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Abstract—This paper investigates the physical-layer security
for an indoor visible light communication (VLC) network con-
sisting of a transmitter, a legitimate receiver and an eavesdropper.
Both the main channel and the wiretapping channel have non-
negative inputs, which are corrupted by additive white Gaussian
noises. Considering the illumination requirement and the physical
characteristics of lighting source, the input is also constrained
in both its average and peak optical intensities. Two scenarios
are investigated: one is only with an average optical intensity
constraint, and the other is with both average and peak optical
intensity constraints. Based on information theory, closed-form
expressions of the upper and lower bounds on secrecy capacity
for the two scenarios are derived. Numerical results show that
the upper and lower bounds on secrecy capacity are tight,
which validates the derived closed-form expressions. Moreover,
the asymptotic behaviors in the high signal-to-noise ratio (SNR)
regime are analyzed from the theoretical aspects. At high SNR,
when only considering the average optical intensity constraint,
a small performance gap exists between the asymptotic upper
and lower bounds on secrecy capacity. When considering both
average and peak optical intensity constraints, the asymptotic
upper and lower bounds on secrecy capacity coincide with each
other. These conclusions are also confirmed by numerical results.

Index Terms—Gaussian noise, physical-layer security, secrecy
capacity, visible light communications.

I. INTRODUCTION

With the widespread use of light-emitting diodes (LEDs) for
commercial lighting applications, visible light communication
(VLC) has attracted increasing attention in recent years. Due
to the combination of communication and illumination, VLC is
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regarded as one of the most important wireless communication
technologies for future indoor access [1].

In the last decade, the point-to-point (P2P) VLC has
achieved rapid development in many fields, especially in
channel modelling [2], modulation [3], coding [4], equalization
[5], channel estimation [6], indoor positioning [7], channel
capacity analysis [8]–[11] and transceiver design [12]. At
present, the research focus of VLC is being changed from
P2P communications to network aspects. In VLC networks,
data privacy is becoming a main concern for users. Although
it is propagated via the line-of-sight path, the VLC signal
is broadcasted to all users illuminated by the LEDs. Such a
broadcast feature provides convenience for data transmission,
but it also offers an opportunity for unintended users to
eavesdrop the information, which imposes a security risk to
legitimate users. Therefore, information security becomes an
urgent issue to be addressed. Traditional security schemes
are performed at upper-layers of the network stack by using
access control, password protection and end-to-end encryption
[13]. The safety of traditional security schemes is built on
the limited storage capacity and computational power of the
eavesdroppers. Recently, physical-layer (PHY) security, which
exploits the channel characteristics to hide information from
eavesdroppers and does not rely on the upper-layer encryption,
has been proposed as an efficient supplement to traditional
security schemes.

Secure transmission is important for radio frequency wire-
less communications (RFWC). The PHY security was first
investigated in 1949 by Shannon, who proposed the concept of
perfect secrecy over noiseless channels [14]. Under the noisy
channels, Wyner analyzed the secrecy capacity via the wiretap
channel [15]. In [16], the secrecy capacity of the single-
input single-output (SISO) Gaussian wiretap channel was
derived. Under the non-degraded wiretap channel, a single-
letter characterization of the secrecy capacity was derived
in [17]. Recently, the secrecy performance analysis over the
SISO scenario was extended to that over the multi-input
multi-output (MIMO) scenario. For MIMO wiretap channels
with confidential messages, the authors in [18] analyzed the
secrecy capacity region. For artificial noisy MIMO channels,
the secrecy capacity was studied in [19] by using the ordered
eigenvalues of Wishart matrices. The authors in [20] obtained
the secrecy capacity for MIMO channels with finite memory.
With the help of a cooperative jammer, a lower bound of the
secrecy capacity for the MIMO channels was derived in [21].

Although much work has been done to investigate the
secrecy capacity for RFWC, the developed theory is not
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directly applicable to VLC. The main differences between
RFWC and VLC are highlighted as follows. First, the transmit
signal in RFWC can be bipolar or unipolar, while the signal
in VLC must be unipolar because the optical intensity is
typically used to carry information. Moreover, the average
power in RFWC is the mean square value of a signal, but
the average power in VLC is the mean value of the signal
[22]. Also, a lower average power is usually preferred for
RFWC, but VLC has a predefined average intensity according
to the dimming target, which is not an objective function
but a constraint [22]. Therefore, the aforementioned features
should be considered for practical VLC. In [23], the secrecy
capacity was analyzed for direct current biased VLC, where a
uniform input distribution is used to derive the lower bound of
secrecy capacity. In [24], the secrecy capacity of multiple-input
single-output (MISO) VLC channels was investigated, where
the input distribution was chosen as a truncated generalized
normal (TGN) distribution. To obtain the optimal and robust
beamforming, the authors in [25] also employed the TGN
distribution for the input. Due to the constraints of the input
signal in VLC, the uniform and TGN input distributions
are generally not optimal [8], [10]. By using the variational
method, an improved input distribution can be obtained [8],
[10]. By employing a discrete input distribution, the authors
in [26] derived an upper bound on the secrecy capacity for
the MISO VLC channels. However, the theoretical expression
of the secrecy capacity is not obtained. In [27], the secrecy
outage probability (SOP) was analyzed for a hybrid VLC-
RFWC system with energy harvesting. In [28], the SOP and
the average secrecy capacity were discussed for VLC with
spatially random terminals. Note that the dimming require-
ment for indoor VLC was not considered in [27], [28]. In
our previous work [29], three lower bounds on the secrecy
capacity were obtained. However, no upper bound has been
obtained. Moreover, the peak optical intensity constraint is not
considered. To the best of the authors’ knowledge, the secrecy
capacity for VLC has not been systematically investigated.

In this paper, the secrecy capacity for an indoor VLC system
with a transmitter, a legitimate receiver, and an eavesdropper
is investigated. The main contributions are summarized as
follows:

1) The secrecy capacity for indoor VLC with only an
average optical intensity constraint is analyzed. By using
the existing channel capacity results, the entropy-power
inequality (EPI) and the variational method, two lower
bounds on secrecy capacity are obtained. Applying the
dual expression of the secrecy capacity, the upper bound
on the secrecy capacity is obtained. Numerical results
validate the derived closed-form expressions.

2) The secrecy capacity for indoor VLC with both average
and peak optical intensity constraints is investigated. In
practical VLC, the peak optical intensity of the LED
is also limited. By adding a peak optical intensity con-
straint on the input signal, the lower and upper bounds
on the secrecy capacity are further derived, which are in
closed forms. The accuracy of the derived closed-form
expressions are confirmed by numerical results.

Alice

Bob
Eve

Fig. 1. An VLC network with one transmitter, one legitimate receiver and
one eavesdropper.

