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Abstract

The millimeter-wave (mmWave) full-dimensional (FD) MIMO system employs planar arrays at both the

base station and user equipment and can simultaneously support both azimuth and elevation beamforming. In

this paper, we propose atomic-norm-based methods for mmWave FD-MIMO channel estimation under both

uniform planar arrays (UPA) and non-uniform planar arrays (NUPA). Unlike existing algorithms such as

compressive sensing (CS) or subspace methods, the atomic-norm-based algorithms do not require to discretize

the angle spaces of the angle of arrival (AoA) and angle of departure (AoD) into grids, thus provide much

better accuracy in estimation. In the UPA case, to reduce the computational complexity, the original large-

scale 4D atomic norm minimization problem is approximately reformulated as a semi-definite program (SDP)

containing two decoupled two-level Toeplitz matrices. The SDP is then solved via the alternating direction

method of multipliers (ADMM) where each iteration involves only closed-form computations. In the NUPA

case, the atomic-norm-based formulation for channel estimation becomes nonconvex and a gradient-decent-

based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithms

achieve better performance than the CS-based and subspace-based algorithms.

Keywords: Full-dimensional (FD) MIMO, uniform planar array (UPA), non-uniform planar array

(NUPA), atomic norm, channel estimation, millimeter-wave, alternating direction method of multi-

pliers (ADMM), gradient descent.
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I. INTRODUCTION

Millimeter wave (mmWave) communications have been proposed as an important physical-layer

technology for the 5th generation (5G) mobile networks to provide multi-gigabit services [1]. Two

prominent features of the mmWave spectrum are the massive bandwidth available and the tiny

wavelengths compared to conventional microwave bands, thus enabling dozens or even hundreds of

antenna elements to be accommodated at communication link ends within a reasonable physical form

factor. This suggests that massive MIMO and mmWave technologies should be considered jointly to

provide higher data rates and spectrum efficiency. In particular, the mmWave full-dimensional MIMO

(FD-MIMO) systems [2],[3] employ uniform or non-uniform planar arrays at both the basestation

(BS) and user equipment (UE) and provide an extra degree of freedom in the elevation-angle domain.

Users can now be distinguished not only by their AoAs in the azimuth domain but also by their AoDs

in the elevation domain [4]. In this paper, we consider channel estimation for mmWave FD-MIMO

systems that simultaneously support both azimuth and elevation beamforming.

The mmWave band channel is significantly different from those in sub-6GHz bands. The key

challenge in designing new radio access technologies for mmWave is how to overcome the much

larger path-loss and reduce blockage probability. To that end, beamforming is essential in combating

the serve path-loss for wireless system operating in mmWave bands [5]. However, to estimate the

full channel state information (CSI) under beamformed FD-MIMO is somehow challenging because

the receiver typically only obtains the beamformed CSI instead of full CSI. To address this issue,

fast beam scanning and searching techniques have been extensively studied [3], [6]. The objective

of beam scanning is to search for the best beamformer-combiner pair by letting the transmitter and

receiver scan the adaptive sounding beams chosen from pre-determined sounding beam codebooks.

However, the exhaustive search may be hampered by the high training overhead in practice and suffer

from low spectral efficiency. Another approach is to estimate the mmWave channel or its associated

parameters, by exploiting the sparse scattering nature of the mmWave channels [7],[8],[9], that is,

mmWave channel estimation can be formulated as a sparse signal recovery problem [10], [11],

[12], [13] and solved using the compressive sensing (CS)-based approach [14]. In the CS-based

approach, a sensing matrix needs to be constructed first, by dividing certain parameter space into a
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finite number of grids and thus the channel estimation performance is limited by the grid resolution.

On the other hand, in [15], a subspace-based mmWave MIMO channel estimation method that makes

use of the MUSIC algorithm is proposed. A 2D-MUSIC algorithm for beamformed mmWave MIMO

channel estimation is proposed in [12] to further enhance the channel estimation performance. The

MUSIC algorithm is able to identify multiple paths with high resolution but it is sensitive to antenna

position, gain, and phase errors.

Recently, the atomic norm minimization [16] has been applied to many signal processing problems

such as super-resolution frequency estimation [17], [18], spectral estimation [19], AoA estimation,

[20], [21], uplink multiuser MIMO channel estimation [22] and linear system identification [23].

Under certain conditions, atomic norm minimization can achieve exact frequency localization, avoid-

ing the effects of basis mismatch which can plague grid-based CS techniques. Different from the

prior works such as CS-based and subspace-based channel estimation methods mentioned above,

we formulate the mmWave FD-MIMO channel estimation as an atomic norm minimization prob-

lem. Unlike [22] that considers uplink multiuser MIMO channel estimation, in which the uniform

linear array is assumed and only the AoA parameter is estimated, in this paper, we consider the

mmWave beamformed FD-MIMO channel, which involves the estimation of both AoA and AoD.

Hence, instead of one-dimensional (1D) atomic norm minimization, our problem is formulated as

a four-dimensional (4D) atomic norm minimization problem. The 4D atomic norm minimization

can be transformed into semi-definite program (SDP) which is of high dimensional and involves

block Toeplitz matrices, leading to very high computational complexity. Therefore, we introduce

a 4D atomic norm approximation method to reduce the computational complexity and an efficient

algorithm based on the alternating direction method of multipliers (ADMM) is derived.

Recently, non-uniform planar array (NUPA) has attracted more interest due to its ability in

reducing sidelobes and antenna correlation [24], [25]. NUPA can potentially increase the achievable

multiplexing gain of mmWave FD-MIMO beamforming. However, the corresponding atomic norm

minization problem cannot be transformed into an SDP when the antennas are not uniformly placed

[16]. Hence, we propose a gradient descent method for mmWave FD-MIMO channel estimation

with NUPA.
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The remainder of the paper is organized as follows. In Section II, the mmWave beamformed

FD-MIMO channel model is introduced. In Section III, we formulate the mmWave FD-MIMO

channel estimation as an atomic norm minimization problem for the case of UPA. In Section IV, we

develop efficient algorithms for implementing the proposed atomic-norm-based channel estimator.

In Section V, we consider the case of NUPA and provide the formulation and algorithm for the

atomic-norm-based channel estimator. In Section VI, simulation results are provided. Finally, Section

VII concludes the paper.

