
ar
X

iv
:1

60
4.

05
68

0v
3 

 [
cs

.I
T

] 
 2

4 
A

pr
 2

01
8

1

On Medium Chemical Reaction in

Diffusion-Based Molecular Communication: a

Two-Way Relaying Example

Maryam Farahnak-Ghazani, Gholamali Aminian, Mahtab Mirmohseni, Amin Gohari, and

Masoumeh Nasiri-Kenari

Sharif University of Technology

Abstract

Chemical reactions are a prominent feature of molecular communication (MC) systems, with no

direct parallels in wireless communications. While chemical reactions may be used inside the transmitter

nodes, receiver nodes or the communication medium, we focus on its utility in the medium in this paper.

Such chemical reactions can be used to perform computation over the medium as molecules diffuse

and react with each other (physical-layer computation). We propose the use of chemical reactions for

the following purposes: (i) to reduce signal-dependent observation noise of receivers by reducing the

signal density, (ii) to realize molecular physical-layer network coding (molecular PNC) by performing

the natural XOR operation inside the medium, and (iii) to reduce the inter-symbol interference (ISI) of

other transmitters by canceling out the remaining molecules from previous transmissions. To make the

ideas formal, we consider an explicit two-way relaying example with a transparent receiver (which has

a signal-dependent noise). The proposed ideas are used to define a modulation scheme (which we call

the PNC scheme). We compare the PNC with a previously proposed scheme for this problem where

the XOR operation is performed at the relay node (using a molecular logic gate). We call the latter, the

straightforward network coding (SNC). It is observed that in addition to the simplicity of the proposed

PNC scheme, it outperforms the SNC scheme especially when we consider ISI.

I. INTRODUCTION

While traditional wireless communication systems employ energy carriers (such as electromagnetic

or acoustic waves) for communication, Molecular Communication (MC) utilizes physical molecules as

This work was in part presented in the 2016 Iran Workshop on Communication and Information Theory (IWCIT) [1].
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its carriers of information. In diffusion-based MC system, the transmitter and the receiver are bio-

logical/engineered cells or electronic systems that release or receive molecules, while the channel is

assumed to be a fluid medium in which molecules diffuse. Electromagnetic waves and molecular diffusion

share similarities and differences. Both the electromagnetic wave equation and the Fick’s second law of

macroscopic diffusion are second-order linear partial differential equations. As a result, both lead to

linear system models that satisfy the superposition property. However, there are also differences between

electromagnetic waves and molecular diffusion. Notably, the degradation and attenuation of transmitted

signals are more pronounced in molecular diffusion-based channels and seriously limit the transmission

distance between the transmitter and the receiver [2]. Relaying is a solution for increasing the range

of communication and has been utilized by nature in intracellular communication [3, Chapter 15]. In

addition, while the measurement noise of a wireless receiver may be modeled by an additive Gaussian

noise (the AWGN channel), some of the most promising molecular receptors, such as the ligand receiver

and the transparent receiver, have a signal-dependent measurement noise (i.e., their noise variance is

higher when they are measuring a larger signal) [4]–[6]. Furthermore, when there are multiple molecule

types in the medium, they may undergo chemical reactions as they diffuse in the environment. The

reaction amongst the molecules is governed by the non-linear reaction–diffusion differential equations.

Chemical reaction is a key operation mechanism of biological systems. As a result, chemical reactions

are likely to be a fixture of future engineered molecular transmitters or receivers. For instance, [7], [8]

consider the role of chemical reaction in transmitter and receiver design. However, the emphasis of this

paper is on the challenges and opportunities of utilizing chemical reactions inside the communication

medium (channel) rather than inside the transmitter or receiver nodes. We may view the diffusion-reaction

process as a form of physical-layer computation that is performed over the medium (distinct from the

operation of transceiver cells). While the superposition property has been utilized for “computation

over the air” in the wireless literature [9]–[13], chemical reactions provide the possibility of more

complicated interactions than a simple superposition. Although few existing works provide a number

of ideas for exploiting chemical reactions in the medium for communication purposes, we still lack a full

understanding. In this paper, we review the state of the art and give a number of new ideas. In particular,

our emphasis is on the utility of chemical reactions by the relay nodes.

Challenges and known techniques: While linear chemical reactions can be readily utilized for signal

shaping, the more interesting chemical reactions are non-linear and demonstrate complicated patterns [14].

The main challenge of utilizing chemical reactions is the non-linearity of the reaction-diffusion equations
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and lack of explicit analytical solutions. For instance, consider the following chemical reaction:

A+ B
γ
⇋
κ

C (1)

in which γ and κ are the forward and reverse reaction rate constants, respectively. Let cA, cB, and cC be

the concentrations of A, B, and C, respectively. The reaction-diffusion law can be expressed as [15]

∂cA
∂t

= DA∇
2cA − γcAcB + κcC,

∂cB
∂t

= DB∇
2cB − γcAcB + κcC,

∂cC
∂t

= DC∇
2cC + γcAcB − κcC,

(2)

where DA, DB, and DC are the diffusion coefficients of A, B, and C, respectively. The term γcAcB is

the challenging non-linear term. Thus far, this challenge is mostly dealt with in the MC literature by

noting that despite lack of analytical solutions, it may be still possible to intuitively predict the qualitative

behavior of the solutions, in particular when the reaction is limited to a small neighborhood [16] or is

instantaneous (high forward reaction rate constant and low reverse reaction rate constant). The general

approach is to use the high-level intuition to design signaling schemes, which may be backed up with

numerical simulations or partial supporting analysis.

We may categorize the known ideas of utilizing chemical reactions in the medium as follows:

• Memory degradation: In [17], it is suggested to release enzymes throughout the environment.1 A

chemical reaction between enzymes and information carrying molecules cancels out the involved

molecules, and has the effect of shortening the lifetime distribution of all molecules in the en-

vironment. This reaction can put down inter-symbol interference (ISI) by reducing the remaining

molecular concentration from previous transmissions, at the cost of weakening the desired signal.

• Pattern formation: In the above item, we gave a chemical reaction that simply reduces the concentra-

tion of the reactant molecules. However, more complicated dynamics and patterns (such as oscillating

reactions or traveling waves) can arise from chemical reactions. Assuming that molecules of type A

are used for communication, it has been suggested in [19] to fill the environment with molecules of

type B whose reaction with molecules of type A produces such oscillating and propagating patterns.

This may be utilized to increase the propagation range of the molecules (before they dissolve in the

environment). The more complicated spatial-temporal patterns could increase the decoder’s ability

to distinguish amongst them; this can effectively increase the information capacity of the system.

• Simulating negative signals and ISI reduction: Unlike electrical current and voltage that can take

negative values, the density of molecules in an environment cannot go negative. Chemical reactions

are proposed for simulating transmission of a negative signal by a molecular transmitter [16], [20],

1While [17] assumes enzymes are released throughout the medium, [18] studies its release in a limited area of the medium.
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[21]. For instance, authors of [16] suggest using H+ and OH− ions. Release of any of these ions

reduces the concentration of the other one in the medium, and one can interpret release of H+ ions

as sending a positive, and release of OH− ions as sending a negative signal. Further, Simulation of

negative signals allows for design of precoders at the transmitter to combat the ISI (e.g. see [21]).