3) The asymptotic behaviors at high signal-to-noise ratio
(SNR) are analyzed. Through theoretical analysis, it is
shown that the asymptotic lower and upper bounds do
not coincide but with a small gap when only considering
the average optical intensity constraint. When consider-
ing both average and peak optical intensity constraints,
the asymptotic lower and upper bounds coincide, and
thus the secrecy capacity can be obtained precisely.

The reminder of this paper is organized as follows. Section
II describes the system model. With different constraints,
the secrecy capacity bounds and the asymptotic behavior are
analyzed in Section III and Section IV, respectively. Numerical
results are presented in Section V. Conclusions and future
directions are presented in Section VI.

Notations: Throughout this paper, italicized symbols denote
scalar values; N

(
0, σ2

)
stands for a Gaussian distribution

with zero mean and variance σ2; E(·) denotes the expectation
operator; var(·) denotes the variance of a variable; fX(x)
denotes the probability density function (PDF) of X . We use
H(·) for the entropy, D (· ‖· ) for the relative entropy, and
I(·; ·) for the mutual information. We use ln(·) for the natural
logarithm and Q(·) for the Gaussian Q-function.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an indoor VLC network
consisting of a transmitter (i.e., Alice), a legitimate receiver
(i.e., Bob), and an eavesdropper (i.e., Eve). Alice is deployed
on the ceiling, while Bob and Eve are placed on the floor.
When Alice transmits data bits to Bob, Eve as a passive
eavesdropper can also receive the signals intended for Bob. In
the network, Alice is equipped with a single LED to transmit
optical intensity signals, while Bob and Eve are equipped with
one photodiode (PD) individually to perform the optical-to-
electrical conversions. The received signals at Bob and Eve
can be expressed, respectively, as{

YB = HBX + ZB

YE = HEX + ZE
, (1)

where X is the transmit optical intensity signal; HB and
HE denote the channel gains of the main channel and the
eavesdropping channel, respectively; ZB ∼ N(0, σ2

B) and
ZE ∼ N(0, σ2

E) stand for the additive white Gaussian noises
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Fig. 2. The distance and angle relationship among Alice, Bob and Eve.

at Bob and Eve, where σ2
B and σ2

E denote the variances of the
noises at Bob and Eve, respectively.

Because the intensity modulation and direct detection is
employed for VLC, X is restricted to be nonnegative such
that

X ≥ 0. (2)

In practical VLC systems, the peak optical intensity of
the LED is also limited. Therefore, the peak optical intensity
constraint is given by

X ≤ A, (3)

where A is the peak optical intensity of the LED.
For a practical LED, its average optical intensity is con-

strained by the nominal optical intensity. In order to satisfy
the illumination requirements in VLC, the average optical
intensity cannot change with time. Mathematically, the average
optical intensity constraint is given by

E(X) = ξP, (4)

where ξ ∈ (0, 1] is the dimming target, P ∈ (0, A] is the
nominal optical intensity of the LED.

In indoor VLC, the channel gain Hk (k = B or E) can be
expressed as [30]

Hk=

{
(m+1)Ar

2πD2
k
Tsgcosm(ϕk) cos(ψk), if 0 ≤ ψk ≤ Ψ

0, if ψk ≥ Ψ
, (5)

where m is the order of the Lambertian emission; Ar is the
physical area of the PD; Ts and g are the optical filter gain and
the concentrator gain of the PD. Ψ is the field of view (FOV)
of the PD; Dk, ϕk and ψk are respectively the distance, the
irradiance angle and the incidence angle from Alice to Bob
(k = B) or Eve (k = E), as shown in Fig. 2. Obviously, when
the positions of Alice, Bob and Eve are fixed, the channel
gains HB and HE are constants.

III. SECRECY CAPACITY FOR VLC WITH ONLY AN
AVERAGE OPTICAL INTENSITY CONSTRAINT

In this section, we focus on the VLC with only an average
optical intensity constraint. Therefore, we only consider the
constraints (2) and (4). If the main channel is worse than
the eavesdropping channel (i.e., HB/σB < HE/σE), then the

main channel is stochastically degraded with respect to the
eavesdropping channel, and the secrecy capacity is essentially
zero. Alternatively, if HB/σB ≥ HE/σE, the secrecy capacity1

can be expressed as [23], [31]

Cs = max
fX(x)

[I(X;YB)− I(X;YE)]

s.t.

∫ ∞
0

fX(x)dx = 1

E(X) =

∫ ∞
0

xfX(x)dx = ξP, (6)

where Cs denotes the secrecy capacity, and fX(x) denotes the
PDF of the input signal. In this section, the lower and upper
bounds of the secrecy capacity will be derived. Moreover, the
asymptotic behavior of the secrecy capacity is also analyzed.

A. Lower Bound on Secrecy Capacity

By using the channel capacity bounds derived in [32],
a lower bound on the secrecy capacity is derived as (7)
in the following theorem. Moreover, by using the EPI and
the variational method, another lower bound on the secrecy
capacity can be derived as (8) in the following theorem.

Theorem 1: The secrecy capacity for the channel in (1)
with constraints (2) and (4) is lower-bounded by each of the
following two bounds (7) and (8), i.e.,

Cs ≥ ln

 σE

√
2πe

(
1 +

H2
Bξ

2P 2e

2πσ2
B

)
βe
− δ2

2σ2
E +
√

2πσEQ
(
δ
σE

)
− 1

2
Q
(
δ

σE

)

− δ

2
√

2πσE

e
− δ2

2σ2
E − δ2

2σ2
E

Q
(
−δ +HEξP

σE

)
− δ +HEξP

β
− σE√

2πβ
e
− δ2

2σ2
E , (7)

and

Cs ≥
1

2
ln

(
σ2

E

2πσ2
B

· eξ
2P 2H2

B + 2πσ2
B

H2
Eξ

2P 2 + σ2
E

)
, (8)

where β > 0 and δ ≥ 0 in (7) are free parameters. Suboptimal
but useful choices for β and δ are given, respectively, by (9)
and (10) as shown at the top of the next page.

Proof: See Appendix A and Appendix B.
Remark 1: When

√
eHB > HE, it is obvious that the lower

bound (8) is a monotonically increasing function with respect
to the dimming target ξ. In this case, the performance of (8)
can be improved by increasing the value of ξ. Moreover, it is
challenging to analyze the monotonicity of the lower bound
(7) with respect to ξ, which will be given by using a numerical
method in Section V.

B. Upper Bound on Secrecy Capacity

To obtain the upper bound on the secrecy capacity, the
dual expression of the secrecy capacity is employed [33].

