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Spectral and Energy Efficiency Maximization for
Content-Centric C-RANs with Edge Caching
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Abstract—This paper aims to maximize the spectral and energy
efficiencies of a content-centric cloud radio access network (C-
RAN), where users requesting the same contents are grouped
together. Data are transferred from a central baseband unit to
multiple remote radio heads (RRHs) equipped with local caches.
The RRHs then send the received data to each group’s user.
Both multicast and unicast schemes are considered for data
transmission. We formulate mixed-integer nonlinear problems
in which user association, RRH activation, data rate allocation
and signal precoding are jointly designed. These challenging
problems are subject to minimum data rate requirements, limited
fronthaul capacity and maximum RRH transmit power. Em-
ploying successive convex quadratic programming, we propose
iterative algorithms with guaranteed convergence to Fritz John
solutions. Numerical results confirm that the proposed joint
designs markedly improve the spectral and energy efficiencies of
the considered content-centric C-RAN compared to benchmark
schemes. Importantly, they show that unicasting outperforms
multicasting in terms of spectral efficiency in both cache and
cache-less scenarios. In terms of energy efficiency, multicasting
is the best choice for the system without cache whereas unicasting
is best for the system with cache. Finally, edge caching is shown
to improve both spectral and energy efficiencies.

Index Terms—C-RAN, data rate allocation, edge caching,
limited-capacity fronthaul, precoding design, user association

I. INTRODUCTION

Mobile data traffic has been growing exponentially in recent
years. A report by Ericsson shows that while the global
mobile traffic grew 66% in 2015, it is still predicted to
increase more than tenfold by 2022 [1]. However, the rapid
increase of the associated operating expenditure and energy
consumption becomes problematic, especially with the slow
growth of mobile operators’ profits and the serious concerns
on green-house gas emissions [2]. The fifth-generation (5G)
of mobile communication systems is expected to address these
issues by offering substantially higher spectral and energy
efficiencies than the traditional long-term evolution (LTE)
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networks. Telecommunications operators specifically target a
1, 000-fold data traffic increase at the same time as reducing
the total network energy consumption by half [3].

To meet these ambitious objectives of 5G networks, a
promising solution termed as cloud radio access network (C-
RAN) has been proposed and developed [4]. In a C-RAN, tra-
ditional high-cost high-power base stations (BSs) are replaced
by low-cost low-power remote radio heads (RRHs), resulting
in less construction space and lower energy consumption in
a dense network setting [2], [5]. Users are connected to the
RRHs via radio access links, whereas RRHs are connected to a
central base band unit (BBU) in the core network via wireline
fronthaul links. With C-RANs, large-scale allocation of radio
and computing resources across all the RRHs can be centrally
processed at the same BBU pools. The effective interference
management at the BBUs enables significant performance
gains over single-cell processing [6]. However, performing
fully joint processing requires tremendous data sharing on the
fronthaul links, while the current fronthaul solutions are yet
to catch up with. The finite-capacity fronthaul links remain
a bottleneck of practical C-RANs, causing severe latency
and performance degradation in both spectral and energy
efficiencies [7].

Edge caching and user association (UA) have recently
been introduced to address the bottleneck problem on the
fronthaul links [2], [8]. The main idea of edge caching is
to exploit the popularity of the requested contents in modern
communications such as video streaming, push media, mobile
applications and mobile TV [9]. Since one copy of content
may be requested by multiple users in these services, pre-
fetching the most frequently requested content at the local
cache of RRHs during off-peak time can significantly reduce
the fronthaul data traffic [10], [11]. On the other hand, the
idea of user association is to distribute data to an appropriate
RRH in order to serve the right user. It has been shown
to greatly release the traffic burden on the fronthaul links
[12]. Therefore, a content-centric transmission for C-RANs in
which edge caching, UA and the statistics of users’ requested
contents are taken into account should be carefully designed.

An example of a content-centric CRAN with edge caching
is illustrated in Fig. 1. To further utilize the popularity of the
content, the users requesting the same content are grouped
together [13]. In this way, the group’s requested content only
needs to be delivered once to the serving RRHs, helping
reduce the waste of resources on the fronthaul links and
improve the power efficiency in the access links compared
to the user-centric schemes [13]–[15]. Here, data content is
delivered to groups in two phases. In the content placement
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Fig. 1. An example of a content-centric C-RAN with a BBU in the core
network and edge caching at RRHs, where users requesting the same contents
are grouped together.

(or pre-fetching) phase, the groups/users’ potentially requested
files are pre-stored in the RRHs’ caches via some caching
strategies. In the data request-delivery phase, if a group/user’s
requested file is available at the local caches of its serving
RRHs, the file is directly retrieved from the caches instead of
from the BBU [16]. If the file is not cached, it is fetched from
the BBU to the RRHs before being sent to the groups/users.

In principle, the content placement phase generally takes
place in a larger timescale (e.g., on an hourly basis) while
the data request-delivery phase happens in a much shorter
timescale [13], [17], [18]. This timescale mismatch war-
rants different design approaches for each phase. For content
placement, [19]–[23] devise a number of efficient caching
strategies for a given data delivery scheme. These studies
exploit the statistics of user content demand to pre-store the
most frequently requested files at the appropriate RRHs.

For data delivery, multicast or unicast scheme with
group/user association, data rate allocation and beamform-
ing/precoding designs can further be performed to improve
system performance [8], [13] for a given caching strategy.
Specifically, [8] proposed a joint design of data rate allocation,
precoding to maximize the minimum-user rate of a cache-
enabled C-RAN under limited fronthaul capacity constraints.
However, users are heuristically assigned to RRHs to avoid an
exhaustive search, and hence, the full potential of UA may not
be realized. Moreover, [8] only focuses on a user-centric sce-
nario where the statistics of users’ requested content cannot be
exploited. Recently, [13] proposed a joint design of multicast
beamforming and BS clustering (a UA problem, essentially)
to minimize the fronthaul traffic and transmission power for
the content-centric C-RANs with edge caching. However, a
full comparison between multicasting and unicasting in terms
of spectral and energy efficiencies has not been carried out.
On the other hand, groups or users are typically assigned to
appropriate RRHs that store the requested files and/or have
good channel conditions, and the inactive RRHs with no
assigned groups/users are put into sleep mode. By doing this
way, the fronthaul traffic is reduced at the same time as less
power is expended in the fronthaul and radio access links [24].

Therefore, RRH activation should also be taken into account
in the design of this phase.

One may also consider optimizing both content placement
and data delivery at the same time. Compared to optimizing
each task individually, it is much more challenging to jointly
design a caching strategy together with UA, data rate alloca-
tion and precoders/beamformers. For example, [17] developed
a mixed-timescale precoding and cache control policy for
multi-input multi-output wireless systems. However, the same
caching strategy must be applied to all BSs, and each user
must be assigned to either one BS or all BSs.

In this paper, we optimize the data delivery for a content-
centric C-RAN with edge caching and limited fronthaul ca-
pacity. To enhance both spectral and energy efficiencies, UA,
RRH activation, data rate allocation and signal precoding are
jointly optimized for any fixed caching strategy. Our aim is
to answer the following two questions: (i) In the data request-
delivery phase, which is better: multicasting or unicasting?
and (ii) How would the cache affect the spectral and energy
efficiencies obtained by these schemes? In answering those
questions, we make the following research contributions.

• We formulate the design problems of maximizing the
spectral and energy efficiencies. The energy efficiency is
defined as a ratio of the spectral efficiency and total power
consumption. The designs are constrained on meeting the
predefined data rate requirements, the limited fronthaul
capacity and the maximum transmit power at each RRH.
While particularly relevant, our formulated problems are
challenging to solve due to the combinatorial nature as
well as the tight coupling among the variables.

• We propose an iterative algorithm to solve the challeng-
ing mixed-integer nonlinear problems, where only one
simple convex program is involved in each iteration. In
particular, we first convert the formulated problems into
their epigraph forms. To deal with the binary UA and
RRH activation variables, we further recast them into
approximated problems with continuous variable only.
Finally, these problems are solved by the successive
convex quadratic programming.