• Relay signal amplification: Authors in [22] describe a chemical reaction that amplifies the incoming

signals. However, we point out that signal amplification may be also performed blindly in the

medium; assume that the information molecule is of type A and the relay releases a limited number

of molecules of type B such that

A+ B
γ
⇋
κ

2C+ D. (3)

This reaction produces molecules of type C whose concentration is twice the concentration of

molecules of type A in the environment. Thus, the relay simply releases molecules of type B without

having to sense the incoming density of molecules of type A.

• Molecular media-based modulation: Authors in [4] argue that information can be transmitted by

changing the general physical properties of the communication medium (rather than directly changing

the density of the released molecules). For instance, assume that we have two transmitters, called

the A-transmitter and the B-transmitter, which release molecules of types A and B in the medium,

respectively. There is a receiver which can only sense the density of molecules of type A. If A and

B react in the environment, the B-transmitter can communicate indirectly to the receiver (despite the

receiver only has sensors that detect A molecules): the reason is that the actions of the B-transmitter

influences the communication medium between the A-transmitter and the receiver.

Besides the above explicit ideas for medium chemical reactions, authors in [23] utilize an interesting

feature of non-linear systems, namely harnessing noise for signal propagation in a cell-to-cell MC system.

Unlike linear systems where noise plays a disruptive role, noise can increase information capacity of non-

linear systems (this effect is known as the stochastic resonance).

Our contribution: Our main contribution in this work is to propose new ideas for utility of chemical

reactions in a communication medium. These ideas are as follows:

1) Receiver noise reduction: As mentioned earlier, many molecular receivers have signal dependent

noise. In particular, they face a smaller noise if they are sensing a smaller signal. Now, suppose the

density of molecules around the receiver is y and the receiver wants to measure it. If a receiver can

predict that y is at least λ, it can locally release a different species of molecules that would react

with the signal molecules around the receiver, and reduce the signal molecule density by λ in the

vicinity of the receiver. Thus, instead of measuring y, it measures y − λ. This will incur a smaller
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signal dependent noise. The receiver can predict a minimum value for its upcoming measurement

y by utilizing its previous observations. For instance, if the receiver has measured a high density

of molecules in the previous time slot, it expects the density of molecules to be high in the current

time slot as well. The reason is that diffusion is a slow process and it takes time for the effect of

previous transmissions to disappear from the medium. One should also consider the possibility that

the estimate λ is incorrect, i.e., y is less than λ. In this case, the receiver observes min(0, y−λ) = 0,

and the information about y will be lost. Receiver’s error in finding a suitable lower bound λ for y

can result in an error, but the probability of this error can be small and compensate for the decrease

in the signal-dependent measurement noise.2

2) Molecular physical-layer network coding (Molecular PNC): In traditional wireless networks, due

to the broadcast nature, network coding can be used by the nodes to improve the throughput of

the system. Two main classes of network coding schemes in traditional wireless networks are

straightforward network coding (SNC) and physical layer network coding (PNC) [24]. SNC in

MC has been studied in [25], [26], where the relay uses an XOR logic gate [27], at the molecular

level, to XOR the messages of the two transceivers. The traditional PNC is based on the fact that the

signals can become negative and thus may cancel out each other physically when they superpose in

the environment. Since in MC the transmitted signals cannot become negative, we suggest the use of

molecular reaction to cancel out the signals and realize the XOR operation inside the medium. This

allows for removal of the XOR gate inside the relay node.3 The idea is as follows: suppose we have

molecules of type A and B that react and cancel out each other. Then, if only one molecule type

exists in the medium, it survives. However, the presence of both molecules results in the destruction

of both.

3) The dual purpose of transmission: Thus far, the literature assumes that a transmitter releases molecules

to convey its own message. Consider a scenario where we have two nodes that are using molecules

of types A and B for transmission, respectively. These transmitters also have receptors that allows

them to obtain information about the other node’s transmissions. Assume that these molecules of

types A and B can react and cancel out each other. Then, the first node can release molecules of

type A for (i) encoding of its information bits, or (ii) for reducing the density of the other node’s

molecule to reduce its measurement noise level.

2We have already used a simpler form of this idea in [21], but in that work the amount of release of molecules was not

chosen adaptively by the receiver.

3The authors in [28] discuss implementing general linear systems with chemical reactions (more broadly than an XOR like

operation).
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Example of a two-way relay network model: To make the above ideas formal at once, we propose a

specific setup with a certain signal-dependent receiver noise. We give an explicit modulation scheme that

utilizes all the above-mentioned ideas in its design. More specifically, we consider a two-way molecular

relay network, where two nano-transceivers exchange their information through a nano-relay. For this

network, in this paper, we propose a new network coding scheme in MC parallel to the PNC in traditional

wireless networks. This covers our two new ideas (namely receiver noise reduction and molecular PNC)

mentioned above. We show that our proposed PNC scheme outperforms the previously proposed SNC

scheme for MC.

A complication arises if the above molecular channels have ISI, and this is where we make use of our

third new idea (the dual purpose of transmission). For point-to-point channels, ISI mitigating techniques

have been introduced in [29], [30]. However, to the best knowledge, there is no study on the ISI-mitigating

schemes in two-way relay channels. One natural way to tackle this problem is to apply the point-to-point

ISI mitigating techniques to each hop of the relay channel. For the SNC scheme, we extend the existing

ISI mitigating techniques of point-to-point channels proposed in [29], [30] to each hop. However, for

the PNC scheme we propose a novel ISI-mitigating scheme, which is based on two observations: i) in

two-way channels each transceiver has access to the previous messages of the other transceiver, and thus

knows an estimation of the other user’s ISI. ii) The molecular reaction can be used to cancel out the ISI

(or reduce the estimated ISI).

We make the following conclusions from our analysis of the proposed molecular PNC scheme. In

the no ISI case, our results (based on the derived closed form equations for the transparent receiver)

show that the PNC outperforms the SNC in terms of error probability thanks to the reaction among the

molecules in the PNC scheme. In fact, when the messages of both transceivers are 1, the number of the

counted molecules at the receptors is reduced compared to the SNC scheme. This results in less error

caused by the transparent receiver. These results are confirmed by simulations. In presence of ISI, the

error probability of both ISI-mitigated PNC and SNC schemes are derived analytically (and confirmed

by simulation); it is shown that the PNC performs significantly better than the SNC.

This paper is organized as follows: in Section II, we present the physical model for the two-way relay

example. In Section III, we describe the use of chemical reaction for molecular PNC and receiver noise

reduction, and in Section IV, we explain the idea of chemical reaction for dual purpose of transmission.

In Section V and VI, the error performance of the two schemes in no ISI and ISI cases are respectively

investigated. In Section VII, we present the numerical results, and finally, we include concluding remarks

in Section VIII.

Notation: The random variables, error events, and diffusion coefficients are shown by upper cases while
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the realizations of random variables are indicated by lower cases. The event Ec shows the complement

of the event E and ī denotes the complement of i in its defined set. The decoded value of the information

bit B is denoted by B̂.

II. PHYSICAL MODEL

We consider a diffusion-based nano-network consisting of two nano-transceivers and a nano-relay with

the ability of both transmitting and receiving information in different time slots. A two-way communi-

cation between two nano-transceivers is established by a nano-relay. For simplicity of the notations, we

assume that the relay is in the same distance d from the two transceivers. The transceiver Ti for i = 1, 2

has a sequence of information bits (Bi,1, Bi,2, · · · ) that wants to transmit to the other transceiver.