1In this paper, the natural logarithms are employed, and thus the secrecy
capacity is in nats/transmission.
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β=
1

2

(
δ+HEξP+

σE√
2π
e
− δ2

2σ2
E

)
+

1

2

√(
δ+HEξP+

σE√
2π
e
− δ2

2σ2
E

)2

+4

(
δ+HEξP+

σE√
2π
e
− δ2

2σ2
E

)√
2πσEe

δ2

2σ2
EQ

(
δ

σE

)
, (9)

δ = σE ln

(
1 +

HEξP

σE

)
. (10)

For an arbitrary conditional PDF gYB|YE
(yB|yE), the following

equality always holds [34]

I(X;YB|YE)+EXYE

{
D
(
fYB|YE

(yB|YE)
∥∥ gYB|YE

(yB|YE)
)}

= EXYE

{
D
(
fYB|XYE

(yB|X,YE)
∥∥ gYB|YE

(yB|YE)
)}
. (11)

According to the non-negativity property of the relative
entropy, we have

I(X;YB|YE)

≤ EXYE

{
D
(
fYB|XYE

(yB|X,YE)
∥∥ gYB|YE

(yB|YE)
)}
.(12)

Note that selecting any gYB|YE
(yB|yE) will result in an upper

bound of I(X;YB|YE). Therefore, we have

I(X;YB|YE) =

min
gYB|YE(yB|YE)

EXYE

{
D
(
fYB|XYE

(yB|X,YE)
∥∥gYB|YE

(yB|YE)
)}
.(13)

Note that, to achieve the secrecy capacity, there exists a unique
input PDF fX∗(x) that maximizes I(X;YB|YE) subject to the
constraints in (6). Therefore, we have

Cs = max
fX(x)

I(X;YB|YE)

= I(X∗;YB|YE), (14)

where X∗ denotes the optimal input, and its corresponding
PDF is fX∗(x).

According to (13) and (14), we have

Cs≤EX∗YE

{
D
(
fYB|XYE

(yB|X,YE)
∥∥ gYB|YE

(yB|YE)
)}
. (15)

It can be seen from (15) that selecting any gYB|YE
(yB|yE) will

lead to an upper bound of the secrecy capacity. To obtain a
good upper bound, a clever choice of gYB|YE

(yB|yE) should
be found. By using the principle of dual expression of the
secrecy capacity, an upper bound of the secrecy capacity in
(6) is derived in the following theorem.

Theorem 2: The secrecy capacity for the channel in (1) with
constraints (2) and (4) is upper-bounded by

Cs≤


ln

4e
(√

1
2πσB+

HBξP

2

)
√

2πeσ2
B

(
1+
H2

E
σ2
B

H2
B
σ2
E

)
, if

√
H2

E
H2

B

σ2
B+σ2

E

2π ≥HE

HB

(
σB√
2π

+HBξP
2

)

ln
(

2
√
eHBσE

πHEσB

)
, if

√
H2

E
H2

B

σ2
B+σ2

E

2π ≤HE

HB

(
σB√
2π

+HBξP
2

)
.

(16)

Proof: See Appendix C.
Remark 2: When

√
(H2

Eσ
2
B/H

2
B + σ2

E)/(2π) ≥
HE

HB

(
σB√
2π

+ HBξP
2

)
, it is straightforward to show that (16)

is a monotonically increasing function with respect to the
dimming target ξ. In this case, the larger the dimming target

is, the larger the upper bound on secrecy capacity becomes.
When

√
(H2

Eσ
2
B/H

2
B + σ2

E)/(2π) ≤ HE

HB

(
σB√
2π

+ HBξP
2

)
, the

upper bound (16) is independent of the dimming target.

C. Asymptotic Behavior Analysis

In indoor VLC environment, typical illumination require-
ment leads to a large transmit optical intensity, which can
offer a high SNR at the receiver [35]. Therefore, we are more
interested in the behavior of the VLC system in the high
SNR regime. By analyzing Theorem 1 and Theorem 2, the
asymptotic behavior of the secrecy capacity bounds at high
SNR is derived in the following corollary.

Corollary 1: For the channel in (1) with constraints (2) and
(4), the asymptotic behavior of the secrecy capacity bounds at
high SNR is given by

ln

(
HBσE

HEσB

)
≤ lim
P→∞

Cs ≤ ln

(
2
√
e

π

)
+ ln

(
HBσE

HEσB

)
.

(17)

Proof: See Appendix D.
Remark 3: From Corollary 1, it can be found that the

asymptotic upper and lower bounds on secrecy capacity do not
coincide in the sense that their difference equals ln(2

√
e/π) ≈

0.048 nats/transmission instead of zero. Although a perfor-
mance gap between the asymptotic upper and lower bounds
exists, the difference is so small and thus it can be ignored.

IV. SECRECY CAPACITY FOR VLC WITH BOTH AVERAGE
AND PEAK OPTICAL INTENSITY CONSTRAINTS

As is well known, the peak optical intensity of an LED is
also limited. In this section, we consider the constraints (2), (3)
and (4). Similarly, if HB/σB < HE/σE, the secrecy capacity
is zero. If HB/σB ≥ HE/σE, the secrecy capacity can be
expressed as [23], [31]

Cs = max
fX(x)

[I(X;YB)− I(X;YE)]

s.t.

∫ A

0

fX(x)dx = 1∫ A

0

xfX(x)dx = ξP. (18)

In this section, the bounds of the secrecy capacity and their
asymptotic behaviors for this case will be derived.

A. Lower Bound on Secrecy Capacity

Let α = ξP/A denote the average to peak optical intensity
ratio (APOIR). Two lower bounds on the secrecy capacity
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Cs,1 =
1

2
ln

[
1 +H2

BA
2 e

2αµ̃(1− e−µ̃)
2

2πeσ2
Bµ̃

2

]
−Q

(
δ

σE

)
− δ√

2πσE

e
− δ2

2σ2
E +

1

2
− µσE

HEA
√

2π

(
e
− δ2

2σ2
E − e

− (HEA+δ)2

2σ2
E

)

−
[
Q
(
−δ+HEαA

σE

)
−Q

(
δ+(1−α)HEA

σE

)]
ln

 HEA√
2πσEµ

.
e

µδ
HEA−e−µ

(
1+ δ

HEA

)
(

1−2Q
(
δ
σE

))
−µα[1−2Q

(
δ+HEA

2

σE

)]
, (21)

Cs,2 =
1

2
ln

(
1+

H2
BA

2

2πeσ2
B

)
−

[
1−2Q

(
δ+HEA

2

σE

)]
ln

 HEA+ 2δ
√

2πσE

(
1−2Q

(
δ
σE

))
−Q( δ

σE

)
− δ√

2πσE

e
− δ2

2σ2
E +

1

2
, (22)

can be derived by analyzing (18), and these lower bounds are
shown in the following theorem.