• We prove analytically and verify by numerical examples
that the proposed algorithm converges to at least a
Fritz John solution1 of the approximated problem once
initialized from a feasible point. Simulation results with
practical parameter settings show that the developed
joint optimization substantially improves both spectral
and energy efficiencies over benchmarking approaches.
Importantly, it is confirmed that the unicast scheme
always offers higher spectral efficiency than the multicast
scheme. In terms of energy efficiency, the unicast scheme
is the best in the system with cache while the multicast
scheme for the system without cache. Also, edge caching
is shown to contribute to both the spectral and energy
efficiency improvements.

It is worth noting that this work substantially extends our

1A Fritz John solution is a point that satisfies the Fritz John conditions,
which are necessary conditions for a solution in nonlinear programming to
be optimal [25].
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Fig. 2. Cache-assisted communication in a cache-enabled C-RAN.

initial result in [26], where the joint problem of maximizing
spectral and energy efficiencies is introduced under a user-
centric configuration and only the advantages of the joint
design over the data rate allocation and precoder design
without any UA optimization were demonstrated.

Organization and Notation: The rest of this paper is or-
ganized as follows: Section II presents the considered sys-
tem model and assumptions. Sections III formulates and
solves the spectral efficiency maximization problem, whereas
Sections IV deals with the energy efficiency maximization
problem. Section V verifies the performance of the devel-
oped algorithms through comprehensive numerical examples.
Finally, Section VI concludes the paper.

In this paper, the real part of a complex number x is denoted
as R{x}. For a scalar x, bxc denotes the largest integer that
is not larger than x. Boldfaced symbols are used for vectors
and capitalized boldfaced symbols for matrices. XXXH is the
conjugate transposition of a matrix XXX . 〈XXX〉 means the trace
of a matrix XXX . III and 000 are the identity and zero matrices with
appropriate dimensions, respectively. CN (µµµ,QQQ) denotes the
circularly symmetric complex Gaussian distribution with mean
µµµ and covariance QQQ. | G | stands for the number of elements
in set G.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider the general content-centric C-RAN model, where
the BBU in the core network connects to a set of RRHs KR ,
{1, . . . ,KR} via the fronthaul links. Assume that the fronthaul
link i ∈ KR has a limited capacity of Ci > 0 (bps). The RRHs
then serve a set of users KU , {1, . . . ,KU} via radio access
links, where a user is allowed to connect to multiple RRHs.
Each user is equipped with Nu antennas while each RRH
i ∈ KR is equipped with Nr antennas. The library of the
BBU contains F files with equal size. These assumption help
simplify the problem formulation and solution development,
without loss of generality. The same assumptions have been
widely used in the literature, e.g., [8], [13], [24].

Each user sends requests to its serving RRHs asking for
some files from a known file library. The users asking for the
same file are grouped together and served by either a unicast
or a multicast scheme. Conventionally, the requested files need
to be fetched from the BBU to the serving RRHs before being
transferred to the requesting users via the wireless access links.

However, this two-hop communication lengthens the end-to-
end delay as well as putting a traffic burden on the fronthaul
links. The idea of edge caching is to bring the requested files
closer to the users by pre-storing part of the file library at
the RRHs. In this way, if a requested file is located in the
serving RRHs of a requesting user, it will be directly sent in
the downlink from the RRHs to that user.

Fig. 2 shows the cache-assisted communication scenario in
a C-RAN. The two phases are elaborated below.

A. Placement Phase

The placement phase sees a subset of the file library pre-
stored at the RRHs’ caches before any data request and
delivery happen. Our model assumes that each RRH i ∈ KR
is equipped with a local cache that can store up to Bi > 0
files. Uncoded caching [8], [13], [20], [23] and coded caching
[21], [22] strategies can be employed. They are based on
the long-term state information of the popularity statistics of
the requested files, the cache size, and the fronthaul capacity.
The cache contents are assumed to remain unchanged in the
RRHs until the next content placement, regardless of variations
in user requests and channel conditions. Here, we suppose
that the cache placement is given and thus focus on the
optimization of the transmission in the next phase. Similar
assumptions can be found in the literature, e.g., [8], [13].

B. Data Request and Delivery Phase

This phase consists of multiple data request and delivery
(REQ-DLVY) intervals. In each REQ-DLVY interval, each user
group g (denoted as Gg) first sends the same request (REQ)
for a file fg from the library F , {1, . . . , F} stored in the
BBU, followed by a delivery action (DLVY) to transfer all the
requested files. Denote by KG , {1, . . . ,KG} the set of all
groups, where 1 ≤ KG ≤ min{KU , F}. It is assumed that
each user requests one file at a time, and hence Gm ∩Gg =
∅,∀m 6= g and

∑
g∈KG | Gg | ≤ KU [13]. For the fixed cache

content from the placement phase and the known requested
files, the cache state information

cg,i ,

{
1, if fg ∈ Ci,
0, otherwise (1)

shows whether file fg is cached at the local cache Ci of
RRH i. The value of cg,i,∀g ∈ KG , {1, . . . ,KG}, i ∈ KR
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is available to the BBU and fixed during one REQ-DLVY
interval.

To deliver the requested file to each group, the multicast or
unicast schemes are both considered and briefly introduced as
follows.

1) Multicast scheme: At the BBU, the message Mg of file
fg requested by group g,∀g ∈ KG is uniformly distributed
in the set {1, . . . , 2nRg}, where n is the block length and
Rg (bps/Hz) is the same data rate of message Mg assigned
for every user in group g. After being transferred to the
RRHs via noiseless fronthaul links at rate Rg , each message
Mg is encoded into a symbol sssg ∈ Cd×1 for group g,
where d ≤ min{Nr, Nu} is the number of data streams and
sssg ∼ CN (000, III).

Given the limited cache size, not all requested files are
available at the RRHs, in which case they must be fetched
from the BBU to the RRHs via the fronthaul links. For the
cache state information given in (1), each multicast group is
served by a selected subset of RRHs and all the missing files
are transferred to these serving RRHs. Here, the RRH-group
associations are modeled by the following binary variables

ag,i ,

{
1, if RRH i serves group g,
0, otherwise. (2)

From (1) and (2), the total fronthaul rate to RRH i ∈ KR in
the current DLVY interval is expressed as

RFH,multicast
i ,W

∑
g∈KG

ag,i(1− cg,i)Rg (bps), (3)

where W is the total available bandwidth. In (3), cg,i = 0
corresponds to the case that the file fg is fetched from the
BBU to the RRHs via the fronthaul link before being sent
to the requesting group. On the other hand, cg,i = 1 implies
that the file fg is sent directly from the RRH’s cache to the
requesting group and the fronthaul link is not used.

