
ar
X

iv
:1

80
1.

00
43

5v
1 

 [
cs

.I
T

] 
 1

 J
an

 2
01

8
1

Analysis and Code Design for the Binary CEO

Problem under Logarithmic Loss

Mahdi Nangir, Reza Asvadi, Member, IEEE,

Mahmoud Ahmadian-Attari, Member, IEEE, and Jun Chen, Senior

Member, IEEE

Abstract

In this paper, we propose an efficient coding scheme for the binary Chief Executive Officer

(CEO) problem under logarithmic loss criterion. Courtade and Weissman obtained the exact rate-

distortion bound for a two-link binary CEO problem under this criterion. We find the optimal

test-channel model and its parameters for the encoder of each link by using the given bound.

Furthermore, an efficient encoding scheme based on compound LDGM-LDPC codes is presented

to achieve the theoretical rates. In the proposed encoding scheme, a binary quantizer using LDGM

codes and a syndrome-decoding employing LDPC codes are applied. An iterative decoding is also

presented as a fusion center to reconstruct the observation bits. The proposed decoder consists

of a sum-product algorithm with a side information from other decoder and a soft estimator.

The output of the CEO decoder is the probability of source bits conditional to the received

sequences of both links. This method outperforms the majority-based estimation of the source

bits utilized in the prior studies of the binary CEO problem. Our numerical examples verify a

close performance of the proposed coding scheme to the theoretical bound in several cases.
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Index Terms

Binary CEO problem, logarithmic loss (log-loss), test-channel model, compound LDGM-

LDPC codes, soft CEO decoder.

I. Introduction

The Chief Executive Officer (CEO) problem is defined by Berger et al. for distributed

source coding of multi-observations of a source corrupted by independent noises [1]. By

using the compressed observations, a fusion center makes an estimation of the source at the

receiver with an acceptable distortion between the original and the estimated symbols. In

the last two decades, there has been an explosion of studies on the theoretical bounds of the

transmission rate in the CEO problem in the case of noisy observations of a Gaussian source

corrupted by independent additive Gaussian noises [2]–[5]. This case is usually known as the

quadratic Gaussian CEO problem. The CEO problem empirically emerges in wireless sensor

networks, where a particular phenomenon is measured by some separate and independent

sensors in a noisy environment.

A tight upper bound on the sum-rate distortion function of the quadratic Gaussian CEO

problem and the optimal rate allocation scheme are provided in [6]. Alternatively, studies

like [7]–[9] present various coding schemes to achieve any point of the rate-distortion region

of the quadratic Gaussian CEO problem. Moreover, an optimal coding scheme based on

the successive Wyner-Ziv coding structure is applied to achieve the bounds of the quadratic

Gaussian CEO in [7].

The case of a binary source with observations corrupted by binary noises, called the binary

CEO problem, has been paid less attention during these years. In general, the exact rate-

distortion bound of this case and its associated multi-terminal source coding problem are

open problems in information theory. The most common criterion for measuring distortion in

the binary case is the Hamming distortion measure [10]. The binary CEO problem appears

in cooperative digital communication networks where some correlated remote sources are

being sent to a central receiver via paralleled channels with independent noises.
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A lower bound for the rate-distortion region of a two-link binary CEO problem is estab-

lished in [10] using the Hamming distortion benchmark. The Berger-Tung inner and outer

bounds [11] are exploited for this case which are not tight under the Hamming distortion

criterion. Some useful bounds on the rate-distortion performance of the binary CEO problem

under the Hamming distortion measure are given in [12] and [13]. The prior studies on the

binary CEO in [10], [12], [14], [15] consider that the correlated observations are transmitted

through AWGN channels, and hence their encoders apply a channel coding to protect the

transmitted data. Thus, the problem definition in those papers differs from the standard

CEO problem, defined in [1], for which the transmission links are assumed to be noiseless

and the encoders employ source coding schemes, alternatively. In contrast, we follow the

lossy distributed source coding framework in the binary CEO problem. Thus, our goal is

to achieve the maximum compression of the correlated noisy observations for sending them

through noiseless channels with minimum distortion.

Due to increasing demand for developing deep learning in upcoming complex networks, the

logarithmic loss, or simply log-loss, has emerged as a useful criterion to measure distortion

in many applications like machine learning, classification, and estimation theory. In this

paper, we focus on the binary CEO problem under the log-loss criterion. This loss has been

interpreted as the conditional entropy and the estimated symbols of the fusion center are

soft data under this loss. Moreover, it has been also shown that the log-loss is a universal

criterion for measuring the performance of lossy source coding [16], [17]. The entire achievable

rate-distortion region of a two-encoder multi-terminal source coding and an m-encoder CEO

problem under the log-loss have been derived in [18]. The advantage of working on the CEO

problem under the log-loss is that the corresponding rate-distortion region is known. By

using these exact theoretical bounds, the rate-distortion performance of a designed coding

scheme would be measured with more accuracy.

Our main contributions in this paper can be considered in the contexts of both information

theory and coding theory. First, an exact rate-distortion bound is derived for a two-link

binary CEO problem under the log-loss distortion. Next, we assume a binary symmetric
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channel (BSC) being used as test-channel of lossy encoders in the binary CEO problem.

Then, we obtain the optimal values of crossover probabilities of the test-channels for each

BSC. Finally, efficient encoding and decoding schemes are proposed by utilizing the com-

pound LDGM-LDPC codes and iterative message-passing algorithms. We show that the

rate-distortion performance of the proposed coding scheme is close to the theoretical bounds.

The organization of this paper is as follows. In Section II, the problem definition, pre-

liminaries, and notations are provided. Information theoretic aspects of the binary CEO

problem under the log-loss are described in Section III. Optimal values of the test-channel

parameters are also presented in this section. Next in Section IV, we provide the designed

encoding and decoding scheme in details. Numerical results and discussions are presented

in Section V. Finally, Section VI draws the conclusion and future research.

II. Preliminaries

In this paper, we use uppercase letters for denoting a random variable like one used in

[18]. The realization of random variables are denoted by lowercase letters and the alphabet

sets of random variables are denoted by calligraphic letters. Throughout this paper, the

logarithm is to base 2. In the Tanner graph representation of codes, first subscript shows

the index of each associated link for any length, rate, distortion, and etc. Some other used

notations are as follows: p ∗ d = p(1 − d) + d(1 − p) is binary convolution of d and p,

for 0 ≤ p, q ≤ 1 and [x]+ = max{0, x}. Let hb(x) = −x log x − (1 − x) log(1 − x) be

the binary entropy function where its the first and the second derivatives are, respectively,

h′
b(x) = log

(
1−x

x

)

and h′′
b (x) = − log e

x(1−x)
, where e ≈ 2.7182. The functions hb(x), h′

b(x), and

h′′
b (x) are, respectively, increasing, decreasing, and increasing functions in x ∈ (0, 0.5].