We assume that the time is slotted with duration ts, and during any communication protocol, molecules

are released by either the transceiver Ti or relay R at the beginning of the time slots. For instance, a

protocol might utilize the on-off keying (OOK) modulation for transmission in which each transmitter

releases a burst of molecules to send the information bit 1 at the beginning of each time slot, or stays

silent to send the information bit 0. We assume that T1 releases molecules of type M1, T2 releases

molecules of type M2, and the relay releases molecule type M3 (to avoid self-interference [31]). The

diffusion coefficients of molecules of type Mi are noted by Di. Again for simplicity, we assume Di = D

for i = 1, 2, 3. While molecules are released at the beginning of time slots of duration ts, molecule

density is measured by the receptors of T1, T2 or R at time instances t0, t0 + ts, t0 + 2ts, . . . for some

t0 ≤ ts.

Channel model: For the diffusion of molecules, we use the deterministic model based on Fick’s second

law of diffusion. According to this model, when there is no reaction among molecules of different types,

the concentration of molecules of type Mi at point ~r and time t, ci(~r, t), is the solution of the following

differential equation

∂ci(~r, t)

∂t
= Di∇

2ci(~r, t) + gi(~r, t), (4)

where gi(~r, t) is the concentration of released molecules of type Mi at point ~r and time t. Since we

assume the same diffusion coefficients for all molecule types, the impulse responses of the channels

(which are obtained when gi(~r, t) = δ(~r)δ(t)) are the same, and for 3-D diffusion is obtained as [32]

h(~r, t) =
1[t > 0]

(4πDt)3/2
e−

‖~r‖2

4Dt . (5)
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Since the system is linear and time invariant (LTI), we have ci(~r, t) = gi(~r, t) ∗ h(~r, t). This means that

when a nano-transmitter, located at the origin, releases ζi molecules at time t = 0, the concentration of

molecules at point ~r and time t will be ci(~r, t) = ζih(~r, t).
4

Reception model: Molecules released by T1 and T2 need to be measured by the relay R, and molecules

released by the relay R need to be measured by T1 and T2. Hence, we require two receptors for molecules

of types M1 and M2 at the relay and one receptor to receive molecule type M3 at each transceiver. The

receivers at the transceivers and the relay are assumed to be transparent receivers, in which the receiver

counts the number of molecules that enter within its counting volume vr perfectly. We assume that the

radius of the receiver is small with respect to the distance of the relay from the transceivers, and hence

the concentration of molecules is almost uniform in this volume. For simplicity, we assume the same

counting volume vr for the receivers at the transceivers and the relay. According to this model, when the

average concentration of molecules of type Mi at the receiver at time t is ci(~r, t), the average number

of counted molecules in a volume vr is ci(~r, t)vr, and the total number of counted molecules of type Mi

at time t will follow a Poisson distribution with parameter ci(~r, t)vr; see [4], [33].5

III. CHEMICAL REACTION FOR MOLECULAR PNC AND RECEIVER NOISE REDUCTION

Here, we demonstrate the benefit of chemical reaction for molecular PNC and receiver noise reduction

(as discussed in the introduction) in the context of the above two-way communication channel. We first

describe the SNC scheme in part A. We then describe our proposed PNC scheme in part B. In this

section, we consider a channel with no ISI. The case with ISI is considered in Section IV to illustrate

the idea of the dual purpose of transmission.

A. The Previously Known SNC Scheme

For the transmission model, we restrict to protocols in which the transceivers and the relay alternate

in becoming active. In other words, in each run of the protocol, the transceivers T1 and T2 first become

active and transmit molecules. Then, T1 and T2 become silent and the relay R starts transmitting. During

the k-th run of this protocol, Ti aims to communicate the bit Bi,k to the other transceiver for i = 1, 2. This

4Note that if the transmitter of molecule type Mi is located at ~ri, we should find the response of the system for input

gi(~r, t) = δ(~r−~ri)δ(t), which will be ci(~r, t) = ζih(~r−~ri, t). However, as only the distance of the transmitter to the receiver

appears in h(~r, t), for simplicity, we obtain the concentration of each molecule type assuming that its transmitter is located at

the origin.

5The results of the paper can be easily extended for the general case with different distances from the transceivers to the

relay, diffusion coefficients and receiver volumes.
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Fig. 1: A molecular two-way relay network

Fig. 2: Block diagram of the system in the SNC or PNC scheme

protocol is run repeatedly so that T1 reconstructs (B̂T1

2,1, B̂
T1

2,2, · · · ) while T2 reconstructs (B̂T2

1,1, B̂
T2

1,2, · · · ).

Since T1 and T2 use different molecule types, the transmission protocol needs two time slots in total. We

consider a super time slot which contains two time slots of equal duration of ts. Throughout the paper,

k shows the index of the super time slot. The communication protocol in this scheme has two phases

described as follows (see Fig. 1):

• Phase 1: In the first phase, the transceivers, T1 and T2, send their information bits, B1,k and B2,k,

at the beginning of the k-th super time slot to the relay using OOK modulation. Transceivers use

different molecule types and this phase takes only one time slot. Employing the OOK modulation,

the transceiver Ti release Xi,k = Bi,kζi molecules of types Mi, where ζi shows the number of the

released molecules.

• Phase 2: In the second phase, the relay decodes the messages of T1 and T2 as B̂R

1,k and B̂R

2,k,

respectively, and transmits the XOR of the decoded bits, BR,k = B̂R

1,k ⊕ B̂R

2,k, to both transceivers

using OOK modulation, i.e., the relay releases X3,k = BR,kζ3 molecules of types M3 in the k-th

super time slot.

Each transceiver Ti decodes the message of the relay as B̂Ti

R,k and, by XORing it with its own sent

message, finds the message sent by the other transceiver, i.e., B̂Ti

ī,k
= Bi,k ⊕ B̂Ti

R,k, i ∈ {1, 2}. The block

diagram of the system is shown in Fig. 2.
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Received concentration: When we have no ISI in the channels, the remaining molecules of the

previous super time slots are cleared from the medium before new molecules are released, and hence the

average concentration of the molecules of type Mi measured by its receptor type in the k-th super time

slot is

Ci,k = ci(~r, t0)
∣

∣

‖~r‖=d
= Xi,kπ1 = Bi,kζiπ1, i ∈ {1, 2, 3}. (6)

where πl is the channel gain in the l-th time slot, which is obtained by sampling h(~r, t) at time instance

t0 + (l − 1)ts as follows:

πl = h(~r, t0 + (l − 1)ts)
∣

∣

‖~r‖=d
, l ≥ 1. (7)

According to the physical model, the number of counted molecules of type Mi at the relay in the k-th

super time slot, noted by Y R

i,k, has a Poisson distribution with parameter Ci,kvr, and the number of counted

molecules of type M3 at Ti, noted by Y Ti

3,k has a Poisson distribution with parameter C3,kvr.

B. The Proposed PNC Scheme

Here, we propose a new PNC scheme based on chemical reactions in the medium, which makes the

physical-layer XORing possible by exploiting the reaction among different molecule types and thus it

does not need a logic XOR gate at the relay. In addition, by XORing at the physical-layer using reaction,

the signal density reduces when both molecules arrive at the relay and thus the signal dependent noise

at the relay is reduced.