II. SYSTEM DESCRIPTIONS AND BACKGROUND

A. System and Channel Models

We consider a mmWave FD-MIMO system with M receive antennas and N transmit antennas that

simultaneously supports elevation and azimuth beamforming. The channel matrix can be expressed

in terms of transmit and receive array responses [9]:

H = BΣAH =
L∑
l=1

σlb(fl)a(gl)
H , (1)

where (·)H denotes the Hermitian transpose; the matrix Σ = diag(σ) = diag
(

[σ1 σ2 . . . σL]T
)

is

a diagonal matrix with each σl ∈ C denoting the l-th multipath gain; L denotes the number of

paths; the matrices B = [b(f1) . . .b(fL)] and A = [a(g1) . . . a(gL)] denote the steering responses

of the receive and transmit arrays, respectively. For a linear array with half-wavelength separation

of adjacent antenna elements, the array response is in the form of a uniformly sampled complex

sinusoid with frequency x ∈ [−1
2
, 1

2
):

cn (x) =
1√
n

[
1 ej2πx · · · ej2π(n−1)x

]T ∈ Cn×1. (2)

We assume that both the transmitter (Tx) and receiver (Rx) are equipped with uniformly spaced

planar antenna arrays (UPA)s [26], [27], each with half-wavelength antenna element separations

along the elevation-and-azimuth-axis. Then the Tx and Rx array responses can be expressed as [27]

a(gl) = cN1 (gl,1)⊗ cN2 (gl,2) , (3)

b (fl) = cM1 (fl,1)⊗ cM2 (fl,2) , (4)
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with

gl =

{
gl,1 =

1

2
sin (ϑl) cos (ϕl) , gl,2 =

1

2
cos (ϑl)

}
, (5)

fl =

{
fl,1 =

1

2
sin (θl) cos (φl) , fl,2 =

1

2
cos (θl)

}
, (6)

where ⊗ denotes the Kronecker product; ϑl, ϕl denote elevation and azimuth angles of the angle

of departure (AoD) of the l-th path, respectively; and θl, φl denote elevation and azimuth angles of

the angle of arrival (AoA), respectively. Here, N1, N2 denote the numbers of elevation and azimuth

transmit antennas, respectively, and the total number of transmit antennas is N = N1N2. Similarly,

M1, M2 denote the numbers of elevation and azimuth receive antennas, respectively, and the total

number of receive antennas is M = M1M2. For the UPA configuration, it can resolve the AoA

and AoD in 360◦ range, thereby ϑl, θl, ϕl, φl ∈ [−π, π] and gl,1 = 1
2

sin (ϑl) cos (ϕl) ∈ [−1
2
, 1

2
),

gl,2 = 1
2

cos (ϑl) ∈ [−1
2
, 1

2
), fl,1 = 1

2
sin (θl) cos (φl) ∈ [−1

2
, 1

2
), fl,2 = 1

2
cos (θl) ∈ [−1

2
, 1

2
).

To estimate the channel matrix, the transmitter transmits P distinct beams during P successive

time slots. i.e., in the p-th time slot, the beamforming vector pp ∈ CN×1 is selected from a set

of unitary vectors in the form of Kronecker-product-based codebook, e.g., pp = pp,1 ⊗ pp,2 where

pp,1 ∈ CN1 and pp,2 ∈ CN2 are selected from two DFT codebooks of dimensions N1 and N2,

respectively [28]. The p-th received signal vector can be expressed as

yp = Hppsp + wp, (7)

where wp ∼ CN (0, σ2
wIM) is the additive white Gaussian noise (AWGN) with IM denoting the

M ×M identity matrix, and sp denotes the pilot symbol in the p-th time slot. The receiver collects

yp ∈ CM×1 for p = 1, . . . P and concatenates them to obtain the signal matrix

Y = [y1 y2 . . .yP ] = HPS + W = BΣAHPS + W, (8)

where P = [p1 p2 . . .pP ] ∈ CN×P , W = [w1 w2 . . .wP ] ∈ CM×P and S = diag ([s1 s2 . . . sP ]) ∈

CP×P . For simplicity, we assume that S =
√
PtIP , where Pt is the power of the pilot symbol. Then

we have

Y =
√
PtHP + W =

√
PtBΣAHP + W. (9)
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Our goal is to estimate the channel matrix H ∈ CM×N from the measurements Y ∈ CM×P . Note

that the number of pilots is usually smaller than the number of transmit antennas, i.e., P < N .

Hence, we need to exploit the sparsity of H for its estimation, which will be discussed in the next

section.

B. Existing mmWave Channel Estimation Methods

Before describing our proposed mmWave channel estimator, we briefly discuss some existing

mmWave channel estimation methods [10], [29], [13], [12] which can be divided into two categories.

1) CS-based mmWave channel estimators: The mmWave channel is usually composed of small

number of propagation paths and CS-based algorithms have been developed [10], [29], [13] for

channel estimation. First the dictionary matrices AD ∈ CN×NG and BD ∈ CM×NG are constructed

based on quantized AoD angle of the transmitter and AoA angle of the receiver. The AoDs and

AoAs are assumed to be taken from a uniform grid of NG points with NG � L. The resulting

dictionary matrix is expressed (take the transmitter AD for example, the receiver dictionary matrix

BD is similar.)

AD = [a(ḡ1) a(ḡ2) . . . a(ḡNG)] , (10)

where ḡi = {ḡi,1, ḡi,2} =
{

1
2

sin
(
ϑ̄i
)

cos(ϕ̄i),
1
2

cos(ϑ̄i)
}

with ϑ̄i = (i−1)2π
NG

− π, ϕ̄i = (i−1)2π
NG

− π

denotes the transmit array response vector for the grid point ϑ̄i and ϕ̄i for i = 1, 2, . . . , NG. The

size NG of the angle grids can be set according to the desired angular resolution. On this basis, the

received signal Y in (9) can be vectorized as [10]

y = vec (Y) =
√
Pt
(
PT ⊗ IM

)
vec (H) + w (11)

=
√
Pt
(
PT ⊗ IM

)
(A∗D �BD)x + w =

√
PtGx + w, (12)

where � denotes the matrix Khatri-Rao products, (·)T denotes the transpose operation, (·)∗ denotes

the complex conjugate, x ∈ CN4
G is a sparse vector that has non-zero elements in the locations

associated with the dominant paths. Note that the angle spaces of interest are discretized into a large

number of grids, and the actual AoA and AoD angles may not exactly reside on the predefined

grids. Those off-grid angles can lead to mismatches in the channel model and degrade the estimation

performance.
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2) Subspace-based mmWave channel estimators: Another existing approach to mmWave channel

estimation is based on the subspace methods such as the MUSIC algorithm [12]. The MUSIC

algorithm firstly calculates the covariance matrix of the received signal Y and then finds the signal

and noise subspaces via eigendecomposition. It then estimates each channel path’s array response,

i.e., ĝl and f̂l for l = 1, 2, . . . , L̂, where L̂ is the estimated number of paths, by exploiting the

orthogonality between the signal and noise subspaces. Finally, each channel path’s coefficient, i.e.,

σ̂l can be estimated via the least-squares (LS) method. The MUSIC algorithm has been popular for

its good resolution and accuracy in AoD/AoA estimation [30], [31]. However, it is also reported that

the off-grid CS method [16] can outperform the MUSIC algorithm in terms of estimation accuracy

in noisy environments [19], [32].

