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Abstract

The use of unmanned aerial vehicles (UAVs) as communication platforms is of great practical

significance in future wireless networks, especially for on-demand deployment in temporary events and

emergency situations. Although prior works have shown the performance improvement by exploiting the

UAV’s mobility, they mainly focus on delay-tolerant applications. As delay requirements fundamentally

limit the UAV’s mobility, it remains unknown whether the UAV is able to provide any performance gain

in delay-constrained communication scenarios. Motivated by this, we study in this paper a UAV-enabled

orthogonal frequency division multiple access (OFDMA) network where a UAV is dispatched as a mobile

base station (BS) to serve a group of users on the ground. We consider a minimum-rate ratio (MRR) for

each user, defined as the minimum instantaneous rate required over the average achievable throughput, to

flexibly adjust the percentage of its delay-constrained data traffic. Under a given set of constraints on the

users’ MRRs, we aim to maximize the minimum average throughput of all users by jointly optimizing the

UAV trajectory and OFDMA resource allocation. First, we show that the max-min throughput in general

decreases as the users’ MRR constraints become more stringent, which reveals a fundamental throughput-

delay tradeoff in UAV-enabled communications. Next, we propose an iterative parameter-assisted block

coordinate descent method to optimize the UAV trajectory and OFDMA resource allocation alternately,

by applying the successive convex optimization and the Lagrange duality, respectively. Furthermore, an

efficient and systematic UAV trajectory initialization scheme is proposed based on a simple circular

trajectory. Finally, simulation results are provided to verify our theoretical findings and demonstrate the

effectiveness of our proposed designs.
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I. INTRODUCTION

As predicted in [2], the number of unmanned aerial vehicles (UAVs), also known as drones,

will continue to surge over the next several years, with the global annual unit shipment increasing

more than tenfold from 6.4 million in 2015 to 67.7 million by 2021. Such a dramatic increase is

due to the steadily decreasing cost of UAVs and their fast-growing demand in applications such as

surveillance and monitoring, aerial camera and radar, cargo delivery, communication platforms,

etc. In June 2017, the International Olympic Committee (IOC) and Intel announced to use UAVs

to enhance the future Olympic Games experience, such as the drone light show [3]. Just in the

same month, the “Safe DRONE Act of 2017” was proposed to the United States Congress for

accelerating the development of the UAV technology, which requested 14 million dollars for

funding a host of research projects on UAVs [4]. In fact, many prominent companies such as

Google, Qualcomm, Amazon, and Nokia, have already launched their respective programs to

advance the UAV research and conduct UAV field tests. In particular, the recent trial results

released by Qualcomm have shown that the current fourth-generation (4G) cellular network can

provide reliable communications for UAVs at an altitude up to 400 feet [5], which paves the

way for realizing cellular-enabled UAV communications in future. Besides being “drone clients”

of wireless networks, UAVs can also be employed as various aerial communication platforms,

to help improve the performance of existing wireless communication systems such as cellular

networks [6].

Compared to the traditional terrestrial wireless communications, UAV-enabled communica-

tions mainly have the following three advantages. First, they are significantly less affected by

channel impairments such as shadowing and fading, and in general possess more reliable air-

to-ground channels due to the much higher possibility of having line-of-sight (LoS) links with

ground users. Second, UAVs can be deployed more flexibly and moved more freely in the

three-dimensional (3D) space. Third, the high mobility of UAVs can be fully controlled to

enhance desired communication links and/or avoid undesired interference via proper trajectory

design. These features bring both opportunities and challenges in designing UAV-enabled wireless

communications, which were not explored before in conventional terrestrial systems with fixed

ground base stations (BSs) [6]. As UAVs are suitable to serve as airborne communication hubs
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such as aerial BSs and/or relays, they are especially useful for the practical scenarios that require

on-demand deployment in temporary events or emergency situations (such as natural disaster),

when the ground infrastructures are insufficient or even unavailable. However, there are also

open challenges that need to be tackled before realizing the full potential of UAV-enabled

communications, such as UAV deployment and trajectory design, communications resource

allocation and multiple access, etc.

Recently, UAV deployment problems have been extensively studied in the literature [7]–[12].

The main design objective is to optimize the UAVs’ altitude, horizontal positions, and/or spatial

density to achieve the maximum communication coverage in a given area. However, the high

mobility or trajectory design of UAVs is not considered in these works. An energy-efficient

relaying scheme is proposed in [13] where multiple UAVs cooperatively relay data packets from

ground sensors to a remote BS based on time division multiple access (TDMA). Although the

UAV mobility is considered in [13], the UAVs’ trajectories are assumed to be pre-determined

and not optimized, which simplifies the design to a UAV-packet matching problem. In [14],

both the static and mobile UAV-enabled wireless networks are studied which are underlaid with

a device-to-device (D2D) communication network. Yet, the mobile UAV is only allowed to

communicate at a set of stop points. As a result, the UAV trajectory is highly restricted and does

not fully exploit the UAV’s high mobility for performance optimization. As such, a joint UAV

trajectory and adaptive communication design is more promising. Motivated by this, a general

trajectory and communication joint optimization framework is proposed in [15] for a UAV-

enabled mobile relaying system, which is also extended to the energy efficiency maximization

in a point-to-point UAV-ground communication system [16]. The UAV trajectory designs in [15]

and [16] can be considered as a generalization of the UAV deployment problem, subject to

practical constraints on the UAV’s mobility, such as its initial/final locations, maximum speed

and acceleration, etc. Thus, it is intuitive that a mobile UAV with optimized trajectory in general

can achieve higher throughput than a static UAV, even with optimal deployment/placement. For

UAV-enabled multiuser communication networks, a novel cyclical multiple access scheme is

proposed in [17] where the UAV periodically serves each of the ground users along its cyclical

trajectory via TDMA. In [18], a joint user scheduling, power control, and trajectory optimization

problem is investigated for a multi-UAV enabled multiuser system. It is shown that with joint

trajectory design and power control, the UAVs can cooperatively serve the ground users in a

periodic manner with strong LoS links and yet avoiding severe interference. However, this is
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achieved by scheduling each user to communicate only when its associated UAV is sufficiently

close to it in each UAV flight period, which implies that the user has to wait for the next UAV

flight period to communicate again. As a result, the throughput gain brought by the UAV’s

mobility does not come for free but in fact at the cost of user communication delay.

Future wireless networks are expected to provide different quality-of-service (QoS) guarantees

for a wide range of applications with diversified requirements [19], [20]. In fact, the delay

requirements of wireless multimedia services may vary dramatically in a large scale from

milliseconds such as for video conferencing and online gaming, to several seconds for file

downloading/sharing and data backup. For example, when a user is downloading files which are

delay-tolerant in general, some other users in the same area may be watching high-definition (HD)

movies on YouTube that require minimum rates at any time. In light of this, wireless networks

with such mixed services should be optimized to not only maximize the system total throughput

but also meet the heterogeneous delay requirements of different applications. Although the UAV

trajectory design has been shown to significantly enhance the throughput of various wireless

communication systems such as for mobile relaying channel [13], [15], multiple access channel

(MAC) and broadcast channel (BC) [17], [21], [22], interference channel (IFC) [14], [18],

and wiretap channel [14], [23], all these works consider only delay-tolerant applications where

the users’ instantaneous rates in general cannot be guaranteed. Therefore, it remains unknown

whether mobile UAVs are still able to provide throughput gains over static UAVs/ground BSs,

when the users’ delay or minimum-rate requirements are considered.

