrelated with each other, which represents an upper
bound of the original stationary eavesdroppers assumption
[25]. Hence Pso(Π) can be reformulated as

Pso(Π) = 1−
∏
ln∈Π

{
EΦ

∏
Ei∈Φ

P(SNREi < γe)

}

= 1−
∏
ln∈Π

{
EΦ

∏
Ei∈Φ

[
1− exp

(
−
γeσ

2dαTnEi

P
(Π)
Tn

)]}
(a)
= 1−

∏
ln∈Π

{
exp

[
−λe

∫ 2π

0

∫ ∞
0

exp

(
−γeσ

2rα

P
(Π)
Tn

)
rdrdθ

]}

(b)
= 1−

∏
ln∈Π

exp

−λe2πΓ(2/α)

α

(
γeσ

2

P
(Π)
Tn

)− 2
α

 , (9)

where (a) holds for the probability generating functional
lemma (PGFL) for the homogeneous PPP [26] under the
assumption that the transmitter of each hop locates at the
origin of the polar coordinate and (b) holds for the integration
formula [27, 3.326.2]

∫∞
0
xm exp(−βxn)dx = Γ(γ)/(nβγ)

with γ = (m+ 1)/n.
Till now, we have obtained the expressions for Pco(Π) and

Pso(Π) in (7) and (9), respectively. The two formulas indicate
that the powers of transmitters has opposite influence for COP
and SOP. A higher power leads to less communication outage
while a higher probability of information leakage. Therefore,
when study the COP and SOP performance jointly, this trade-
off needs to be considered and a careful design is required
for the transmit powers. For the sake of conciseness, defining
ω , 2πλe

α Γ
(

2
α

)
(γeσ

2)−
2
α and ψn , γcd

α
TnRn

σ2, (7) and (9)
can be simplified as

Pco(Π) = 1− exp

(
−
∑
ln∈Π

ψn

P
(Π)
Tn

)
and (10)

Pso(Π) = 1− exp

[
−ω

∑
ln∈Π

(
P

(Π)
Tn

)2/α
]
, (11)

respectively.
Based on (10) and (11), in the following part of this section,

we try to solve (6) under the constraint of SOP and propose
the secure routing algorithm.

B. Transmit Power Optimization
Now we focus on optimizing the transmit powers of each

hop to minimize the COP while satisfying the maximum
tolerable SOP constraint. The power optimization problem for
any given route Π can be written as

min
P

(Π)
Tn

Pco(Π)

s.t. Pso(Π) ≤ ζ.
(12)

Substituting (11) into the inequality constraint of (12), we have

1− exp

[
−ω

∑
ln∈Π

(
P

(Π)
Tn

)2/α
]
≤ ζ, (13)

which can be further transformed into

ω
∑
ln∈Π

(
P

(Π)
Tn

)2/α

≤ ε , ln
1

1− ζ
. (14)

Notice that Pco(Π) is a non-increasing function of P (Π)
Tn

.
Since the expression on the left side of the inequality constraint
is non-decreasing respect to P

(Π)
Tn

, this problem reaches its
optimum when the inequality constraint is active at the optimal
solution. As a result, we can safely replace the inequality sign
with an equality sign and (12) can be rewritten as

min
P

(Π)
Tn

∑
ln∈Π

ψn

P
(Π)
Tn

s.t.
∑
ln∈Π

ω
(
P

(Π)
Tn

)2/α

= ε.

(15)

Problem (15) is not convex since its constraint is not affine
(except when α = 2, which represents propagation in free
space). In order to reformulate (15) into a convex form, defin-

ing tn ,
(
P

(Π)
Tn

)2/α

, we have P (Π)
Tn

= t
α/2
n , (Pn > 0, tn > 0).

Therefore, (15) can be rewritten as

min
tn

∑
ln∈Π

ψn

t
α/2
n

s.t.
∑
ln∈Π

ωtn = ε.
(16)

Problem (16) is a convex problem due to its convex ob-
jective function and affine equality constraint and its global
optimum can be obtained. Applying the Lagrange multiplier
method associated with the equality constraint in (16), we have
the following function:

G (tn, ξ) =
∑
ln∈Π

ψn

t
α/2
n

+ ξ

[
ω
∑
ln∈Π

tn − ε

]
, (17)

where ξ is the Lagrange multiplier. Then we set the partial
derivatives of G (tn, ξ) respect to tn to zero, which yields

tn =

(
ψnα

2ωξ

) 2
2+α

. (18)

Substituting (18) into the constraint in (16), the expression of
ξ is derived as

ξ =
αω

α
2

2

[
1

ε

∑
ln∈Π

ψ
2

2+α
n

]α+2
2

. (19)

Then substitute (19) into (18), and we have

tn = ψ
2

α+2
n

[
ω

ε

∑
lk∈Π

ψ
2

2+α

k

]−1

. (20)
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Finally, using P
(Π)
Tn

= t
α/2
n , we derive the optimal transmit

power of hop ln as

P
(Π)
Tn

= ψ
α
α+2
n

[
ω

ε

∑
lk∈Π

ψ
2

2+α

k

]−α2
. (21)

The influence of density of eavesdroppers λe and SOP
constraint ζ on the transmit power P (Π)

Tn
can be observed

from (21). The increase of λe and the decrease of ζ lead to
the decrease of P (Π)

Tn
. This result is comprehensible since the

decrease of P (Π)
Tn

will lower the risk of information leakage,
hence to guarantee the security under the existence of more
eavesdroppers and satisfy a more stringent SOP constraint.