III. CHANNEL ESTIMATION VIA ATOMIC NORM MINIMIZATION

As explained in the previous section, the performance of the mmWave channel estimators based

on on-grid methods such as CS can be degraded due to grid mismatch. In this section, we propose a

new mmWave channel estimator based on an off-grid CS method, i.e., the atomic norm minimization

method.

A. Background on Multi-dimensional Atomic Norm

First we briefly introduce the concept of multi-dimensional atomic norm [33]. A d-dimensional

(d-dim) atom is defined as

qd (x1, . . . , xd) = cn1 (x1)⊗ . . .⊗ cnd (xd) , (13)

where ni is the length of the normalized vector cni (xi) defined in (2) and xi ∈
[
−1

2
, 1

2

)
for i =

1, 2, . . . , d. The d-dim atomic set is then given by

A =

{
qd (x1, . . . , xd) : xi ∈

[
−1

2
,
1

2

)
, i = 1, . . . , d

}
. (14)



8

For any vector td of the form td =
∑
l

αlqd(xl,1, xl,2, . . . , xl,d), its d-dim atomic norm with respect

to A is defined as

‖td‖A = inf {t : td ∈ tconv (A)} ,

= inf
xl,1,xl,2,...,xl,d∈[− 1

2
, 1
2

)
αl∈C

{∑
l

|αl|

∣∣∣∣∣ td =
∑
l

αlqd(xl,1, xl,2, . . . , xl,d)

}
, (15)

where conv (A) is the convex hull of A. The d-dim atomic norm of td has following equivalent

form [33]:

‖td‖A = inf
Ud∈C(2nd−1)×(2nd−1−1)×...×(2n1−1),t∈R



1
2n1n2...nd

Tr (Td(Ud)) + 1
2
t

s.t.

 Td(Ud) td

tHd t

 � 0


, (16)

where Tr (·) is the trace of the input matrix, Ud ∈ C(2nd−1)×(2nd−1−1)×...×(2n1−1) is a d-way tensor

and Td(Ud) is a d-level block Toeplitz, which is defined recursively as follows. Denote nd =

(nd, nd−1, . . . , n1) and Ud−1(i) = Ud(i, :, :, ..., :) for i = −nd + 1,−nd + 2, ..., nd − 1. For d = 1,

n1 = (n1) and T1(u1) = Toep(u1) with u1 ∈ C(2n1−1)×1, i.e.,

T1(u1) = Toep(u1) =


u1(0) u1(1) · · · u1(n1 − 1)

u1(−1) u1(0) · · · u1(n1 − 2)
...

... . . . ...

u1(1− n1) u1(2− n1) · · · u1(0)

 . (17)

For d ≥ 2, we have

Td(Ud) =


Td−1(Ud−1(0)) Td−1(Ud−1(1)) . . . Td−1(Ud−1(nd − 1))

Td−1(Ud−1(−1)) Td−1(Ud−1(0)) . . . Td−1(Ud−1(nd − 2))
...

... . . . ...

Td−1(Ud−1(1− nd)) Td−1(Ud−1(2− nd)) . . . Td−1(Ud−1(0))

 . (18)
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B. Atomic Norm Minimization Formulation

In this subsection, we formulate the atomic norm minimization problem for channel estimation.

First, we vectorize the mmWave FD-MIMO channel matrix H in (1) as

h = vec(H) =
L∑
l=1

σla(gl)
∗ ⊗ b(fl)

=
L∑
l=1

σl

(
cN1 (gl,1)⊗ cN2 (gl,2)

)∗
⊗
(
cM1 (fl,1)⊗ cM2 (fl,2)

)
=

L∑
l=1

σlc
∗
N1

(gl,1)⊗ c∗N2
(gl,2)⊗ cM1(fl,1)⊗ cM2(fl,2). (19)

Comparing (15) and (19), for the mmWave FD-MIMO channel with UPA configuration, the atom

has the form of

q4 (g, f) = c∗N1
(g1)⊗ c∗N2

(g2)⊗ cM1(f1)⊗ cM2(f2), (20)

and the set of atoms is defined as the collection of all normalized 4D complex sinusoids: A ={
q4 (g, f) : f ∈ [−1

2
, 1

2
)× [−1

2
, 1

2
), g ∈ [−1

2
, 1

2
)× [−1

2
, 1

2
)
}

[34], [35]. The 4D atomic norm for

any h defined in (19) can be written as [34]:

‖h‖A = inf
fl∈[− 1

2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

{∑
l

|σl|

∣∣∣∣∣h =
∑
l

σlq4 (gl, fl)

}
. (21)

The atomic norm can enforce sparsity in the atom set A. On this basis, an optimization problem will

be formulated for the estimation of the path frequencies {fl,gl}. For the convenience of calculation,

we will use the equivalent form of the atomic norm given by (16), i.e.,

‖h‖A = inf
U4∈C(2N1−1)×(2N2−1)×(2M1−1)×(2M2−1),

t∈R



1
2MN

Tr (T4(U4)) + 1
2
t

s.t.

 T4(U4) h

hH t

 � 0


, (22)

where T4(U4) is a 4-level Toeplitz matrix defined in (18). Define the minimum frequency separations

as

∆min,fi = min
l 6=l′

min{|fl,i − fl′,i|, 1− |fl,i − fl′,i|}, (23)

∆min,gi = min
l 6=l′

min{|gl,i − gl′,i|, 1− |gl,i − gl′,i|}, (24)
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for i = 1, 2. To show the connection between the atomic norm and the channel matrix, we obtain

the following theorem via extending Theorem 1.2 in [36] for 1D atomic norm to 4D atomic norm.

Theorem 1. If the path component frequencies are sufficiently separated, i.e.,

∆min,fi ≥
1

b(Mi − 1)/4c
, (25)

∆min,gi ≥
1

b(Ni − 1)/4c
, (26)

for i = 1, 2, then we have ‖h‖A =
∑

l |σl|, so the component atoms of h can be uniquely located

via computing its atomic norm.

The proof follows the same line as that in Theorem 1.2 [36], with the dual polynomial constructed

by interpolation with a 4D kernel. The theorem holds because all bounds in the proof of [Theorem

1.2, 34] hold by leveraging the 1D results.

To estimate the mmWave FD-MIMO channel H in (1) based on the signal Y in (9), we then

formulate the following optimization problem:

ĥ = min
h∈CMN

µ‖h‖A +
1

2

∥∥∥y −√Pt
(
PT ⊗ IM

)
h
∥∥∥2

2
, (27)

where y = vec(Y) is given by (11) and µ ∝ σw
√
MN log (MN) is a weight factor [37]. Using

(22), (27) can be equivalently formulated as a semi-definite program (SDP):

min
U4∈C(2N1−1)×(2N2−1)×(2M1−1)×(2M2−1),

h∈CMN , t∈R

µ

2MN
Tr (T4(U4)) +

µ

2
t+

1

2

∥∥∥y −√Pt
(
PT ⊗ IM

)
h
∥∥∥2

2

s.t

 T4(U4) h

hH t

 � 0. (28)

The above problem is convex, and can be solved by using a standard convex solver. Suppose the

solution to (28) is ĥ. Then the estimated channel matrix is given by Ĥ = vec−1
(
ĥ
)

where vec−1(·)

is the inverse operation of vec(·).