A. System Model and Definitions

Consider a communication system consisting of an independent and identically distributed

(i.i.d.) binary symmetric source (BSS) and its two noisy observations being transmitted via

two parallel links as depicted in Fig. 1. Let Xn, Y1
n, and Y2

n denote a sequence of the BSS

and two noisy observations of it, on the first and the second links, respectively. Observation
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Fig. 1: Block diagram of the two-link binary CEO problem.

noises Nn
1 and Nn

2 are independent from each other and are i.i.d. binary sequences generated

by Bernoulli distributions with crossover parameters p1 and p2 associated to the first and

the second links, respectively. Consider Y1
n and Y2

n are encoded to C1 and C2, and then

they are sent to the CEO joint decoder. Note that C1 ↔ Y n
1 ↔ Xn ↔ Y n

2 ↔ C2 form a

Markov chain. At the decoder, the binary sequence X̂n is reconstructed in the joint decoder

of CEO by using (C1, C2).

Each encoder of both links consists of a function fi, i = 1, 2, which compresses the

observation as follows:

fi(Y
n

i ) = Ci, where Y n
i ∈ Yn

i = {0, 1}n and Ci ∈ Ci, for i = 1, 2. (1)

The CEO decoder is a function g which maps the ordered pair (C1, C2) to the reconstruction

X̂n,

g(C1, C2) = X̂n, where (C1, C2) ∈ C1 × C2. (2)

In the lossy source coding theory, Hamming distance is a prevalent and a classic cri-

terion for measuring the average number of flipped bits between the estimated binary

sequence X̂n compared to the original binary sequence Xn, and is denoted by dH(Xn, X̂n) =∆

1
n

∑n
j=1[xj ⊕ x̂j ], where ⊕ means the binary sum operation. If the estimated sequence may

not necessarily be binary, another criterion is needed to measure the distance between these

two sequences with different alphabets. In this case, an efficient conditional entropy-based

distortion measure is used where probability distributions of the original source alphabet,

binary in this paper, is the same as the one that will be used in the reconstructed source

alphabet. This distortion measure is called log-loss.
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Definition 1: Symbol-wise log-loss between a source symbol xj and its reconstruction x̂j

is defined as follows:

d(xj, x̂j) = log
( 1

x̂j(xj)

)

, j = 1, 2, · · · , n. (3)

where x̂j(xj) generally depends on (c1, c2). The total value of log-loss distortion between xn

and x̂n is obtained by averaging over all the symbols, i.e.,

d(xn, x̂n) =
1

n

n∑

j=1

log
( 1

x̂j(xj)

)

. (4)

Definition 2: A rate distortion vector (R1, R2, D) is called strict-sense achievable if there

exist functions f1, f2, and g according to (1) and (2) such that for length n,

Ri ≥
1

n
log

∣
∣
∣Ci

∣
∣
∣, for i = 1, 2; (5)

D ≥ Ed(Xn, X̂n),

where E(.) denotes an expectation function.

Definition 3: The closure of the set of all strict-sense achievable vectors (R1, R2, D)

is called achievable rate-distortion region of the binary CEO problem and is denoted by

RD
⋆

CEO. Furthermore, RDi
CEO and RDo

CEO denote the inner and the outer bounds of the

rate-distortion region, respectively.

B. Message-Passing Algorithms

In our proposed coding scheme, we apply different types of message-passing algorithms

depending on their applications. The Bias-Propagation (BiP) algorithm [19] is applied for

lossy compression of a given binary source. It maps each output sequence of the source to

a codeword of a given low-density generator matrix (LDGM) code which has the nearest

Hamming distance to the source output. It achieves the rate-distortion bound of the BSS, and

hence it is usually known as a binary quantizer in the context of source coding. Specifically, it

can approach a target binary rate-distortion pair (R, D) = (1−hb(d), d) by employing LDGM

codes. In each round of this algorithm, a bias value for each variable node is calculated and

then it is compared with a threshold. Regarding this comparison, the values of at least one
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of the variable nodes is determined in the quantized sequence. This process continues until

values of all the variable nodes are fixed. Details of the BiP algorithm including update

equations and damping process are presented in [19] and [20].

Another useful message passing algorithm is the Sum-Product (SP) algorithm [21] that is

basically a decoding technique for low-density parity-check (LDPC) codes with an specified

code rate and a degree distribution. In distributed lossless source coding, this algorithm is

widely used as a syndrome decoder for finding the nearest sequence to a particular sequence

called side information using the given nonzero syndrome, cf., [22] and [23]. The iterative

routine for executing this algorithm is given in [24]. This algorithm can asymptotically

achieve the zero bit-error-rate (BER) for a target code rate equal to the capacity of a

virtual channel between the original sequence and the side information.

III. Information Theory Perspective

In this section, we investigate the information theoretic aspect of the binary CEO problem.

We review existent bounds on the rate-distortion performance of this problem and then find

an optimal model for realization of them. The Berger-Tung inner and outer bounds [11] are

not generally tight, especially in the binary CEO problem case with Hamming distortion

measure. If there exists a gap between the inner and the outer bounds, then measuring and

comparing the rate-distortion performance of the designed codes are inaccurate. Therefore,

the existence of a tight bound seems crucial for the performance analysis of a code design.

Because of this, the Berger-Tung coding scheme is not optimal for the binary CEO problem

under the Hamming loss in the sense of achieving the exact rate-distortion bound [11]. In

our proposed coding scheme, the total distortion is measured by using the log-loss definition

(4).

A. Binary CEO Problem Bound under the Log-Loss

Theoretical rate-distortion bound of the binary CEO problem is unknown when distortion

measure is the Hamming distance, however, the inner and the outer bounds are only available
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for this case. Alternatively, if the log-loss criterion being used to measure distortion, the rate-

distortion region is exactly established. Specifically, the classical Berger-Tung scheme yields

the following inner bound of RD
⋆

CEO. Let (R1, R2, D) ∈ RDi
CEO, if and only if, there exists

a joint distribution of the form

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q), (6)

where |Ui| ≤ |Yi| for i = 1, 2, and |Q| ≤ 4, which satisfies

R1 ≥ I(Y1; U1|U2, Q), (7)

R2 ≥ I(Y2; U2|U1, Q),

R1 + R2 ≥ I(Y1, Y2; U1, U2|Q),

D ≥ H(X|U1, U2, Q).

Furthermore, an outer bound is provided for the binary CEO problem under the log-loss

according to Definition 4 and Theorem 2 in [18]. Let (R1, R2, D) ∈ RDo
CEO, if and only if,

there exists a joint distribution of the form (6) satisfies the following inequalities,

R1 ≥ [I(Y1; U1|X, Q) + H(X|U2, Q) − D]+, (8)

R2 ≥ [I(Y2; U2|X, Q) + H(X|U1, Q) − D]+,

R1 + R2 ≥ [I(Y1; U1|X, Q) + I(Y2; U2|X, Q) + H(X) − D]+,

D ≥ H(X|U1, U2, Q).