So far, we have solved the inner optimization of (6). We still
need to find the secure route with the minimum COP from all
possible paths in the multi-hop network.

C. Optimal Route Selection

Since the transmit power of any route under the SOP
constraint has the form shown in (21) and Pco(Π) is expressed
as (10), the secure routing problem can be rewritten as

Π∗ = arg min
Π∈Ψ

1− exp

−(ω
ε

)α
2

(∑
ln∈Π

(ψn)
2

2+α

)α
2 +1
 ,

which is equivalent to

Π∗ = arg min
Π∈Ψ

∑
ln∈Π

(ψn)
2

2+α . (22)

Considering ψ
2

2+α
n to be the weight of hop ln, expression

(22) can be interpreted as to find the optimal route Π∗ which
has the minimum sum of weights. This can be solved by the
Dijkstra’s algorithm effectively. Having obtained the optimal
route and calculated the transmit powers for all transmission
nodes using (21), the minimum COP can be obtained via (10).
The whole optimization procedure is shown in Algorithm 1.

The relation of the optimal route and the system parameters
of the network is worthy discussing. From (22) we notice that
the routing optimizing is determined by the weight ψn, which
is independent of the information of eavesdroppers as well as
the constraint on SOP. This indicates that changing the density
of eavesdroppers λe in the network and SOP threshold ζ of
the optimization problem does not impact the final selection
of secure route. This can be interpreted from the following
perspective. Since the distribution of eavesdroppers is homo-
geneous and the CSI along with the locations of eavesdroppers
are unknown, eavesdroppers appears homogeneously for any
route path of the legitimate network. As a result, the expected
influence of eavesdroppers toward all options are equal, or we
can say the information of eavesdroppers does not affect the
optimal routing design. Hence the constraint set by ζ which
constrains the eavesdroppers has no affect on routing either.

Computational complexity analysis: As we have derived
the closed-form transmit power in (21), the vast majority of
the computation complexity comes from the execution of the
Dijkstra’s algorithm, which has a complexity of O(M2) [28].
Thus the computation complexity of Algorithm 1 is in the
order of O(M2).

Algorithm 1 Secure Routing Algorithm for Ad-hoc Network
with PPP Distributed Eavesdroppers

Input: Network information, SNR thresholds γc and γe, max-
imum tolerable SOP ζ;

Output: Optimal route Π∗, optimal transmit powers P ∗Tn ,
minimum connection outage probability P∗co(Π∗);

1: Calculate (ψn)
2

2+α for all possible transmission pairs and
exploit them as weights;

2: Use the Dijkstra’s algorithm to find the optimal route Π∗;
3: Calculate corresponding transmit powers P ∗Tn for each

transmitter on route Π∗ using (21);
4: Calculate the minimal COP P∗co(Π∗) for route Π∗ using

(10);
5: return Π∗, P ∗Tn , P∗co(Π∗);

Fig. 2: Illustration of adopting friendly jamming for anti-
eavesdropping.

IV. TRANSMISSION POWER OPTIMIZATION WITH
FRIENDLY JAMMING

Algorithm 1 provides us an effective way to obtain the
secure route and the optimal transmit powers under the
existence of random distributed eavesdroppers. In order to
enhance the security performance further, we now consider
the existence of a friendly jammer [29]. This scenario is
often feasible in practical applications. Take the device-to-
device (D2D) communication system as an example. A cellular
base station can work as a friendly jammer to interfere with
the interception of eavesdroppers and assist the legitimate
communication among the D2D users. Hence in this section,
based on the optimal secure route obtained from Algorithm
1, friendly jamming is introduced and the transmit power
optimization problem of each transmit node on the secure route
is reconsidered.