Motivated by such an open question, we study in this paper a UAV-enabled orthogonal

frequency division multiple access (OFDMA) system, where a UAV is dispatched as a mobile

BS to serve a group of users on the ground during a given finite period, as shown in Fig. 1.

Besides having been standardized as the downlink multiple access scheme in the current 4G

networks, OFDMA is also deemed as a promising candidate for the forthcoming fifth-generation

(5G) wireless networks [24]–[26]. This is essentially attributed to its various advantages, e.g.,

flexible bandwidth and power allocation over users, which fits particularly well in our considered

UAV-enabled network with heterogeneous user delay requirements. Without loss of generality,

we consider two types of data traffic for each user: delay-constrained traffic where a minimum

rate should be supported at any time during the UAV service period versus delay-tolerant traffic

where no minimum rate is required and the transmission rate can be elastically allocated over the

period. To this end, we introduce a minimum-rate ratio (MRR) for each user which is defined as
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Fig. 1. A UAV-enabled wireless network.

the minimum instantaneous rate required over the achievable average throughput of the whole

period. As such, the MRR can be flexibly adjusted by each user to specify the percentage of the

delay-constrained traffic required versus that of the delay-tolerant traffic, depending on real-time

applications. Our goal is to maximize the minimum average throughput of all ground users while

meeting a given set of constraints on the users’ MRRs, by jointly optimizing the UAV trajectory

and OFDMA resource allocation. Compared to prior works [13]–[18], [21], [27], [28], such a

joint UAV trajectory and resource allocation design is more general and practically useful since

the user communication delay requirements are taken into account. This thus leads to a more fair

throughput comparison with the terrestrial BSs or static UAVs and also helps to reveal a better

understanding of the fundamental throughput gain achievable by exploiting the UAV’s mobility

control subject to delay constraints. Intuitively, when the UAV flies towards some users to capture

better channels with them, it gets farther away spontaneously from other users that are not in

its heading direction and thus experiences degraded channels. As a result, more bandwidth and

transmit power need to be allocated to those users so that their minimum rates can be achieved.

This in turn would limit the potential rate increase of the users in the UAV’s heading direction.

Thus, there exists a new and non-trivial tradeoff in the UAV trajectory design for throughput

maximization when minimum-rate or delay constraints are considered.

The main contributions of this paper are summarized as follows. First, we formulate a joint

UAV trajectory and OFDMA resource allocation optimization problem to maximize the minimum
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throughput of ground users while guaranteeing their specified MRR constraints. Next, we show

that the system max-min throughput is non-increasing with respect to the users’ MRRs, which

implies that the throughput gain of mobile UAVs over static UAVs reduces as the delay constraints

become more stringent. Although the formulated problem is non-convex and challenging to solve,

we propose an efficient iterative block coordinate descent algorithm to solve the bandwidth

and power allocation problem and the UAV trajectory optimization problem alternately, which

is guaranteed to converge. Specifically, in each iteration, the bandwidth and power allocation

problem is solved optimally by applying the Lagrange duality method with given fixed UAV

trajectory. While for the UAV trajectory optimization problem with fixed OFDMA resource

allocation, the successive convex optimization technique is applied to tackle its non-convexity.

However, due to the MRR constraints, it is shown that the conventional block coordinate descent

method which directly iterates between the OFDMA resource allocation and UAV trajectory

design will very likely get stuck at the initial point, which leads to an ineffective update of the

UAV trajectory. To overcome this issue, we propose a new parameter-assisted block coordinate

descent method where each parameter is a temporary MRR set to be larger than the target MRR

for a corresponding user. Then at each iteration, we gradually decrease the temporary MRRs

before solving the UAV trajectory optimization problem, until they reach the target MRRs for

all users. It is shown that this new method can effectively update the UAV trajectory in each

iteration, thus resolving the issue of conventional block coordinate descent method. Furthermore,

we propose a systematic and low-complexity UAV trajectory initialization scheme based on

the simple circular trajectory. Finally, numerical results are provided to verify the fundamental

tradeoff between the system max-min throughput and the users’ delay/MRR constraints and

demonstrate the effectiveness of our proposed designs.

The rest of this paper is organized as follows. Section II introduces the system model and

the problem formulation for a UAV-enabled OFDMA network. In Section III, we propose an

efficient iterative algorithm as well as a general UAV trajectory initialization scheme for the

considered problem. Section VI presents the numerical results to demonstrate the performance

of the proposed designs. Finally, we conclude the paper in Section VI.

Notations: In this paper, scalars are denoted by italic letters, while vectors and matrices are

respectively denoted by bold-face lower-case and upper-case letters. RM×1 denotes the space

of M-dimensional real-valued vector. For a vector a, ‖a‖ represents its Euclidean norm, aT

denotes its transpose, and a � 0 indicates that a is element-wise larger than or equal to 0. For
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a time-dependent function x(t), ẋ(t) denotes its derivative with respect to time t. For a set K,

|K| denotes its cardinality.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a UAV-enabled OFDMA system where the UAV is employed

as an aerial BS to serve a group of K users on the ground. The user set is denoted by K with

|K| = K. In practice, the users that need to be served by the UAV can be either the terrestrial

BSs that have no ground backhaul links or the ground mobile terminals in a geographical area

that is poorly or not even covered by existing terrestrial BSs. At any time during the UAV flight

period, denoted by T , the UAV can communicate with multiple ground users simultaneously by

employing OFDMA, i.e., assigning each user a fraction of the total bandwidth/transmit power. In

general, from the perspective of throughput maximization, it is intuitive that larger T is desirable

since it will provide the UAV more time to fly closer to each ground user, leading to better air-

to-ground links. The effect of T on the system performance will be investigated in detail in

Section IV. Since we target for a centralized design that is implemented off-line, the proposed

algorithm can be performed at a central controller (e.g., installed on the UAV) who is able to

collect all the users’ information such as their locations and MRRs. Then the obtained solutions

can be programmed into the control and communication units of the UAV.

We assume that the horizontal coordinate of each ground user is known in advance and fixed

at wk = [xk, yk]
T ∈ R

2×1, k ∈ K. The UAV is assumed to fly at a fixed altitude H above

ground and the time-varying horizontal coordinate of the UAV at time instant t is denoted by

q(t) = [x(t), y(t)]T ∈ R
2×1, with 0 ≤ t ≤ T . To serve ground users periodically, we assume that

the UAV needs to return to its initial location by the end of each period T , i.e., q(0) = q(T ).