We first choose two molecule types M1 and M2, to be sent by the transceivers (T1 and T2, respectively),

such that they can react with each other by a reversible reaction as follows:

M1 +M2

γ
⇋
κ

M12, (8)

where γ, κ ≥ 0 are the forward and reverse reaction rate constants of the molecules of type M1 and

M2, respectively. The molecules of type M12 cannot be detected by the receptors of the relay. The two

communication phases in this scheme are similar to the SNC scheme with the difference that the XOR is

performed in the medium instead of the relay and the relay implicitly decodes the physically made XOR

of the messages and sends it to the transceivers in the second phase. If both messages of the transmitters

are 1, both molecules M1 and M2 arrive at the relay and react with each other as in (8). As a result, the

concentrations of both molecules decrease in the environment and almost no molecule is measured by

the receptors of the relay. When only M1 or M2 arrives at the relay, it is measured by its corresponding

receptor at the relay. The stimulated receptor would release ζ3 molecules of type M3 in the next time

slot. Thus, to make a physical-layer XOR, it is enough to choose the number of released molecules
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appropriately. The block diagram of the system in the PNC scheme is the same as the SNC scheme (see

Fig. 2) with the difference that the XOR is performed using reaction among molecules in the channel

of the first communication phase (Phase 1 Channel). Further, instead of the XOR gate in the SNC, the

decoded message of each receptor is encoded independently using OOK modulation at the encoder of

the relay and the output signals add up naturally in the medium.

Received concentration: The physical model of the PNC scheme is similar to the SNC scheme, with

the difference that in the PNC, (6) is the concentration of molecules of type Mi around the relay before

reaction, i.e., the concentrations of molecules of types M1 and M2 around the relay before reaction

are B1,kζ1π1 and B2,kζ2π1, respectively. Similar to the SNC, we assume Poisson distribution for the

number of counted molecules. In [34], the authors show that assuming the Poisson distribution for the

number of received molecules when there is reaction among molecules is an approximation which has

excellent accuracy. This fact is also verified in [35] using particle-based simulation. To find the received

concentration of each molecule type at the relay, we obtain the concentration of molecules after reaction

using the following reaction-diffusion equation:

∂c1(~r, t)

∂t
= D1∇

2c1(~r, t)− γc1(~r, t)c2(~r, t) + κc12(~r, t) + g1(~r, t),

∂c2(~r, t)

∂t
= D2∇

2c2(~r, t)− γc1(~r, t)c2(~r, t) + κc12(~r, t) + g2(~r, t),

(9)

where c12(~r, t) is the concentration of molecule type M12. Since D1 = D2 = D, subtracting the equations

in (9), the nonlinear term cancels out and we obtain

∂ρ(~r, t)

∂t
= D∇2ρ(~r, t) + g1(~r, t)− g2(~r, t), (10)

where ρ(~r, t) = c1(~r, t) − c2(~r, t). Hence, the difference of molecule densities can be obtained using

superposition property for LTI systems as ρ(~r, t) = g1(~r, t) ∗ h(~r, t) − g2(~r, t) ∗ h(~r, t), where h(~r, t)

is given in (5) (this is a key argument of [21]). However, there is no general closed-form expression

for the concentration of each molecule type because of the nonlinear term. To address this difficulty

and obtain closed-form expressions for our analysis, from now on, we assume perfect reaction among

molecules of types M1 and M2 (i.e., forward reaction rate constant γ goes to ∞ and reverse reaction

rate constant κ is zero).6 In this case, when the two molecule types meet in the medium, molecule

type with lower concentration is completely canceled out, and a residual part of the one with higher

concentration remains, i.e., both molecule types do not exist simultaneously in the same location in the

medium (c1(~r, t)c2(~r, t) = 0). With this assumption, the concentration of each molecule type can be

6The PNC scheme with imperfect reaction is considered in Section VII and the concentration of molecules is obtained

numerically using the finite difference method.
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obtained as follows: if ρ(~r, t) ≥ 0, c2(~r, t) = 0 and c1(~r, t) = ρ(~r, t); otherwise, c1(~r, t) = 0 and

c2(~r, t) = −ρ(~r, t). In other words, c1(~r, t) = max{0, ρ(~r, t)} and c2(~r, t) = max{0,−ρ(~r, t)}.

When we have no ISI, the concentration of molecules of type M1 and M2 measured by the receptors

of their type are C1,k = max{B1,kζ1π1 − B2,kζ2π1, 0} and C2,k = max{B2,kζ2π1 − B1,kζ1π1, 0},

respectively. Since we assumed the same channel coefficients for the two transceivers, if we choose

ζ1 = ζ2 = ζ , an almost equal concentration of molecules of both types arrives at the relay (when both

transceivers send the information bit 1).7 This makes almost all molecules react with each other and

thus realizes a physical-layer XOR. For a fair comparison of the two schemes, from now on, we assume

ζ1 = ζ2 = ζ , for both schemes.

The error performances of the two schemes without ISI are investigated in Section V. It is shown

analytically and later by simulation that the proposed PNC scheme outperforms the SNC scheme.

Remark on notation: While the notation is kept as simple as possible, the messages sent and decoded

by the transceivers and the relay in each communication phase must be defined as well as the error events

for each phase. Furthermore, since we have two receptor types at the relay, the decoded messages of

each receptor type and their corresponding error events must be defined. Table I summarizes the mostly

used notations in this paper.

IV. CHEMICAL REACTION FOR DUAL PURPOSE OF TRANSMISSION

In this section, to illustrate the idea of the dual purpose of transmission (as mentioned in the introduc-

tion), we consider the ISI case and using the reaction characteristic of the PNC scheme, we propose an

ISI mitigating technique for the first communication phase of the PNC scheme. To have a fair comparison

between the two schemes, we apply the existing ISI mitigating techniques to the SNC scheme. In our

schemes, we assume that the transceivers know the channel coefficients of both transceivers to the relay,

i.e., the distances and diffusion coefficients.

In Subsection IV-A, ISI mitigating technique for SNC scheme is described, and in Subsection IV-B

the proposed ISI mitigating technique for PNC is presented.

A. The SNC Scheme

In the SNC scheme, we use the existing ISI mitigating techniques (as mentioned, SNC in the presence

of ISI has not been studied before). To mitigate ISI in a communication link, two approaches are possible:

7If the channel coefficients are not equal, each transceiver Ti, knowing its own channel coefficient π1, chooses ζi such that

a constant concentration of molecules arrive at the relay when the message of the transceiver is 1).
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TABLE I: Used Notations

Bi,k The message of the transceiver Ti in the k-th super time slot

BR,k The sent message of the relay in the k-th super time slot

BRi,k A part of the message BR,k , to be decoded by the i-th receptor at the relay in the PNC in the k-th

= Bi,k ·(B1,k⊕B2,k) super time slot

B̂Ri,k The decoded message by the i-th receptor at the relay in the PNC in the k-th super time slot

B̂R

i,k The decoded message by the i-th receptor at the relay in the SNC in the k-th super time slot

B̂
Ti
R,k The message of the relay, decoded at the transceiver Ti in the k-th super time slot

B̂
Tj

i,k The message of the transceiver Ti, decoded by the transceiver Ti in the k-th super time slot

Xi,k The number of released molecules of type Mi in the k-th super time slot

Ci,k The concentration of molecules of type Mi around its receptors in the k-th super time slot

Ii,k The concentration of remained molecules of type Mi from the previous super time slots around its

receptors in the k-th super time slot

Ei,k The error event at transceiver Ti in the k-th super time slot (B̂
Ti

ī,k
6= Bī,k)

ER,k The error event of the first communication phase in the k-th super time slot (BR,k 6= B1,k ⊕B2,k)

ERi,k The error event of the i-th receptor at the relay in the k-th super time slot (in PNC: B̂Ri,k 6= BRi,k,

in SNC: B̂R

i,k 6= Bi,k)

E
Ti
k The error event of the second communication phase in the k-th super time slot (B̂

Ti
R,k 6= BR,k)

adapting transmission rate at the transmitter [30], and adapting threshold at the receiver [29]. In both

communication phases, to reduce the complexity of the relay, we leave all complexity to the transceivers.