Based on the system model described in Section II, we
assume that there is a jammer equipped with multiple antennas
in the network. The channels from the jammer and the trans-
mitters to the legitimate receivers and to the malicious eaves-
droppers are assumed uncorrelated with each other. To secure
the transmission, the friendly jammer radiates artificial noise
isotropically in the nullspace spanned by the channel vectors
of the legitimate nodes to avoid interfering with the legitimate
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network. The system model is depicted in Fig. 2. With the
knowledge of channel fading coefficients from the jammer to
the legitimate receiver Rn, denoted as hJRn , n = 1, ..., N , the
jammer adjusts its beamforming weight vector v to suppress
the artificial noise to legitimate receiver according to

hHJRnv = 0, n = 1, ..., N. (23)

Denote the optimal route obtained from Algorithm 1 as Π∗,
the transmit power for node Tn in Π∗ as PTn , the transmit
power of jammer as PJ , and the transmit power of jammer as
PJ with its beamforming weight vector normalized as ‖v‖2 =
1. Due to (23), the expression of COP is identical to (7). We
assume that the interference produced by the jammer is much
larger than the noise, then the noise at the eavesdroppers can
be neglected and the expression of SOP is given by

Pso(Π∗)=1−
∏
ln∈Π∗

{
EΦ

∏
Ei

[
P

(
PTn |hTnEi |2/d2

TnEi

PJ |hHJEiv|2/d
α
JEi

<γe

)]}
.

(24)
In fact, expression (24) is an upper bound of the accurate SOP
under jamming due to the neglect of noise, which represents
a worst case of the exact value.

Due to ‖v‖2 = 1 and the independence between hTnEi
and hJEi , |hHTnEiv|

2 follows an exponential distribution with
E{|hHTnEiv|

2} = 1. Therefore we have

P

(
PTn |hTnEi |2/d2

TnEi

PJ |hHJEiv|2/d
α
JEi

< γe

)

=1− E|hHJEiv|2

[
exp

(
−
γePJ |hHJEiv|

2/dαJEi
PTn/d

α
TnEi

)]
=1− 1

1 +
γePJ/dαJEi
PTn/d

α
TnEi

. (25)

Substituting (25) into (24) and using PGFL, SOP can be
expressed as

Pso(Π∗) = 1−
∏
ln∈Π∗

exp

−λe
∫
R2

1

1 +
γePJ/dαJEi
PTn/d

α
TnEi

dxEi


(26)

where R2 denotes the distribution area of eavesdroppers, and
xEi the location of Ei. (26) cannot be expressed in closed
form due to the complexity of dαTnEi with respect to xEi .

The expressions of COP and SOP with friendly jamming
have been derived in (7) and (26). Then the transmit power
optimization problem with the assistance of a multi-antenna
jammer under a total transmit power constraint can be written

as

min
PTn ,PJ

{
1−

∏
ln∈Π∗

exp

(
−
γcσ

2dαTnRn
PTn

)}

s.t. 1−
∏
ln∈Π∗

exp

−λe ∫
R2

1

1 +
γePJ/dαJEi
PTn/d

α
TnEi

dxEi

 ≤ ζ
PJ +

∑
ln∈Π∗

PTn ≤ Ptotal .

(27)

Following the same procedures transforming (12) to (15) and
using ψn for brevity, (27) is equivalent to

max
PTn ,PJ

−
∑
ln∈Π∗

ψn
PTn

s.t.
∑
ln∈Π∗

∫
R2

1

1 +
γePJ/dαJEi
PTn/d

α
TnEi

dxEi ≤
ε

λe

PJ +
∑
ln∈Π∗

PTn ≤ Ptotal.

(28)

Problem (28) is not a convex optimization problem. Inter-
estingly, however, the objective function is monotonic respect
to PTn , under a fixed PJ , then (28) turns to a monotonic
optimization problem under a fixed PJ . Therefore, we propose
an outer polyblock approximation algorithm to obtain the
global optimal solution of the inner monotonic optimization
problem under a fixed PJ , and the solution of (28) can be
derived by searching within the results obtained from the
outer polyblock algorithm for different PJ . Then we propose
an SCA algorithm to reduce the complexity, at the price of
obtaining a sub-optimal solution.

V. ALGORITHMS FOR POWER OPTIMIZATION WITH
JAMMING

In this section, we present our methods to solve problem
(28). The method based on outer polyblock approximation and
one-dimension search is proposed first, and the SCA algorithm
is put forward next to reduce the complexity.

A. Outer Polyblock Approximation and One-dimention Search

The power optimization for transmit nodes under a fixed PJ
is considered first. This problem can be written as:

max
PTn

−
∑
ln∈Π∗

ψn
PTn

s.t.
∑
ln∈Π∗

∫
R2

1

1 +
γePJ/dαJEi
PTn/d

α
TnEi

dxEi ≤
ε

λe
,

∑
ln∈Π∗

PTn ≤ Ptotal − PJ ,

(29)

which is a monotonic optimization problem with respect to
PTn , n = 1, ..., N . We aim to solve (29) via the outer
polyblock approximation algorithm based on the theory of
monotonic optimization theory. The solution obtained through
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the proposed iterative algorithm reaches the global optimum
[30].