In addition, the UAV trajectory is also subject to the maximum speed constraints in practice,

i.e, ||q̇(t)|| ≤ Vmax, 0 ≤ t ≤ T , where Vmax denotes the maximum UAV speed in meter/second

(m/s). However, the continuous variable t essentially implies an infinite number of UAV speed

constraints which are difficult to tackle in general. To facilitate our analysis and algorithm design,

we apply the discrete linear state-space approximation technique, which results in a finite number

of constraints. Specifically, we discretize the UAV flight period T into N equally-spaced time

slots with step size δt, i.e., t = nδt, n ∈ N = {1, ..., N}. Note that for the given maximum

UAV speed Vmax and altitude H , the number of time slots N can be chosen sufficiently large
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such that the UAV’s location change within each time slot δt can be assumed to be negligible,

compared to the link distances from the UAV to all ground users. However, a larger value of N

inevitably increases the complexity of the proposed design. Thus, the number of time slots N

can be properly chosen in practice to balance between the accuracy and algorithm complexity.

More discussions on the choice of N as well as its impact on the system performance can be

found in [18]. Based on such a discretization, the UAV trajectory can be characterized by a

sequence of UAV locations q[n] = [x[n], y[n]]T , n = 1, · · · , N . As a result, the above constraints

can be equivalently modeled as

q[1] = q[N ], (1)

||q[n+ 1]− q[n]||2 ≤ S2
max, n = 1, ..., N − 1, (2)

where Smax , Vmaxδt is the maximum horizontal distance that the UAV can travel within one

time slot. Furthermore, the distance from the UAV to user k in time slot n is assumed to be a

constant that can be expressed as

dk[n] =
√
H2 + ||q[n]−wk||2. (3)

The measurement results in [29]–[31] have shown that the air-to-ground communication

channels are mainly dominated by the LoS links even when the UAV is at a moderate altitude.

For example, for the UAV at an altitude of H = 120 m, the LoS probability of air-to-ground

links in rural environment exceeds 95% for a horizontal ground distance of 4 kilometers (Km)

[29]. Thus, we assume that the channel quality depends mainly on the UAV-user distance for

simplicity. In addition, the Doppler effect induced by the UAV mobility is assumed to be perfectly

compensated at the receivers. Following the free-space path loss model, the channel power gain

from the UAV to user k in time slot n can thus be expressed as

hk[n] = ρ0d
−2
k [n] =

ρ0

H2 + ||q[n]−wk||2
, (4)

where ρ0 denotes the channel power gain at the reference distance d0 = 1 m. Denote the total

available system bandwidth by B in Hertz (Hz). The fraction of bandwidth assigned to user k

in time slot n is denoted by αk[n]. In a practical OFDMA system, αk[n] is in general a discrete

value between 0 and 1, which increases linearly with the number of subcarriers assigned to user

k in time slot n. It is known that when the number of subcarriers is sufficiently large, αk[n]
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can be approximated to a continuous value between 0 and 1. Thus, the bandwidth allocation

constraint can be expressed as

K∑

k=1

αk[n] ≤ 1, ∀n, (5)

0 ≤ αk[n] ≤ 1, ∀ k, n. (6)

Denote the transmit power allocated to user k in time slot n by pk[n] ≥ 0. Then the total transmit

power constraint of the UAV can be expressed as

K∑

k=1

pk[n] ≤ Pmax, ∀n, (7)

where Pmax is the maximum allowed transmit power of the UAV in each time slot. Accordingly,

the instantaneous achievable rate of user k in time slot n, denoted by rk[n] in bits/second/Hz

(bps/Hz), can be expressed as

rk[n] = αk[n] log2

(
1 +

pk[n]hk[n]

αk[n]BN0

)

= αk[n] log2

(
1 +

pk[n]γ0
αk[n](H2 + ||q[n]−wk||2)

)
, (8)

where γ0 ,
ρ0

BN0

, with N0 denoting the power spectral density of the additive white Gaussian

noise (AWGN) at the receivers. As a result, the average achievable throughput of user k over

N time slots in bps/Hz, is given by

Rk =
1

N

N∑

n=1

rk[n]. (9)

Motivated by the diversified user applications and heterogeneous delay requirements in the

forthcoming 5G wireless networks, we consider both delay-constrained and delay-tolerant ser-

vices for users in the system. Specifically, a parameter θk, θk ∈ [0 1], is introduced to denote the

MRR of user k, which means that at any time slot, θk fraction of its average throughput over

N slots is delay-constrained and the remaining 1 − θk fraction is delay-tolerant. In particular,

θk = 0 and θk = 1 indicate that all the services of user k are delay-tolerant and delay-constrained,

respectively. As such, the MRR constraint of user k in time slot n can be expressed as

rk[n] ≥ θkRk, ∀ k, n, (10)

which implies that in any of the N time slots, at least θk fraction of the average throughput

needs to be satisfied for each user k. Therefore, a system where some users’ services are all
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delay-constrained while those of the others are all delay-tolerant, i.e., θk ∈ {0, 1}, ∀ k, is a special

case of our general setup.

B. Problem Formulation

Let A = {αk[n], k ∈ K, n ∈ N}, P = {pk[n], k ∈ K, n ∈ N}, and Q = {q[n], n ∈ N}. By

taking into account the MRR constraints of all users, we aim to maximize the minimum average

throughput among them via jointly optimizing the bandwidth and power allocation (i.e., A and

P) as well as the UAV trajectory (i.e., Q). Define η , min
k∈K

Rk. The optimization problem is

formulated as

max
η,A,P,Q

η (11a)

s.t. Rk ≥ η, ∀ k, (11b)

rk[n] ≥ θkRk, ∀ k, n, (11c)

K∑

k=1

pk[n] ≤ Pmax, ∀n, (11d)

pk[n] ≥ 0, ∀ k, n, (11e)

K∑

k=1

αk[n] ≤ 1, ∀n, (11f)

0 ≤ αk[n] ≤ 1, ∀ k, n, (11g)

||q[n+ 1]− q[n]||2 ≤ S2
max, n = 1, ..., N − 1, (11h)

q[1] = q[N ]. (11i)

Note that the challenges of solving problem (11) lie in the following three aspects. First, Rk

and rk[n] in constraints (11b) and (11c) are not jointly concave with respect to the optimization

variables A, P, and Q. Second, for fixed UAV trajectory Q, although Rk and rk[n] are jointly

concave with respect to A and P, (11c) is non-convex due to the presence of Rk in its left-hand-

side (LHS). Third, for fixed bandwidth and power allocation A and P, Rk and rk[n] are neither

convex nor concave with respect to Q. Consequently, problem (11) is a non-convex optimization

problem and in general, there is no standard method for solving such a problem efficiently.
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To tackle the above challenges, we first transform problem (11) into a more tractable form as

follows,

max
η,A,P,Q

η (12a)

s.t. rk[n] ≥ θkη, ∀ k, n, (12b)

(11b), (11d), (11e), (11f), (11g), (11h), (11i). (12c)

Comparing (12b) with (11c), it follows that the feasible set of problem (11) is a subset of that

of problem (12) in general. However, the equivalence of problems (11) and (12) holds if all

users achieve the equal average throughput in the optimal solution to problem (11). This can be

easily verified since otherwise the objective value of (11) can be further improved by allocating

more transmit power and/or bandwidth to the user with a lower average throughput without

violating the total transmit power and bandwidth allocation constraints (11d) and (11f). With

such a transformation, we only need to focus on solving problem (12) in the rest of the paper.