The most important result in [18], related to our work, is Theorem 3 and its extension. It

states that the bounds in (7) and (8) are the same, yielding a complete characterization

of the rate-distortion region under the log-loss. Therefore, the Berger-Tung inner bound is

tight under the log-loss. We focus on the two-link binary CEO problem, however it can be

extended to m-link case. By applying the well-known support lemma [18] for attaining the

cardinality bound, all rate-distortion vectors can be achieved in RD
⋆

CEO if |Q| ≤ 4 and

|Ui| ≤ |Yi| = 2, for i = 1, 2, are satisfied. To find a complete characterization of the sum-

rate-distortion function for the two-link binary CEO problem, we should solve the following
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optimization problem:

min
p(u1|y1,q)p(u2|y2,q)p(q)

I(U1, U2; Y1, Y2|Q), (9)

s.t. H(X|U1, U2, Q) = D0,

where H(X|Y1, Y2) ≤ D0 ≤ 1. This optimization problem can be written in the following

unconstrained form:

min
p(u1|y1,q)p(u2|y2,q)p(q)

H(X|U1, U2, Q) + µI(U1, U2; Y1, Y2|Q), (10)

where µ is the Lagrangian multiplier. Note that

H(X|U1, U2, Q) + µI(U1, U2; Y1, Y2|Q) (11)

=
∑

q∈Q

p(q)[H(X|U1, U2, Q = q) + µI(U1, U2; Y1, Y2|Q = q)]

≥ min
q∈Q

H(X|U1, U2, Q = q) + µI(U1, U2; Y1, Y2|Q = q).

Therefore, for the purpose of characterizing the sum-rate-distortion function, there is no

loss of generality in assuming that Q is a constant, which leads to the following simplified

optimization problem:

min
p(u1|y1)p(u2|y2)

H(X|U1, U2) + µI(U1, U2; Y1, Y2) =∆ F. (12)

B. BSC Test-Channel Model for the Encoders

We shall assume that p(ui|yi) is a BSC with crossover probability di, i = 1, 2, which

is justified by the extensive numerical solutions to (12). Consequently, after some calculus

manipulations in (7), the rate-distortion bounds are expressed by:

R1 ≥ hb(p ∗ d) − hb(d1), (13)

R2 ≥ hb(p ∗ d) − hb(d2),

R =∆ R1 + R2 ≥ 1 + hb(p ∗ d) − hb(d1) − hb(d2),

D ≥ hb(p1 ∗ d1) + hb(p2 ∗ d2) − hb(p ∗ d),
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where p =∆ p1 ∗ p2 and d =∆ d1 ∗ d2. In this case, the optimization problem (12) is equivalent

to:

min
0≤d1,d2≤0.5

hb(p1 ∗ d1) + hb(p2 ∗ d2) − hb(p ∗ d) + µ
(

1 + hb(p ∗ d) − hb(d1) − hb(d2)
)

, (14)

for any µ. The following example gives an intuition that d1 = d2 in the binary CEO problem

is not necessarily optimum choice even if p1 = p2.

Example 1: Let consider p1 = p2 = 0.1 and also assume that the minimum achievable

sum-rate R is fixed to 0.6, i.e., 1 + hb(p ∗ d) − hb(d1) − hb(d2) = 0.6. First, let d1 = d2.

By a simple calculation, d1 = d2 = 0.177 is obtained, and then the minimum achievable

distortion D will be equal to 0.6474. Alternatively, let presume that the total information

is only sent over the first link, i.e., d2 = 0.5. Thus, d1 and D are calculated as 0.0795 and

0.6428, respectively. Consequently, the distortion value by using only one of the links is

unexpectedly smaller than the case that both of them are used, and hence finding optimum

values of d1 and d2 is interesting. Optimality in this case means achieving the minimum

achievable log-loss distortion subject to a given minimum achievable sum-rate. First of all,

we show that the optimization problem (9) is not convex even with the BSC assumption for

the encoders.

Theorem 1: Bounds of distortion D and sum-rate R in (13) are neither convex nor concave

in terms of variables (d1, d2).

Proof: From (13) we have:

∂2R

∂d2
i

= (1 − 2p ∗ d3−i)
2h′′

b (p ∗ d) − h′′
b (di), (15)

∂2R

∂d1∂d2
= (1 − 2p ∗ d1)(1 − 2p ∗ d2)h

′′
b (p ∗ d) − 2(1 − 2p)h′

b(p ∗ d),

∂2D

∂d2
i

= (1 − 2pi)
2h′′

b (pi ∗ di) − (1 − 2p ∗ d3−i)
2h′′

b (p ∗ d),

∂2D

∂d1∂d2
= −(1 − 2p ∗ d1)(1 − 2p ∗ d2)h′′

b (p ∗ d) + 2(1 − 2p)h′
b(p ∗ d).

The Hessian matrices of the rate and distortion are, respectively, HR = [ ∂2R
∂di∂dj

] and HD =

[ ∂2D
∂di∂dj

], for i, j = 1, 2. By defining qi =∆ p ∗ d3−i, obviously qi ≥ pi. After some calculations,
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we have:

∂2R

∂d2
i

=
qi(1 − qi)

qi ∗ di(1 − qi ∗ di)di(1 − di)
≥ 0,

∂2D

∂d2
i

=
pi(1 − pi) − qi(1 − qi)

pi ∗ di(1 − pi ∗ di)qi ∗ di(1 − qi ∗ di)
≤ 0.

(16)

For fixed values of di, sum-rate R and distortion D are, respectively, a convex and a concave

single-variable functions in terms of d3−i, for i = 1, 2 according to (16). We show that the

determinant of the Hessian matrices for R and D are not positive with a counter-example.

det
[

HR

]

=
∂2R

∂d2
1

∂2R

∂d2
2

−
( ∂2R

∂d1∂d2

)2
(17)

=
( q1(1 − q1)

p ∗ d(1 − p ∗ d)d1(1 − d1)

)

×
( q2(1 − q2)

p ∗ d(1 − p ∗ d)d2(1 − d2)

)

−
(

2(1 − 2p) log
[1 − p ∗ d

p ∗ d

]

+
(1 − 2q1)(1 − 2q2)

p ∗ d(1 − p ∗ d)

)2
.

Let calculate det
[

HR

]

for d1 = d2 = 0.1 where p1 → 0 and p2 → 0. In this case, d = 0.18,

p → 0, q1 → 0.1, and q2 → 0.1. Hence,

det
[

HR

]

=
( 0.09

0.0133

)

×
( 0.09

0.0133

)

−
(

3.0327 + 4.3360
)2

= −8.5066 < 0. (18)

This counter-example shows that R is neither convex nor concave in general. Similarly, for

distortion D, we have:

det
[

HD

]

=
∂2D

∂d2
1

∂2D

∂d2
2

−
( ∂2D

∂d1∂d2

)2
(19)

=
( q1(1 − q1) − p1(1 − p1)

p ∗ d(1 − p ∗ d)p1 ∗ d1(1 − p1 ∗ d1)

)

×
( q2(1 − q2) − p2(1 − p2)

p ∗ d(1 − p ∗ d)p2 ∗ d2(1 − p2 ∗ d2)

)

−
(

2(1 − 2p) log
[1 − p ∗ d

p ∗ d

]

+
(1 − 2q1)(1 − 2q2)

p ∗ d(1 − p ∗ d)

)2
.