With the requested files coming from the BBU or already
in the caches, an RRH i generates the transmitted baseband
signal xxxi as

xxxi =
∑
g∈KG

FFF g,i sssg, (4)

where FFF g,i ∈ CNr×d is the precoding matrix for sssg . Each
RRH i is assumed to be subjected to the average transmit
power constraint expressed as

E
{
‖xxxi ‖2

}
≤ Pi. (5)

Denote by HHHk,i ∈ CNu×Nr the flat-fading channel matrix
from RRH i to user k and by HHHk , [HHHk,1, ...,HHHk,KR ] ∈
CNu×NR the channel matrix from all RRHs to user k, where
NR , KRNr. Assume that the channel states HHHk,i, k ∈
KU , i ∈ KR remain unchanged during each DLVY interval
and are made known to the BBU and RRHs [13]. Upon

defining F̄FF g ,
[
FFFHg,1,FFF

H
g,2, . . . ,FFF

H
g,KR

]H
∈ CNR×d, the

received signal yyyk ∈ CNu×1 at a user k in a multicast group

g requesting a file fg can thus be written as

yyyg,k = HHHk F̄FF g sssg +
∑

m∈KG \{g}

HHHk F̄FFm sssm +nnnk, (6)

where nnnk ∼ CN (000,ΣΣΣk) is the additive noise term.
The data rate Rg of the file fg for the group g under the

multicast scheme is always achievable in Shannon’s sense as

Rg ≤ min
k∈Gg

rg,k(F̄FF ) , log2

∣∣∣IIINU,k + ΠΠΠg,kΠΠΠH
g,kΞΞΞ−1

g,k

∣∣∣ ,∀g ∈ KG,
(7)

where F̄FF , {F̄FF g}g∈KG , ΠΠΠg,k ,HHHk F̄FF g , and

ΞΞΞg,k ,
∑

m∈KG \{g}

HHHk F̄FFmF̄FF
H
mHHH

H
k +ΣΣΣk . (8)

The spectral efficiency under the multicast scheme is then
defined by the following sum rate:

ηmulticast
SE ,

∑
g∈KG

| Gg |Rg (bps/Hz). (9)

2) Unicast scheme: Here, the users in a group g requesting
a file fg have different data rates. The message Mg of file fg
is transferred from the BBU to the RRH i at the maximum rate
rate of the associated users in the group g [13], i.e., Rg,i =
max
k∈Gg
{ãk,iRk}, where

ãk,i ,

{
1, if RRH i serves user k,
0, otherwise, (10)

and Rk (bps/Hz) is the data rate of the user k. The total rate
of the fronthaul link connecting with RRH i ∈ KR is thus
expressed as

RFH,unicast
i ,W

∑
g∈KG

(1− cg,i)max
k∈Gg
{ãk,iRk} (bps). (11)

At the RRHs, each message Mg,∀g ∈ KG is encoded into a
symbol sssk ∈ Cd×1 for a user k ∈ Gg , where sssk ∼ CN (000, III).

Upon defining F̃FF k ,
[
FFFHk,1,FFF

H
k,2, . . . ,FFF

H
k,KR

]H
∈ CNR×d.

The data rate Rk of user k in group g under the unicast scheme
is always achievable in Shannon’s sense as

Rk ≤ r̃k(F̃FF ) , log2

∣∣∣IIINU,k + ΠΠΠkΠΠΠH
k ΞΞΞ−1

k

∣∣∣ ,∀k ∈ KU , (12)

where F̃FF , {F̃FF k}k∈KU , ΠΠΠk ,HHHk F̄FF k, and

ΞΞΞk ,
∑

m∈KU \{k}

HHHk F̃FFmF̃FF
H

mHHH
H
k +ΣΣΣk . (13)

The spectral efficiency under the unicast scheme is then
defined by the following sum rate:

ηunicast
SE ,

∑
k∈KU

Rk (bps/Hz). (14)

C. RRH-Group/User Associations and RRH Activation

We denote aaa , {ag,i}g∈KG,i∈KR , ãaa , {ãk,i}k∈KU ,i∈KR
and bbb , {bi}i∈KR , where

bi ,

{
0, if RRH i serves no group or user,
1, otherwise. (15)
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It should be noted that an RRH i is assigned to serve a group
g or a user k if and only if the corresponding precoder of the
message symbol sssg or sssk is not a zero matrix, i.e., FFF g,i =

ĒEE
H
i F̄FF g 6= 000 or FFF k,i = ĒEE

H
i F̃FF k 6= 000; ĒEEi ∈ CNR×Nr is zero

everywhere except an identity matrix of size Nr from row
(i − 1)Nr + 1 to row iNr. Following this fact, (2), (10) and
(15) can be expressed as

ag,i =

{
0, if 〈ĒEEHi F̄FF gF̄FF

H
g ĒEEi〉 = 0,

1, otherwise,
∀g ∈ KG, i ∈ KR,

(16)

ãk,i =

{
0, if 〈ĒEEHi F̃FF kF̃FF

H

k ĒEEi〉 = 0,
1, otherwise,

∀k ∈ KU , i ∈ KR,

(17)

bi =

{
0, if ag,i = 0,∀g ∈ KG,
1, otherwise

=

{
0, if

∑
g∈KG〈ĒEE

H
i F̄FF gF̄FF

H
g ĒEEi〉 = 0,

1, otherwise
(18)

=

{
0, if ãk,i = 0,∀k ∈ KU ,
1, otherwise

=

{
0, if

∑
k∈KU 〈ĒEE

H
i F̃FF kF̃FF

H

k ĒEEi〉 = 0,
1, otherwise,

∀i ∈ KR .

(19)

From (16)–(19), the interdependence among aaa, ãaa and bbb is
expressed as

ag,i ≤ bi ≤
∑
g∈KG

ag,i,∀g ∈ KG, i ∈ KR, (20)

ãk,i ≤ bi ≤
∑
k∈KU

ãk,i,∀k ∈ KU , i ∈ KR, (21)

ensuring that no group or user is assigned to an inactive RRH.

D. Power Consumption Model

This paper adopts a practical power consumption model that
is applicable to different types of BSs [24], [27]. The power
consumed by RRH i ∈ KR in the given transmission interval
is expressed as

PRRH,Xi ,

{
βiP

Tx,X
i + Pi,a, if 0 < P txi ≤ Pi,

Pi,s, if P txi = 0,
(22)

where X = {multicast, unicast} indicates the transmission
scheme, the constant βi > 0, i ∈ KR reflects the power
amplifier efficiency, feeder loss and other loss factors due
to power supply and cooling for RRH i [24]; PTx,Xi is the
transmit power required to deliver all requested files from RRH
i under scheme X as

PTx,Xi ,

{
PTx,multicast
i =

∑
g∈KG〈ĒEE

H
i F̄FF gF̄FF

H
g ĒEEi〉,

PTx,unicast
i =

∑
k∈KU 〈ĒEE

H
i F̃FF kF̃FF

H

k ĒEEi〉,
(23)

in which Pi,a is the power required to support RRH i in the
active mode; and Pi,s < Pi,a is the power consumption in the
sleep mode.

On the other hand, the fronthaul link from the BBU to RRH
i ∈ KR is modeled as a set of communication channels with a

total capacity Ci and total power dissipation PFHi,max. Its power
consumption is given by [24]

PFHi ,
RFHi
Ci

PFH,Xi,max = αiR
FH,X
i , (24)

where αi , PFHi,max/Ci and RFHi is already defined in (3).
From (22) and (24), the total network power consumption

is

P Full,X
total ,

∑
i∈KR

(PRRH,Xi + PFH,Xi )

=
∑
i∈KR

(
βiP

Tx,X
i + biPi,∆ + αiR

FH,X
i

)
+ Ps,

(25)

where Pi,∆ , Pi,a − Pi,s, Ps ,
∑
i∈KR Pi,s. Since Ps is

a part of the power consumption that is constant even when
the network serves no user, this part has no contribution on
the data transmission (DT) process. Therefore, the total power
consumption on the downlink is

PDT,X
total , P Full,X

total − Ps
=
∑
i∈KR

(
βiP

Tx,X
i + biPi,∆ + αiR

FH,X
i

)
. (26)

III. SPECTRAL EFFICIENCY MAXIMIZATION

First, we are interested in maximizing the spectral efficiency
in (9)/(14) by jointly optimizing the RRH-group/user associ-
ation, RRH activation, data rate allocation and precoders. Let
us define RRR , {Rg}g∈KG . For a given cache state information
{cg,i}g∈KG,i∈KR , the design problem of interest under the
multicast scheme is formulated as

max
RRR,F̄FF ,aaa,bbb

ηmulticast
SE (27a)

s.t. (16), (18) (27b)∑
i∈KR

ag,i ≥ 1,∀g ∈ KG (27c)∑
g∈KG

〈ĒEEHi F̄FF gF̄FF
H
g ĒEEi〉 ≤ Pi,∀i ∈ KR (27d)