Although it is still a non-convex optimization problem, problem (12) facilitates the development

of an efficient algorithm. Before proceeding to solve problem (12), we first show the effect of

the users’ MRRs on the maximum objective value of problem (12).

Theorem 1. The maximum objective value of problem (12) is an element-wise non-increasing

function with respect to {θk}.

Proof. Denote the optimal solutions of problem (12) with θ∗ = {θ∗k, k ∈ K} and θ̂ = {θ̂k, k ∈ K}

by S∗ = {η∗, α∗
k[n], p

∗
k[n],q

∗[n], k ∈ K, n ∈ N} and Ŝ = {η̂, α̂k[n], p̂k[n], q̂[n], k ∈ K, n ∈ N},

respectively. To prove Theorem 1, we only need to show that η∗ ≤ η̂ holds when θ̂ � θ∗, where

� indicates element-wisely less than or equal to, i.e., θ̂k ≤ θ∗k, ∀ k. Note that in problem (12),

the MRRs are only involved in constraint (12b). Thus, we have the following inequalities

r∗k[n] = α∗

k[n] log2

(
1 +

p∗k[n]γ0
α∗
k[n](H

2 + ||q∗[n]−wk||2)

)
≥ θ∗kη

∗ ≥ θ̂kη
∗, ∀ k, n, (13)

which implies that S∗ is also a feasible solution of problem (12) with θ̂. Since η̂ is the maximum

objective value of problem (12) with θ̂, it follows that η∗ ≤ η̂, which thus completes the proof

of Theorem 1.

Theorem 1 sheds light on the fundamental tradeoff between the max-min average throughput

and the user communication delay requirement: as the required MRR θk increases for any user
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k, the max-min average throughput of the system decreases in general. This is because imposing

more stringent minimum-rate requirements on users fundamentally limit the UAV’s mobility to

fly closer to any user to achieve a better channel since at the same time it needs to meet the

minimum-rate requirements of other users that are not in its heading direction and thus will

have degraded channels with it. As a result, the degree of freedom for exploiting the UAV’s

mobility via its trajectory design is restricted by such delay/MRR constraints, thus leading to

lower max-min average throughput.

III. PROPOSED SOLUTION

In this section, we propose an efficient parameter-assisted block coordinate descent algorithm

for solving problem (12). Specifically, we first optimize the bandwidth and power allocation

for given UAV trajectory and then optimize the UAV trajectory for given bandwidth and power

allocation. These two optimization problems are solved alternately until convergence is achieved.

A. Joint Bandwidth and Power Allocation

Besides being a subproblem of problem (12), the bandwidth and power allocation optimization

problem for given UAV trajectory may also correspond to a practical scenario when the UAV

trajectory is pre-specified due to other tasks such as aerial imaging, rather than being optimized

for achieving best communication performance. Specifically, for any given UAV trajectory Q,

the bandwidth and power allocation {A,P} can be optimized by solving the following problem,
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max
η,A,P

η (14a)

s.t.
1

N

N∑

n=1

αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
≥ η, ∀ k, (14b)

αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
≥ θkη, ∀ k, n, (14c)

K∑

k=1

pk[n] ≤ Pmax, ∀n, (14d)

pk[n] ≥ 0, ∀ k, n, (14e)

K∑

k=1

αk[n] ≤ 1, ∀n, (14f)

0 ≤ αk[n] ≤ 1, ∀ k, n, (14g)

where gk[n] ,
hk[n]
BN0

. Define αk[n] log2

(
1 + pk[n]gk[n]

αk [n]

)
, 0 when αk[n] = 0, ∀ k, n, such that

the LHSs of both (14b) and (14c) are continuous with respect to αk[n] over the whole domain 0 ≤

αk[n] ≤ 1. As such, problem (14) is a convex optimization problem since αk[n] log2

(
1 + pk[n]gk[n]

αk[n]

)

in (14b) and (14c) is jointly concave with respect to αk[n] and pk[n] and (14d)-(14g) are all

affine constraints. Furthermore, it can be verified that Slater’s constraint qualification is satisfied

for problem (14) [32]. Therefore, strong duality holds and the duality gap between problem

(14) and its dual problem is thus zero, which means that the optimal solution can be obtained

efficiently by applying the Lagrange duality. The partial Lagrange function of problem (14) can

be expressed as

L(η,A,P,λ,µ,β,ν)

=η +

K∑

k=1

λk

(
1

N

N∑

n=1

αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
− η

)
+

N∑

n=1

βn

(
Pmax −

K∑

k=1

pk[n]

)

+
K∑

k=1

N∑

n=1

µk,n

(
αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
− θkη

)
+

N∑

n=1

νn

(
1−

K∑

k=1

αk[n]

)

=

(
1−

K∑

k=1

λk −
K∑

k=1

N∑

n=1

µk,nθk

)
η +

K∑

k=1

N∑

n=1

(
λk

N
+ µk,n

)
αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)

−
K∑

k=1

N∑

n=1

βnpk[n]−
K∑

k=1

N∑

n=1

νnαk[n] +

N∑

n=1

βnPmax +

N∑

n=1

νn, (15)

where λ = {λk, ∀ k}, µ = {µk,n, ∀ k, n}, β = {βn, ∀n}, and ν = {νn, ∀n} are the non-negative

Lagrange multipliers associated with constraints (14b), (14c), (14d), and (14f), respectively. The
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boundary constraints (14e) and (14g) will be absorbed into the optimal solution in the following.

Accordingly, the dual function is given by

f(λ,µ,β,ν) = max
η,A,P

L(η,A,P,λ,µ,β,ν) (16a)

s.t. pk[n] ≥ 0, ∀ k, n, (16b)

0 ≤ αk[n] ≤ 1, ∀ k, n, (16c)

for which the following lemma holds.

Lemma 1. To make f(λ,µ,β,ν) bounded from the above in (16), i.e., f(λ,µ,β,ν) < +∞, it

follows that
∑K

k=1 λk −
∑K

k=1

∑N

n=1 µk,nθk = 1 must hold.

Proof. This is shown by contradiction. If
∑K

k=1 λk −
∑K

k=1

∑N

n=1 µk,nθk > 1 or
∑K

k=1 λk −
∑K

k=1

∑N

n=1 µk,nθk < 1, it follows that f(λ,µ,β,ν)→ +∞ by setting η → −∞ or η → +∞.

Thus, neither of the above two inequalities can be true and the lemma is proved.

Lemma 1 imposes additional constraints for dual variables λ and µ. As such, the dual problem

of problem (14) is given by

min
λ,µ,β,ν

f(λ,µ,β,ν) (17a)

s.t.

K∑

k=1

λk −
K∑

k=1

N∑

n=1

µk,nθk = 1, (17b)

λ � 0,µ � 0,β � 0,ν � 0. (17c)

Next, we show how to obtain the primal optimal solution by applying the Lagrange duality.