Now we rewrite (29) into a canonical form of monotonic
optimization. In order to simplify the expressions, we define

gn (PTn) ,
∫
R2

1

1 +
γePJ/dαJEi
PTn/d

α
TnEi

dxEi , (30)

and rewrite the optimization variables as a transmit power
vector p = {PT1 , PT2 , ..., PTN }, while the power region R
is defined by

R ,
⋃{

p :
∑
ln∈Π∗

gn(PTn) ≤ ε

λe
,
∑
n

PTn ≤ Ptotal − PJ ,

PTn ≥ 0, n = 1, ..., N
}
. (31)

Based on the above definitions, problem (29) can be written
in the following form:

max U(p) ,
∑
ln∈Π∗

− ψn
PTn

s.t. p ∈ R.
(32)

In the sequel, we aim to solve (32). The polyblock algorithm
is proposed to obtain its globally optimal solution.

1) Preliminaries: In this subsection, we explain that prob-
lem (32) is a monotonic optimization problem. First, several
definitions are listed as follows to facilitate the presentation
[30]–[33].

Definition 1: Given any two vectors x,x′ ∈ Rn, x′ ≥ x
denotes that x′i ≥ xi,∀i = 1, ..., n. If x′ ≥ x and x′i > xi,
∃i = 1, ..., n, we say x′ dominates x; If x′i > xi,∀i = 1, ..., n,
we say x′ strictly dominates x and write x′ > x.

Definition 2: Function f : Rn → R is called an increasing
function on Rn+ if for two vectors x′,x ∈ Rn+, f(x′) ≥ f(x)
can be implied from x′ ≥ x. Function f is called strictly
increasing if for any two vectors x′ 6= x, f(x′) > f(x) can
be implied from x′ ≥ x.

Definition 3: Set D ∈ Rn+ is a normal set if for all x ∈ D,
any points x′ dominated by x also belongs to D.

Definition 4: A point x ∈ Rn+ is said to be an upper
boundary point of a compact normal set D if x ∈ D and no
point in D strictly dominates x. All the upper boundary points
of D constitute the upper boundary of D, which is denoted by
∂+D.

Definition 5: For vector v ∈ Rn+, the hyper rectangle
[0,v] = {x|0 ≤ x ≤ v} is called a box with v being its
vertex. The union of a finite number of boxes is referred to as
a polyblock.

Now, we provide some important results of optimization
problems based on polyblock via the following proposition.

Proposition 1: A strictly increasing function f(x) reaches
its maximal value over a polyblock at one vertice of the
polyblock.

Proof 1: Suppose that f(x) attains the global maximum at
x which is not a vertex of the polyblock, then there must exists
one vertex x′ dominating x, i.e, x′ ≥ x and x′i > xi,∃i =
1, ..., n. f(x′) > f(x) holds since f(x) is strictly increasing,

which is contradicted against the assumption that x reaches
the optimum.

Based on the definitions and the proposition above, we have
the following proposition.

Proposition 2: Optimization problem (32) is a monotonic
problem which has an increasing objective function with
respect to p and the power region R is a compact normal
set.

Proof 2: It is clear that U(p) and gn(PTn) are both
increasing functions of PTn . Therefore, R is a normal set
obviously accoding to definition 3 and the constraints in (31)
define R as a compact set.

2) Outer Polyblock Generation: Proposition 1 reveals that
the maximum of an increasing function can be found via
searching among the vertices of the polyblock. Thus for a
monotonic optimization problem, we can gradually approach
its region by iteratively generating a series of polyblocks and
find its maximum via searching.

In the following paragraphs, a method to generate the poly-
blocks is provided. First, we aim to find the vertex achieving
the maximal value of U(z) on the polyblock. We use P(k) to
denote the polyblock generated at the k-th iteration, Z(k) the
vertex set of the polyblock P(k), then the vertex maximizing
U(z) denoted as z̃(k) can be found by searching in set Z(k).

Then we project z̃(k) onto the upper boundary of R along
the line segment through the origin to z̃(k) and get the
intersection point r(k). Denoting the nth element of vector
z̃(k) as z̃(k)

n and the scaling parameter as δk, 0 ≤ δk ≤ 1,
the projection operation can be represented as solving the
following optimization problem

max
δk

∑
n

(
− ψn

δkz̃
(k)
n

)
s.t.

∑
n

gn

(
δkz̃

(k)
n

)
≤ ε

λe

δk
∑
n

z̃(k)
n ≤ Ptotal − PJ .

(33)

The intersection point r(k) can be calculated by r(k) = δkz̃
(k),

and the new vertices adjacent to z̃(k) are generated according
to

z(k),n = z̃(k) −
(
z̃(k)
n − r(k)

n

)
en, n = 1, ..., N, (34)

where z(k),n denotes the nth new vertex generated at the kth
iteration, r(k)

n denotes the nth element of r(k) and en is the
nth column of the identity matrix of size N . Then the new
vertex set is defined by

Z(k+1) = Z(k) \ z̃(k)
⋃{

z(k),1, ..., z(k),N
}
. (35)

The new polyblock P(k+1) is the union of the boxes defined by
vertices in Z(k+1). An illustration of the generation procedure
is depicted in Fig. 3.