IV. EFFICIENT ALGORITHM FOR CHANNEL ESTIMATION UNDER UPA

A. A Formulation Based on 2D MMV Atomic Norm

Note that the dimension of the positive semidefinite matrix in (28) is (MN + 1) × (MN + 1),

and the 4D atomic norm minimization formulation is of high computational complexity and has
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large memory requirements. To reduce the complexity, we can treat Y as 2D multiple measurement

vectors (MMV) [32] in transmit and receive dimensions.

Unlike the 4D atomic norm that is calculated with input vector h, the MMV atomic norm is

calculated with the matrix input H. Specifically, we define the atom Q̄ (f , ā) = b (f) āH with

f ∈ [−1
2
, 1

2
)× [−1

2
, 1

2
), and ā ∈ CN×1 with ‖ā‖2 = 1. Correspondingly, the atom set is defined as

AMMV =

{
Q̄ (f , ā) : f ∈ [−1

2
,

1

2
)× [−1

2
,

1

2
), ‖ā‖2 = 1

}
. (29)

It is worth noting that ā is not restricted by the structural constraint in (3). With (29), we extend

the 1D MMV atomic norm [32] to the 2D MMV atomic norm of H defined by

‖H‖AMMV
= inf

fl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

āl∈CN×1, σl∈C

{∑
l

|σl|

∣∣∣∣∣H =
∑
l

σlQ̄ (fl, āl) , ‖ā‖2 = 1

}
. (30)

This atomic norm is equivalent to the solution of the following SDP [32]:

‖H‖AMMV
= inf

U2∈C(2M2−1)×(2M1−1),X∈CN×N



1
2M

Tr (T2(U2)) + 1
2N

Tr (X)

s.t.

 T2(U2) H

HH X

 � 0


, (31)

where X is constrained to be a Hermitian matrix. Then using (9), we can formulate the following

optimization problem for channel estimation:

Ĥ = min
H∈CM×N

µ‖H‖AMMV
+

1

2

∥∥∥√PtHP−Y
∥∥∥2

F
, (32)

where ‖·‖F denotes matrix Frobenius norm. Plugging (31) into (32), the size of the positive semidef-

inite matrix in the constraint is (M +N)× (M +N), resulting in considerably lower computational

complexity and memory requirement than (28).

B. An Approximation to 4D Atomic Norm Minimization

Next we propose an approximation to the 4D atomic norm to reduce the computational complexity.

In [38], the authors explore the approximation of 2D atomic norm to improve the efficiency. Here,

we extend the results from 2D atomic norm to 4D atomic norm case. Similar to the 2D MMV

atomic norm, the proposed approximation is calculated with input H. From (1), H is the sum of
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σlb(fl)a(gl)
H , in which both a(gl) and b(fl) are Fourier bases. Different from the vectorized atomic

norm, we introduce the matrix atom Q (f ,g) = b(f)a(g)H and the matrix atom set

AM =

{
Q (f ,g) = b(f)a(g)H : f ∈ [−1

2
,

1

2
)× [−1

2
,

1

2
),g ∈ [−1

2
,

1

2
)× [−1

2
,

1

2
)

}
. (33)

The matrix atomic norm is then given by

‖H‖AM = inf
fl∈[− 1

2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

{∑
l

|σl|

∣∣∣∣∣H =
∑
l

σlQ (fl,gl)

}
. (34)

The matrix atom set is composed of rank-one matrices, and hence it amounts to atomic norm of

low rank matrices. Since the operator vec(·) is a one-to-one mapping and the mapping AM → A

is also one-to-one, it is straightforward to conclude that ‖H‖AM = ‖h‖A. Hence, if the component

frequencies satisfy the sufficient separation condition given by (25) and (26), we have ‖H‖AM =∑
l |σl| by Theorem 1.

Finding the harmonic components via atomic norm is an infinite programming problem over all

feasible f and g, which is difficult. For better efficiency, we use SDP(H) in the following Lemma

to approximate ‖H‖AM .

Lemma 1. For H given by (1), we have ‖H‖AM ≥ SDP(H) ≥ ‖H‖AMMV
, where

SDP(H) , inf
U2∈C(2M2−1)×(2M1−1),V2∈C(2N2−1)×(2N1−1)



1
2M

Tr (T2(U2)) + 1
2N

Tr (T2(V2))

s.t.

 T2(U2) H

HH T2(V2)

 � 0


, (35)

with T2(U2) and T2(V2) being 2-level Toeplitz matrices defined in (18).

Proof. The relation SDP (H) ≥ ‖H‖AMMV
can be directly obtained from the definitions in (31) and

(35). It remains to show ‖H‖AM ≥ SDP(H). Denote

ã(gl, ωl) =
1√
N
ej2πωlc∗N1

(gl,1)⊗ c∗N2
(gl,2),

b̃(fl, χl) =
1√
M
ej2πχlcM1(fl,1)⊗ cM2(fl,2),
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with ωl ∈ [0, 2π] and χl ∈ [0, 2π] such that σl = |σl| ej2π(ωl+χl). For any H =
∑

l σlb (fl) a (gl)
H , if

we set

U2 = [u1(−M1 + 1),u1(−M1 + 2), ...,u1(M1 − 1)], (36)

V2 = [v1(−N1 + 1),v1(−N1 + 2), ...,v1(N1 − 1)], (37)

where

u1(i) =
1√
M

∑
l

|σl|c̃M2(fl,2)ej2π(i−1)fl,1 , (38)

v1(i) =
1√
N

∑
l

|σl|c̃∗N2
(gl,2)e−j2π(i−1)gl,1 , (39)

with c̃n(x) = 1√
n

[
ej2π(1−n)x, ej2π(2−n)x, · · · , ej2π(n−1)x

]T ∈ C2n×1, then the 2-level Toeplitz matrices

T2(U2) and T2(V2) satisfy

T2(U2) =
∑
l

|σl|b (fl) b (fl)
H

=
∑
l

|σl|b̃ (fl, χl) b̃ (fl, χl)
H , (40)

T2(V2) =
∑
l

|σl|a (gl) a (gl)
H

=
∑
l

|σl|ã (gl, ωl) ã (gl, ωl)
H . (41)

Moreover, the matrix

M =

 T2(U2) H

HH T2(V2)

 =
∑
l

|σl|

b̃ (fl, χl)

ã (gl, ωl)

b̃ (fl, χl)

ã (gl, ωl)

H (42)

is positive semidefinite, indicating that the constraints in (35) are satisfied. Note that SDP(H) ≤
1

2M
Tr (T2(U2)) + 1

2N
Tr (T2(V2)) =

∑
l |σl| according to the definition in (35). Since this holds for

any decomposition of H, we obtain SDP (H) ≤ ‖H‖AM .