Now we calculate det
[

HD

]

for p1 = p2 = 0.1 when d1 → 0 and d2 → 0. In this case, p = 0.18,

d → 0, q1 → 0.18, and q2 → 0.18. Hence,

det
[

HD

]

=
(0.0576

0.0133

)

×
(0.0576

0.0133

)

−
(

1.9409 + 2.7751
)2

= −3.4846 < 0. (20)

This counter-example also shows that D is neither convex nor concave in general.

Regarding the above theorem, objective function F (µ) =∆ D + µR in (14), which is a two-

dimensional function of (d1, d2), is not convex in general. For a fixed value of µ, solution of
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(14) is an ordered pair denoted by (d∗
1, d∗

2) which achieves minimum value of F . If p1 = p2,

only pairs that d∗
1 ≤ d∗

2 will be considered as an acceptable solution due to the symmetry.

Now, solution of the problem (14) is presented by utilizing an exhaustive search on the plane

(d1, d2) with sufficiently small step-sizes.

There exist two definite boundary points in F (µ). First, it arises in µ = 0 where the

objective function equals distortion, and hence the minimum value Dmin equals H(X|Y1, Y2)

for (d∗
1, d∗

2) = (0, 0). Second, it occurs in µmax by which the minimum value of the objective

function equals to H(X) = 1 for all µ values equal or greater than µmax, i.e., Fmin(µ) = 1

for ∀µ ≥ µmax. In the latter boundary point, the solution is located in (d∗
1, d∗

2) = (0.5, 0.5)

and the sum-rate R = 0. Thus, it is sufficient to study behavior of the objective function

between these two boundary points, i.e., 0 ≤ µ ≤ µmax. Our results show that location of

the solutions depends on the value of noise parameters p1 and p2 whether they are equal or

not. In Fig. 2, location of the solution points (d∗
1, d∗

2) are depicted for several cases. When

p1 = p2, as it is seen in these curves, there exist two threshold values for parameter µ,

denoted by µt1 and µt2 , related to non-smooth critical points of the curves. These critical

points are used to categorize location of the optimum solutions. In Region 1, 0 ≤ µ ≤ µt1 ,

the optimum points (d∗
1, d∗

2) are located on the line d∗
1 = d∗

2. In Region 2, µt1 ≤ µ ≤ µt2 , the

optimum points are located on a curve such that d∗
1 < d∗

2 < 0.5. In Region 3, µt2 ≤ µ ≤ µmax,

the solutions are located on the boundary points. However, when p1 6= p2, there is only one

threshold value for µ denoted by µt corresponding to the critical point of the curve. In

Region 1, 0 ≤ µ ≤ µt, the solutions are located on a curve such that d∗
1 < d∗

2 < 0.5, and

in Region 2, µt ≤ µ ≤ µmax, the optimum points are located on the boundary points. As it

is seen in Fig. 2, one of the links becomes useless for sending encoded observations to the

decoder when the difference p2 − p1 slightly increases. To confirm these solutions, all roots

of the gradient equation ∇F = [ ∂F
∂d1

, ∂F
∂d2

] = [0 0] are calculated. These roots give all possible

optimum points except the boundary points, hence:

(1 − 2pi)h
′
b(di ∗ pi) − µh′

b(di) + (µ − 1)(1 − 2qi)h
′
b(d ∗ p) = 0, for i = 1, 2. (21)

This non-linear system of equations dose not have any closed-form solution and it is generally
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(a) For p2 = p1. (b) For p2 − p1 = 0.01. (c) For p2 − p1 = 0.05.

Fig. 2: Location of the optimum points (d∗

1
, d∗

2
).

solved by using numerical methods such as Newton’s method [25]. Next, the Hessian matrix

HF = HD + µHR is calculated in these roots to check whether a possible point is exactly

an optimum point or not.

HF =
[ ∂2F

∂di∂dj

]

; i, j ∈ {1, 2}. (22)

If HR is a positive definite matrix in a root of ∇F = [0 0], then it is a solution. Otherwise,

since there is not such a point, the solution is only located on the boundary points, i.e., at

least one of the d∗
i s equals 0 or 0.5. Due to the non-convexity of the optimization problem

and the non-linearity of the rate and distortion expressions, we give an asymptotic analysis

of the problem (14). In this regard, we consider a high resolution regime.

Lemma 1: Assume K = (1 − 2p) log
(

1−p

p

)

and Ki = (1 − 2pi) log
(

1−pi

pi

)

for i = 1, 2. For

x → 0,

hb(x) = −x log(x) + x + O(x2), hb(x ∗ p) − hb(p) = Kx + O(x2). (23)

Theorem 2: Location of the solution points of (14), when d1 → 0 and d2 → 0, is as follows:

d2 ≈ e
K(K2−K)

(K1−K) d
K2−K

K1−K

1 . (24)

Proof: Let R0 = 1 + hb(p) and D0 = hb(p1) + hb(p2) − hb(p) be sum-rate and distortion
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at (d1, d2) = (0, 0). According to (23), after (d1, d2) → (0, 0), then we have:

R − R0 = hb(p ∗ d) − hb(p) − hb(d1) − hb(d2), (25)

= Kd + d1 log d1 − d1 + d2 log d2 − d2 + O(max{d2, d2
1, d2

2})

= (K − 1)(d1 + d2) + d1 log d1 + d2 log d2 + O(max{d2
1, d2

2}),

D − D0 = hb(p1 ∗ d1) − hb(p1) + hb(p2 ∗ d2) − hb(p2) − hb(p ∗ d) + hb(p) (26)

= K1d1 + K2d2 − Kd + O(max{d2, d2
1, d2

2})

= (K1 − K)d1 + (K2 − K)d2 + O(max{d2
1, d2

2}).

By ignoring the high-order terms, the following convex optimization problem is obtained:

min
0≤d1,d2≤0.5

(K − 1)(d1 + d2) + d1 log d1 + d2 log d2

s.t. (K1 − K)d1 + (K2 − K)d2 = D − D0.

(27)

The Lagrangian L of the above minimization problem for the Lagrangian multiplier λ is

given by:

L = (K − 1)(d1 + d2) + d1 log d1 + d2 log d2 + λ[(K1 − K)d1 + (K2 − K)d2 − D + D0]. (28)

The gradient equation implies:

∂L

∂di

= K + log di + λ(Ki − K) = 0, for i = 1, 2. (29)

Finally, by canceling λ in the above two equations, it is concluded that:

K(K2 − K1) + (K2 − K) log d1 − (K1 − K) log d2 = 0 ⇒ d2 = e
K(K2−K)

(K1−K) d
K2−K

K1−K

1 . (30)

Corollary 1: In general, without assuming that the test-channels are BSCs, one can

still show that R − R0 can be approximated by a convex function while D − D0 can

be approximated by a linear function, in the high-resolution regime. As a consequence,

computation of the rate-distortion function can be approximately formulated as a convex

optimization problem. A direct implication of this convex optimization formulation is that

the binary symmetric test-channel is asymptotically optimal in the high-resolution regime.
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(a) Depiction of Fig. 2(b) in a high-resolution

regime.