1) Obtaining f(λ,µ,β,ν) by Solving Problem (16) : With the given dual variables, problem

(16) can be decomposed into KN + 1 subproblems that can be solved independently in par-

allel. Specifically, one subproblem is for optimizing η and the other KN subproblems are for

optimizing A and P, i.e.,

max
η

(
1−

K∑

k=1

λk −
K∑

k=1

N∑

n=1

µk,nθk

)
η, (18)

max
αk[n],pk[n]

(
λk

N
+ µk,n

)
αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
− βnpk[n]− νnαk[n] (19a)

s.t. pk[n] ≥ 0, ∀ k, n, (19b)

0 ≤ αk[n] ≤ 1, ∀ k, n, (19c)
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where each subproblem in (19) is for user k in time slot n. For problem (18), since
∑K

k=1 λk −
∑K

k=1

∑N

n=1 µk,nθk = 1 holds as in Lemma 1, the objective value is zero which is independent of

the value of η. This implies that we can choose any arbitrary real number as the optimal solution,

denoted by η⋆. Without loss of generality, we simply set η⋆ = 0 for the purpose of obtaining the

dual function f(λ,µ,β,ν) and updating the dual variables1. Next, we consider problem (19).

Since problem (19) is jointly concave with respect to pk[n] and αk[n], the solution that satisfies

the Karush-Kuhn-Tucker (KKT) conditions is also the optimal solution. By taking the derivative

of the objective function of (19) with respect to pk[n], the optimal power allocation, denoted by

p⋆k[n], can be obtained as

p⋆k[n] = αk[n]

[
λk +Nµk,n

Nβn ln 2
−

1

gk[n]

]+
, (20)

where [x]+ , max{x, 0}. Let p̃k[n] ,
p⋆
k
[n]

αk[n]
=
[
λk+Nµk,n

Nβn ln 2
− 1

gk[n]

]+
, which can be regarded as the

power spectrum density of user k in time slot n. Note that in (20), the power allocation follows

a multi-level water-filling structure. Substituting the obtained p⋆k[n] into problem (19) yields

max
αk [n]

(
λk +Nµk,n

N
log2 (1 + p̃k[n]gk[n])− βnp̃k[n]− νn

)
αk[n] (21a)

s.t. 0 ≤ αk[n] ≤ 1, ∀ k, n. (21b)

It is evident that problem (21) is a linear program (LP) with only one optimization variable,

αk[n]. Thus, the optimal bandwidth allocation, denoted by α⋆
k[n], can be obtained as

α⋆
k[n] =






1, if

(
λk +Nµk,n

N
log2 (1 + p̃k[n]gk[n])− βnp̃k[n]− νn

)
> 0,

a, if

(
λk +Nµk,n

N
log2 (1 + p̃k[n]gk[n])− βnp̃k[n]− νn

)
= 0,

0, otherwise, ∀ k, n.

(22)

where a can be any arbitrary real number between 0 and 1 since the objective value of problem

(21) is not affected in this case. For simplicity, we set a = 0 as for the case of η. In general, (22)

cannot provide the optimal primal solution for problem (14) even with optimal dual variables.

Nevertheless, with the above proposed solutions to problems (18) and (19), the dual function

f(λ,µ,β,ν) is obtained.

1We note that η⋆
= 0 cannot be the optimal primal solution to problem (14). How to obtain the optimal primal solution for

this problem will be discussed later in Section III-A-3).
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2) Obtaining Optimal Dual Solution to Problem (17) : After obtaining (η⋆,A⋆,P⋆) for given

λ,µ,β, and ν, we next solve the dual problem (17) to find the optimal dual variables that

maximize f(λ,µ,β,ν). Note that although the dual function f(λ,µ,β,ν) is always convex by

definition, it is non-differentiable in general. As a result, the commonly used subgradient based

method such as the ellipsoid method, can be used to solve problem (17). In each iteration, the dual

variables λ,µ,β, and ν are updated based on the subgradients of both the objective function and

the constraint functions in problem (17). Specifically, the subgradient of the objective function

is denoted by s0 = [∆λT ,∆µT ,∆βT ,∆νT ]T where ∆λ,∆µ,∆β, and ∆ν are vectors with the

elements respectively given by

∆λk =
1

N

N∑

n=1

αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
, ∀ k, (23)

∆µk,n = αk[n] log2

(
1 +

pk[n]gk[n]

αk[n]

)
, ∀ k, n, (24)

∆βn = Pmax −
K∑

k=1

pk[n], ∀n, (25)

∆νn = 1−
K∑

k=1

αk[n], ∀n. (26)

Furthermore, the equality constraint in (17b) is equivalent to two inequality constraints: 1 −
∑K

k=1 λk −
∑K

k=1

∑N

n=1 µk,nθk ≤ 0 and −1 +
∑K

k=1 λk +
∑K

k=1

∑N

n=1 µk,nθk ≤ 0. Thus, the

subgradient of the former constraint function is denoted by s1 = [∆λT ,∆µT ,∆βT ,∆νT ]T

where the corresponding elements are given by ∆λk = −1,∆µk,n = −θk,∆βn = 0,∆νn = 0. In

addition, the subgradient of the latter constraint function is given by s2 = −s1. With the above

subgradients, the dual variables can be updated by the constrained ellipsoid method toward the

optimal solution with global convergence [33].

3) Constructing Optimal Primal Solution to Problem (14) : Based on the obtained dual opti-

mal solution λ∗, µ∗, β∗, and ν∗, it remains to obtain the optimal primal solution {η∗,A∗,P∗} to

problem (14). It is worth pointing out that for a convex optimization problem, the optimal solution

that maximizes the Lagrangian function is the optimal primal solution if and only if such a solu-

tion is unique and primal feasible [32]. However, in our case, the optimal solutions η⋆ and A⋆ that

maximize L(η,A,P,λ,µ,β,ν) are not unique given that
∑K

k=1 λk−
∑K

k=1

∑N

n=1 µk,nθk = 1 and(
λk+Nµk,n

N
log2 (1 + p̃k[n]gk[n])− βnp̃k[n]− µn

)
= 0 as in (18) and (22). Therefore, additional

steps are needed in order to construct the optimal primal solution. The key observation is that
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Algorithm 1 Joint bandwidth and power allocation algorithm for solving problem (14).

1: Initialize λ,µ,β, ν, and the ellipsoid.

2: repeat

3: Solve problem (18) and (19) to obtain η⋆, A⋆, and P⋆.

4: Compute the subgradients of the objective function and the constraint functions in problem

(17).

5: Update λ, µ, β, and ν by using the constrained ellipsoid method.

6: until λ, µ, β, and ν converge within a prescribed accuracy.

7: Set (λ∗, µ∗, β∗, ν∗) ← (λ, µ, β, ν).