In communication phase 1, we use an adaptive rate8 at the transceivers along with a fixed threshold

at the relay. This means that we extend the method of [30] to the SNC scheme, i.e., each transceiver

adapts its transmission rate to mitigate its own ISI. Therefore, when the message of the transceiver is 0,

it stays silent; otherwise, according to its transmission in the previous super time slot, it adapts its rate

such that the concentration of molecules around the relay is a constant value. More specifically, in the

k-th super time slot, if Bi,k = 0, the transceiver Ti stays silent and if Bi,k = 1, the transceiver transmits

an adaptive number of molecules such that a constant concentration of molecules, cr, arrives at the relay.

Hence, each Ti to send its message Bi,k ∈ {0, 1} in the k-th super time slot transmits

Xi,k = Bi,k(
cr

π1
− Li,k), (11)

molecules such that

Li,k =
Ii,k
π1

. (12)

where Ii,k denotes the ISI term, which is the concentration of molecules of type Mi around the relay

remained from the previous super time slots. Note that in this scheme, the ISI is not mitigated when

8From now on by ”adaptive rate”, we mean ”adaptive transmission rate”
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the message of the transceiver is 0. In the following, we first describe the ISI model and obtain

the concentration of received molecules at the relay in the presence of ISI. Then, using the received

concentration, we obtain the adaptive rates in Lemma 1.

Received concentration: We model the ISI in the channel by a q-slot memory [36], i.e., πl = 0, for

l > q + 1, where πl is defined in (7). In addition, since in our transmission protocol, the molecules of

types M1 and M2 are released in the odd time slots and the molecules of type M3 are released in the even

time slots, the relay counts the number of received molecules in the odd time slots and the transceivers

count the number of received molecules in the even time slots. Hence, the number of received molecules

is counted once in every two time slots at the receivers of the relay and the transceivers. Therefore, the

ISI in the l-th time slot is caused by the concentration of remained molecules from (l−2)-th, (l−4)-th,...,

(l−2⌊ q2⌋)-th time slots. For example, for q = 1, when the relay counts the number of received molecules

in the l-th time slot, no ISI is observed, because the transceivers have not released any molecules in the

(l− 1)-th time slot. Hence, the concentration of molecules of type Mi around the relay in the k-th super

time slot is given as

Ci,k =

⌊ q

2
⌋

∑

l=0

π2l+1Xi,k−l = Xi,kπ1 + Ii,k, i ∈ {1, 2}, (13)

Lemma 1. The adaptive rate of the transceiver Ti in the SNC scheme to mitigate ISI of the transceiver-

relay channel with q-slot memory, can be obtained as follows:

Xi,k = Bi,k

( cr

π1
−

⌊ q

2
⌋

∑

l=1

η2l+1Xi,k−l

)

, i ∈ {1, 2}, (14)

where ηl is the normalized channel gain as follows:

ηl =
πl
π1

, l > 1. (15)

Proof. The proof is straightforward by substituting (12) in (11) and using the fact that for q-slot memory

in the channel, Ii,k =
∑⌊ q

2
⌋

l=1 π2l+1Xi,k−l from (13).

Remark 1. According to (14), each transceiver Ti needs to save the number of its released molecules

in previous ⌊ q2⌋ super time slots, i.e., Xi,k−1, ...Xi,k−⌊ q

2
⌋, to determine Xi,k. Note that the number of

released molecules from Ti in each super time slot has a maximum value which can be obtained from

(14) when Xi,k−1 = ... = Xi,k−⌊ q

2
⌋ = 0 and Bi,k = 1 as Xi,max =

cr

π1
. Hence, a finite memory is needed

to save Xi,k−l. Further, we assume ηl < 1, for l > 1.9 Note that when Bi,k = 1, from (14) we have,

9In diffusion-based systems with channel memory, the sampling time t0 is chosen such that h(d, t) takes its maximum at

t = t0, and thus πl < π1, for l > 1. Hence, to make the channel coefficients to be reducing, we choose t0 = d2

6D
[37].
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Xi,k ≥ cr

π1
−

∑⌊ q

2
⌋

l=1 η2l+1Xi,max = cr

π1
(1 −

∑⌊ q

2
⌋

l=1 η2l+1). Hence, if the channel coefficients are such that
∑⌊ q

2
⌋

l2=1 η2l1+1 < 1,10 it is assured that Xi,k is always non-negative.

In communication phase 2, the second ISI mitigating approach, i.e., using adaptive thresholds at the

transceivers along with fixed rate at the relay, is taken [29]. The adaptive thresholds of phase 2 are derived

in Section VI.

B. The Proposed PNC Scheme

In the PNC scheme, the XOR is realized in the medium using the molecular reaction in the first

communication phase. In the presence of ISI, there are remaining molecules from the previous transmis-

sions. Using the idea of the dual purpose of transmission, we use reaction to mitigate ISI in the first

communication phase by releasing extra molecules from each transceiver to react with the remaining

molecules of the other transceiver from the previous transmissions. Note that each transceiver has access

to the decoded version of the transmitted bits of the other transceiver in the previous super time slots.

Thus, knowing its own channel coefficients and the channel coefficients of the other transceiver, each

transceiver can estimate the concentration of the remaining molecules of the other transceiver from the

previous transmissions. Therefore, it can choose its transmission rate such that along with transmitting

its own message, the concentration of the remaining molecules of the other transceiver is also canceled

out. As an example, assume the case of one super time slot memory for the transceiver-relay channel.

Also assume the messages of the transceivers T1 and T2 to be 1 and 0, respectively, in the current super

time slot. Because of the one super time slot memory in the channel, there may be concentrations of

the remaining molecules of types M1 and M2 around the relay from the previous super time slot. The

transceiver T1 releases a constant number of molecules to send its information bit 1 and some extra

molecules to cancel out the remaining molecules of the transceiver T2 from the previous super time slot.

Since the message of T2 is 0, it does not release any molecules to send its message, but releases some

molecules to cancel out the remaining molecules of T1 around the relay from the previous super time

slot. Hence, in this scheme, the transceivers may release some molecules even if their message is 0. This

scheme is based on using an adaptive rate at the transceivers along with a fixed threshold at the relay,

where similar to SNC, the relay is assumed to be simple while all complexity is left to the transceivers.