3) Outer Polyblock Approximation Algorithm: Based on
the polyblock generation method, an iterative algorithm is
proposed to obtain the optimal solution for problem (32).
The algorithm starts from calculating the initial vertex z(1)

for the first iteration. It is clear that the initial vertex should
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Fig. 3: Illustration of a procedure in polyblock generating
when R is a noncovex but normal set.

be the upper bound of the problem so that the box [0, z(1)]
could cover the power region R. Obviously an upper bound is
achieved when

∑
gn (PTn) ≤ ε

λe
and

∑
PTn ≤ Ptotal − PJ

are relaxed for each item separately, which can be written more
specifically as

max
PTn

−
∑
ln∈Π∗

ψn
PTn

s.t. gn(PTn) ≤ ε

λe
,

PTn ≤ Ptotal − PJ , n = 1, ..., N.

(36)

The solution of (36) acts as the initial vertex z(1). Note that
the selection of the initial point does not impact the final
results since the solution of the outer polyblock approximation
algorithm always converges to the global optimum.

In the kth iteration, the optimal vertex z̃(k) is first derived by
searching in vertex set Z(k), and the corresponding maximal
value over polyblock P(k) is denoted as U(z̃(k)). Then the
scaling parameter δk and the intersection point r(k) on the
upper boundary of R is derived by solving (33). The optimal
intersection point till the kth iteration r̃(k) is obtained via

r̃(k) = arg max{U(r(k)), U(r̃(k−1))}. (37)

U(z̃(k)) and U(r̃(k)) are the upper and lower bound of the
optimal value U(r∗) respectively, thus U(r∗) − U(r̃(k)) <
U(z̃(k)) − U(r̃(k)) is always satisfied. If U(z̃(k)) − U(r̃(k))
is lower than a predefined number η, U(r∗) is greater than
U(r̃(k)) by no more than η. We quit the iteration and called
r̃(k) an η-optimal solution to problem (32). Otherwise, a new
polyblock P(k+1) is generated and the above procedure is
repeated till an η-optimal solution is obtained.

Suppose that the optimal solution is located in the region
defined by {r∗|0 ≤ r∗n ≤ ε, 1 ≤ n ≤ N} with ε being a
small positive number, then the polyblock algorithm would
converges with a fairly low speed as z̃(k) gradually approach-
ing this region, as depicted in Fig.3. Thus, in order to guarantee
the convergence speed of the algorithm, we replace the region
Z(k) by Z

(k)
ε , {z ∈ Z(k)|zk ≥ ε,∀k}. The parameter ε

Algorithm 2 The polyblock algorithm for transmit power
optimization problem

Input: ψn, accuracies ε and η
Output: P̃ ∗Tn

1: Initialization: Set k = 1. Find the initial vertex z(1) by
solving (36) and set the initial vertex set as Z(1) = {z(1)};

2: while (ε, η)-accuracy is not satisfied, do
3: Obtain the optimal vertex z̃(k) by searching in set Z(k)

ε ,
and compute U(z̃(k));

4: Obtain the interection point r(k) on the upper boundary
of R by (33);

5: Obtain r̃(k) by (37) and compute U(r̃(k));
6: if U(z̃(k))− U(r̃(k)) ≤ η, then
7: r̃(k) is an (ε, η)-optimal solution, P̃ ∗Tn = r̃

(k)
n , n =

1, ..., N ;
8: else
9: Generate the (k+ 1)-th polyblock P(k+1) and vertex

set Z(k+1)
ε by (34) and (35);

10: end if
11: k = k + 1;
12: end while

reflects the tradeoff between the accuracy and computational
complexity.

The procedure for solving (32) is summarized in Algorithm
2. The convergence explanation can be found in [31, Theorem
1]. Given the accuracies ε and η, the proposed algorithm will
terminate after a finite number of iterations and an (ε, η)-
approximate optimal solution for problem (32) can be derived.

So far, we have solved (29) through outer polyblock approx-
imation algorithm and obtained the optimal powers of route
Π∗ under a fixed PJ . By varying the value of PJ , a series of
solutions for (29) under different PJ can be derived, and the
solution of (28) can be derived through searching within these
solutions.