(b) Direct plotting of (24).

Fig. 3: Comparison of the location of optimum points and curves of (24).

Corollary 2: The slope of the tangent lines to the curve of location of optimum points in

(d∗
1, d∗

2) = (0, 0) are, respectively, 1, ∞, or 0 when p1 = p2, p1 < p2, or p1 > p2.

In the following figure, location of the optimum points in a high-resolution regime 1 and

the curve (24) for Fig. 2(b) are depicted. As it is obvious, these curves are approximately

the same. By the following lemma, the asymptotic analysis of the problem is investigated

around (d∗
1, d∗

2) = (0.5, 0.5).

Lemma 2: The maximum value of the parameter µ occurs in (R, D) = (0, 1) when

(d∗
1, d∗

2) = (0.5, 0.5) and it equals:

µmax = max{(1 − 2p1)
2, (1 − 2p2)2}. (31)

Proof: Consider the rate and distortion of (13) are denoted by Re = 0 and De = 1 if

(d∗
1, d∗

2) = (0.5, 0.5). Calculation of the following fraction limit, which equals the slope of the

tangent line to the sum-rate distortion curve, is desired;

lim
(d1,d2)→(0.5,0.5)

De − D

R − Re
= lim

(d1,d2)→(0.5,0.5)

1 + hb(p ∗ d) − hb(p1 ∗ d1) − hb(p2 ∗ d2)

1 + hb(p ∗ d) − hb(d1) − hb(d2)
=

0

0
! (32)

By applying L’Hopital’s rule and differentiation with respect to d1, (32) equals:

lim
(d1,d2)→(0.5,0.5)

(1 + m − 2d2 − 2md1)(1 − 2p)h′
b(p ∗ d) − (1 − 2p1)h

′
b(p1 ∗ d1) − m(1 − 2p2)h

′
b(p2 ∗ d2)

(1 + m − 2d2 − 2md1)(1 − 2p)h′
b(p ∗ d) − h′

b(d1) − mh′
b(d2)

,

(33)

1d1 and d2 are O(10−4)
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where m = ∂d2

∂d1
. The above fraction is again ambiguous, therefore we need another differenti-

ation with respect to d1 from both the numerator and the denominator. After differentiation

and letting (d1, d2) → (0.5, 0.5),

lim
(d1,d2)→(0.5,0.5)

De − D

R − Re
= lim

(d1,d2)→(0.5,0.5)

0 − (1 − 2p1)
2h′′

b (p1 ∗ d1) − m2(1 − 2p2)
2h′′

b (p2 ∗ d2)

0 − h′′
b (d1) − m2h′′

b (d2)

(34)

=
−(1 − 2p1)2h′′

b (0.5) − m2(1 − 2p2)
2h′′

b (0.5)

−h′′
b (0.5) − m2h′′

b (0.5)
=

(1 − 2p1)
2 + m2(1 − 2p2)

2

1 + m2
=∆ g(m).

In the curve of the sum-rate distortion bound, the value of (32) is maximized. Hence, the

maximum of g(m) is desirable.

g′(m) =
∂g(m)

∂m
=

(

2m(1 − 2p2)
2
)

(1 + m2) − 2m
(

(1 − 2p1)
2 + m2(1 − 2p2)

2
)

(1 + m2)2
= 0 (35)

⇔ m = 0 or m = ∞.

Therefore, the maximum value of the parameter µ is obtained from (35) as in (31).

Corollary 3: According to (35), the slope of the tangent line to the curve of location of

the optimum points is 0 if p1 < p2, and it is ∞ if p1 > p2. For the case p1 = p2, both 0 and

∞ are acceptable as the slope of the tangent line to the curve of location of the optimum

points due to the continuity of the rate and the distortion functions.

In practical applications, parameters of the observation noises are small values. Hence,

we investigate our problem with more details when at least one of the noise parameters is

a very small value. Thus, we may assume without loss of generality that p1 → 0, then from

continuity:

R ≈ 1 + hb(p2 ∗ d) − hb(d1) − hb(d2), (36)

D ≈ hb(d1) + hb(p2 ∗ d2) − hb(p2 ∗ d) ≈ 1 − R + hb(p2 ∗ d2) − hb(d2).

The behavior of low noise case is expressed by the following theorem.

Theorem 3: If p1 → 0, then only two cases can occur: either (i) d∗
2 = 0.5, or (ii) d∗

1 → 0.

Proof: It is sufficient to prove that if 0 ≤ d∗
2 < 0.5, then d∗

1 → 0. First, we shall declare

that hb(q∗x)−hb(x) is a positive and a decreasing function in terms of x, where 0 ≤ x ≤ 0.5
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(a) If p2 = p1. (b) If p2 − p1 = 0.01. (c) If p2 − p1 = 0.05.

Fig. 4: Location of the optimum points (d∗

1
, d∗

2
).

and 0 < q ≤ 0.5. Therefore, it takes its maximum value in x = 0 for any q. Now compute

the objective function in the case p1 → 0. Due to (36), we have:

F (µ) = D + µR ≈ 1 + (µ − 1)R + hb(p2 ∗ d2) − hb(d2). (37)

Assume that 0 ≤ d∗
2 = c < 0.5, where c is a constant value. The latter optimization problem

becomes as follows:

min
0≤d1≤0.5, d2=c

(µ − 1)
(

1 + hb(p2 ∗ d) − hb(d1) − hb(d2)
)

+ hb(p2 ∗ d2) − hb(d2) ≡

min
0≤d1≤0.5

(µ − 1)
(

hb(q ∗ d1) − hb(d1)
)

≡ max
0≤d1≤0.5

(

hb(q ∗ d1) − hb(d1)
)

,

(38)

where 0 < q = p2 ∗ c ≤ 0.5. Obviously, solution of the above problem is d∗
1 = 0 and due to

the approximations in our calculations, we shall have d∗
1 → 0.

Corollary 4: If p2 is sufficiently larger than p1, then p = p1 ∗p2 ≈ p2 and the same situation

of Theorem 3 occurs. Similarly, if p2−p1

p2
= α → 1, then p = p1 ∗ p2 = (1 − α)p2 + p2 − 2(1 −

α)p2
1 ≈ p2, and hence Theorem 3 is used again, as depicted in the case of Fig. 2(c). In order

to have more intuition to the result of Theorem 3, some other cases are provided in the Fig.

4.

IV. The Proposed Coding Scheme

In this section, a practical coding scheme is introduced to achieve the calculated rate-

distortion bounds. In Fig. 5, values of the theoretical bound of sum-rate versus distortion

are displayed for several noise parameters to evaluate performance of the designed codes.
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Fig. 5: The sum-rate distortion function of the binary CEO for some noise parameters.