RQoS ≤ Rg,∀g ∈ KG (27e)

Rg ≤ rg,k(F̄FF ),∀g ∈ KG, k ∈ Gg (27f)

W
∑
g∈KG

ag,i(1− cg,i)Rg ≤ Ci,∀i ∈ KR . (27g)

Here, constraint (27c) guarantees that there exists at least one
active RRH to serve each multicast group. Constraint (27d)
is the per-RRH power constraint (5) via (4). Constraint (27e)
imposes a minimum rate RQoS ≥ 0. Constraint (27f) is indeed
(7). Constraint (27g) expresses the bottleneck at fronthaul link
i ∈ KR with the limited capacity Ci ≥ 0, i.e., RFH,multicast

i ≤
Ci, with RFH,multicast

i found in (3).
Similarly, the design problem under the unicast scheme is

formulated as follows

max
RRR,F̃FF ,ãaa,bbb

ηunicast
SE (28a)

s.t. (17), (19) (28b)
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∑
i∈KR

ãk,i ≥ 1,∀k ∈ KU (28c)

∑
k∈KU

〈ĒEEHi F̃FF kF̃FF
H

k ĒEEi〉 ≤ Pi,∀i ∈ KR . (28d)

RQoS ≤ Rk,∀k ∈ KU (28e)

Rk ≤ r̃k(F̃FF ),∀k ∈ KU (28f)

W
∑
g∈KG

(1− cg,i)max
k∈Gg
{ãk,iRk} ≤ Ci,∀i ∈ KR

(28g)

Due to the combinatorial and nonconvex nature of the
mixed-integer nonlinear programs (27) and (28), finding their
globally optimal solutions is challenging. Instead of aiming
for global optimality, this paper proposes the following ap-
proaches that are suitable for practical implementation.

We rewrite problem (27) in its epigraph form [28] as
follows.

max
RRR,δδδ,aaa,bbb

∑
g∈KG

| Gg |Rg (29a)

s.t. (20), (27c), (27e), (27f) (29b)

〈ĒEEHi F̄FF gF̄FF
H
g ĒEEi〉 ≤ ug,i,∀g ∈ KG, i ∈ KR (29c)

ug,i ≤ ag,iPi,∀g ∈ KG, i ∈ KR (29d)∑
g∈KG

ug,i ≤ Pi,∀i ∈ KR (29e)

0 ≤ vg,i ≤ (1− cg,i)Ci,∀g ∈ KG, i ∈ KR (29f)∑
g∈KG

vg,i ≤ Ci,∀i ∈ KR (29g)

ag,i(1− cg,i)Rg ≤ vg,i,∀g ∈ KG, i ∈ KR (29h)
ag,i ∈ {0, 1}, bi ∈ {0, 1},∀g ∈ KG, i ∈ KR (29i)

where δδδ , (F̄FF ,uuu,vvv),uuu , {ug,i}g∈KG,i∈KU , vvv ,
{vg,i}g∈KG,i∈KR ; (20), (29c)–(29e) and (29i) follow from
(16), (18) and (27d); (29f)-(29h) follow from (27g). Solving
problem (29) is challenging due to the nonconvex nonlinear
constraints (27f), (29h) and (29i). Similarly, problem (28) can
be rewritten as

max
RRR,δδδ,aaa,bbb

∑
k∈KU

Rk (30a)

s.t. (21), (28c), (28e), (28f) (30b)

〈ĒEEHi F̄FF kF̄FF
H
k ĒEEi〉 ≤ uk,i,∀k ∈ KU , i ∈ KR (30c)

uk,i ≤ ak,iPi,∀k ∈ KU , i ∈ KR (30d)∑
k∈KU

uk,i ≤ Pi,∀i ∈ KR (30e)

vg,i ≤ (1− cg,i)Ci,∀g ∈ KG, i ∈ KR (30f)∑
g∈KG

vg,i ≤ Ci,∀i ∈ KR (30g)

ak,i(1− cg,i)Rk ≤ vg,i,∀k ∈ Gg, i ∈ KR (30h)
ak,i ∈ {0, 1}, bi ∈ {0, 1},∀k ∈ KU , i ∈ KR (30i)

where (30f)–(30h) follow from (28g).
It is noteworthy that the mathematical structures of problems

(29) and (30) are similar. Therefore, the following algorithm

devised for problem (29) of the multicast scheme can be
straightforwardly adapted to solve problem (30) for the unicast
scheme.

Noting that x− x2 ≥ 0,∀x ∈ [0, 1] and that [29]

x ∈ {0, 1} ⇔ x− x2 = 0 ⇔ (x ∈ [0, 1] & x− x2 ≤ 0),
(31)

we rewrite (29i) as∑
i∈KR

∑
g∈KG

(ag,i − a2
g,i) +

∑
i∈KR

(bi − b2i ) ≤ 0 (32)

0 ≤ ag,i ≤ 1, 0 ≤ bi ≤ 1,∀g ∈ KG, i ∈ KR . (33)

Now, problem (29) is equivalent to the following problem with
continuous variables ag,i, bi ∈ [0, 1],∀g ∈ KG, i ∈ KR with
(32) and (33):

min
(RRR,ppp,aaa,bbb)∈H

−
∑
g∈KG

| Gg |Rg, (34)

where H , {(RRR,δδδ,aaa,bbb)|(20), (27c), (27e), (27f), (29c) −
(29h), (32), (33)}.

Let Ĥ , {(RRR,δδδ,aaa,bbb)|(20), (27c), (27e), (27f), (29c) −
(29h), (33)} be the compact and feasible set of problem (34)
without the nonconvex constraint (32). Problem (34) can then
be seen as min

(RRR,δδδ,aaa,bbb)∈Ĥ
max
µ≥0
L(RRR,δδδ,aaa,bbb, µ) and its Lagrangian

duality is sup
µ≥0

min
(RRR,δδδ,aaa,bbb)∈Ĥ

L(RRR,δδδ,aaa,bbb, µ), where

L(RRR,δδδ,aaa,bbb, µ) , −
∑
g∈KG

| Gg |Rg

+ µ
( ∑
g∈KG

∑
i∈KR

(ag,i − a2
g,i) +

∑
i∈KR

(bi − b2i )
)

(35)

is the Lagrangian of (34) with the single constraint (32), and
µ is the Lagrangian multiplier corresponding to (32). Next, we
consider the problem

min
(RRR,δδδ,aaa,bbb)∈Ĥ

L(RRR,δδδ,aaa,bbb, µ) (36)

which is related to (34) by the below proposition.

Proposition 1. The following statements hold:
(i) The value sequence of S ,

∑
g∈KG

∑
i∈KR(ag,i −

a2
g,i) +

∑
i∈KR(bi − b2i ) at the solutions of (36) cor-

responding to µ is decreasing to 0 as µ→ +∞.
(ii) Problem (34) has strong duality, i.e.,

min
(RRR,ppp,aaa,bbb)∈H

−
∑
g∈KG

| Gg |Rg = sup
µ≥0

min
(RRR,δδδ,aaa,bbb)∈Ĥ

L(RRR,δδδ,aaa,bbb, µ)

(37)
and is therefore equivalent to (36) at the optimal solution
µ∗ ≥ 0 of the sup-min problem in (37).