More specifically, each transceiver Ti releases extra molecules, denoted by Ui,k, in each super time slot

10This condition can be assured at the cost of increasing ts and decreasing the sampling rate accordingly. This decreases the

values of ηl.
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to react with and cancel out the remained molecules of the other transceiver from the previous super

time slots, i.e., for i ∈ {1, 2},

Xi,k = Bi,k
cr

π1
+ Ui,k, (16)

in which

Ui,k =
Ĩī,k
π1

, (17)

where Ĩī,k is the estimated value of the remained molecules of the transceiver Tī around the relay in the

k-th super time slot before reaction, which is calculated by the transceiver Ti using its previously decoded

messages. Note that, despite the SNC scheme, in this scheme, the ISI of the channel is mitigated for

both messages 0 and 1. The ISI model in this scheme is similar to the SNC scheme, with the difference

that in the PNC, (13) is the concentration of molecules of type Mi around the relay before reaction. The

adaptive rates is obtained in Lemma 2.

Lemma 2. The adaptive rate of the transceiver Ti in the PNC scheme to mitigate ISI of the transceiver-

relay channels with q-slot memory, can be obtained as follows:

Xi,k =
cr

π1
(Bi,k +

⌊ q

2
⌋

∑

l=1

η2l+1B̂
Ti

ī,k−l
) +

⌊ q

2
⌋

∑

l1=1

⌊ q

2
⌋

∑

l2=1

η2l1+1η2l2+1Xi,k−l1−l2 , i ∈ {1, 2}, (18)

Proof. By substituting (17) in (16) and using Ĩī,k =
∑⌊ q

2
⌋

l=1 π2l+1X̃ī,k−l (where X̃ī,k−l is the approximated

value of the number of released molecules from Tī in the (k − l)-th super time slot, calculated by Ti

using its decoded messages), we have:

Xi,k = Bi,k
cr

π1
+

⌊ q

2
⌋

∑

l1=1

η2l1+1X̃ī,k−l1 , (19)

for i ∈ {1, 2}. We can write a similar equation for X̃ī,k−l1 as follows:

X̃ī,k−l1 = B̂Ti

ī,k−l1

cr

π1
+

⌊ q

2
⌋

∑

l2=1

π2l2+1Xi,k−l1−l2 . (20)

Now, by substituting (20) in (19), we obtain (18).

Remark 2. According to (18), each transceiver Ti needs to save its decoded messages in previous ⌊ q2⌋

super time slots and the number of its released molecules in previous 2⌊ q2⌋ super time slots. If the

channel coefficients are such that
∑⌊ q

2
⌋

l2=1 η2l1+1 < 1, it can be easily shown by induction that the number

of released molecules from Ti in each super time slot is always bounded, i.e., Xi,k < cr

π1
· 1

1−
∑⌊

q
2
⌋

l=1
η2l+1

.

This guarantees the stability of the scheme.
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Remark 3. In Section VII, for a fair comparison of the SNC and PNC schemes, we choose cSNC
r (the cr

used in (11)) and cPNC
r (the cr used in (16)), such that 1

2

∑2
i=1 X

SNC
i,avg = 1

2

∑2
i=1 X

PNC
i,avg, where XPNC

i,avg and

XSNC
i,avg are the average number of the released molecules from the transceiver Ti in the PNC and SNC

schemes, respectively. The average values can be obtained from (14) and (18) by substituting Xi,k and

Xi,k−1 with their average values (XPNC
i,avg or XSNC

i,avg), and Bi,k and Bī,k−1 with their average values, 1
2 ,

as follows:

XSNC
i,avg =

cSNC
r

π1
·

1

2 +
∑⌊ q

2
⌋

l=1 η2l+1

, XPNC
i,avg =

cPNC
r

π1
·

1

2(1−
∑⌊ q

2
⌋

l=1 η2l+1)
, i ∈ {1, 2}. (21)

Hence,

cSNC
r

cPNC
r

=
2 +

∑⌊ q

2
⌋

l=1 η2l+1

2(1 −
∑⌊ q

2
⌋

l=1 η2l+1)
. (22)

In communication phase 2, similar to SNC, the approach of adapting thresholds at the receivers is

used with the thresholds derived in Section VI.

V. ERROR PERFORMANCE ANALYSIS WITH NO ISI

In this section, we derive the probabilities of error at the transceivers T1 and T2, noted by pe,1 and pe,2,

respectively. Throughout this paper, we consider the average bit error probability (Avg-BEP) as follows:

Avg-BEP =
1

2
(pe,1 + pe,2). (23)

First, we investigate the error probabilities of the SNC scheme. Then, using a similar approach, we derive

the error probabilities of the proposed PNC scheme. Since the error probability without ISI in the current

super time slot does not depend on the error probabilities of the previous super time slots and is the

same for all super time slots, we drop the index k of the bits and error events in this section.

A. The SNC scheme

In the SNC scheme, as mentioned before, the i-th receptor at the relay decodes Bi (the message of the

transceiver Ti) as B̂R
i . The relay XORs the decoded messages and sends the message BR = B̂R

1 ⊕ B̂R
2

to the transceivers using XR
3 = BRζ3 molecules of type M3. Each transceiver Ti decodes the message

of the relay as B̂Ti

R
and, finds the message sent by the other transceiver as B̂Ti

ī
= Bi ⊕ B̂Ti

R
, i ∈ {1, 2}.

Define Ei as the error event at the transceiver Ti, i.e., B̂Ti

ī
6= Bī. The probability of the event Ei is

shown by P(Ei) = pe,i. Ei consists of two error events corresponding to two communication phases:

i. ER: B1 ⊕B2 is decoded with error at the relay (BR 6= B1 ⊕B2).

ii. ETi : The i-th transceiver decodes the message of the relay with error (B̂Ti

R
6= BR).

The probabilities of the first and second events are shown by P(ER) and P(ETi), respectively. We show
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the conditioned event {B = b} with {b} for brevity, when it is clear from the context. The total error

probability at the transceiver Ti in terms of P(ER) and P(ETi) is obtained in Lemma 3.

Lemma 3. The total error probability at the transceiver Ti in the SNC scheme can be obtained as

pe,i =
1

2

∑

bR∈{0,1}

P(ETi |BR = bR) +
1

4

[

1−
∑

bR∈{0,1}

P(ETi |BR = bR)
]

∑

b1,b2∈{0,1}

P(ER|b1, b2). (24)

Proof. The total error probability at Ti conditioned to B1 = b1 and B2 = b2 can be obtained as

P(Ei|B1 = b1, B2 = b2) = P(B̂Ti

ī
6= Bī|b1, b2)

=P(B̂Ti

R
= BR, BR 6= b1 ⊕ b2|b1, b2) + P(B̂Ti

R
6= BR, BR = b1 ⊕ b2|b1, b2)

=P(ER|b1, b2)
(

1− P(ETi |BR = b1 ⊕ b2)
)

+
(

1− P(ER|b1, b2)
)

P(ETi |BR = b1 ⊕ b2), (25)

for i ∈ {1, 2}. By taking average over B1 and B2, the total probability of error at the transceiver Ti can

be easily obtained for i ∈ {1, 2} as (24).

In the following, we compute the error probabilities of the two phases, i.e., P(ER|b1, b2) and P(ETi |BR).

Phase 1: When Ti sends Bi = bi, the average concentration molecules of type Mi at the relay is

Ci = biζπ1. Hence, due to the transparent receiver, the number of counted molecules of type Mi at

the relay, Y R
i , is Poisson(biζπ1vr). The relay uses a threshold τRi to decode Bi: if Yi ≤ τRi , then Bi is

decoded as B̂R
i = 0; otherwise, it is decoded as B̂R

i = 1.