The above lemma shows that SDP(H) is a lower bound of the matrix atomic norm. Moreover, the

following lemma states that if the component frequencies are sufficiently separated, then SDP(H)

is equivalent to ‖H‖AM .

Lemma 2. If (25)-(26) hold, then ‖H‖AM = SDP(H).
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Figure 1: The approximation errors
∣∣‖H‖AM − SDP(H)

∣∣ and
∣∣‖H‖AM − ‖H‖AMMV

∣∣ when the

separations satisfy ∆min,fi ≥ δ(Mi − 1), ∆min,gi ≥ δ/(Ni − 1), Ni = Mi = 16, for i = 1, 2.

The simulations are run 100 times for each δ.

Proof. First it follows from Theorem 4 in [32] that if (25)-(26) hold, then we have ‖H‖AMMV
=∑

l |σl|. Using Theorem 1 and the fact that ‖h‖A = ‖H‖AM , we have ‖H‖AM = ‖H‖AMMV . Finally

by Lemma 1 we have ‖H‖AM = ‖H‖AMMV = SDP(H).

When the sufficient separation condition given by (25) and (26) is not satisfied, SDP(H) may

not be the same as ‖H‖AM . However, it is found via simulations that SDP(H) still provides a good

approximation to ‖H‖AM and usually results in good performance in channel estimation. Moreover,

as shown by Lemma 1, SDP(H) is a lower bound of the atomic norm ‖H‖AM (or ‖h‖A equivalently),

i.e., ‖h‖A = ‖H‖AM ≥ SDP(H) in general.

To show the approximation performances of both ‖H‖AMMV
and SDP(H) to ‖h‖A, we perform a

series of Monte Carlo trials for parameters M1 = M2 = 16, N1 = N2 = 16 with L = 2. fl and gl take

random values from [−1
2
, 1

2
) × [−1

2
, 1

2
) such that the separations satisfy ∆min,fi ≥ δ/ b(Ni − 1)c,

∆min,gi ≥ δ/ b(Ni − 1)c with 1 ≤ δ ≤ 6. In Fig. 1, we plot the approximation error against δ and

the bars show 95% confidence interval. As δ decreases, both approximation errors become larger.

However, SDP(H) provides a more accurate approximation than ‖H‖AMMV
. When δ ≥ 4, both

approximation errors become zero.
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Therefore, instead of solving the original 4D atomic norm minimization in (28), we can solve the

following SDP

Ĥ = min
H∈CM×N ,

U2∈C(2M2−1)×(2M1−1),
V2∈C(2N2−1)×(2N1−1)

µ

2M
Tr (T2(U2)) +

µ

2N
Tr (T2(V2)) +

1

2

∥∥∥√PtHP−Y
∥∥∥2

F
(43)

s.t. M =

 T2(U2) H

HH T2(V2)

 � 0.

The size of the positive semidefinite matrix in the constraint is (M +N)× (M +N), resulting in

considerably lower computational complexity and memory requirement than (28).

C. ADMM for Approximate 4D Atomic Norm Minimization

To meet the requirement of real-time signal processing, we next derive an iterative algorithm for

solving the SDP in (43), based on the alternating direction method of multipliers (ADMM) [39]. To

put our problem in an appropriate form for ADMM, rewrite (43) as

arg min
H∈CM×N ,

U2∈C(2M2−1)×(2M1−1),
V2∈C(2N2−1)×(2N1−1)

1

2
‖HP−Y‖2

F +
γ

2M
Tr (T2(U2)) +

γ

2N
Tr (T2(V2)) + I∞(M � 0),(44)

where I∞(z) is an indicator function that is 0 if z is true, and infinity otherwise. Dualize the equality

constraint via an augmented Lagrangian, we have

Lρ(U2,V2,H,Υ,M) =
γ

2M
Tr (T2(U2)) +

γ

2N
Tr (T2(V2)) +

1

2
‖HP−Y‖2

F + I∞(M � 0)

+

〈
Υ,M−

 T2(U2) H

HH T2(V2)

〉

+
ρ

2

∥∥∥∥∥∥M−
 T2(U2) H

HH T2(V2)

∥∥∥∥∥∥
2

F

, (45)
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where Υ is the dual variable, 〈Υ,M〉 , Re
(
Tr(MHΥ)

)
, ρ > 0 is the penalty parameter. The

ADMM consists of the following update steps:

(Ul+1
2 ,Vl+1

2 ,Hl+1) = arg min
H∈CM×N ,

U2∈C(2M2−1)×(2M1−1),
V2∈C(2N2−1)×(2N1−1)

Lρ(U2,V2,H,Υl,Ml), (46)

Ml+1 = arg min
M∈C(M+N)×(M+N)�0

Lρ(Ul+1
2 ,Vl+1

2 ,Hl+1,Υl,M), (47)

Υl+1 = Υl + ρ

Ml+1 −

 T2(Ul+1
2 ) Hl+1

(Hl+1)H T2(Vl+1
2 )

 . (48)

Now we derive the updates of (46) and (47) in detail. For convenience, the following partitions

are introduced:

Ml =

 Ml
0 Ml

2

(Ml
2)H Ml

1

 , (49)

Υl =

 Υl
0 Υl

2

(Υl
2)H Υl

1

 , (50)

where Ml
0 and Υl

0 are M ×M matrices, Ml
2 and Υl

2 are M ×N matrices, Ml
1 and Υl

1 are N ×N

matrices. Computing the derivative of Lρ(U2,V2,H,Υ,M) with respect to H, U2 and V2, we have

∇HLρ = (HP−Y)PH − 2Υl
2 + 2ρ(H−Ml

2), (51)

∇U2(i,k)Lρ =


γ
2

+M1ρU2(i, k)− Tr(ρMl
0 + Υl

0), i = k = 0,

(M1 − i)(M2 − k)ρU2(i, k)−
M2−i−1∑
m=0

Trk
(
S(1)
i,k (ρMl

0 + Υl
0)
)
, i 6= 0 or k 6= 0,

(52)

∇V2(i,k)Lρ =


γ
2

+N1ρV2(i, k)− Tr(ρMl
1 + Υl

1), i = k = 0,

(N1 − i)(N2 − k)ρV2(i, k)−
N2−i−1∑
m=0

Trk
(
S(2)
i,k (ρMl

1 + Υl
1)
)
, i 6= 0 or k 6= 0,

(53)

where U2(i, k) and V2(i, k) are the (i, k)-th elements of U2 and V2, respectively. For X ∈ CM×M ,

S(1)
i,k (X) returns the (i, k)-th M1×M1 submatrix Xi,k. For X ∈ CN×N , S(2)

i,k (X) returns the (i, k)-th

N1×N1 submatrix Xi,k. Trk(·) outputs the trace of the k-th sub-diagnal of the input matrix. Tr0(·)

outputs the trace of the input matrix.
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By setting the derivatives to 0, Hl+1, Ul+1
2 and Vl+1

2 can be updated by:

Hl+1 = (YPH + 2ρMl
2 + 2Υl

2)(PPH + 2ρIN)−1, (54)

Ul+1
2 = T∗2(Ml

0 + Υl
0/ρ)− γ

2Mρ
e1, (55)

Vl+1
2 = T∗2(Ml

1 + Υl
1/ρ)− γ

2Nρ
e1, (56)

where e1 = [1, 0, 0, ..., 0]T , T∗2(·) denotes the adjoints of the map T2(·). Specifically, suppose Z =

T∗2(X) where Z = [z−M2+1, z−M2+2, ..., zM2−1] with zi = [zi(−M1+1), zi(−M1+2), ..., zi(M1−1)]T

when X ∈ CM×M . Then we have

zi(k) =
1

(M1 − i)(M2 − k)

M1−i−1∑
m=0

Trk(S(1)
i,m(X)), (57)

for i = −M2 + 1,−M2 + 2, ...,M2 − 1 and k = −M1 + 1,−M1 + 2, ...,M1 − 1.