Computational complexity analysis: It is clear that the
searching precision of PJ is influential to the computational
complexity. The complexity of the polyblock algorithm is
sensitive to the values of ε and η which influence the number
of iterations of Algorithm 2. In each iteration, the accuracy
requirement of the bisection method for finding the projection
point of the best vertex on the upper boundary R also affects
the complexity. The number of hops N , which represents the
dimensionality of the problem, is another key factor. Since the
size of vertex set increases (N − 1) after each iteration, the
time of obtaining the optimal vertex also increases linearly,
leading to a larger complexity for one iteration. At the kth
iteration, the optimal vertex z̃(k) needs to be found from
(kN−k−N+2) vertices. Supposing the polyblock algorithm
reaches the (ε, η)-optimal solution at the k̃th iteration, the
complexity for obtaining the optimal vertices is in the order
of O(Nk̃2). Then the total complexity considering the one-
dimension search among κ different values of PJ is in the
order of κ×O(Nk̃2).
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B. Successive Convex Approximation Algorithm
Though we have solved (28) through an outer polyblock

approximation with one-dimension search method, obtaining
the global optimum is time-consuming. In this section, we
use a sequence of convex problems to approximate this non-
convex optimization problem (28) based on the SCA method
and solve the problem efficiently. The solution obtained from
the SCA method turns out to be a local optimum [34].

First, we define Fn(xEi) ,
γed

α
TnEi

dαJEi
for brevity and set

cn , PTn
PJ

, and (28) can be rewritten as

min
cn,PJ

∑
ln∈Π∗

ψn
cnPJ

(38a)

s.t.
∑
ln∈Π∗

∫
R2

1

1 + 1
cn
Fn(xEi)

dxEi ≤
ε

λe
, (38b)

1 +
∑
ln∈Π∗

cn ≤
Ptotal
PJ

. (38c)

Next, by introducing slack variables a and b and using ab =
1
4

[
(a+ b)2 − (a− b)2

]
, we consider the following problem

min
a,b,cn,PJ

1

4

[
(a+ b)2 − (a− b)2

]
(39a)

s.t. a ≥ 1

PJ
, (39b)

b ≥
∑
ln∈Π∗

ψn
cn
, (39c)

(38b), (38c).

Problems (38) and (39) are equivalent at the optimal solution,
since both the inequality constraints (39b) and (39c) are active
at the optimal solution, otherwise a and b could be decreased to
obtain a lower objective value. Therefore, we focus on solving
(39) in the following.

The terms −(a − b)2,
∑
n

∫
R2

1
1+Fn(xEi )/cn

dxEi , and
−Ptotal/PJ are non-convex and problem (39) is dif-
ficult to be solved. Denoting the optimal solutions
of the convex approximation problem at the (k −
1)th iteration as a(k−1), b(k−1), P

(k−1)
J , and c(k−1) =[

c
(k−1)
1 , ..., c

(k−1)
N

]T
, we use the first-order Taylor expansion

around a(k−1), b(k−1), P
(k−1)
J , and c(k−1) to approximate the

non-convex terms and construct a convex optimization prob-
lem [35], which can be written as

H1(a, a(k−1), b, b(k−1)) ,
(
a(k−1) − b(k−1)

)2

− 2 (a− b)
(
a(k−1) − b(k−1)

)
, (40)

H2(c, c(k−1)) ,
∑
n

∫
R2

[
c
(k−1)
n

c
(k−1)
n + Fn(xEi)

(41)

+

(
cn − c(k−1)

n

)
Fn(xEi)(

c
(k−1)
n + Fn(xEi)

)2
]
dxEi , and (42)

H3(PJ , P
(k−1)
J ) , −2Ptotal

P
(k−1)
J

+
PtotalPJ

P
(k−1)
J

2 , (43)

respectively. Therefore, the convex approximation problem is
constructed as

min
a,b,c,PJ

1

4

[
(a+ b)2 +H1(a, a(k−1), b, b(k−1))

]
s.t. a ≥ 1

PJ
, b ≥

∑
ln∈Π∗

ψn
cn
,

H2(c, c(k−1)) ≤ ε

λe
,

1 +
∑
ln∈Π∗

cn +H3(PJ , P
(k−1)
J ) ≤ 0.

(44)

Starting from one feasible initial point and solving (44)
iteratively till convergence is reached, a sub-optimal solution
of problem (39) can be obtained. The entire procedure is
summarized in Algorithm 3.

Initial point selection: The initial point of the SCA method
should be a feasible solution of problem (39). To find a feasible
initial point efficiently, the outer polyblock approximation
algorithm can be utilized. With a random jamming power PJ
and the corresponding solutions of Algorithm 2 {P̃ ∗Tn , n =
1, ..., N}, an initial point of the SCA method can be generated
according to P

(1)
J = PJ , {c(1)

n = P̃ ∗Tn/P
(1)
J , n = 1, ..., N},

a(1) ≥ 1/P
(1)
J , and b(1) ≥

∑
ln∈Π∗ ψn/c

(1)
n .