Lemma 4. For a transparent receiver with no environment noise, the optimum threshold to decode a

message B ∈ {0, 1} with P{B = 0} ≥ P{B = 1},11 which is sent using OOK modulation, is obtained

using the maximum-a-posteriori (MAP) decision rule as τ = 0.

Proof. For a transparent receiver with no environment noise, if Y is the number of counted molecules

at the receiver, we have

P{Y = y|B = 0} = δ[y]. (26)

Using the MAP decision rule to decode B, we have

P{B = 1}P(y|B = 1)
1
≷
0
P{B = 0}P(y|B = 0) = P{B = 0}δ[y], (27)

which results in τ = 0, since P{B = 0} ≥ P{B = 1}.

11While assumption of uniform distribution on message bits is common in communication systems, we need this general

condition to obtain the optimum thresholds at the receivers (both at the relay and the transceivers). Note that our assumption

allows for the uniform distribution on message bits.
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Using Lemma 4 and because of the uniform distribution of the message bits of the transceivers, the

optimum thresholds at the relay are τRi = 0, i ∈ {1, 2}. Using these thresholds at the relay, the error

probability of the first phase is obtained in Lemma 5.

Lemma 5. The error probability of the first communication phase, P(ER|b1, b2), in the SNC scheme

using the optimum threshold can be obtained as

P(ER|B1 = 0, B2 = 0) = 0, (28)

P(ER|B1 = 1, B2 = 0) = P(ER|B1 = 0, B2 = 1) = exp(−ζπ1vr),

P(ER|B1 = 1, B2 = 1) = 2 exp(−ζπ1vr)− 2 exp(−2ζπ1vr).

Proof. We define ER
i = {B̂R

i 6= Bi} to denote the event where Bi is decoded with error at the relay. Note

that Bi = 0 is decoded without error at the relay, due to the noiseless assumption. Hence, for i ∈ {1, 2}

P(ER

i |Bi = 0) = P{Y R

i > τRi |Bi = 1} = 0,

P(ER

i |Bi = 1) = P{Y R

i ≤ τRi |Bi = 1} = exp(−ζπ1vr).

(29)

Due to XORing at the relay, the event ER is equivalent to the event that one of the messages B1 or B2

is decoded with error at the relay. Hence,

P(ER|B1 = b1, B2 = b2) = P(ER

1 |b1)(1− P(ER

2 |b2)) + (1− P(ER

1 |b1))P(E
R

2 |b2). (30)

By substituting P(ER
1 |b1) and P(ER

2 |b2) from (29) in (30) we obtain (28).

Phase 2: The conditional distribution of the number of counted molecules of type M3 at the transceiver

Ti, i.e., Y Ti

3 , given BR = bR, is Poisson
(

bRζ3π1vr

)

. To decode BR, each transceiver Ti uses a threshold,

τTi . The optimum value of τTi can be obtained according to Lemma 4 as τTi = 0, i ∈ {1, 2}.12 The

error probability of the second phase is obtained in Lemma 6.

Lemma 6. The error probability of the second communication phase at Ti, P(ETi |bR), in the SNC

scheme using the optimum threshold can be obtained as

P(ETi |BR = 0) = 0, P(ETi |BR = 1) = exp(−ζ3π1vr). (31)

Proof. The proof is straightforward according to the fact that P(ETi |BR = 0) = P{Y Ti

3 > τTi |BR = 0)

and P(ETi |BR = 1} = P{Y Ti

3 ≤ τTi |BR = 1}.

12Note that P{BR = 0} = 1

4
[P{Ec

R|B1 = 0, B2 = 0}+ P{Ec
R|B1 = 1, B2 = 1}+ P{ER|B1 = 0, B2 = 1} + P{ER|B1 =

1, B2 = 0}] = 1

2
(1 + exp(−2ζπvr)), which is greater than P{BR = 1} = 1 − P{BR = 0} = 1

2
(1 − exp(−2ζπvr)) and thus

the condition in Lemma 4 is satisfied.
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Now, by substituting the error probabilities of the two communication phases (from (28) and (31)) in

(24), we obtain pe,i, i ∈ {1, 2}, as

pe,i =
1

2
exp(−ζ3π1vr) +

1

2
[1− exp(−ζ3π1vr)] [2 exp(−ζπ1vr)− exp(−2ζπ1vr)] . (32)

B. The proposed PNC scheme

In the PNC scheme, each transceiver Ti sends its message Bi ∈ {0, 1} to the relay through releasing

Xi = ζBi molecules of type Mi. When both transceivers send the information bit 1, almost all molecules

react with each other and we have a physical-layer XOR. That is, the relay implicitly decodes the

physically made XOR of the messages, B1 ⊕ B2, and sends it to the transceivers through releasing

X3 molecules of type M3. We define an auxiliary variable BRi
as the part of the message B1 ⊕ B2

which corresponds to Bi. Each receptor i at the relay decodes the message BRi
= Bi · (B1 ⊕ B2),

the part of the message B1 ⊕ B2 which corresponds to Bi, as B̂Ri
. For B̂R1

= B̂R2
= 0, the relay

stays silent; otherwise (when B̂R1
= 1 or B̂R2

= 1), it releases ζ3 molecules of type M3 and hence,

X3 = (B̂R1
+ B̂R2

)ζ3 = BRζ3. Due to the perfect reaction assumption, B̂R1
and B̂R2

cannot be 1 at the

same time and thus, X3 ∈ {0, ζ3}. We remark that these notations are used for the ease of error analysis.

In fact, the message sent by the relay (BR) implicitly shows the B̂1 ⊕B2 and it is realized through B̂R1

and B̂R2
in our scheme. Furthermore, the system naturally adds up B̂R1

and B̂R2
, because the encoder

would release molecules when it is stimulated by the active receptor (at most one active receptor exists

in each time slot).

The error events in this scheme are defined similar to the SNC scheme and the total error probability

at the transceiver Ti can be obtained from Lemma 3. Since the second communication phase is the same

in both SNC and PNC schemes, P(ET
i |bR) for both schemes can be obtained from Lemma 6. In the

following, we derive the error probability of the first phase.

In phase 1, when both transceivers send the same information bit 1 or 0, the concentrations of molecules

of types 1 and 2 around the relay are C1 = C2 = 0 (thanks to perfect reaction) and when the transceiver

Ti, i ∈ {1, 2}, sends the information bit 1 and the transceiver Tī sends the information bit 0, the

concentrations are Ci = ζπ1 and Cī = 0. Hence, when BRi
= bRi

, the average concentration of the

molecule type Mi around the relay is Ci = bRi
ζπ1, and due to the transparent receiver, the number of

counted molecules of type Mi at the relay, Y R
i , is Poisson(bRi

ζπ1vr). Similar to the SNC scheme, the

relay uses a threshold τRi , to decode BRi
. According to Lemma 4, the optimum thresholds are obtained
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TABLE II: Messages and number of molecules sent by the relay in the proposed PNC scheme

B1 B2 B1 ⊕B2 BR1
= B1 · (B1 ⊕B2) BR2

= B2 · (B1 ⊕B2) X3

0 0 0 0 0 0

1 0 1 1 0 B̂R1
ζ3

0 1 1 0 1 B̂R2
ζ3

1 1 0 0 0 0

as τRi = 0, i ∈ {1, 2}.13 Using these thresholds, the error probability of the first phase in the PNC scheme

is obtained in Lemma 7.