Proof: See Appendix A.
Theoretically, it is required to have Sµ = 0 in order to obtain
an optimal µ∗. According to Proposition 1, Sµ decreases to 0
as µ → +∞. Since there is always a numerical tolerance in
computation, it is sufficient to accept Sµ < ε for some small
ε with a large enough value of µ chosen. In our numerical
experiment, for ε = 0.005, we see that µ = 200 is enough to
guarantee Sµ ≤ ε. Note that this way of choosing µ has been
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widely used in the literature, e.g., [30], [31].
To handle the nonconvex constraint (29g), we note that if

cg,i = 1, (29g) becomes a convex constraint 0 ≤ vg,i. Then,
if cg,i = 0, (29g) becomes ag,iRg ≤ vg,i,∀g ∈ KG and thus
can be further rewritten as

(Rg + ag,i)
2 − (Rg − ag,i)2 − 4vg,i ≤ 0,

∀g ∈ KG, i ∈ KR . (38)

We observe that a function f(x, y) , (x−y)2 is jointly convex
in (x, y). Upon applying the first-order Taylor series expansion
at a given point (x(n), y(n)), its convex lower bound is given
by 2(x(n)−y(n))(x−y)−(x(n)−y(n))2 ≤ (x−y)2. Therefore,
(38) can be approximated by

(Rg + ag,i)
2 − 2(R(n)

g − a(n)
g,i )(Rg − ag,i) + (R(n)

g − a(n)
g,i )2

− 4vg,i ≤ 0,∀g ∈ KG, i ∈ KR, (39)

where any point (RRR,δδδ,aaa,bbb) satisfying (39) will also satisfy
(38).

To handle the nonconvex constraint (27f), we approximate
(27f) at a given point (RRR(n), δδδ(n), aaa(n), bbb(n)) by the convex
constraint [32]

Rg ≤ Γ
(n)
g,k(F̄FF ),∀g ∈ KG, k ∈ KU . (40)

Here, Γg,k(F̄FF ) is the concave lower bound of the noncon-
cave function rg,k(F̄FF ) in (27f) and given as where ΦΦΦg,k ,
ΠΠΠg,kΠΠΠH

g,k +ΞΞΞg,k. The derivation of Γ
(n)
k (F̄FF ) in (41) (see the

top of the next page) and the proof of its concavity follow
from the results of [32] and thus are omitted for brevity.

To handle the nonconvex cost function L(RRR,δδδ,aaa,bbb, µ) of
(36), we observe that

a2
g,i ≥ 2a

(n)
g,i ag,i − (a

(n)
g,i )2 and b2i ≥ 2b

(n)
i bi − (b

(n)
i )2.

(42)

We then obtain a convex upper bound L̃(RRR,δδδ,aaa,bbb, µ) of
L(RRR,δδδ,aaa,bbb, µ) at a given point (RRR(n), δδδ(n),

aaa(n), bbb(n)) as follows

L̃(RRR,δδδ,aaa,bbb, µ)

, −
∑
g∈KG

| Gg |Rg + µ
( ∑
g∈KG

∑
i∈KR

(
(1− 2a

(n)
g,i )ag,i+

(a
(n)
g,i )2

)
+
∑
i∈KR

(
(1− 2b

(n)
i )bi + (b

(n)
i )2

))
≥ L(RRR,δδδ,aaa,bbb, µ). (43)

Now, problem (36) is approximated at a given point
(RRR(n), δδδ(n), aaa(n), bbb(n)) as

min
(RRR,δδδ,aaa,bbb)∈Ĥ(n)

L̃(RRR,δδδ,aaa,bbb, µ) (44)

where Ĥ
(n)

, {(RRR,δδδ,aaa,bbb)|(20), (27c), (27e), (29c) −
(29g), (33), (39), (40)} is the convex feasible set of problem
(44).

The steps to find the solution of problem (36) are out-
lined in Algorithm 1. Starting from a feasible initial point
with an empirically chosen λ, we find an optimal solution
(RRR∗, δδδ∗, aaa∗, bbb∗) of problem (44). This solution is then used

Algorithm 1 Spectral efficiency maximization for downlink
C-RANs with content-centric multicast and edge caching

1: Initialization: Set n := 1. Choose a value of µ and choose
an initial point (RRR(0), δδδ(0), aaa(0), bbb(0)) by Subroutine 1.

2: repeat
3: Update n := n+ 1
4: Find the optimal solution (RRR∗, δδδ∗, aaa∗, bbb∗) by solving

convex problem (44)
5: Update (RRR(n), δδδ(n), aaa(n), bbb(n)) := (RRR∗, δδδ∗, aaa∗, bbb∗)
6: until convergence

Subroutine 1 Finding an initial point for Algorithm 1
1: Initialization: Set n := 1 and randomly select a point

(RRR(0), δδδ(0), aaa(0), bbb(0)) ∈ Ĥ
2: repeat
3: Update n := n+ 1
4: Find the optimal solution (RRR∗, δδδ∗, aaa∗, bbb∗) by solving

convex problem (45)
5: Update (RRR(n), δδδ(n), aaa(n), bbb(n)) := (RRR∗, δδδ∗, aaa∗, bbb∗)
6: until convergence

as the initial point for the next iteration. The process stops
as soon as no improvement of the objective function L̃ of
problem (44) is achieved. The following proposition provides
insights into the convergence of Algorithm 1.
Proposition 2. Algorithm 1 converges to a Fritz John solution
of problem (36).

Proof: See Appendix B.
The computational complexity of solving (44) at each iter-

ation of Algorithm 1 is polynomial in the number of variables
and constraints. In particular, (44) can be transformed into an
equivalent optimization problem that involves Nv , (KG +
3KGKR+2KGNRd+1) real-valued scalar decision variables,
Nl , (4KGKR + 2KG + 4KR + 1) linear constraints and
Nq , (2KGKR + KGKU ) quadratic constraints. Therefore,
(44) requires a complexity of O(

√
Nl +Nq[Nv+Nl+Nq]N

2
v )

[29], [33].
To find the initial point (RRR(0), δδδ(0), aaa(0), bbb(0)) ∈ Ĥ of

Algorithm 1, we solve problem (34) without constraint (32),
which can be approximated by the following convex problem

min
(RRR,δδδ,aaa,bbb)∈Ĥ(n)

−
∑
g∈KG

| Gg |Rg. (45)

The steps of solving problem (34) without constraint (32)
are detailed in Subroutine 1. After taking a random point
(RRR(0), δδδ(0), aaa(0), bbb(0)) ∈ Ĥ, the initial point obtained by
Subroutine 1 is located close to a solution of problem (34).
Due to the equivalence between (34) and (36), the initial point
obtained by Subroutine 1 will improve the solution obtained
by solving (44), which is an approximation of (36).

IV. ENERGY EFFICIENCY MAXIMIZATION

In Section III, the problem of maximizing the spectral
efficiency is addressed. However, only improving the spectral
efficiency may lead to high power consumption, especially
in dense networks [34]. Therefore, the aim of this section
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Γ
(n)
g,k(F̄FF ) , rg,k(F̄FF

(n)
) +

2W

ln 2
<

{〈((
ΦΦΦ

(n)
g,k −ΠΠΠ

(n)
g,k(ΠΠΠ

(n)
g,k)H

)−1

ΠΠΠ
(n)
g,k

)H
(ΠΠΠg,k(F̄FF g)−ΠΠΠ

(n)
g,k)

〉}

− W

ln 2

〈((
ΦΦΦ

(n)
g,k −ΠΠΠ

(n)
g,k(ΠΠΠ

(n)
g,k)H

)−1

− (ΦΦΦ
(n)
g,k)−1

)H
(ΦΦΦg,k(F̄FF )−ΦΦΦ

(n)
g,k)

〉
≤ rg,k(F̄FF ) (41)

is to improve the spectral efficiency at the same time as
reducing the power consumption. To this end, we maximize
the energy efficiency of the considered content-centric C-RAN,
which is defined as the ratio of the spectral efficiency and
the total power consumption. With the cache state information
{cg,i}g∈KG,i∈KR known, the energy-efficient design problems
under the multicast scheme is formulated as

max
RRR,F̄FF ,aaa,bbb

ηmulticast
SE

PDT,multicast
total

(46a)

s.t. (16), (18), (27c)− (27g). (46b)

Similarly, the energy-efficient design problem under the uni-
cast scheme is formulated as

max
RRR,F̄FF ,aaa,bbb

ηunicast
SE

PDT,unicast
total

(47a)

s.t. (17), (19), (28c)− (28g). (47b)

Note that problems (46) and (47) are similar in the mathemati-
cal structure. Therefore, the algorithm devised in the following
can be adapted straightforwardly to find the solution for (47).