Algorithm 3 Successive convex approximation algorithm for
(39)

1: Initialization: Set an initial feasible point
(a(0), b(0), c(0), P

(0)
J ), accuracy ρ, and k = 0;

2: while the difference of the optimal values of two succes-
sive iterations surpasses ρ, do

3: k = k + 1;
4: Compute the solution of (44);
5: end while
6: P̄ ∗J = P

(k)
J , P̄ ∗Tn = c

(k)
n P

(k)
J , n = 1, ..., N ;

Feasibility and convergence: The solution of (44)
belongs to the feasible set of problem (39). Since∑
n

∫
R2

1
1+Fn(xEi )/cn

dxEi ≤ H2(c, c(k−1)), and

−Ptotal/PJ ≤ H3(PJ , P
(k−1)
J ) are satisfied based on

the first-order condition [36], the feasible set of problem (44)
is a convex subset of (39). Besides, since the optimal solution
at the (k − 1)th iteration is a feasible solution for problem
(39) at the kth iteration, the optimized objective value at
the kth iteration should not surpass that at the kth iteration.
From the non-negative and non-increasing objective values
obtained from the iterations, the convergence of the proposed
SCA algorithm can be concluded.

Complexity and performance: Problem (44) can be re-
formulated as an SDP problem which has a computational
complexity in the order of O(N3.5) [37]. Then the complexity
of Algorithm 3 is k̄×O(N3.5), where k̄ denotes the number of
iterations and is about few tens. Comparing to the complexity
of the polyblock approximation with one-dimension search
method κ × O(Nk̃2), in which k̃ is few hundreds and κ is
usually large for the searching accuracy, the complexity using
SCA method is much smaller. The selection of the initial point
will impact the final results due to the locally optimal solution
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Fig. 4: COP and average transmit power versus SOP with
friendly jamming.

produced by the SCA method. To improve the performance
and decrease the influence, Algorithm 3 can be executed for
a number of different initial points, and the solution obtaining
the minimum will be select as the final optimized outcome.
Simulation shows that operating the SCA algorithm for only
few tens of initial points, the selected minimum is quite
close to the optimum generated from the outer polyblock
approximation with one-dimension search among thousands
of different values of PJ .

VI. NUMERICAL RESULTS

In this section, numerical results are presented to illustrate
the validity and performance of the proposed schemes. We
assume that M = 10 legitimate nodes are deployed in a
20×20 m2 square area while the eavesdroppers are randomly
distributed in the area of size 400 × 400 m2. We set SNR
thresholds γc = 0.8 dB and γe = 0 dB. The path loss
exponent α = 4. The density of PPP distributed eavesdroppers
is λe = 10−4.

A. Comparison Between Polyblock with One-dimention Search
and SCA Algorithms

Under the assistance of friendly jamming and the constraint
of the total transmit power, the COP and the average power
of legitimate transmit nodes, which is defined as 1

N

∑
PTn

(normalized by the noise power σ2), obtained from the poly-
block approximation with one-dimension search and the SCA
algorithm with multiple initial points are compared in Fig. 4.
The polyblock algorithm is executed for 1000 values of PJ ,
while the SCA algorithm is executed for 20 different initial
points. With the increase of SOP, the COP decreases while
the average transmit power of the legitimate nodes increases,
which is in accordance with the expressions of COP and SOP
using friendly jamming derived in (7) and (26). Specifically,
(7) and (26) indicate that COP is a decreasing function
while SOP is an increasing function of the transmit powers.
Therefore as the SOP becomes higher, the average transmit
power increases accordingly and hence the COP decreases. In
fact, the relaxation of secure outage performance permits the
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Fig. 5: COP versus SOP with the variation of the number of
legitimate nodes.
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Fig. 6: COP versus SOP with the variation of the density of
malicious eavesdroppers.

transmitters to achieve a better connection performance at the
expense of a higher transmit powers. On the other hand, it
is clear from the simulation that though theoretically the SCA
algorithm obtains a suboptimal solution, by executing the SCA
algorithm for only a few different initial points and selecting
the minimum as the final result, the solutions are close to
that generated from the outer polyblock approximation with
one-dimension search method, while the complexity is largely
reduced.

B. Performance of Algorithms

In this part, we discuss the secure performance under non-
jamming and jamming conditions by comparing the results
derived from Algorithm 1 and the polyblock approximation
with one-dimension search method. First, the correctness of
the secure routing and transmit power optimization algo-
rithms for non-jamming and jamming conditions are verified
by comparing the theoretical results with the Monte Carlo
simulation results. The Monte Carlo simulation results are
obtained through 10,000 simulation runs. As Fig. 5 illustrates,
the theoretical results match the Monte Carlo results for both
circumstances with or without the assistance of friendly jam-
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ming, which verifies the correctness of the analytical results
we derived.

Next, we study the performance of COP versus SOP for
different values of M in the network in Fig. 5. It shows
that as the number of nodes increases, the connection outage
probability decreases. Since the density of legitimate nodes in
a certain area increases, the distance of each hop is shortened
and the SNR at each receiving node increases. Thus it is
less likely that the SNR is below the given threshold and the
occurrence of connection outage is reduced.