Theorem 3: The secrecy capacity for the channel in (1) with
constraints (2), (3) and (4) can be lower-bounded by each of
the following two bounds (19) and (20), i.e.,

Cs ≥
{
Cs,1, 0 < α < 0.5
Cs,2, 0.5 ≤ α ≤ 1

, (19)

and

Cs≥



1
2 ln

[
3σ2

E(H2
BA

2+2πeσ2
B)

2πeσ2
B(H2

Eξ
2P 2+3σ2

E)

]
, α = 0.5

1
2 ln

 σ2
E

[
H2

Be
−2cξP

(
ecA−1
c

)2
+2πeσ2

B

]
2πeσ2

B

[
H2

E
A(cA−2)

c(1−e−cA)
+

2H2
E

c2
−H2

Eξ
2P 2+σ2

E

]
 ,

α 6= 0.5 and α ∈ (0, 1]

, (20)

where Cs,1 and Cs,2 in (19) can be written, respectively, as
(21) and (22) as shown at the top of the next page, where µ̃
in (21) is the solution to the following equation

α =
1

µ̃
− e−µ̃

1− e−µ̃
. (23)

In (21) and (22), µ > 0 and δ > 0 are free parameters.
Suboptimal but useful choices for µ and δ are given by

δ = σE ln
(

1 + HEA
σE

)
µ = µ̃

(
1− e

−α δ2

2σ2
E

)
.

(24)

Moreover, c in (20) is the solution to the following equation

α =
1

1− e−cA
− 1

cA
. (25)

Proof: See Appendix E and Appendix F.
Remark 4: It can be easily proved that the curve of (20) is

symmetric with respect to α = 0.5. Moreover, it is challenging
to analyze the relationship between lower bound (19) and α.
Alternatively, numerical results are provided in Section V.

B. Upper Bound on Secrecy Capacity

According to (15) and referring to Theorem 2, we have the
following theorem.

Theorem 4: The secrecy capacity for the channel in (1) with
constraints (2), (3) and (4) is upper-bounded by

Cs≤
1

2
ln


(
H2

E

H2
B
σ2

B+σ2
E

) (
H2

BAξP+σ2
B

)
σ2

B

(
H2

EAξP+2
H2

E

H2
B
σ2

B+σ2
E

)(
1+

H2
Eσ

2
B

H2
Bσ

2
E

)
 . (26)

Proof: See Appendix G.
Remark 5: It can be easily shown that the upper bound (26)

is a monotonically non-decreasing function with respect to the
APOIR α.

C. Asymptotic Behavior Analysis

By analyzing Theorem 3 and Theorem 4, the asymptotic
behavior of the secrecy capacity bounds in the high SNR
regime is derived in the following corollary.

Corollary 2: For the channel in (1) with constraints (2),
(3) and (4), the asymptotic behavior of the secrecy capacity
bounds at asymptotically high SNR is given by

ln

(
HBσE

HEσB

)
≤ lim
P→∞

Cs ≤ ln

(
HBσE

HEσB

)
. (27)

Proof: See Appendix H.
Remark 6: From Corollary 2, it can be found that the

asymptotic upper and lower bounds on secrecy capacity coin-
cide in the sense that their gap is equal to zero.

V. NUMERICAL RESULTS

In this section, selected numerical examples will be pro-
vided to verify the derived expressions of secrecy capacity.
Here, a practical indoor VLC system within a 10m×10m×3m
room is considered. Alice is installed on the ceiling, whose
coordinate is (a, b, c). Bob and Eve are deployed on the floor,
whose coordinates are (d, e, f) and (x, y, f). To facilitate the
evaluation, the noise variances of Bob and Eve are assumed
to be the same and normalized to be 1, i.e., σ2

B = σ2
E = 0 dB

[8]. The other simulation parameters are listed in Table I.

A. Results of VLC Only with an Average Optical Intensity
Constraint

To verify the accuracy of the lower bounds (7), (8) and the
upper bound (16), Figs. 3-5 and Table II are provided in this
subsection.
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TABLE I
MAIN SIMULATION PARAMETERS.

Parameters Symbols Values
Order of the Lambertian emission m 6

Physical area of the PD Ar 1cm2

Optical filter gain of the PD Ts 1
Concentrator gain of the PD g 3

FOV of the PD Ψ 750
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Fig. 3. Secrecy capacity bounds versus P with different HB/HE when
ξ = 0.2, (a, b, c) = (5m, 5m, 3m) and (d, e, f) = (5m, 4.5m, 0m).

Figure 3 shows the secrecy capacity bounds versus P with
different HB/HE

2 when ξ = 0.2, (a, b, c) = (5m, 5m, 3m)
and (d, e, f) = (5m, 4.5m, 0m). For comparison, the Shannon
limit is also presented. Obviously, the Shannon capacity is
always larger than the secrecy capacity bounds. When P is
small, all secrecy capacity bounds increase rapidly with the
increase of P . When P is large, with the increase of P ,
the secrecy capacity bounds increase slowly and then tend
to stable values. Moreover, with the increase of HB/HE, the
secrecy capacity bounds also increase. This indicates that the
larger the difference between HB and HE is, the better the
system performance becomes. It can also be observed that
the performance of (8) outperforms that of (7) at low SNR.
However, at high SNR, eq. (7) achieves better performance
than (8). That is, the gap between (8) and (16) is tighter than
that between (7) and (16) at low SNR. At high SNR, the gap
between (7) and (16) is tighter than that between (8) and (16).
Moreover, the difference between (7) and (16) becomes so
small and it can be ignored. Specifically, Table II quantitatively
shows the performance gaps between (7) and (16). As can be
seen, in the high SNR regime, the performance gap for each
scenario is about 0.048 nats/transmission, which indicates that
the asymptotic upper and lower bounds on secrecy capacity do
not coincide. However, the difference is so small so that it can
be ignored. This conclusion coincides with that in Corollary
1.

2Note that when (x, y, f)=(4.93m, 1.73m, 0m), HB/HE= 30; when
(x, y, f)=(5.66m, 0.16m, 0m), HB/HE= 300; and when (x, y, f)=(9.7m,
9.87m, 0m), HB/HE= 3000.

TABLE II
PERFORMANCE GAPS BETWEEN (7) AND (16) AT HIGH SNR IN FIG. 3.

P (dB) Performance gaps (nats/transmission)
HB = 3000HE HB = 300HE HB = 30HE

65 0.11118 0.05804 0.04971
70 0.07356 0.05198 0.04888
75 0.05803 0.04971 0.04858
80 0.05198 0.04888 0.04847
85 0.04871 0.04858 0.04844
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Fig. 4. Secrecy capacity bounds versus ξ when (a, b, c) = (5m, 5m, 3m),
(d, e, f) = (5m, 4.5m, 0m) and HB/HE = 300.

Figure 4 shows the secrecy capacity bounds versus ξ when
(a, b, c) = (5m, 5m, 3m), (d, e, f) = (5m, 4.5m, 0m) and
HB/HE = 300. As can be seen, all the secrecy capac-
ity bounds are monotonically non-decreasing functions with
respect to ξ. When P = 35 dB (i.e., at low SNR), the
secrecy capacity bounds increase rapidly, while the increasing
tendency becomes gradual when P = 65 dB (i.e., at high
SNR). This indicates that, for VLC with only an average
optical intensity constraint, the dimming target has a strong
impact on secrecy capacity performance at low SNR. However,
at high SNR, the effect of the dimming target becomes weak.
Moreover, at low SNR, the gap between (8) and (16) is smaller
than that between (7) and (16). At high SNR, the opposite is
the case. This conclusion consists with that in Fig. 3.