8: Obtain η∗, A∗, and P∗ by solving problem (27) and using (20).

with given λ∗, µ∗, and β∗, the optimal power spectrum density (the ratio of the optimal power

allocation to the optimal bandwidth allocation), i.e., p̃∗k[n] =
p∗
k
[n]

α∗

k
[n]

, can be uniquely obtained

from (20). By substituting p̃∗k[n] into the primal problem (14), we have

max
η,A

η (27a)

s.t.
1

N

N∑

n=1

αk[n] log2 (1 + p̃∗k[n]gk[n]) ≥ η, ∀ k, (27b)

αk[n] log2 (1 + p̃∗k[n]gk[n]) ≥ θkη, ∀ k, n, (27c)

K∑

k=1

αk[n]p̃
∗

k[n] ≤ Pmax, ∀n, (27d)

K∑

k=1

αk[n] ≤ 1, ∀n, (27e)

0 ≤ αk[n] ≤ 1, ∀ k, n. (27f)

Given p̃∗k[n], it is easy to observe that problem (27) is an LP with respect to A and η, which

thus can be efficiently solved by using standard convex optimization solvers such as CVX [34].

After obtaining the optimal bandwidth allocation A∗, the corresponding power allocation P∗

can be obtained as p∗k[n] = p̃∗k[n]α
∗
k[n], ∀ k, n. The details of the procedures for obtaining the

optimal solution to problem (14) are summarized in Algorithm 1. The computational complexity

of Algorithm 1 consists of three parts. The first part is for solving problems (18) and (19), the

second part is for updating the dual variables by the ellipsoid method, and the third part is
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for solving linear program problem (27). In step 3) of Algorithm 1, the complexity of solving

problem (18) is O(1) and that of solving (19) is O(KN). The complexities of step 4) and 5) are

O(KN) and O(K2N2), respectively. Since the ellipsoid method takes O(K2N2) to converge, the

total complexity for step 2) to 6) is O(K4N4) [33]. The complexity of solving (27) is O(K3N3).

Therefore, the total complexity of Algorithm 1 is O(K4N4).

B. UAV Trajectory Optimization

Given any feasible bandwidth and power allocation {A,P}, problem (12) is simplified into

the following problem for optimizing the UAV trajectory Q only, i.e.,

max
η,Q

η (28a)

s.t.
1

N

N∑

n=1

αk[n] log2

(
1 +

γk[n]

H2 + ||q[n]−wk||2

)
≥ η, ∀ k, (28b)

αk[n] log2

(
1 +

γk[n]

H2 + ||q[n]−wk||2

)
≥ θkη, ∀ k, n, (28c)

||q[n+ 1]− q[n]||2 ≤ S2
max, n = 1, ..., N − 1, (28d)

q[1] = q[N ], (28e)

where γk[n] ,
pk[n]ρ0

αk[n]BN0
. Note that problem (28) is not a convex optimization problem since the

LHSs of constraints (28b) and (28c) are not concave with respect to q[n]. In general, there is

no efficient method to obtain the optimal solution for such a non-convex problem. However,

we observe that the LHSs of both (28b) and (28c) are convex with respect to ||q[n] − wk||
2.

Note that for a convex function, its first-order Taylor expansion is the global under-estimator at

any point [32]. This thus motivates us to leverage the successive convex optimization technique

to tackle the non-convex problem (28) by an iterative algorithm, where in each iteration, the

LHSs of both (28b) and (28c) are replaced by more tractable functions derived from the Taylor

expansion at a given local point. Specifically, with given local point qr[n], we have the following

inequality

rk[n] = αk[n] log2

(
1 +

γ0

H2 + ||q[n]−wk||2

)

≥ αk[n]
(
−Ar

k[n]
(
||q[n]−wk||

2 − ||qr[n]−wk||
2
)
+Br

k[n]
)

, r
lb,r
k [n], (29)
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where

Ar
k[n] =

γ0 log2 e

(H2 + ||qr[n]−wk||2)(H2 + ||qr[n]−wk||2 + γ0)
, (30)

Br
k[n] = log2

(
1 +

γ0

H2 + ||qr[n]−wk||2

)
, ∀ k, n. (31)

For any given local point Qr, define the function ηlb,r(A,Q) = min
i∈K

∑N

n=1 r
lb,r
k [n]. With

the lower bounds r
lb,r
k [n], ∀ k, in (29) and Qr, problem (28) is approximated as the following

problem

max
ηlb,r,Q

ηlb,r

s.t.
1

N

N∑

n=1

r
lb,r
k [n] ≥ ηlb,r, ∀ k, (32a)

r
lb,r
k [n] ≥ θkη

lb,r, ∀ k, n, (32b)

||q[n+ 1]− q[n]||2 ≤ S2
max, n = 1, ..., N − 1, (32c)

q[1] = q[N ]. (32d)

Note that constraints (32a), (32b), and (32c) are all convex quadratic constraints and (32d) is a

linear constraint. Therefore, problem (32) is a convex quadratically constrained quadratic program

(QCQP) that can be solved within a polynomial complexity by standard convex optimization

solvers such as CVX [34]. It is worth pointing out that due to the lower bounds adopted from

(29), constraints (32a) and (32b) imply (28b) and (28c), respectively, but the reverse does not

hold in general. In this regard, the optimal objective value obtained by solving problem (32)

always serves as a lower bound for that of problem (28).

C. Overall Algorithm Design

In this section, we propose an efficient iterative algorithm to solve problem (12) based on the

results in previous two sections. Note that the conventional block coordinate descent method

alternately optimizes one block of optimization variables in each iteration while keeping other

blocks of optimization variables fixed, until the convergence is achieved [35], [36]. However,

directly applying such a block coordinate descent method for our considered problem, i.e., by

alternately optimizing one block from the power and bandwidth allocation variables {A,P} in

problem (14) and the UAV trajectory variables Q in problem (28), with the other block fixed,
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may fail to update the UAV trajectory effectively. This can be observed from the MRR constraints

in problem (28), i.e.,

αk[n] log2

(
1 +

γk[n]

H2 + ||q[n]−wk||2

)
≥ θkη, ∀ k, n. (33)

For given αk[n] and pk[n], ∀ k, n, since problem (28) aims to increase η by optimizing UAV

trajectory q[n], the right-hand-side (RHS) of (33) is expected to increase after each iteration. As

a result, for users that have met constraints in (14c) with equality in the last iteration, the only

way to increase the LHS of (33) in the current iteration is by decreasing ||q[n]−wk||2, ∀ k. This

implies that in each time slot n, the UAV’s location q[n] needs to be updated to decrease the

distances from the UAV to all these users. Thus, the freedom for optimizing the UAV trajectory

is severely limited which can lead to ineffective update of the UAV trajectory in each iteration.

To tackle this issue, we propose a new parameter-assisted block coordinate descent method

where each parameter is a temporary MRR for a corresponding user k, denoted by θtemp,k, which

is set larger than the actual MRR target θk, if 0 < θk < 1. The main idea is to use the newly

introduced temporary MRR θtemp,k > θk for solving problem (28) rather than directly using the

target θk. Specifically, θtemp,k for each user k is gradually decreased before solving problem (28)

in each iteration, until the target MRR θk is achieved for all users. As such, η will increase

after each iteration, while the constraints in (33) will be relaxed due to the decrease of θtemp,k’s,

which thus permits a more effective UAV trajectory update in each iteration compared to the

conventional block coordinate decent method. Furthermore, the proposed method also generates

a feasible solution for the original problem (12) since θk will be eventually achieved by gradually

decreasing θtemp,k with a predefined step size, θstep,k > 0. The details of the proposed method

are summarized in Algorithm 2.