The update of M is given by

Ml+1 = arg min
M∈C(M+N)×(M+N)�0

∥∥∥M− M̃l+1
∥∥∥2

F
, (58)

where

M̃l+1 =

 T2(Ul+1
2 ) Hl+1

(Hl+1)H T2(Vl+1
2 )

−Υl+1/ρ. (59)

It is equivalent to projecting M̃l+1 onto the positive semidefinite cone. Specifically, the projection is

accomplished by setting all negative eigenvalues of M̃l+1 to zero. Note that in ADMM the update

of variables H, U2, V2 and M are in closed-form. Compared to the off-the-shelf solvers such as

SeDuMi [40] and SDPT3 [41], whose computational complexity is O ((M +N)6) in each iteration,

the complexity of ADMM is O ((M +N)3) in each iteration, so it runs much faster.

V. THE GENERAL PLANAR ARRAY CASE

So far we have focused on the uniform planar array (UPA). For mmWave beamformed FD-MIMO,

because of the larger average inter-antenna element spacing, non-uniform planar array (NUPA)

requires fewer elements than UPA, whereby reducing the weight and cost of the system in large

array applications. Also, the irregular spacing allows the antenna grid spacing to become larger

than a half wavelength so it can effectively reduce the channel correlation and enhance multiplexing
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gain [42]. Furthermore, there is a fundamental limitation of UPA, namely, the lower resolution of

elevation AoA, which limits the UPA performance [24].

In this section we consider the beamformed mmWave FD-MIMO channel estimation for NUPA.

Define dt = 2
λ

[(dt,1(1), dt,2(1)) . . . (dt,1(N), dt,2(N))] as the normalized transmit antenna locations,

where (dt,1 (i), dt,2 (i)) is the i-th transmit antenna coordinate in a 2D planar surface. Similarly,

dr = 2
λ

[(dr,1 (1) , dr,2 (1)) . . . (dr,1 (M) , dr,2 (M))] is the normalized receive antenna locations where

(dr,1 (i), dr,2 (i)) is the i-th receive antenna coordinate in a 2D planar surface. Then the steering

responses of the transmit and receive arrays for the l-th path can be respectively written as [43]

adt (gl) =
1√
N

[
e
j2π

(
2dt,1(1)

λ
gl,1+

2dt,2(1)

λ
gl,2

)
· · · e

j2π

(
2dt,1(N)

λ
gl,1+

2dt,2(N)

λ
gl,2

)]T
, (60)

bdr (fl) =
1√
M

[
e
j2π

(
2dr,1(1)

λ
fl,1+

2dr,2(1)

λ
fl,2

)
· · · e

j2π

(
2dr,1(M)

λ
fl,1+

2dr,2(M)

λ
fl,2

)]T
. (61)

With (60) and (61), the channel matrix H of NUPA is given by (1) with array responses a (gl) and

b (fl) replaced by adt (gl) and bdr (fl), respectively.

The atom for NUPA is then defined as

qNU (g, f) = a∗dt (g)⊗ bdr (f) . (62)

And the atom set for NUPA is given by

ANU ,

{
qNU (g, f) ,g ∈ [

−1

2
,

1

2
)× [−1

2
,

1

2
), f ∈ [

−1

2
,

1

2
)× [
−1

2
,

1

2
)

}
. (63)

The atomic norm ‖h‖ANU
for any h = vec (H) is then given by

‖h‖ANU
= inf

fl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

{∑
l

|σl|

∣∣∣∣∣h =
∑
l

σlqNU (gl, fl)

}
. (64)

To estimate the channel, we propose to solve the following optimization problem

min
h
µ ‖h‖ANU

+
1

2

∥∥∥y −√Pt
(
PT ⊗ IM

)
h
∥∥∥2

2
. (65)

Note that the atom defined in (62) is not based on uniform sampling, and consequently the atomic

norm in (64) does not have the equivalent SDP form as in (28) or (43). Hence, (65) cannot be solved
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via convex optimization. According to Corollary 2.1 of [44], (65) shares the same optimum as the

following optimization problem

min
fl∈[− 1

2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

Γ ({gl, fl, σl}) = µ ‖σ‖1 +
1

2

∥∥∥∥∥y −√Pt
(
PT ⊗ IM

) L∑
l=1

qNU (gl, fl)σl

∥∥∥∥∥
2

2

. (66)

Since the problem given by (66) is nonconvex, we will employ a gradient-descent algorithm to

obtain its local optimum. In practice, L is unknown, so we initialize q (gl, fl) on L̃0 grid points

such that L ≤ L̃0 ≤MP , where P is the number of training beams defined in (8). For example, let

each gl and fl be taken from a uniform grid of NG points with L̃0 = N4
G ≤ MP , i.e., g0

l,i and f 0
l,i

are uniformly taken from [−1/2, 1/2) for i = 1, 2 and 1 ≤ l ≤ N4
G, where the supercript 0 indicates

iteration 0, i.e., initialization. Let Ω0 =
{

(g0
l , f

0
l )1≤l≤L̃

}
. The initial value of σ0 =

[
σ0

1 . . . σ
0
L̃

]T can

then be obtained by the least-squares (LS) estimate

σ0 =
((

PT ⊗ IM
) [

qNU

(
g0

1, f
0
1

)
. . .qNU

(
g0
L̃
, f0
L̃

)])†
y, (67)

where † indicates the pseudo inverse of the matrix. Then the gradient descent method is used to

find the local optimum. We use superscript k to denote the quantities in the k-th iteration. Then the

gradient descent search proceeds as follows

gk+1
l,i =

[
gkl,i − κk∇gl,iΓ

(
{gkl , fkl , σkl }

)] 1
2

− 1
2

, (68)

fk+1
l,i =

[
fkl,i − κk∇fl,iΓ

(
{gkl , fkl , σkl }

)] 1
2

− 1
2

, (69)