Figure 5 shows the secrecy capacity bounds versus HB/HE

when ξ = 0.2. It can be observed that the secrecy capacity
bounds are zero when HB/HE < 1, which indicates that
the information-theoretic security cannot be achieved. When
HB/HE > 1, the secrecy capacity bounds are larger than
zero. The zone that HB/HE > 1 is named as the available
zone. In this zone, the secure transmission can be guaranteed.
Moreover, the secrecy capacity bounds increase with the
increase of HB/HE. Furthermore, eq. (8) is tighter than (7) at
low SNR, while the performance of (7) is better than that of
(8) at high SNR. Similar conclusion can be drawn from Fig.
4.
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Fig. 5. Secrecy capacity bounds versus HB/HE when ξ = 0.2.

B. Results of VLC with Both Average and Peak Optical
Intensity Constraints

To verify the accuracy of the lower bounds (19), (20) and
the upper bound (26), Figs. 6-8 and Table III are provided in
this subsection.

Figure 6 shows the secrecy capacity bounds versus A
with different HB/HE when ξ = 0.2, P = A, (a, b, c) =
(5m, 5m, 3m) and (d, e, f) = (5m, 4.5m, 0m). In this figure,
the Shannon limit is also provided. Once again, the perfor-
mance of Shannon limit always outperforms that of all secrecy
capacity bounds. Similar to Fig. 3, the secrecy capacity bounds
increase and then tend to stable values with the increase of
A. When A is small (i.e., at low SNR), the value of (20)
is larger than that of (19). However, when A is large (i.e.,
at high SNR), the performance of (19) is better than that
of (20). At high SNR, the difference between (19) and (26)
is very small and can be ignored. Different from Table II,
the performance gaps between (19) and (26) in Table III are
almost zero, which coincides with the conclusion in Corollary
2. This indicates that the asymptotic upper and lower bounds
on secrecy capacity coincide at high SNR.

TABLE III
PERFORMANCE GAPS BETWEEN (19) AND (26) AT HIGH SNR.

A (dB) Performance gaps (nats/transmission)
HB = 3000HE HB = 300HE HB = 30HE

65 8.0331×10−2 1.1486×10−2 1.4744×10−3

70 3.1006×10−2 4.1499×10−3 5.1763 ×10−4

75 1.1479×10−2 1.4750×10−3 1.7993×10−4

80 4.1472×10−3 5.1785×10−4 6.2036×10−5

85 1.4741×10−3 1.8001×10−4 2.1242×10−5

Figure 7 shows the secrecy capacity bounds versus ξ when
HB/HE = 300, P = A, (a, b, c) = (2.5m, 2.5m, 3m) and
(d, e, f) = (2.5m, 2m, 0.8m). Obviously, the dimming target
has a strong impact on system performance. For (19) and
(26), when A = 35 dB, the secrecy capacity bounds increase
rapidly with ξ; when A = 65 dB, the impact of ξ is slight,
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Fig. 7. Secrecy capacity bounds versus ξ when HB/HE = 300, P = A,
(a, b, c) = (2.5m, 2.5m, 3m) and (d, e, f) = (2.5m, 2m, 0.8m).

and the secrecy capacity bounds almost achieve stable values.
However, for (20), the curve is completely symmetric with
respect to ξ = 0.5, and the maximum value is obtained when
ξ = 0.5. It can be found from Fig. 7(a) that (20) is better than
(19) at low SNR. However, at high SNR as shown in Fig. 7(b),
it is better to employ (19) as the lower bound. Similar results
can also be seen in Fig. 6.

Figure 8 shows secrecy capacity bounds versus HB/HE

when ξ = 0.2 and P = A. Here, the Shannon limit is also
provided. As can be seen, the performance of Shannon limit
always outperforms that of all secrecy capacity bounds. Obvi-
ously, with the increase of HB/HE, the secrecy performance
improves. At the available zone, the secure communications
can be implemented. Moreover, the values of lower bound
(20) are almost larger than that of (19) at low SNR, and the
performance of (19) is better than that of (20) at high SNR.
This observation is the same as that in Fig. 7.
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Fig. 8. Secrecy capacity bounds versus HB/HE when ξ = 0.2 and P = A.

C. Results of Insecure Region

As it is known, when the main channel is worse than the
eavesdropping channel (i.e., HB/σB < HE/σE), the secrecy
capacity is zero, and thus secure transmission cannot be guar-
anteed. Here, the “insecure region” [36] is analyzed, which
represents the receive region that the secrecy capacity is zero.
If σB = σE, the indoor system is insecure when HB < HE.
According to (5), it can be known that the insecure region is

a disc with center (a, b, f) and radius
√

(a− d)
2

+ (b− e)2.
To verify the insecure region, Fig. 9 shows secrecy capacity

bound (16) for different positions of Eve when ξ = 0.2,
P = 50 dB and (a, b, c) = (5m, 5m, 3m). In Fig. 9, the
dark blue area represents the insecure region. As shown
in Fig. 9(a), when Bob is located underneath Alice, i.e.,
(d, e, f) = (5m, 5m, 0m), no area in the receiver plane
belongs to the insecure region. That is, the secure transmission
can be guaranteed for all positions of the receiver plane.
When Bob moves to the coordinate (3m, 3m, 0m), the insecure
region enlarges. Moreover, when Bob moves to the corner,
i.e., (d, e, f) = (0m, 0m, 0m), all areas become the insecure
region. By observing Fig. 9, the insecure region is a disc with

center (5m, 5m, 0m) and radius
√

(5− d)
2

+ (5− e)2m.
Fig. 10 shows secrecy capacity bound (26) for different

positions of Eve when ξ= 0.2, A = P = 50 dB and
(a, b, c) = (3m, 3m, 3m). In Fig. 10(a), when Bob is located
at (5m, 5m, 0m), the insecure region is large. When Bob is
located underneath Alice in Fig. 10(b), the insecure region
seems to vanish. When Bob moves to the corner in Fig. 10(c),
the insecure region enlarges once again. From Fig. 10, the
insecure region is a disc with center (3m, 3m, 0m) and radius√

(3− d)
2

+ (3− e)2m.

VI. CONCLUSIONS

Unlike conventional RFWC, the indoor VLC is well mod-
elled with optical intensity constraints imposed on the channel
input. Therefore, the PHY security in VLC is different from
that in RFWC. In this paper, we have investigated the secrecy

capacity for indoor VLC. Two scenarios are considered, i.e.,
one is only with an average optical intensity constraint, and
the other is with both average and peak optical intensity
constraints. Closed-form expressions of the lower and upper
bounds on secrecy capacity are derived. It is shown that the
gap between the lower and upper bounds is small, which
verifies the accuracy of the derived expressions. Moreover,
at high SNR, when only considering the average optical
intensity constraint, the asymptotic lower and upper bounds
do not coincide but with a small performance gap (i.e.,
0.048 nats/transmission). When both average and peak optical
intensity constraints are considered, the asymptotic lower and
upper bounds coincide, and thus the secrecy capacity can be
obtained precisely.