The convergence of the proposed Algorithm 2 can be analyzed as follows. From step 4, it

can be seen that θk, ∀ k, is non-increasing over the iterations. Recall that the objective value of

problem (12) is element-wise non-increasing with respect to θk, ∀ k. Thus, it can be shown that

the objective value achieved by Algorithm 2 is non-decreasing in each iteration. Furthermore,

the objective value of problem (12) is bounded from the above. Thus, the proposed Algorithm

2 is guaranteed to converge and the obtained solution is also feasible for the original problem

(11). Although the obtained solution is generally suboptimal, we validate the effectiveness of

Algorithm 2 via simulations by comparing with other benchmark schemes in Section IV.
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Algorithm 2 Parameter-assisted block coordinate descent algorithm for solving problem (12).

1: Initialize Q0, θini,k, and Lmax. Let r = 0, θtemp,k = θini,k, and θstep,k =
θini,k−θk
Lmax

, ∀ k.

2: repeat

3: Solve problem (14) by applying Algorithm 1 for given Qr, and denote the optimal solution

as {Ar+1,Pr+1}.

4: θtemp,k = max{θtemp,k − (r + 1)θstep,k, θk}, ∀ k.

5: Solve problem (28) for given {Ar+1,Pr+1,Qr, θtemp,k}, and denote the optimal solution

as {Qr+1}.

6: Update r = r + 1.

7: until θtemp,k = θk, ∀ k, and the fractional increase of the objective value is below a threshold

ǫ > 0.

D. UAV Initial Trajectory and Users’ MRR Initialization

In Algorithm 2, the initial UAV trajectory, Q0 = {q0[n], ∀n}, and the initial temporary users’

MRRs, θini,k, ∀ k, need to be set. First, we propose in the following a general and systematic

trajectory initialization scheme based on the simple circular UAV trajectory, which also includes

the one proposed in [21] with θk = 0, ∀ k, as a special case. For a circular UAV trajectory, we

need to obtain the circle center cini = [xini, yini]
T and radius rini. For convenience, the circle

center is set as the geometry center of all users, which is given by cini =
∑K

k=1
wk

K
. The main idea

for determining the circle radius of the initial circular trajectory is based on the following three

observations. First, it is intuitive that as θk increases, the area covered by the UAV trajectory

shall decrease, as implied in Theorem 1. As such, the initial circle radius rini should decrease

with θk, ∀ k. Second, when θk = 0, ∀ k, the initial circle radius should be simplified to that for

the case when the MRR constraints are not considered as in [21]. Third, it is also known that

when θk = 1, ∀ k, the UAV mobility does not provide any performance gain, which implies that

the UAV should remain static. In such a case, the UAV trajectory becomes a point and the initial

circle radius is thus zero. Based on the above observations, we propose to set the initial circle

radius as

rini =

(
1−

∑K

k=1 θk

K

)
r0, (34)

where r0 is the circle radius for the case when θk = 0, ∀ k, or no MRR constraints are considered

[21]. According to [21], r0 is obtained as follows: 1) by using the user geometry center cini as the
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circle center, we first calculate the radius of a minimum circle that can cover all ground users,

denoted by rmin = max
k∈K
||wk−cini||; 2) to balance the number of users outside and inside the UAV

trajectory circle as well as satisfying the UAV speed constraint, we set r0 = min{VmaxT
2π

, rmin

2
}.

From (34), it is easy to check that when θk = 0, ∀ k, rini = r0 and when θk = 1, ∀ k, rini = 0,

as expected. Let ϕn = 2π n−1
N−1

, ∀n. With cini and rini, the initial circular UAV trajectory Q0 is

given as follows,

q0[n] = [xini + rini cosϕn, yini + rini sinϕn]
T
, n = 1, ..., N. (35)

Next, we initialize the users’ MRRs, θini,k, ∀ k. Note that if user k has no MRR constraint,

i.e., θk = 0, then there exists no constraint for user k in (33). Thus, user k will not cause the

ineffective UAV trajectory update problem previously described in Section III-C and its initial

MRR can be directly set as θini,k = 0. In contrast, as long as user k has a non-trivial MRR

target, i.e., θk > 0, N corresponding MRR constraints in (33) will be imposed for user k which

may cause ineffective updates of the UAV trajectory. Thus, the initial MRRs of users are set as

θini,k =





1, if θk > 0,

0, if θk = 0.
(36)

IV. NUMERICAL RESULTS

In this section, numerical results are provided to validate the proposed joint OFDMA resource

allocation and UAV trajectory design as well as the fundamental throughput-delay tradeoff in

UAV-enabled wireless communications. We consider a system with K = 4 ground users that are

located in a horizontal plane as shown in Fig. 2, marked by ‘×’s. The UAV is assumed to fly

at a fixed altitude H = 500 m [31]. The total available communication bandwidth is B = 10

MHz and the noise power spectrum density at the ground users is assumed to be identical and

set as N0 = −169 dBm/Hz. The channel power gain at the reference distance d0 = 1 m is

set as ρ0 = −50 dB. Other parameters are set as Pmax = 0.1 W, Vmax = 50 m/s, T = 270 s,

and N = 540, respectively, if not specified otherwise. For illustration, all the trajectories in the

simulations are sampled every 4 s and the sampled points are marked by ‘△’s.

A. UAV Trajectory and Max-min Throughput versus Homogeneous MRRs

We first consider the homogeneous delay requirement case when all ground users have the

same MRR, i.e., θk = θ, ∀ k. In Figs. 2 and 3, the UAV trajectory and the max-min throughput are



23

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

x(m)

y(
m

)

(a) θ = 0

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

x(m)

y(
m

)

(b) θ = 0.6

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

x(m)

y(
m

)

(c) θ = 0.8

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

x(m)

y(
m

)

(d) θ = 1

Fig. 2. UAV trajectory versus homogeneous MRR θ = θk, ∀ k, for T = 270 s.

illustrated respectively under different MRRs. It can be observed from Fig. 2 that as the MRR,

θ, increases, the UAV’s flight distance decreases and the UAV’s trajectory shrinks gradually

from a square to a smaller ellipse and finally a fixed point, given the same flight period T . In

particular, when θ = 0, i.e., no MRR constraint is considered as in [21], the UAV sequentially

visits and stays above each of the ground users by maximally exploiting its mobility. As such,

the best air-to-ground channel can be realized between the UAV and each ground user. However,

when θ > 0, the UAV’s trajectory adaptively changes depending on the value of θ, as expected.