Since problem (46) is combinatorial, nonconvex and frac-
tional, it is challenging to find its global optimality. Here, we
propose an algorithm that is suitable for practical implemen-
tation. To this end, we rewrite problem (46) in an epigraph
form as [28]

max
φ,www,aaa,bbb

φ (48a)

s.t. (20), (27c), (27e), (27f), (29c)− (29i), (48b)

φρ ≤
∑
g∈KU

| Gg |Rg (48c)

ρ ≥
∑
i∈KR

(
βi
∑
g∈KG

〈ĒEEHi F̄FF gF̄FF
H
g ĒEEi〉+ biPi,∆

)
+
∑
i∈KR

αi
∑
g∈KG

vg,i + Ps (48d)

where www = (RRR,F̄FF ,uuu,vvv, ρ). Problem (48) is still challenging to
solve due to the nonconvex constraints (27f), (29h), (29i) and
(48c).

Following the procedure discussed in Section III, the binary
constraint (29i) is replaced by (32) and (33), problem (48) is
then rewritten as

min
(φ,www,aaa,bbb)∈T

− φ, (49)

where T , {(φ,www,aaa,bbb)|(20), (27c), (27e), (27f), (29c) −
(29g), (32), (33), (48c), (48d)}. Similar to Proposition 1, with
an empirically chosen value of µ, problem (49) is equivalent

to the following problem with continuous variables aaa,bbb:

min
(φ,www,aaa,bbb)∈T̂

L̄(φ,www,aaa,bbb, µ) = −φ

+ µ

∑
i∈KR

∑
g∈KG

(ag,i − a2
g,i) +

∑
i∈KR

(bi − b2i )

 (50)

where T̂ , {(φ,www,aaa,bbb)|(20), (27c), (27e), (27f), (29c) −
(29g), (33), (48c), (48d)}.

With ag,i, bi ∈ [0, 1],∀g ∈ KG, i ∈ KR, (27f) and (29h)
are approximated by the convex constraints (40) and (39),
respectively. Here, the remaining nonconvex constraint (48c)
is rewritten as

(φ+ ρ)2 − (φ− ρ)2 − 4
∑
g∈KG

| Gg |Rg ≤ 0. (51)

Similar to (38), we further approximate (51) by the following
convex constraint:

(φ+ ρ)2 − 2(φ(n) − ρ(n))(φ− ρ) + (φ(n) − ρ(n))2

− 4
∑
g∈KG

| Gg |Rg ≤ 0. (52)

Hence, at a given point (φ(n),www(n), aaa(n), bbb(n)), problem (49)
can be approximated by the following convex problem

min
(φ,www,aaa,bbb)∈T̂ (n)

L̂(φ,www,aaa,bbb, µ), (53)

where T̂
(n)

, {(φ,www,aaa,bbb)|(20), (27c), (27e), (29c) −
(29g), (33), (39), (40), (48d), (52)} is the compact, convex
feasible set of problem (53) and

L̂(φ,www,aaa,bbb, µ) , −φ+ µ
( ∑
g∈KG

∑
i∈KR

(
(1− 2a

(n)
g,i )ag,i+

(a
(n)
g,i )2

)
+
∑
i∈KR

(
(1− 2b

(n)
i )bi + (b

(n)
i )2

))
. (54)

We propose Algorithm 2 to solve problem (50) for maxi-
mizing the energy efficiency of the downlink of the content-
centric C-RANs with edge caching. Starting from a feasible
initial point with an empirically chosen µ, problem (53) is
solved to obtain the optimal solution. This solution is then
used as the initial point for the next iteration. The process
terminates as soon as no improvement in the objective function
L̃ of (53) is achieved. By a similar argument to the proof
of Proposition 2, Algorithm 2 converges to a Fritz John
solution of problem (50). Note that (53) involves Mv ,
(3KGKR + 2KGNRd+KG + 2) real-valued scalar decision
variables, Ml , (4KGKR+2KG+4KR+1) linear constraints
and Mq , (2KGKR + KGKU + 2) quadratic constraints.
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Algorithm 2 Energy efficiency maximization of the downlink
C-RANs with content-centric multicast and edge caching

1: Initialization: Set n := 1. Choose a value of λ and choose
an initial point (φ(0),www(0), aaa(0), bbb(0)) by Subroutine 2.

2: repeat
3: Update n := n+ 1
4: Find the optimal solution (φ∗,www∗, aaa∗, bbb∗) by solving

convex problem (53)
5: Update (φ(n),www(n), aaa(n) bbb(n)) := (φ∗,www∗, aaa∗, bbb∗)
6: until convergence

Subroutine 2 Find an initial point for Algorithm 2
1: Initialization: Set n := 1 and choose randomly a point

(φ(0), w̃ww(0), aaa(0), bbb(0)) ∈ T̂
2: repeat
3: Update n := n+ 1
4: Find the optimal solution (φ∗,www∗, aaa∗, bbb∗) by solving

convex problem (55)
5: Update (φ(n),www(n), aaa(n), bbb(n)) := (φ∗,www∗, aaa∗, bbb∗)
6: until convergence
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Fig. 3. Network simulation scenario with KR = 7 fixed eRHHs and KU = 5
randomly positioned users.

The computational complexity required to solve (53) is thus
O(
√
Ml +Mq[Mv +Ml +Mq]M

2
v ) [29], [33].

To find the initial solution (φ(0),www(0), aaa(0), bbb(0)) ∈ T̂ of
Algorithm 2, we solve problem (49) without constraint (32),
which is approximated by

min
(φ,www,aaa,bbb)∈V̂(n)

− φ. (55)

The steps for solving problem (49) without constraint
(32) is detailed in Subroutine 2. From a random point
(φ(0),www(0), aaa(0), bbb(0)) ∈ T̂ , the initial point obtained by
Subroutine 2 is located close to a solution of problem (49).
Because of the equivalence between (49) and (50), this initial
point will improve the solution obtained by solving (53), which
is an inner approximation of (50).

V. NUMERICAL EXAMPLES

A. Simulation Setup

We simulate a hexagonal multicell C-RAN in Fig. 3 where
the locations of the KR = 7 RRHs are fixed. The KU = 5

TABLE I
LTE PARAMETERS USED IN NUMERICAL EXAMPLES [35]

Parameters Values
Distance between adjacent RRHs 0.3 km

Total bandwidth 10 MHz
Standard deviation of log-normal shadowing 10 dB

Path loss at distance d (km) 140.7 + 36.7 log10(d) dB
Noise variance σ2

k = σ2 −174 dBm/Hz
Maximum RRH transmit power 24 dBm

users are uniformly and independently placed in the RRHs’
coverage area, excluding the circular area with radius of 50
m around each RRH [13]. The LTE parameters used in our
numerical examples are listed in Table I. We further assume
that each RRH is equipped with Nr = 8 antennas and each
user with Nu = 1 antennas. At each RRH, the active mode and
the sleep mode consume 84W and 56W of power, respectively.
Also the slope of transmit power is taken as βi = β = 2.8
and αi = α = 5 for all i ∈ KR [24]. We set d = 2, Pi = P ,
Ci = C = 100 Mbps for all i ∈ KR, and ΣΣΣk = σ2III for all
k ∈ KU . Also, we set RQoS = 0.1 Mbps.

Each RRH’s cache has the same size of Bi = B, ∀i ∈ KR
which can store up to B = 5 files randomly chosen from
a library of F = 100 files. For demonstration purposes, we
consider a heuristic caching strategy, namely Popularity-based
Caching, at the content placement phase [13]. Each RRH
stores the most popular files until its cache is full. Each user
then independently requests one file from the library, where
the content popularity distributions is described as follows.
Among the F files, one file has a request probability of
0.5, and F − 1 files share the remaining request probability

according to the Zipf distribution as Pr(f) =
r−γf∑
f∈F r

−γ
f

,

where rf is the popularity rank of file f , γ is the skewness
parameter and

∑
f∈F \{f |rf=1}

Pr(f) = 0.5.