After obtaining the secrecy capacity bounds for the indoor
VLC, exploring the schemes to enhance the PHY security is
the natural next step. As future research directions, it is of
interest to seek new power, code, channel, and signal detection
approaches to improve the PHY security for indoor VLC.

APPENDIX A
PROOF OF LOWER BOUND (7) IN THEOREM 1

For two arbitrary functions f1(x) and f2(x), we have
max
x

(f1(x)− f2(x)) ≥ max
x

f1(x) −max
x

f2(x) [33]. There-
fore, the secrecy capacity in (6) is lower-bounded by

Cs ≥ max
fX(x)

I (X;YB)− max
fX(x)

I (X;YE)
∆
= CB − CE. (A.1)

According to [32], a lower bound of CB can be easily obtained
as (12) in [29], and an upper bound of CE can be easily
obtained as (13) in [29]. Then, submit (12) and (13) in [29]
into (A.1), eq. (7) can be derived.

APPENDIX B
PROOF OF LOWER BOUND (8) IN THEOREM 1

According to (29) in [23] and the EPI (9.181) in [37], the
objective function in (6) can be lower-bounded by

Cs≥max
fX(x)

{
1

2
ln
[
e2[H(X)+ln(HB)]+2πeσ2

B

]
− 1

2
ln[2πevar(YE)]

}
+ ln

(
σE

σB

)
. (B.1)

Obviously, a lower bound on the secrecy capacity can be
derived by dropping the maximization and choosing an ar-
bitrary fX(x) under the given constraints in (6). Without loss
of generality, we choose an input PDF that maximizes the
entropy H(X) under the constraints in (6). Such an input PDF
can be found by solving the following functional optimization
problem

min
fX(x)

J [fX(x)] ,
∫ ∞

0

fX(x) ln [fX(x)] dx

s.t.

∫ ∞
0

fX(x)dx = 1∫ ∞
0

xfX(x)dx = ξP. (B.2)
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(a) (d, e, f) = (5m, 5m, 0m) (b) (d, e, f) = (3m, 3m, 0m) (c) (d, e, f) = (0m, 0m, 0m)

Fig. 9. Secrecy capacity bound (16) versus different positions of Eve when ξ= 0.2, P = 50 dB and (a, b, c) = (5m, 5m, 3m).

(a) (d, e, f) = (5m, 5m, 0m) (b) (d, e, f) = (3m, 3m, 0m) (c) (d, e, f) = (0m, 0m, 0m)

Fig. 10. Secrecy capacity bound (26) versus different positions of Eve when ξ= 0.2, A = P = 50 dB and (a, b, c) = (3m, 3m, 3m).

Cs ≤ EX∗

{∫ ∞
−∞

∫ ∞
−∞

fYBYE|X(yB, yE|X) ln
[
fYB|XYE

(yB|X, yE)
]

dyBdyE

}
︸ ︷︷ ︸

I1

−EX∗
{∫ ∞
−∞

∫ ∞
−∞

fYBYE|X(yB, yE|X) ln
[
gYB|YE

(yB|yE)
]

dyBdyE

}
︸ ︷︷ ︸

I2

. (C.1)

Note that problem (B.2) can be solved by using the variational
method. Referring to our previous paper [29], the PDF of
fX(x) is obtained as

fX(x) =
1

ξP
e−

1
ξP x, x ≥ 0. (B.3)

Furthermore, H(X) and var(YE) can be written as{
H(X) = ln (eξP )
var(YE) = H2

Eξ
2P 2 + σ2

E.
(B.4)

Therefore, submitting (B.4) into (B.1), eq. (8) can be derived.

APPENDIX C
PROOF OF UPPER BOUND (16) IN THEOREM 2

According to (15), we have (C.1) as shown at the top of the
next page. Moreover, I1 in (C.1) can be written as

I1 = − [H(YB|X∗) +H(YE|X∗, YB)−H(YE|X∗)] , (C.2)

where H(YB|X∗) is given by

H (YB |X∗ ) = H (YB |X ) =
1

2
ln
(
2πeσ2

B

)
. (C.3)

Similarly, H(YE|X∗) can be derived as

H(YE|X∗) =
1

2
ln
(
2πeσ2

E

)
. (C.4)

Furthermore, H(YE|X∗, YB) can be expressed as

H(YE|X∗, YB) =
1

2
ln

[
2πe

(
H2

E

H2
B

σ2
B + σ2

E

)]
. (C.5)

Substituting (C.3), (C.4) and (C.5) into (C.2), I1 can be
finally written as

I1 = −1

2
ln

[
2πeσ2

B

(
1 +

H2
Eσ

2
B

H2
Bσ

2
E

)]
. (C.6)

The main challenge of deriving I2 in (C.1) is that the input can
be arbitrarily large without a peak optical intensity constraint.
That makes it much harder to find a bound on expression like
EX∗(X

2). To obtain I2, gYB|YE
(yB|yE) is chosen as

gYB|YE
(yB|yE) =

1

2s2
e−
|yB−µyE|

s2 , (C.7)

where µ and s are two free parameters to be determined.
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I2 = ln(2s2)+
1

s2
EX∗


∫ ∞
−∞

e
− (yB−HBX)2

2σ2
B

√
2πσB

∫ ∞
−∞

e

− t2

2

(
H2

E
H2

B

σ2
B

+σ2
E

)
√

2π
(
H2

E

H2
B
σ2

B+σ2
E

) ∣∣∣∣(1−µHE

HB

)
yB−µt

∣∣∣∣dtdyB

 . (C.9)

Moreover, fYBYE|X(yB, yE|X) can be written as

fYBYE|X(yB, yE|X)=
e
− (yB−HBX)2

2σ2
B

√
2πσB

e

−

(
yE−

HE
HB

yB

)2
2

(
H2

E
H2

B

σ2
B
+σ2

E

)
√

2π
(
H2

E

H2
B
σ2

B+σ2
E

) .(C.8)

Therefore, I2 can be written as (C.9) as shown at the top of
the next page. Because |a− b| ≤ |a| + |b| always holds, eq.
(C.9) can be upper-bounded by

I2 ≤ ln(2s2) +
2 |µ|
s2

√
H2

E

H2
B
σ2

B + σ2
E

2π
+

∣∣∣1− µHE

HB

∣∣∣
s2

× EX∗

∫ ∞
−∞

e
− n2

2σ2
B

√
2πσB

|n+HBX|dn

 . (C.10)

Because |a+ b| ≤ |a| + |b| always holds, eq. (C.10) can be
further upper-bounded by