σk+1
l = σkl − κk∇σlΓ

(
{gkl , fkl , σkl }

)
, (70)

for l = 1, . . . , L̃k and i = 1, 2, where κk is the step size that can be obtained via Armijo line search

[45] and [x]ab defines the operator that outputs x = mod (x, a) when x < b, and outputs x =

mod (x, b) when x > a, mod (a, b) defines the modulo operator. Specifically, in the k-th iteration,

κk is initialized as κk = κ̄. If Γ
(
{gk+1

l , fk+1
l , σk+1

l }
)
≥ Γ

(
{gkl , fkl , σkl }

)
, then κk is updated by
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multiplication with a constant 0 < α < 1, i.e., κk ← ακk. The gradients are calculated

∇gl,iΓ ({gl, fl, σl}) = R

σl
P̄

L̃∑
l=1

qNU (gl, fl)σl − y

H

P̄
(
a∗dt,i (gl)⊗ bdr (fl)

) , (71)

∇fl,iΓ ({gl, fl, σl}) = R

σl
P̄

L̃∑
l=1

qNU (gl, fl)σl − y

H

P̄
(
a∗dt (gl)⊗ bdr,i (fl)

) , (72)

∇σlΓ ({gl, fl, σl}) = µ
σl

2|σl|
+

1

2

P̄
L̃∑
l=1

qNU (gl, fl)σl − y

T (
P̄qNU (gl, fl)

)∗
, (73)

where R{·} returns the real part of the input,

P̄ =
√
Pt
(
PT ⊗ IM

)
, (74)

adt,i (gl) =

(
j2π

λ
[dt,i(1), . . . , dt,i(N)]T

)
◦ adt (gl) , (75)

bdr,i (fl) =

(
j2π

λ
[dr,i(1), . . . , dr,i(M)]T

)
◦ bdr (fl) , (76)

and ◦ denotes Hadamard product. The derivations of (71) - (73) are given in the Appendix. To

accelerate the convergence, we introduce a pruning step to remove the atoms whose coefficients are

smaller than a threshold during each iteration. Specifically, at the k-th iteration, if |σkl | < ηk where

ηk is a given threshold at the k-th iteration, then l-th path are removed from the set and number

of estimated paths is decreased by one, i.e., Ωk ← Ωk \
{(

gkl , f
k
l

)}
and L̃k ← L̃k − 1 at the k-th

iteration. The algorithm stops when
∥∥hk+1 − hk

∥∥ < ε, where hk =
∑L̃k

l=1 qNU

(
gkl , f

k
l

)
σkl denotes

the channel estimation at the k-th iteration.

VI. SIMULATION RESULTS

A. Simulation Setup

In this section, we evaluate the performance of the proposed channel estimators for mmWave FD-

MIMO links with UPA or NUPA. We compare the channel estimation performance of the proposed

algorithm with some existing algorithms including the 4D-MUSIC [12] and the orthogonal matching

pursuit (OMP) [46]. The simulation parameters are set as follows.

1, The numbers of transmit and receive antenna are N = 16 and M = 16, respectively. For UPA,

we set N1 = 4, N2 = 4, M1 = 4 and M2 = 4.
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2, In the UPA case, the DFT codebooks at the transmitter for elevation and azimuth are given by

P1 = [cN1 (ψ1,0) cN1 (ψ1,1) · · · cN1 (ψ1,P1−1)] ∈ CN1×P1 ,

P2 = [cN2 (ψ2,0) cN2 (ψ2,1) · · · cN2 (ψ2,P2−1)] ∈ CN2×P2 ,

where P1 and P2 are the sizes of elevation and azimuth codebooks, respectively. The DFT angles

are ψ1,i = i
P1

for i = 0, . . . , P1 − 1 and ψ2,i = i
P2

for i = 0, . . . , P2 − 1. We take the Kronecker

product of P1 and P2 to form the product codebook P = P1 ⊗ P2 with size P = P1P2. Each

beamforming vector has a unit norm, i.e., ‖pp‖ = 1 for p = 1, . . . , P and rank (P) = P .

3, The weight factor in (28) and (43) is set as µ = σw
√
MN log (MN). The weight for the

augmented Lagrangian in (45) is set as ρ = 0.05.

4, gl and fl for each path are assumed to uniformly take values in [−1
2
, 1

2
)× [−1

2
, 1

2
). The number

of paths L = 3.

5, The signal power is controlled by the signal-to-noise ratio (SNR) which is defined as SNR = Pt
σ2
w

with σ2
w = 1.

6, For NUPA, we use circular arrays for both transmitter and receiver with N and M antenna

elements located on the 2D plane, respectively. Specifically, the n-th transmit antenna location is

set as dt,1(n) = Rt cos (χn) , dt,2(n) = Rt sin (χn) , n = 1, 2, . . . , N , where χn = 2π
(
n
N

)
is the

angular position of the n-th element and Rt is the radius of the transmit array. Similarly, the m-

th receive antenna location is dr,1(m) = Rr cos (χm) , dr,2(m) = Rr sin (χm) , m = 1, 2, . . . ,M ,

where χm = 2π
(
m
M

)
is the angular position of the m-th element and Rr is the radius of the

receive array.

7, For the gradient descent algorithm, we set L̃0 = MP as the initial value in both UPA and NUPA

cases. The pruning threshold in the k-th step is set as ηk = 0.7 max1≤l≤L̃k
{
σkl
}

.

8, For the OMP and 4D-MUSIC algorithms, the AoD and AoA grid points are set as ϑ̄i = (i−1)2π
NG
−π,

ϕ̄i = (i−1)2π
NG

− π and θ̄i = (i−1)2π
NG

− π, φ̄i = (i−1)2π
NG

− π, respectively, for i = 1, . . . NG.

9, In the simulation, we use the CVX package [47] to compute the 4D atomic norm-based estimator.
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B. Performance Evaluation

We use the normalized mean square error (NMSE), i.e., NMSE = E
{
‖Ĥ−H‖2

F

‖H‖2F

}
as the channel

estimation performance metric. The NMSE statistics across different SNRs with different test setups

are evaluated. Each curve is obtained by averaging over 100 realizations. First we compare the

channel estimation performance of different algorithms under the UPA setting. Then we show the

channel estimation performance for NUPA with the proposed gradient descent estimator and compare

it with the 4D-MUSIC and OMP algorithms.

The computational complexity of the proposed approximate 4D atomic-norm-based channel es-

timator is O((M +N)3) per-iteration. The computational complexity of the MUSIC estimator is

O
(
(NM)3 +N4

G (NM)2) where O
(
(NM)3) is for eigen decomposition and O

(
N4
G (NM)2) is for

grid search. The complexity of the OMP estimator is O
(
N4
G (NM)2) per iteration. The complexity

of proposed gradient descent estimator is O (M (N + P )) per iteration.