Notice that in this setup, the closer the UAV flies to one particular user, the farther it is away

from some other users inevitably. As a result, meeting the MRR constraints of these users will

consume more resources (power, bandwidth) and thus becomes the bottleneck for improving the

max-min throughput of the system. Such a situation becomes worse when the MRR and/or the

inter-user distance becomes larger. Generally speaking, with more stringent MRR constraints,

the UAV trajectory tends to be more restricted to avoid getting too far away from any of the

users. Finally, as all ground users have the same MRR constraint as well as the same average
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Fig. 3. Max-min throughput versus homogeneous MRR θ = θk, ∀ k, for T = 270 s.

throughput, the UAV trajectories are shown to be all symmetric over the users in Fig. 2.

The effect of the MRR constraint on the max-min average throughput is shown in Fig. 3.

Specifically, we compare the following four trajectories: 1) Proposed trajectory which is obtained

by applying Algorithm 2; 2) Fly-and-hover trajectory where the UAV flies with the maximum

speed to visit all the users and hovers (with zero speed) above each of them by equally allocating

the remaining time2; 3) Initial circular trajectory as described in Section III-D; and 4) Static UAV

where the UAV remains static above the geometry center of the users. For all the four schemes

considered, the bandwidth and power allocation is optimized by applying Algorithm 1 with the

corresponding UAV trajectory. First, we observe that the max-min average throughput gradually

decreases with the MRR for the first three considered trajectories with a mobile UAV in general.

This is due to the fundamental tradeoff between the system throughput and the user delay/MRR

constraint, which is in accordance with Theorem 1. Second, when the MRR is small, the proposed

trajectory significantly outperforms the circular trajectory and static UAV. This is because a small

MRR in general implies a large degree of freedom for the UAV trajectory design, but the static

UAV cannot exploit the UAV mobility while the circular trajectory does not fully exploit the

UAV mobility. In contrast, the fly-and-hover trajectory is observed to achieve the throughput very

2It is worth pointing out that this trajectory is only feasible when T is sufficient large such that the UAV can visit above each

of all ground users.
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Fig. 4. Max-min throughput versus UAV flight period T .

close to the proposed trajectory for small MRR values. However, when the MRR becomes large,

the fly-and-hover trajectory suffers from a significant throughput loss compared to the proposed

trajectory. This is expected since the fly-and-hover trajectory results in highly asymmetric user

channels over time and thus is inefficient for meeting increasingly more stringent users’ MRR

requirements. Finally, when the MRR reaches the maximum value of one, the max-min average

throughput of the proposed trajectory becomes identical to that of static UAV as the trajectory

converges to the same point as the static UAV.

In Fig. 4, the effect of the UAV flight period T on the max-min average throughput is shown

under different values of the homogeneous MRR, θ. It is observed that the max-min throughput

in the three cases with θ < 1 all increases with T , while for the case of θ = 1, the max-min

throughput remains constant, regardless of T . This suggests that as long as the users have delay-

tolerant data traffic, i.e, θ < 1, the UAV mobility indeed provides throughput gains over a static

UAV with θ = 1 for any T > 0. In addition, such a throughput gain generally increases with

more flight time for the UAV, although the gain is more pronounced when θ is smaller or less

strict delay/MRR constraints are applied. This is because in such cases, as T increases, the UAV

has more time to get closer to each of the users and even be able to hover above them to enjoy

the best channels to them. In contrast, if the services required by users are all delay-constrained,

i.e., θ = 1, then the UAV is unable to achieve any throughput gain over the static case since
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Fig. 5. UAV trajectory versus MRRs of equal θ3 and θ4 for T = 270 s with fixed θ1 = θ2 = 0.4.

the optimal UAV trajectory in this case is also a fixed point. The above observations further

demonstrate the fundamental throughput-delay tradeoff.

B. UAV Trajectory and Max-min Throughput versus Heterogeneous MRRs

Next, we consider the practical case when ground users have different MRRs in general.

In this example, we fix θ1 = θ2 = 0.4 and vary θ3 and θ4 by assuming they are equal to

show their effects on the proposed UAV trajectory and achievable max-min throughput. First,

from Fig. 5, we observe that as the MRRs of users 3 and 4 become larger, the UAV tends to

adjust its trajectory to get closer to these two users so as to meet their increasingly more stringent

minimum-rate requirements. Meanwhile, since the MRRs of users 1 and 2 are fixed, their priority

is higher/lower than that of users 3 and 4 in Fig. 5 (a) and Fig. 5 (c)/(d), respectively, in the

optimized UAV trajectory design. This thus results in asymmetric UAV trajectories for the four

users in these cases, which is in contrast to the symmetric trajectory in Fig. 5 (b) with the

homogeneous users’ MRR constraint. As such, users 1 and 2 in Fig. 5 (c) and (d) on average
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Fig. 6. Max-min throughput versus heterogeneous MRRs θ = θ3 = θ4 for T = 270 s with fixed θ1 = θ2 = 0.4.

have worse air-to-ground channels than users 3 and 4 along the UAV trajectory. Since the same

average throughput needs to be achieved for all users, the UAV needs to lower its speed and

even hover at some positions near users 1 and 2 to compensate their inferior channels caused by

the asymmetric UAV trajectory. Similar to Fig. 3, we compare in Fig. 6 the max-min throughput

versus the MRRs of users 3 and 4 under the aforementioned four UAV trajectories. As θ3 and

θ4 increase, the max-min average throughput is observed to decrease gradually, similarly as in

Fig. 3. However, different from Fig. 3, since only two users, namely, users 3 and 4, rather than

all users, increase their MRRs, the decreasing of the max-min throughput versus θ in Fig. 6 is

less significant as compared to that in Fig. 3.

V. CONCLUSIONS

Motivated by employing UAVs to provide both delay-constrained and delay-tolerant services in

future wireless networks, we consider in this paper a UAV-enabled OFDMA network for serving

multiple ground users with heterogeneous communication delay requirements. Specifically, by

taking into account the users’ MRR constraints, the system max-min average throughput is

maximized via jointly optimizing the UAV trajectory and OFDMA resource allocation. We first

show that the max-min throughput in general decreases with the MRR of any user, which implies

that the throughput gain arising from the UAV’s mobility is less significant as the user delay

requirements become more stringent. Then, we show that directly applying the conventional block
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coordinate descent method to solve the formulated problem may fail to update the UAV trajectory

effectively. To overcome this issue, we propose a new parameter-assisted block coordinate

descent algorithm which is shown by simulations to perform satisfactorily. Simulation results are

provided to characterize the fundamental tradeoff between the system throughput and the user

communication delay under different MRR setups. We hope that the results of the paper can help

assessing more practically the performance of UAV-enabled wireless systems with heterogeneous

delay requirements. Although a single UAV is considered in this work, the multi-UAV scenario

with potentially co-channel interference [18] is worth pursuing. In addition, a cross-layer design

by considering the UAV’s finite data buffer and the queuing delay along with UAV trajectory

and physical-layer resource allocation is worthy of further investigation. Finally, as the UAV’s

energy consumption and hence endurance are crucial in practice, it is appealing to consider

energy-efficient UAV trajectory design [16], [37] under heterogenous user delay requirements.
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