I2≤ ln(2s2) +
2

s2

×

|µ|
√

H2
E

H2
B
σ2

B+σ2
E

2π
+

∣∣∣∣1−µHE

HB

∣∣∣∣( σB√
2π

+
HBξP

2

)
︸ ︷︷ ︸

I3

.(C.11)

To obtain a tight upper bound of I2, the minimum value of I3
in (C.11) should be determined. In the following, three cases
are considered:

Case 1: when µ < 0, I3 is given by

I3 =−


√
H2

E

H2
B
σ2

B+σ2
E

2π
+
HE

HB

(
σB√
2π

+
HBξP

2

)µ+
σB√
2π

+
HBξP

2

≥ σB√
2π

+
HBξP

2
; (C.12)

Case 2: when 0 ≤ µ ≤ HB/HE, I3 is given by

I3 =


√

H2
E

H2
B
σ2

B + σ2
E

2π
− HE

HB

(
σB√
2π

+
HBξP

2

)µ
+

σB√
2π

+
HBξP

2
. (C.13)

If
√

(H2
Eσ

2
B/H

2
B + σ2

E)/(2π) ≥ HE(σB/
√

2π +
HBξP/2)/HB, we have I3 ≥ σB/

√
2π + HBξP/2.

Otherwise, we have I3 ≥
√

(σ2
B +H2

Bσ
2
E/H

2
E)/(2π);

Case 3: when µ > HB/HE, I3 is given by

I3=


√
H2

E

H2
B
σ2

B+σ2
E

2π
+
HE

HB

(
σB√
2π

+
HBξP

2

)µ− σB√
2π
−HBξP

2

>

√
σ2

B +
H2

B

H2
E
σ2

E

2π
. (C.14)

According to the above three cases, we have

I3≥


σB√
2π

+HBξP
2 , if

√
H2

E
H2

B

σ2
B+σ2

E

2π ≥ HE

HB

(
σB√
2π

+HBξP
2

)√
σ2
B+

H2
B

H2
E

σ2
E

2π , if

√
H2

E
H2

B

σ2
B+σ2

E

2π ≤ HE

HB

(
σB√
2π

+HBξP
2

)
.

(C.15)

Substituting (C.15) into (C.11), I2 is further upper-bounded
by

I2≤


ln
[
4e
(
σB√
2π

+HBξP
2

)]
, if

√
H2

E
H2

B

σ2
B+σ

2
E

2π ≥ HE

HB

(
σB√
2π

+HBξP
2

)
ln

4e
√

σ2
B+

H2
B

H2
E

σ2
E

2π

 , if

√
H2

E
H2

B

σ2
B+σ

2
E

2π ≤ HE

HB

(
σB√
2π

+HBξP
2

)
.

(C.16)
Finally, submitting (C.6) and (C.16) into (C.1), eq. (16) can
be derived.

APPENDIX D
PROOF OF ASYMPTOTIC BEHAVIOR (17) IN COROLLARY 1

Here, the asymptotic expression of the lower bound on
secrecy capacity is based on (7) in Theorem 1. To facilitate
the analysis, eq. (7) can be further written as

Cs≥
1

2
ln

(
1+

H2
Bξ

2P 2e

2πσ2
B

)
︸ ︷︷ ︸

I4

−
{

ln

[
βe
− δ2

2σ2
E +
√

2πσEQ
(
δ

σE

)]

+
1

2
Q
(
δ

σE

)
+

δ

2
√

2πσE

e
− δ2

2σ2
E +

δ2

2σ2
E

Q
(
−δ+HEξP

σE

)
+
δ +HEξP

β
+

σE√
2πβ

e
− δ2

2σ2
E − 1

2
ln
(
2πeσ2

E

)}
, I4 − I5. (D.1)

For I4, we have

lim
P→∞

I4 − lim
P→∞

ln(HEξP ) =
1

2
ln

(
eH2

B

2πH2
Eσ

2
B

)
. (D.2)

Note that selecting any δ ≥ 0 and β can result in a lower
bound of (D.1). Without loss of generality, we choose δ =

σE

√
ln
(
HEξP
σE

)
and β = HEξP . Therefore, we have

lim
P→∞

{I5−ln (HEξP )}=
1

2
ln

(
e

2πσ2
E

)
. (D.3)
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By using (D.2) and (D.3), we have

lim
P→∞

Cs ≥ ln

(
HBσE

HEσB

)
. (D.4)

The asymptotic expression of the upper bound on secrecy
capacity is based on (16) in Theorem 2. According to (16),
when P →∞, we have

lim
P→∞

Cs ≤ ln

(
2
√
eHBσE

πHEσB

)
. (D.5)

According to (D.4) and (D.5), eq. (17) can be derived.

APPENDIX E
PROOF OF LOWER BOUND (19) IN THEOREM 3

According to (A.1), the secrecy capacity in this case can
also be written as

Cs ≥ CB − CE. (E.1)

When α ∈ (0, 0.5), CB is lower-bounded by [32]

CB ≥
1

2
ln

[
1 +H2

BA
2 e2αµ̃

2πeσ2
B

(
1− e−µ̃

µ̃

)2
]
, (E.2)

where µ̃ is the solution to (23). Moreover, CE is upper-
bounded by [32]

CE≤Q
(
δ

σE

)
+

δ√
2πσE

e
− δ2

2σ2
E − 1

2
+µα

[
1−2Q

(
δ+HEA

2

σE

)]

+

[
Q
(
−δ +HEαA

σE

)
−Q

(
δ + (1− α)HEA

σE

)]

× ln

 HEA√
2πσEµ

.
e

µδ
HEA − e−µ

(
1+ δ

HEA

)
(

1− 2Q
(
δ
σE

))


+
µσE

HEA
√

2π

(
e
− δ2

2σ2
E −e

− (HEA+δ)2

2σ2
E

)
, (E.3)

where µ and δ is given by (24). Substituting (E.2) and (E.3)
into (E.1), Cs,1 is derived.

When α ∈ [0.5, 1], CB is lower-bounded by [32]

CB ≥
1

2
ln

(
1 +

H2
BA

2

2πeσ2
B

)
, (E.4)

and CE is upper-bounded by [32]

CE≤

[
1−2Q

(
δ+HEA

2

σE

)]
ln

 HEA+ 2δ
√

2πσE

(
1−2Q

(
δ
σE

))


+Q
(
δ

σE

)
+

δ√
2πσE

e
− δ2

2σ2
E − 1

2
. (E.5)

Substituting (E.4) and (E.5) into (E.1), Cs,2 is derived.

APPENDIX F
PROOF OF LOWER BOUND (20) IN THEOREM 3

In this case, eq. (B.1) can also be derived. Similar to (B.2), a
lower bound on the secrecy capacity can be derived by solving
the following problem

min
fX(x)

J [fX(x)] ,
∫ A

0

fX(x) ln [fX(x)] dx

s.t.