The value of gap between the achieved point and the theoretical bound is employed as

a performance criterion. The structure of the designed code significantly differs whether

only one of the links or both of them are engaged in sending information. Obviously, when

only one link sends information, our problem reduces to a point-to-point lossy source coding

problem. Furthermore, for any (d1, d2), there exists a particular achievable rate region which

is characterized by the corner and intermediate points in its boundary. In the following, the

proposed encoding and decoding schemes are separately illustrated for achieving the corner

points and the intermediate points of the bound in the achievable rate region.

A. Coding Scheme for the Corner Points

According to the exact rate-distortion bound (7), we have the following bound for the

rate of i-th link and the sum-rate:

Ri ≥ I(Yi; Ui|U3−i) = H(Ui|U3−i) − H(Ui|Yi, U3−i) (39)

(a)
= H(Ui|U3−i) − H(Ui|Yi) = hb(d ∗ p) − hb(di), for i = 1, 2,

R1 + R2 ≥ I(Y1, Y2; U1, U2)

= H(U1, U2) − H(U1, U2|Y1, Y2)
(a)
= 1 + H(U1|U2) − H(U1|Y1) − H(U2|U2)

= 1 + hb(p ∗ d) − hb(d1) − hb(d2),

where (a) follows from the Markov chain rule in the form of U1
d1↔ Y1

p1↔ X
p2↔ Y2

d2↔ U2.

Since a conventional rate-distortion quantizer can asymptotically achieve the compression
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rate 1 − hb(di) for distortion being assumed di, it is impossible to get close to (39) by only

using the rate-distortion quantizer. Hence, another lossless source encoder should be utilized

after the conventional rate-distortion quantizer for achieving the rate (39) in the i-th link.

We use an LDGM quantizer concatenated with a Syndrome-Generator (SG), inspired by

the “quantize-and-bin” idea in the context of information theory. On the other side, the

dominant face of the rate region is a line segment connecting two end points (R′
1, R′

2) and

(R′′
1, R′′

2), where

(R′
1, R′

2) =
(

hb(p ∗ d) − hb(d1), 1 − hb(d2)
)

, (40)

and

(R′′
1 , R′′

2) =
(

1 − hb(d1), hb(p ∗ d) − hb(d2)
)

. (41)

We consider a coding scheme for achieving (R′
1, R′

2). A similar method can be applied for

achieving (R′′
1, R′′

2). Encoder 1 quantizes yn
1 to un

1 using an LDGM code of rate R1,1 = m1

n
,

then it computes the syndrome sk1
1 = un

1HT
1 , where H1 is the parity-check matrix of an

LDPC code of rate R1,2 = m1−k1

n
. We do this process of quantize and bin by employing a

compound LDGM-LDPC code. It is notable that the total length of the obtained syndrome

equals n − m1 + k1, where its first n − m1 bits are zero because the LDPC code is nested

in the LDGM code [20]. Hence, only k1 non-zero bits are sent to the decoder and the total

rate is R1 = R1,1 − R1,2 = k1

n
. Encoder 2 quantizes yn

2 to un
2 using an LDGM code of rate

R2,1 = m2

n
, then un

2 is sent to the decoder. In the second link, the total rate is R2 = m2

n
. The

block diagram of the proposed scheme is shown in Fig. 6.

At the decoder side, the syndrome sk1
1 with un

2 as a side information are used to decode

un
1 , denoted by ûn

1 , by applying a SP algorithm. Finally, at the decoder, calculation of the

soft estimation x̂j = Pr{xj|û1,j, u2,j} completes the decoding process. Here Pr{xj|û1,j, u2,j} =∆

pX|U1,U2
(xj |û1,j, u2,j), and the conditional distribution pX|U1,U2

can be deduced from the joint

distribution in (6) once d1 and d2 are given (assuming Q is a constant).

A compound LDGM-LDPC code includes nested LDGM and LDPC codes with the
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(a) The proposed encoding scheme based on

compound structure.

(b) Two-link joint decoding structure.

Fig. 6: The proposed coding scheme for achieving a corner point.

following parity-check matrices:

HLDPC =






HLDGM

∆H




 , (42)

where HLDPC and HLDGM are, respectively, parity-check matrices of the LDPC and LDGM

codes. Let assume their sizes are (n − m + k) × n and (n − m) × n, respectively. We have

used the compound LDGM-LDPC structure to achieve theoretical bound of the Wyner-Ziv

problem in [20]. We denote the mentioned compound code by CHLDPC
(n, m, k).

For achieving a corner point, we employ a compound code C
H

(1)
LDPC

(n, m1, k1) in the first

link, and a single LDGM code with the generator matrix G(2) of size m2 × n in the second

link. The observation yn
1 is quantized to an LDGM codeword un

1 by applying the BiP

algorithm with the generator matrix G(1). Hence, un
1 H

(1)
LDGM = [0 · · · 0]

︸ ︷︷ ︸

n−m1

. Next, the syndrome

un
1H

(1)
LDPC = [0 · · · 0

︸ ︷︷ ︸

n−m1

, un
1∆HT

︸ ︷︷ ︸

s
k1
1

] is calculated and only sk1
1 is sent to the CEO decoder.

B. Coding Scheme for the Intermediate Points

Consider the following intermediate point located in the dominant face of the achievable

rate region,

(R∗
1, R∗

2) =
(

hb(p ∗ d) − hb(d1) + δ, 1 − hb(d2) − δ
)

, (43)

where 0 < δ < 1 − hb(p ∗ d). Obviously, R∗
1 ≤ 1 − hb(d1) and R∗

2 ≤ 1 − hb(d2). Therefore,

a lossless compression is needed in each link. In the i-th link, we use a compound code
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(a) The proposed encoding scheme based on

compound structures.

(b) Two-link joint decoding structure.

Fig. 7: The proposed coding scheme for achieving intermediate points.

C
H

(i)
LDPC

(n, mi, ki), for i = 1, 2. First step of encoding includes quantizing the observations

yn
i to un

i by using the BiP algorithm on the LDGM codes associated with the parity-check

matrices H
(i)
LDGM. In the second step, the syndromes un

i H
(i)
LDPC = [0 · · · 0

︸ ︷︷ ︸

n−mi

, un
i ∆H(i)T

︸ ︷︷ ︸

s
ki
i

] are

calculated, then only sk1
1 and sk2

2 are sent to the CEO decoder.

In the decoder, we propose a Joint Sum-Product (JSP) algorithm which is a modified

version of the SP algorithm. In this algorithm, the received syndromes sk1
1 and sk2

2 are

respectively located in the check nodes of the LDPC codes with parity-check matrices

H
(1)
LDPC and H

(2)
LDPC. The JSP includes r rounds and each round includes l iterations. At

the starting point of the JSP, initial LLRs in the variable nodes are set based on a random

side information in each SP. At the end of each round, which includes update equations in

the check and variable nodes, the bit values of the variable nodes are calculated according

to the decision rule of the SP algorithm, where it maps the non-negative LLRs to bit 0

and the negative LLRs to bit 1. In the next round, these updated bit values in the variable

nodes are used as a new side information for calculating new initial LLR values. Finally,

after r rounds, ûn
1 and ûn

2 are decoded based on the decision rule of the SP algorithm in

the variable nodes of the LDPC codes. An EXIT chart analysis is presented in [26] for a

similar JSP decoder which shows the capacity approaching property with two parallel and

collaborative SP decoders. Similar to the decoding scheme of the corner points, the soft

estimation x̂j = Pr{xj |û1,j, û2,j} accomplishes the decoding process.
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In the joint decoding scheme, the received sequences sn
1 and sn

2 are simultaneously decoded.