1) Convergence Behavior of the Proposed Channel Estimators: We illustrate the convergence of

the proposed ADMM implementation of the approximate 4D atomic-norm-based channel estimator

through a simulation example. We compare the NMSE of the ADMM channel estimator with that

of the CVX solver [47] that directly solves (43). As can be seen from Fig. 2, the proposed ADMM

channel estimator converges to the solution given by the CVX after 300-400 iterations for different

SNR. It is worth noting that the ADMM runs much faster than the CVX solver because the calculation

in each iteration is in closed-form. We then show the convergence behavior and the number of

estimated paths of the proposed gradient-descent-based channel estimator for UPA and NUPA in

Fig. 3. It is seen that the algorithm converges within 1500-2000 iterations for different SNR. The

estimated number of paths is more accurate at higher SNR when the algorithm converges, as more

spurious frequencies arise when the noise is stronger. It is also worth noting that the computational

complexity of the gradient descent method is lower than that of the ADMM, but the overall running

time is higher because it takes more iterations.

2) Comparison of On-grid and Off-grid Algorithms: We compare the proposed off-grid channel

estimator with two existing on-grid approaches including OMP and MUSIC. For the on-grid al-

gorithms, the continuous AoA and AoD parameter spaces are discretized into a finite set of grids
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(a) SNR= 4dB (b) SNR= 10dB

Figure 2: Convergence of proposed ADMM channel estimator with different SNR.

covering [−π, π], and the estimation performance improves with higher grid resolution (i.e., larger

NG). However, higher grid resolution leads to higher computational complexity.

In Fig. 4, the NMSE and running time of different channel estimators are plotted against NG. In

this simulation, we use CVX solver to compute the 4D atomic-norm-based estimator and the ADMM

algorithm to compute the approximate 4D atomic-norm-based estimator. It is worth noting that the

proposed approximate 4D atomic-norm-based estimator has the smallest complexity while its NMSE

is much smaller than those of the on-grid algorithms. As the algorithm does not require the grids,

its computational complexity does not change with NG. In addition, its NMSE performance is only

slightly worse than the 4D atomic-norm-based channel estimator, indicating that the performance

loss caused by the approximation of ‖H‖AM by SDP(H) is small.
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(a) (b)

(c) (d)

Figure 3: Convergence and the number of estimated paths of the proposed gradient descent algorithm

for (a)(c) UPA and (b)(d) NUPA.

(a) (b)

Figure 4: Comparison of channel estimation performance and running time against grid size, SNR=

10 dB. (a) NMSE performance; (b) running time.
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3) Channel Estimation Performance: Fig. 5 plots the NMSE curves as a function of SNR for

different channel estimators under UPA. The number of grid points are set as NG = 90, 180 for

4D-MUSIC-based and OMP-based channel estimators.

It is seen that 4D atomic-norm-based and approximate 4D atomic-norm-based estimators out-

perform the 4D-MUSIC-based and OMP-based estimators. Meanwhile, the 4D atomic-norm-based

channel estimator achieves better performance than the approximate 4D atomic-norm-based channel

estimator by about from 0.5 - 0.8 dB. And the approximate 4D atomic-norm-based channel estimator

outperforms the gradient-descent-based algorithm by more than 1.0 dB.

Figure 5: The NMSE performance as a function of SNR for UPA.

In Fig. 6, we plot the NMSE curves as a function of SNR for different channel estimators under

NUPA. It is seen that the proposed gradient-descent-based channel estimator outperforms the 4D-

MUSIC and OMP-based channel estimators across the range of SNRs from 2 to 10 dB. This is

because the proposed gradient-descent-based channel estimator optimizes the frequency basis in

each iteration, so it outperforms the on-grid algorithms.
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Figure 6: The NMSE performance as a function of SNR for NUPA.

VII. CONCLUSIONS

In this paper, we have proposed new channel estimation schemes for mmWave beamformed FD-

MIMO systems based on atomic norm minimization under both UPA and NUPA settings. For the

UPA case, we approximate the original large-scale 4D atomic norm minimization problem using a

semi-definite program (SDP) containing two decoupled two-level Toeplitz matrices which is then

solved by an ADMM-based fast algorithm. For the NUPA case, a gradient descent-based algorithm

is provided to obtain a suboptimal solution. Simulation results show that the proposed atomic norm

based mmWave FD-MIMO channel estimators provide better performance compared to the existing

methods based on compressed sensing and MUSIC algorithms.

APPENDIX

A. Derivation for (71) and (72)

For clarity, define P̄ =
√
Pt
(
PT ⊗ IM

)
. Then the gradient with respect to gl,i can be calculated

by

∇gl,iΓ ({gl, fl, σl}) =
1

2

∂
(
y − P̄h

)H (
y − P̄h

)
∂gl,i

= R
{(

P̄h− y
)H ∂P̄h

∂gl,i

}
, (77)
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where

∂P̄h

∂gl,i
=
∂P̄
∑L

l=1 qNU (gl, fl)σl
∂gl,i

= σlP̄
∂qNU (gl, fl)

∂gl,i
, (78)

∂qNU(gl, fl)

∂gl,i
=
∂a∗dt (gl)⊗ bdr (fl)

∂gl,i
=
∂a∗dt (gl)

∂gl,i
⊗ bdr (fl) , (79)

∂a∗dt (gl)

∂gl,i
=

(
−j2π
λ

[dt,i(1), . . . , dt,i(N)]T
)
◦ a∗dt (gl) . (80)

By plugging (80) into (77), we have (71). Similarly we can obtain (72).

B. Derivation for (73)

The gradient with respect to σl can be calculated by

∇σlΓ ({gl, fl, σl}) =
∂
(
µ ‖σ‖1 + 1

2

∥∥y − P̄h
∥∥2

2

)
∂σ∗l

=
∂‖σ‖1

∂σ∗l
− 1

2

∂yHP̄h

∂σ∗l
− 1

2

∂hHP̄Hy

∂σ∗l
+

1

2

∂hHP̄HP̄h

∂σ∗l
, (81)

where

∂yHP̄h

∂σl∗
= yHP̄qNU (gl, fl)

∂σl
∂σ∗l

= 0, (82)

∂hHP̄Hy

∂σ∗l
=
((

P̄qNU (gl, fl)
)H

y
)T ∂σ∗l

∂σ∗l
=
((

P̄qNU (gl, fl)
)H

y
)T

, (83)

∂hHP̄HP̄h

∂σ∗l
=
((

P̄qNU (g, f)
)H

P̄qNU (gl, fl)σl

)T
, (84)

∂‖σ‖1

∂σ∗l
=
∂
∑

l |σl|
∂σ∗l

=
∂|σl|
∂σ∗l

=
1

2

(
∂|σl|

∂R{σl}
+ i

∂|σl|
∂I{σl}

)
(85)

=
1

2

(
∂
√
R2{σl}+ I2{σl}
∂R{σl}

+ i
∂
√
R2{σl}+ I2{σl}
∂I{σl}

)
=

σl
2|σl|

,

where I {·} returns the imaginary part of the input. Plugging (82)-(85) into (81), we obtain (73).
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