∫ A

0

fX(x)dx = 1∫ A

0

xfX(x)dx = ξP. (F.1)

By employing the variational method [29], the input PDF is
derived as

fX(x) = ecx+b−1, (F.2)

where b and c are two free parameters.
When c = 0, submitting (F.2) into the two constraints in

(F.1), we have

fX(x) =

{
1
A , x ∈ [0, A]
0, otherwise

, (F.3)

and A = 2ξP , i.e., α = 0.5. Therefore, H(X) and var(YE)
can be written, respectively, as{

H(X) = ln(A)

var(YE) = H2
E
ξ2P 2

3 + σ2
E.

(F.4)

Submitting (F.4) into (B.1), the lower bound on secrecy
capacity for α = 0.5 is derived.

When c 6= 0, α 6= 0.5 and α ∈ (0, 1], submit (F.2) into the
two constraints in (F.1), we have

fX(x) =

{
cecx

ecA−1
, x ∈ [0, A]

0, otherwise
, (F.5)

where c is the solution to (25).
Furthermore, H(X) and var(YE) can be written, respec-

tively, as H(X) = ln
[
e−cξP

(
ecA−1
c

)]
var(YE) = H2

E

[
A(cA−2)
c(1−e−cA)

+ 2
c2 − ξ

2P 2
]

+ σ2
E.

(F.6)

Submit (F.6) into (B.1), the lower bound on secrecy capacity
for α 6=0.5 and α∈(0, 1] is derived.

APPENDIX G
PROOF OF UPPER BOUND (26) IN THEOREM 3

From (C.1), we have

Cs ≤ I1 + I2. (G.1)

According to (C.2)-(C.6), I1 in this case can also be
expressed as

I1 = −1

2
ln

[
2πeσ2

B

(
1 +

H2
Eσ

2
B

H2
Bσ

2
E

)]
. (G.2)

To obtain I2, gYB|YE (yB|yE) is chosen as

gYB|YE
(yB|yE) =

1√
2πs

e−
(yB−µyE)2

2s2 , (G.3)



12

where µ and s are free parameters to be determined.
According to (G.3) and (C.8), I2 can be derived as

I2 =
1

2
ln(2πs2)

+EX∗


(
1−µHE

HB

)2
(H2

BX
2+σ2

B)+µ2
(
H2

E

H2
B
σ2

B+σ2
E

)
2s2

.(G.4)

Owing to 0 ≤ X ≤ A and EX∗(X) = ξP , we have

EX∗(X
2) ≤

∫ A

0

AxfX∗(x)dx = AξP. (G.5)

Therefore, using (G.5), eq. (G.4) can be further written as

I2≤
1

2
ln(2πs2)

+

(
1−µHE

HB

)2
(H2

BAξP+σ2
B)+µ2

(
H2

E

H2
B
σ2

B+σ2
E

)
2s2

.(G.6)

To maximize the term on the right hand side of (G.6), taking
the first partial derivative with respect to µ and s, and letting
them to be zero, we have

µ=
HE
HB

(H2
BAξP+σ2

B)

H2
EAξP+2

H2
E

H2
B

σ2
B+σ2

E

s2 =

(
H2

E
H2

B

σ2
B+σ2

E

)
(H2

BAξP+σ2
B)

H2
EAξP+2

H2
E

H2
B

σ2
B+σ2

E

.

(G.7)

In this case, eq. (G.6) can be written as

I2 ≤
1

2
ln

2πe

(
H2

E

H2
B
σ2

B + σ2
E

) (
H2

BAξP + σ2
B

)
H2

EAξP + 2
H2

E

H2
B
σ2

B + σ2
E

 . (G.8)

Substituting (G.2) and (G.8) into (G.1), eq. (26) can be derived.

APPENDIX H
PROOF OF ASYMPTOTIC BEHAVIOR (27) IN COROLLARY 2

In this section, the asymptotic expression of the lower bound
on secrecy capacity is based on (19) in Theorem 3.

When 0 < α < 0.5 in (19), we have

lim
A→∞

Cs,1 = lim
A→∞

1

2
ln

[
1 +H2

BA
2 e

2αµ̃(1− e−µ̃)
2

2πeσ2
Bµ̃

2

]
︸ ︷︷ ︸

I6

− lim
A→∞

{
Q
(
δ

σE

)
+

δ√
2πσE

e
− δ2

2σ2
E − 1

2

+

[
Q
(
−δ+HEαA

σE

)
−Q

(
δ+(1−α)HEA

σE

)]

× ln

 HEA√
2πσEµ

.
e

µδ
HEA − e−µ

(
1+ δ

HEA

)
(

1− 2Q
(
δ
σE

))


+ µα

(
1− 2Q

(
δ + HEA

2

σE

))

+
µσE

HEA
√

2π

(
e
− δ2

2σ2
E − e

− (HEA+δ)2

2σ2
E

)}
, I6 − I7, (H.1)

where µ̃ is the solution of (23), µ and δ are given by (24).
Moreover, we have

lim
A→∞

I6 − lim
A→∞

lnA =
1

2
ln

(
H2

B

2πeσ2
B

)
− (1− α)µ̃− ln(1− αµ̃). (H.2)

Furthermore, we have

lim
A→∞

I7− lim
A→∞

lnA = ln

(
HE

σE

)
− 1

2
ln (2πe)

− (1−α)µ̃−ln(1−αµ̃). (H.3)

From (H.1) and (H.3), we can get

lim
A→∞

Cs ≥ ln

(
HBσE

HEσB

)
. (H.4)

When 0.5 ≤ α < 1 in (19), we have

lim
A→∞

Cs,2 = lim
A→∞

1

2
ln

(
1+

H2
BA

2

2πeσ2
B

)
︸ ︷︷ ︸

I8

− lim
A→∞


[
1−2Q

(
δ+HEA

2

σE

)]
ln

 HEA+2δ
√

2πσE

(
1−2Q

(
δ
σE

))


+Q
(
δ

σE

)
+

δ√
2πσE

e
− δ2

2σ2
E − 1

2

}
, I8 − I9, (H.5)

where δ is given by (24). Moreover, we have

lim
A→∞

I8 − lim
A→∞

lnA =
1

2
ln

(
H2

B

2πeσ2
B

)
. (H.6)

Furthermore, we can obtain

lim
A→∞

I9 − lim
A→∞

lnA = ln

(
HE√
2πσE

)
. (H.7)

According to (H.5), (H.6) and (H.7), eq. (H.4) can also be
derived. This indicates that for all α ∈ (0, 1), eq. (H.4) always
holds.

In this section, the asymptotic expression of the upper bound
on secrecy capacity is based on (26) in Theorem 4. According
to (26), when A→∞, we have

lim
A→∞

Cs ≤ ln

(
HBσE

HEσB

)
. (H.8)

From (H.4) and (H.8), eq. (27) can be derived.
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