If we look at this situation like two point-to-point lossy source coding problems, then we have

to recover the noisy observations yn
1 and yn

2 , each of which is received with compression rates

R1 and R2 and acceptable distortions, respectively. As a case, let these distortions be d1 and

d2, respectively. A major part of distortions d1 and d2 arises from the LDGM quantization

and a negligible part is from the syndrome decoding. Let assume the LDPC code rate in

the i-link is denoted by Ri,2, for i = 1, 2. Furthermore, consider the associated distortion of

each link, i.e., BER of the syndrome-decoding part, is denoted by di,2, for i = 1, 2. Using

the compound LDGM-LDPC structure, the total rate and the distortion in each link are as

follows:

di = di,1 ∗ di,2 ≈ di,1, Ri = Ri,1 − Ri,2, for i = 1, 2. (44)

After reconstruction of the observations with distortions d1 and d2, denoted by ûn
1 and ûn

2 ,

the soft reconstruction of the original binary source x̂n is estimated.

C. A Practical Analysis for the Proposed Coding Scheme

Some coding parameters are affected by the information theoretical limits, that should

be considered in the code design procedure. In the following notations, any ǫ denotes a

sufficiently small positive value. In the coding scheme for a corner point, the relation between

the rate-distortion and the block lengths of employed LDGM and LDPC codes are as follows:

R1,1 =
m1

n
= 1 − hb(d1,1) + ǫ1,1, R1,2 =

m1 − k1

n
= 1 − hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − ǫ1,2, (45)

R2,1 =
m2

n
= 1 − hb(d2,1) + ǫ2,1, R2,2 = 0.

From (44) and (45), it is simply concluded that:

R1 = R1,1 − R1,2 =
k1

n
(46)

= hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − hb(d1,1) + ǫ1,1 + ǫ1,2
︸ ︷︷ ︸

ǫ1

(b)
≈ hb(d ∗ p) − hb(d1) + ǫ1,

R2 = R2,1 − R2,2 =
k2

n
= 1 − hb(d2,1) + ǫ2,1

(b)
≈ 1 − hb(d2) + ǫ2,1,
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where (b) follows from the continuity of the function hb(x). The above approximation

expresses that achieving the rate bound (39) is possible by using our proposed method

in each link. In the decoding side, the SP algorithm of Fig. 6(b) uses the LDPC code of rate

R1,2, that is smaller than the capacity of the virtual channel between the side information

U2 and the target sequence U1
2. Therefore, U1 is decoded with a low BER, i.e., d1,2 ≈ 0,

by using a good channel decoder. Clearly, in this case d2,2 = 0 and d2 = d2,1.

In the coding scheme for an intermediate point (43), the relation between the rate-

distortion and the block lengths of each employed LDGM and LDPC codes are as follows:

R1,1 =
m1

n
= 1 − hb(d1,1) + ǫ1,1, R1,2 =

m1 − k1

n
= 1 − hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − δ − ǫ1,2,

(47)

R2,1 =
m2

n
= 1 − hb(d2,1) + ǫ2,1, R2,2 =

m2 − k2

n
= δ − ǫ2,2.

From (44) and (47), it is simply concluded that:

R1 = R1,1 − R1,2 =
k1

n
(48)

= hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − hb(d1,1) + δ + ǫ1,1 + ǫ1,2
︸ ︷︷ ︸

ǫ1

(b)
≈ hb(d ∗ p) − hb(d1) + δ + ǫ1,

R2 = R2,1 − R2,2 =
k2

n
= 1 − hb(d2,1) − δ + ǫ2,1 + ǫ2,2

︸ ︷︷ ︸

ǫ2

(b)
≈ 1 − hb(d2) − δ + ǫ2,

where (b) follows from the continuity of the function hb(x). The above approximation

expresses that achieving the rate bound (39), for an intermediate point (43), is possible

by utilizing the proposed method. In the decoding side, the JSP algorithm of Fig. 7(b) uses

the LDPC codes of rates R1,2 and R2,2. From (47) and 0 < δ < 1 − hb(p ∗ d),

R1,2 ≈ 1 − hb(d ∗ p) − δ − ǫ1,2 < 1 − hb(d ∗ p), (49)

R2,2 = δ − ǫ2,2 < 1 − hb(d ∗ p).

Therefore, the rates of LDPC codes in the SP1 and the SP2 algorithms are smaller than

the capacity of the virtual channel between the side information U1 and U2. This implies

2This capacity equals 1 − hb(p ∗ d).
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that the SP algorithms can decode U1 and U2 with low BERs, i.e., di,2 ≈ 0 for i = 1, 2, for

sufficiently large n, r, and l.

For the empirical distortion Dem in (4) with x̂j(xj) = Pr{xj |u1,j, u2,j}, we have

Dem =
1

n

n∑

j=1

log[
1

Pr{xj|u1,j, u2,j}
] =

∑

x,u1,u2

Pr
em

{x, u1, u2} log[
1

Pr{x|u1, u2}
], (50)

where Prem{x, u1, u2} is the empirical distribution induced by (xn, un
1 , un

2). The theoret-

ical distortion bound is given by Dth = H(X|U1, U2). Clearly, we have Dem ≈ Dth if

Prem{x, u1, u2} is close to Pr{x, u1, u2}.

V. Results and Discussions

In this section, some numerical results are given for indicating the rate-distortion per-

formance of the proposed coding scheme at different regions. For all of the LDPC codes,

the optimized degree distributions over the BSC are employed 3. However, the check-regular

and variable-Poisson LDGM codes nested with the LDPC codes are designed similar to the

code design method in [20]. In order to achieve some target optimum crossover probability

pairs (d∗
1, d∗

2) by practical coding methods, we have applied our proposed coding scheme

with the lengths of n = 104, 105 for various cases of the noise parameters including

(p1, p2) = (0.15, 0.15) and (0.29, 0.3). We have also implemented our proposed coding scheme

for two low-noise cases (0.01, 0.01) and (0.05, 0.1).

In the BiP algorithm, the parameters t = 0.8, γi ≈ 2Ri,1 = 2mi

n
are selected for i = 1, 2.

Maximum number of iterations in each round of this algorithm is set to be 25. In the SP

algorithm, maximum number of iterations is set to be 100. Also, in the JSP algorithm,

r = 15 and l = 40. All of the reported values for the empirical distortions are averaged over

50 runs. Parameters of the employed codes and their results are presented in Table I. The

corner and the intermediate points are indicated by symbols C and I in the second column of

the table, respectively. The gap value is equal to difference between the empirical distortion

Dem and the theoretical distortion Dth and it evaluates performance of the designed codes.