The density of the eavesdroppers in the network λe is varied
and the results are plotted in Fig. 6. Since the increase in the
density of eavesdroppers λe exposes the legitimate nodes to
more eavesdroppers, which increases the probability that the
message may be interpreted by malicious eavesdropper(s), the
SOP becomes higher as λe increases for a fixed COP, as Fig. 6
shows. Besides, from Fig. 5 and Fig. 6, it is clear that the COP
applying friendly jamming is much lower than that without
the help of jammer under a fixed SOP requirement, which
indicates the performance improvement with the assistance of
jamming.

In order to further explain the performance improvement,
we consider three different optimization schemes. In scheme
A, we use ψ

2
2+α
n as link weights for routing and set identical

transmit powers for selected nodes. Scheme B also uses ψ
2

2+α
n

as the weights and further optimizes the transmit powers,
which represents our proposed Algorithm 1. In scheme C
friendly jamming is used to help improve the outage per-
formance. Given the value of the maximum tolerable SOP
ζ, for scheme B and C, the transmit powers are optimized
respectively; keeping the sum of transmit powers in scheme A
equals to that in scheme B, the transmit powers of each node
using scheme A is derived and the corresponding achievable
COP and SOP are obtained according to (7) and (9). The SOP
and COP outcomes for three schemes with the variation of ζ
are plotted in Fig. 7. The superior performance of scheme B
compared to scheme A is clear, since the transmit powers for
selected nodes in scheme B are optimized while that in scheme
A are simply set equal. In fact, the optimization of powers
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Fig. 8: Average transmit power versus SOP with the variation
of the number of legitimate nodes.
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Fig. 9: Average transmit power versus SOP with the variation
of the density of malicious eavesdroppers.

for transmit nodes balances the COP and SOP and avoids the
cases that higher powers cause secure outage while lower ones
lead to connection outage. With the interference of artificial
noise at the eavesdroppers, scheme C improves the connection
performance remarkably, comparing to both schemes A and B.

The variation of average transmit power of the legitimate
transmit nodes (normalized by the noise power σ2) with the
SOP constraint is studied. The results under different values
of M and λe are depicted in Fig. 8 and 9, respectively. We
can observe that the average transmit power of the legitimate
transmit nodes decreases with the increasing numbers of nodes
in the network, which is due to the shorter distance between
the transmitter and receiver at each hop, so that the transmit
power requirement for a success communication decreases.
Besides, the increase of the density of eavesdroppers leads
to the decrease of transmit powers for legitimate nodes, so
as to reduce the risks of being interpreted by malicious
eavesdropper(s) for satisfying the SOP constraint. Comparing
the results under non-jamming and jamming conditions, it is
obvious that the average transmit power of legitimate transmit
nodes using friendly jamming is higher than that without the
help of jammer. As a matter of fact, with the help of friendly
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Fig. 10: The distribution of numbers of hops for different numbers of legitimate nodes M in the network.

jammer, security is guaranteed, thus the nodes can increase
their powers to reduce communication outage.

C. Trade-off Exploration

We explore the trade-off between the numbers of hops and
the transmit powers of legitimate nodes considering the routing
security. Given a pair of fixed source and destination nodes,
we count the numbers of hops of the optimal secure routes
obtained from 10,000 simulation runs. The distributions of
the number of hops under different M are plotted in Fig.
10. It can be summarized that the situations requiring a large
numbers of hops, e.g. N > 13, under M = 30, rarely happen,
as they can lead to high probability of information leakage.
This indicates that more relaying nodes for help does not
necessarily lead to a better security performance. Besides, the
scenarios with very few numbers of hops rarely happen either,
which usually require high powers to guarantee information
transmission thus hard to satisfy the security requirement.
The results above reflect the trade-off between the numbers
of hops and transmit power on routing security and indicate
the importance of jointly optimizing transmit power and route
selection for secure cooperative communication.

VII. CONCLUSION

In this paper, we considered the problem of secure routing
for DF relaying ad-hoc networks with PPP distributed eaves-
droppers. We aimed to optimize the secure route and transmit
powers which minimize the COP under a SOP constraint. The
closed-form expressions of COP and SOP for a given route
were obtained and the corresponding optimal transmit powers
were optimized. Besides, the routing weights were derived
based on the expression of the transmit powers and the optimal
secure route was obtained using the Dijkstra’s algorithm. We
further studied the power optimization problem considering
the application of friendly jamming. It was shown that this
problem could be solved iteratively by the outer polyblock
approximation with one-dimension search method. On the
other hand, considering the non-convexity of this problem,
we proposed an iterative suboptimal algorithm based on the
SCA algorithm. Simulation results indicated that the SCA
algorithm could provide a near-optimal solution with a lower
complexity compared to the polyblock approximation with

one-dimension search algorithm. The performance improve-
ment of the proposed algorithms for both non-jamming and
jamming scenarios was demonstrated and the influence of
network settings on the optimization outcomes was derived.
The discussion on the numbers of hops reflected the trade-off
between the transmit powers and the routing selection.
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