Each numerical result is obtained by averaging over 200
simulation trials. In each trial, we independently generate
a new set of user locations, channel realizations and user
requests [13]. For the given set F req of requested files available
at the BBU in each delivery interval, the cache state informa-
tion {cg,i} in (1) are recorded by checking F req against the
local caches of RRHs. We choose µ = 200 and our simulations
confirm that this value of µ produces results with sufficient
accuracy.

B. Performance of Proposed Joint Optimization under a Fixed
Caching Strategy and a Fixed File Popularity Distribution

Using a fixed caching strategy for a specific file popularity
distribution, we evaluate the performance of Algorithm 1 and
Algorithm 2 (respectively referred to as Alg. 1 and Alg. 2 in
the figures) in content delivery. The following ‘transmission
scheme - with/no cache’ scenarios are implemented as exam-
ples: MC-NC (multicast - no caching) and UC-WC (unicast -
with caching). For comparison purposes, we also propose two
benchmark schemes (referred to as Alg. 1-HUA and Alg. 2-
HUA) where heuristic UA strategies are adopted. Here, each
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Fig. 4. Convergence process of Algorithms 1 and 2.
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Fig. 5. Performance of Algorithm 1 under ‘Muticast/Unicast - No/With Cache’ scenarios in different skewness parameter γ. Two benchmark algorithms
Alg. 1-HUA and Alg. 2-HUA are also presented for comparison.

group or user is assigned heuristically to the RRHs that store
the requested files and also to the Nc RRHs that have the
largest channel gain to the worst user. The parameter Nc is
determined empirically.

Figs. 4(a) and 4(b) confirm the theoretical convergence for
Algorithm 1 and Algorithm 2, respectively. In the example
used to plot Fig. 4, both algorithms converge in fewer than
50 iterations. It is worth noting that each iteration of these
proposed algorithms corresponds to solving at most a simple
convex program (44) and (53). Therefore, low computational
cost can be expected.

Figs. 5(a), 5(b), 6(a) and 6(b) compare the spectral ef-
ficiency performance of Alg. 1 against Alg. 1-HUA while
Figs. 5(c), 5(d), 6(c) and 6(d) plot the energy efficiency
performance of Alg. 2 against Alg. 2-HUA. It can be observed
that Alg. 1 and Alg. 2 perform best in all scenarios of
multicast/unicast - with/no caching. Particularly, the sum rate

obtained by Alg. 1 is up to 180% that by the Alg. 1-HUA
scheme while the energy efficiency achieved by Alg. 2 is up to
300% that by the Alg. 2-HUA. This result can be explained by
noting the extra dimension of UA optimization of the proposed
algorithms, allowing better solutions for data rate allocation
and precoders of problems (27) and (46) compared to the
heuristic HUA approach.

C. Multicast-Unicast Comparison and Evaluating the Effects
of Caching Strategies under Proposed Joint Design

As seen from Figs. 7(a) and 8(a), the unicast scheme outper-
forms the multicast in terms of spectral efficiency in both cache
and cache-less scenarios. This result is reasonable because
the performance of the multicast scheme is limited by the
condition of the worst user in each multicast group. Moreover,
our proposed joint design with UA and cache makes the
bottleneck on the fronthaul links less problematic. Although
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Fig. 6. Performance of Algorithm 1 under ‘Muticast/Unicast - No/With Cache’ scenarios with different fronthaul capacities. Two baseline algorithms Alg. 1-
HUA and Alg. 2-HUA are also presented for comparison.
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Fig. 7. Multicast versus unicast in terms of spectral and energy efficiencies - no/with cache in different skewness parameter γ

the unicast scheme requires more fronthaul traffic than the
multicast counterpart, this disadvantage seems not to have a
significant impact on the spectral efficiency performance of
the unicast scheme.

Figs. 7(b) and 8(b) illustrate the energy efficiency compar-

ison between the multicast and unicast schemes. In the case
of no cache, multicasting is better than unicasting, especially
when γ is large. This is because the multicast scheme requires
less power consumption and obtains not much lower spectral
efficiency than the unicast scheme. Specifically, the power
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Fig. 8. Multicast versus unicast in terms of spectral and energy efficiencies - no/with cache under different fronthaul capacities

consumed by multicating is 40% lower than unicasting as seen
from Figs. 7(d) and 8(d), while the spectral efficiency obtained
by multicasting is 17% lower than unicasting as seen from
Figs. 7(c) and 8(c). The power consumption of the fronthaul
links is a dominating part of the total consumption. Since a
larger value of γ means fewer groups, the fronthaul rate is
more likely to be reduced due to the worst user’s condition
in each group. More power on the fronthaul links is thus
saved. However, in the system with cache, the unicast scheme
outperforms the multicast scheme. In this case, the main
bottleneck on the fronthaul links is effectively handled by the
UA and caching. Figs. 7(c), 8(c), 7(d) and 8(d) show that while
the power consumption of these schemes is almost the same,
the unicast scheme achieves higher spectral efficiency than the
multicast scheme because it does not suffer from the worst
user’s condition in each group as in multicasting. Figs. 7(b)
and 8(b) also implies that in terms of energy efficiency, the
unicast scheme is the best option for the system with cache
while the multicast scheme for the system without cache.

Finally, Figs. 7 and 8 shows that the caching contributes to
higher spectral and energy efficiencies of the considered C-
RAN. Particularly, as seen from Figs. 7(a) and 8(a), a 20%
spectral efficiency gain is obtained with cache in compari-
son with that of a cache-less system. Also, from Figs. 7(b)
and 8(b), the energy efficiency achieved by the system with
cache is 14% higher than that by the cache-less system.

VI. CONCLUSION

In this paper, we have jointly designed user association,
remote radio head activation, data delivery rate allocation and
precoding for the downlink of a content-centric C-RAN with

edge caching. Mixed-integer optimization problems have been
formulated with the objective of maximizing the spectral and
energy efficiencies. The requirements on data delivery rates,
limited fronthaul capacity and maximum RRH transmit powers
have been included in the design. Upon applying a range of
optimization techniques, we have successfully solved these
challenging problems and proposed iterative algorithms that
are guaranteed to converge to Fritz John solutions. Numerical
results with practical parameter settings have shown that our
joint designs markedly improve both spectral and energy
efficiency performances of the considered C-RAN under the
example caching strategy. Moreover, they show that the uni-
cast scheme always offers higher spectral efficiency than its
multicast counterpart. For the energy efficiency, unicasting
is also the best option for the system with cache while the
multicast scheme is best for the system without cache. Edge
caching has been shown to improve both the spectral and
energy efficiencies.

APPENDIX A
PROOF OF PROPOSITION 1

Let θ(µ) and (RRRµ, δδδµ, aaaµ, bbbµ) be the optimal value and the
optimal solution of problem (36) for a given µ, respectively.
For simplicity, we use only η for ηmulticast

SE =
∑
g∈KG | Gg |Rg .