3These degree distributions are available in [27] for some rates.
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TABLE I: NUMERICAL RESULTS OF THE PROPOSED ENCODING AND DECODING METHODS.

(p1, p2) Region-C/I n m1, m2 k1, k2 d1,1, d1 d2,1, d2 µ Rth Dth Dem Gap

(0.15, 0.15) 1-I 104 9200, 9200 8500, 8500 0.0144, 0.0175 0.0144, 0.0175 0.168 1.6722 0.4204 0.4617 0.0413

(0.15, 0.15) 1-I 104 5400, 5400 5100, 5100 0.1028, 0.1071 0.1028, 0.1071 0.326 0.9898 0.5925 0.645 0.0525

(0.15, 0.15) 1-C 104 5400, 5400 4700, 5400 0.1028, 0.1076 0.1028, 0.1028 0.326 0.9898 0.5925 0.6355 0.043

(0.15, 0.15) 2-I 104 5400, 1300 5300, 1200 0.1028, 0.1066 0.3055, 0.3078 0.3854 0.6319 0.7206 0.7766 0.056

(0.15, 0.15) 3-C 104 5400, − 5400, − 0.1028, 0.1028 0.5, 0.5 0.4043 0.531 0.7601 0.7955 0.0354

(0.15, 0.15) 3-C 104 1300, − 1300, − 0.3055, 0.3055 0.5, 0.5 0.4532 0.1187 0.9427 0.9835 0.0408

(0.15, 0.15) 1-I 105 92000, 92000 85000, 85000 0.012, 0.015 0.012, 0.015 0.168 1.6722 0.4204 0.4451 0.0247

(0.15, 0.15) 1-I 105 54000, 54000 51000, 51000 0.1003, 0.1043 0.1003, 0.1043 0.326 0.9898 0.5925 0.6203 0.0278

(0.15, 0.15) 1-C 105 54000, 54000 47000, 54000 0.1003, 0.105 0.1003, 0.1003 0.326 0.9898 0.5925 0.6184 0.0259

(0.15, 0.15) 2-I 105 54000, 13000 53000, 12000 0.1003, 0.1037 0.3018, 0.304 0.3854 0.6319 0.7206 0.7494 0.0288

(0.15, 0.15) 3-C 105 54000, − 54000, − 0.1003, 0.1003 0.5, 0.5 0.4043 0.531 0.7601 0.7826 0.0225

(0.15, 0.15) 3-C 105 13000, − 13000, − 0.3018, 0.3018 0.5, 0.5 0.4532 0.1187 0.9427 0.9707 0.028

(0.29, 0.3) 1-I 104 5420, 2920 5400, 2900 0.1025, 0.1066 0.2044, 0.208 0.1283 0.8044 0.8797 0.9423 0.0626

(0.29, 0.3) 2-C 104 2900, − 2900, − 0.2046, 0.2046 0.5, 0.5 0.157 0.278 0.9537 0.9942 0.0405

(0.29, 0.3) 1-I 105 54200, 29200 54000, 29000 0.1, 0.1038 0.202, 0.2052 0.1283 0.8044 0.8797 0.9127 0.033

(0.29, 0.3) 2-C 105 29000, − 29000, − 0.2025, 0.2025 0.5, 0.5 0.157 0.278 0.9537 0.9786 0.0249

(0.01, 0.01) 1-I 104 9900, 9900 6000, 6000 0.0032, 0.0053 0.0032, 0.0053 0.4 1.1161 0.0268 0.0372 0.0104

(0.01, 0.01) 1-I 105 99000, 99000 60000, 60000 0.0028, 0.0047 0.0028, 0.0047 0.4 1.1161 0.0268 0.0329 0.0061

(0.05, 0.1) 1-C 104 10000, 400 10000, 300 0, 0 0.405, 0.4075 0.253 1.014 0.2829 0.31 0.0271

(0.05, 0.1) 1-C 105 100000, 4000 100000, 3000 0, 0 0.4026, 0.4043 0.253 1.014 0.2829 0.3011 0.0182

For the case of equal noises (p1, p2) = (0.15, 0.15), the gap values is about 0.03 to 0.06

for the block length 104, as indicated in Table. I. It is obvious that by increasing the

target distortions, the gap values increase. As the block length is set to 105, the gap value

decreases in the range between 0.02 to 0.03. Performance of the sum-rate versus distortion

is depicted in Fig. 8(a) for the proposed coding scheme. Simulation results confirm that

performance of the sum-rate in terms of distortion is very close to the theoretical bounds

for the empirically achieved points. The theoretical bounds are asymptotically achievable

by employing the proposed coding scheme as well. For the case of unequal noise parameters

(p1, p2) = (0.29, 0.3), the achieved gaps are slightly more than that one for the case of equal

noise parameters with approximately the same target distortions and block length. This

observation expresses that increasing noise parameters p1 and p2 causes a higher gap values

in distortion. Similarly, by increasing the block length to 105, the gap value is decreased by

about less than half of the result for block length 104, as mentioned in Table. I. Performance

of the sum-rate in terms of distortion for the proposed coding scheme is depicted in Fig.
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(a) p1 = p2 = 0.15. (b) (p1, p2) = (0.29, 0.3).

Fig. 8: Performance of the sum-rate versus distortion for the proposed coding scheme.

8(b).

In the low-noise case, as it is seen in the Table. I, the achieved gap depends on the value of

the target distortions, similar to the prior cases. The achieved gap with our coding scheme

is about 0.006 to 0.011 for the case (p1, p2) = (0.01, 0.01), and it is about 0.018 to 0.028 for

the case (p1, p2) = (0.05, 0.1). Generally, the gap value for the corner points is smaller than

that of the intermediate points. This gap can be reduced by increasing r and l.

VI. Conclusion

In this paper, we investigated the two-link binary CEO problem under the log-loss from

both information theory and coding theory points of view. Under this criterion, the exact

achievable rate-distortion region of the two-link binary CEO problem was calculated. Fur-

thermore, optimal test-channel models were obtained for the encoders. By assuming the BSC

test-channel model, we found optimal values of the crossover probabilities and then they are

analyzed in a high-resolution regime, asymptotically. In the coding part, we proposed a

practical coding scheme based on graph-based codes and message-passing algorithms. In

the encoding side, a binary quantization and a syndrome-generation are utilized in each

link for construction of the lossy compressed sequences. This was realized by the compound

LDGM-LDPC codes. In the decoding part, the SP algorithms based on the optimized LDPC

codes for the BSCs were employed at the first step. Then, a soft decoder calculated the final

reconstruction value in the form of a probability distribution. Our experimental simulation
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results confirmed that the proposed coding scheme asymptotically achieves the theoretical

bound of the two-link binary CEO problem under the log-loss. For a finite block length, there

remains a slight gap between the rate-distortion of the proposed scheme and the associated

theoretical bound which is a useful measure for comparison of the different coding methods.

Future study and researches may extend the contents of this paper to the multi-link binary

CEO problem and also to the multi-terminal lossy source coding problem.
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