Due to a duality gap between the optimal value of problem
(34) and the optimal value of its dual problem, it holds that

sup
µ≥0

θ(µ) = sup
µ≥0

min
(RRR,δδδ,aaa,bbb)∈Ĥ

L(RRR,δδδ,aaa,bbb, µ)

≤ θ∗ , min
(RRR,δδδ,aaa,bbb)∈Ĥ

max
µ≥0
L(RRR,δδδ,aaa,bbb, µ), (56)
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where θ∗ is the optimal value of problem (34). We observe
that θ∗ is finite since Ĥ is compact. Combining with (56), we
have

θ(µ) ≤ θ∗ < +∞, ∀µ ≥ 0. (57)

(i) Let Sµ ,
∑
i∈KR

∑
g∈KG((ag,i)µ − (ag,i)

2
µ) +∑

i∈KR((bi)µ − (bi)
2
µ) be the value of S at aaaµ and bbbµ. Then,

Sµ ≥ 0,∀µ. Let 0 ≤ µ1 < µ2. Since θ(µ1) and θ(µ2) are
respectively the optimal value of (36) for µ1 and µ2,

θ(µ1) = −ηµ1 + µ1Sµ1 ≤ −ηµ2 + µ1Sµ2 , (58)
θ(µ2) = −ηµ2 + µ2Sµ2 ≤ −ηµ1 + µ2Sµ1 . (59)

On one hand, adding these two inequalities yields µ1Sµ1 +
µ2Sµ2 ≤ µ1Sµ2 + µ2Sµ1 , which implies that Sµ2 ≤ Sµ1 . We
deduce that Sµ is decreasing and bounded below by 0 when
µ is increasing. Hence,

Sµ → S∗ ≥ 0 as µ→ +∞. (60)

On the other hand, multiplying (58) and (59) by µ2 and µ1,
respectively, followed by adding these results together gives

µ2(−ηµ1
) + µ1(−ηµ2

) ≤ µ2(−ηµ2
) + µ1(−ηµ1

), (61)

or equivalently, −ηµ2
≥ −ηµ1

. Therefore, −ηµ is increasing
and hence bounded below as µ→ +∞.

Now, if S∗ > 0, then θ(µ) = −ηµ + µSµ → +∞ as µ →
+∞, which contradicts to (57). We must therefore have S∗ =
0 and the proof of Proposition 1 (i) is completed.

(ii) Since the sequence {(RRRµ, δδδµ, aaaµ, bbbµ)}µ≥0 ⊂ Ĥ is
bounded, it has convergent subsequences. Let (RRR∗, δδδ∗, aaa∗, bbb∗)
be any limit point of {(RRRµ, δδδµ, aaaµ, bbbµ)}µ as µ → +∞. We
assume without loss of generality that (RRRµ, δδδµ, aaaµ, bbbµ) →
(RRR∗, δδδ∗, aaa∗, bbb∗). Then (ag,i)µ → (ag,i)∗, (bi)µ → (bi)∗,∀g ∈
KG, i ∈ KR and Sµ → S∗ ,

∑
i∈KR

∑
g∈KG((ag,i)∗ −

(ag,i)
2
∗) +

∑
i∈KR((bi)∗ − (bi)

2
∗). Using (i), we get S∗ = 0.

Hence, (aaa∗, bbb∗) satisfies (32). Also, because (RRRµ, δδδµ, aaaµ, bbbµ) ∈
Ĥ,∀µ ≥ 0, it holds that (RRR∗, δδδ∗, aaa∗, bbb∗) ∈ Ĥ, which implies
that (RRR∗, δδδ∗, aaa∗, bbb∗) ∈ H. Therefore, (RRR∗, δδδ∗, aaa∗, bbb∗) is a
feasible point of problem (34). By the definition of θ(µ), it is
true that

sup
µ≥0

θ(µ) ≥ θ(µ) = −ηµ + µSµ ≥ −ηµ,∀µ ≥ 0. (62)

Letting µ→ +∞ yields

sup
µ≥0

θ(µ) ≥ −η∗ ≥ θ∗. (63)

Combining with (56), we obtain that sup
µ≥0

θ(µ) = −η∗ = θ∗,

which proves (37) and also implies that (RRR∗, δδδ∗, aaa∗, bbb∗) is an
optimal solution of (34). The proof is complete.

APPENDIX B
PROOF OF PROPOSITION 2

Because (RRR(n+1), aaa(n+1), bbb(n+1)) is the optimal solution of
problem (44) at a given point (RRR(n), aaa(n), bbb(n)), the approxi-
mation step (43) at iteration (n+ 1) gives

L̃(RRR(n+1), aaa(n+1), bbb(n+1), µ)

= −
∑
g∈KG

| Gg |R(n+1)
g

+ µ
( ∑
k∈KU

∑
i∈KR

(
(1− 2a

(n)
k,i )a

(n+1)
k,i + (a

(n)
k,i )2

)
+
∑
i∈KR

(
(1− 2b

(n)
i )b

(n+1)
i + (b

(n)
i )2

))
≤ −

∑
g∈KG

| Gg |R(n)
g + µ

( ∑
k∈KU

∑
i∈KR

(
(1− 2a

(n)
k,i )a

(n)
k,i

+ (a
(n)
k,i )2

)
+
∑
i∈KR

(
(1− 2b

(n)
i )b

(n)
i + (b

(n)
i )2

))
= L̃(RRR(n), aaa(n), bbb(n), µ). (64)

Therefore, once initialized from a feasible point F̄FF (0) given
by Subroutine 1, Algorithm 1 generates a monotone se-
quence {L̃(RRR(n), aaa(n), bbb(n), µ)} of improved feasible solu-
tions for (44). On the other hand, since the sequence
{L̃(RRR(n), aaa(n), bbb(n), µ)} is bounded from below by constraint
(27e), it converges. As a result, the convergence of Algorithm 1
is guaranteed in the sense that

(
L̃(RRR(n+1), aaa(n+1), bbb(n+1), µ)−

L̃(RRR(n), aaa(n), bbb(n), µ)
)
→ 0 as n→ +∞.

Now, for simplicity and by following the procedure in [36],
we rewrite (36) in the following form

min
zzz

ϕ0(zzz) (65a)

s.t. ψj(zzz) ≤ 0,∀j ∈ {1, ..., r} (65b)
ϕj(zzz) ≤ 0,∀j ∈ {1, ..., s} (65c)

where zzz represents the variables of (36); ϕ0 is the objective
function; ψj are the convex functions and ϕj are the noncon-
vex functions.

Following (39), (40) and (43), problem (44) which is a
convex approximation of problem (36) can be recast into a
simplified form as

min
zzz

ϕ̃0(zzz,zzz(n)) (66a)

s.t. ψj(zzz) ≤ 0,∀j ∈ {1, ..., r} (66b)

ϕ̃j(zzz,zzz
(n)) ≤ 0,∀j ∈ {1, ..., s}, (66c)

where the objective function ϕ0 and each nonconvex function
ϕj are respectively approximated by convex functions ϕ̃0 and
ϕ̃j for a given point zzz(n). We also note from (39), (40) and
(43) that, for every j ∈ {0, 1, ..., s},

ϕj(zzz) ≤ ϕ̃j(zzz,zzz(n)), (67a)

ϕj(zzz
(n)) = ϕ̃j(zzz

(n), zzz(n)), (67b)

∇ϕj(zzz(n)) = ∇ϕ̃j(zzz(n), zzz(n)). (67c)

Assume that Algorithm 1 converges to solution zzz(n). Then,
zzz(n) is the optimal solution of problem (66), and hence, a
Fritz John point that satisfies the following conditions [25],
[37, Lemma 2.1].

λ0∇ϕ̃0(zzz(n), zzz(n)) +

r∑
j=1

νj∇ψj(zzz(n))
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+

s∑
j=1

λj∇ϕ̃j(zzz(n), zzz(n)) = 0, (68a)

νjψj(zzz
(n)) = 0,∀j ∈ {1, ..., r}, (68b)

λjϕ̃j(zzz
(n), zzz(n)) = 0,∀j ∈ {1, ..., s} (68c)

where νj and λj is the dual variable associated with convex
and nonconvex constraints j, respectively. Substituting (67b)
and (67c) to (68), it holds that

λ0∇ϕ0(zzz(n)) +

r∑
j=1

νj∇ψj(zzz(n))

+

s∑
j=1

λj∇ϕj(zzz(n)) = 0, (69a)

νjψj(zzz
(n)) = 0,∀j ∈ {1, ..., r}, (69b)

λjϕj(zzz
(n)) = 0,∀j ∈ {1, ..., s}, (69c)

which means that zzz(n) is a Fritz John solution of problem (65)
(actually problem (36)). The proof is completed.
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