Lemma 7. The error probability of the first communication phase, P(ER|b1, b2), in the PNC scheme

using the optimum threshold can be obtained as

P(ER|B1 = 0, B2 = 0) = P(ER|B1 = 1, B2 = 1) = 0, (33)

P(ER|B1 = 1, B2 = 0) = P(ER|B1 = 0, B2 = 1) = exp(−ζπ1vr).

Proof. We define ERi
as the event {B̂Ri

6= BRi
}. Hence, P(ERi

) is the probability of error when BRi
is

decoded with error at the i-th receptor of the relay. Since τRi = 0, for i ∈ {1, 2},

P(ERi
|BRi

= 0) = 0, P(ERi
|BRi

= 1) = exp(−ζπ1vr). (34)

Recall that the number of released molecules of type M3 equals to X3 = 0 when the transceivers send the

same messages and X3 = ζ3 when one of the transceivers send the information bit 1 and the corresponding

receptor at the relay decodes it correctly (see Table II). Thus, when (B1, B2) ∈ {(0, 0), (1, 1)}, BR1
and

BR2
equal to zero and are decoded without error at the relay. When (B1, B2) = (1, 0), we have BR1

= 1

and BR2
= 0. Hence, BR2

is decoded without error at the relay and we get P(ER|B1 = 1, B2 = 0) =

P(ER1
|BR1

= 1). Similarly, we get P(ER|B1 = 1, B2 = 0) = P(ER2
|BR2

= 1).

Now, by substituting the error probabilities of the two phases from (33) and (31) in (24), we obtain

pe,i =
1

2
exp(−ζ3π1vr) +

1

2
[1− exp(−ζ3π1vr)] exp(−ζπ1vr), (35)

for i ∈ {1, 2}, and thus the Avg-BEP can be obtained from (23).

Remark 4. Comparing (32) and (35), it can be seen that the error probability at each transceiver and

thus the Avg-BEP of the PNC is lower than the SNC since exp(−ζπ1vr) > exp(−2ζπ1vr) and hence,

13Note that here we have, P{BRi
= 1} = P{Bi = 1, Bī = 0} = 1

4
and P{BRi

= 0} = 1 − P{BRi
= 1} = 3

4
. Hence,

P{BRi
= 1} < P{BRi

= 0} and the condition in Lemma 4 is satisfied.
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exp(−ζπ1vr) < 2 exp(−ζπ1vr) − exp(−2ζπ1vr). In fact, since P(ER|B1 = 1, B2 = 1) is zero for the

PNC scheme, but it is positive for the SNC scheme, the error probability at the relay is lower for the

PNC scheme. Further, P(ETi |BR = 0) and P(ETi |BR = 1) are equal for both schemes. Thus, according

to (24), the error probability at the transceivers is lower for the PNC scheme.

VI. ERROR PERFORMANCE ANALYSIS IN THE PRESENCE OF ISI

For simplicity of exposition, we assume the transceiver-relay and the relay-transceiver channels to have

unit super time slot memory. In Section VII, we simulate the system for higher channels memories.

A. The SNC scheme

Similar to the no ISI case, from (24), we define two error events in each super time slot corresponding

to each communication phase: (i) ER,k = {B̂R,k 6= BR,k}, and (ii) ETi

k = {B̂Ti

R,k 6= B̂R,k}. In the

following, we obtain the error probabilities of both communication phases.

Phase 1: According to (14), the transceiver Ti uses the number of released molecules in the (k−1)-th

super time slot to determine the number of released molecules in the k-th super time slot: if its message

is 1, the transceiver Ti releases some molecules such that the concentration of molecules of type Mi

at the relay will be equal to cr and if its message is 0, it stays silent (concentration of the molecules

of type Mi at the relay will be equal to the concentration of the remained molecules from the previous

super time slot, i.e., Xi,k−1π3). Hence, given Bi,k = bi and Xi,k−1 = x, the average concentration of

molecules of type Mi around the relay is Ci,k = bicr +(1− bi)xπ3 and the number of counted molecules

of type Mi at the relay, Y R

i,k, has a Poisson distribution with parameter Ci,kvr. It is just straightforward

to show from (14) that the probability distribution function (PDF) of Xi,k for i ∈ {1, 2} is as follows:

pXi,k
(x) =

∞
∑

n=1

(
1

2
)nδ(x − xn), xn =

cr

π1

n−2
∑

l=0

(−η3)
l, n ∈ N. (36)

The relay uses MAP decision rule to decode the message of the transceiver Ti, i ∈ {1, 2}, i.e., Bi,k, as

1

2
P(yRi,k|Bi,k = 1)

1
≷
0

1

2
P(yRi,k|Bi,k = 0). (37)

Noting that yRi,k conditioned on Bi,k = 0 depends on Xi,k−1, and taking average of P(yRi,k|Bi,k = 0) over

Xi,k−1 results in

P(yRi,k|Bi,k = 1)
1
≷
0

∞
∫

0

pXi,k−1
(x)P(yRi,k|Bi,k = 0,Xi,k−1 = x)dx. (38)

By substituting pXi,k−1
(x) from (36), we obtain the MAP decision rule at the i-th receptor as

(crvr)
yR

i,k exp(−crvr)
1
≷
0

∞
∑

n=1

(
1

2
)n(xnπ3vr)

yR

i,k exp(−xnπ3vr). (39)
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It can be shown that the above decision rule yields to a simple threshold rule, i.e., yRi,k
1
≷
0
τRi , where

the optimum threshold τRi can be found numerically. Then, the error probability at the i-th receptor

(i ∈ {1, 2}) of the relay is obtained as

P(ER

i,k|Bi,k = 0) =

∞
∑

n=1

(
1

2
)nP{Y R

i,k > τRi |Bi,k = 0,Xi,k−1 = xn}, (40)

P(ER

i,k|Bi,k = 1) = P{Y R

i,k ≤ τRi |Bi,k = 1},

Now, P(ER,k|B1,k = b1, B2,k = b2) can be obtained by substituting (40) in (30).

Phase 2: Here, using fixed transmission rate, the number of counted molecules at Ti when BR,k = bR

and BR,k−1 = b̃R) is Y Ti

3,k ∼Poisson(bRζ3π1vr + b̃Rζ3π3vr). To mitigate ISI in this phase, the transceiver

Ti uses the decoded message of the relay in the (k − 1)-th super time slot, i.e., B̂Ti

R,k−1 and obtains

the adaptive threshold in the k-th super time slot using Maximum Likelihood (ML) decision rule. The

adaptive threshold at the transceiver Ti is obtained in Lemma 8 for the relay-transceiver channel with

one super time slot memory.

Lemma 8. For a relay-transceiver channel with one super time slot memory, the adaptive threshold at

the transceiver Ti to decode the message of the relay, using its decoded message in the previous super

time slot (B̂Ti

R,k−1 = b̂R), is obtained according to ML decision rule as

τTi(b̂R) =
ζ3π1vr

ln(1 + 1
η3 b̂R

)
. (41)

Proof. Using ML decision rule to decode BR,k at the transceiver Ti, we have

P(yTi

3,k|BR,k = 1, BR,k−1 = b̂R)
1
≷
0
P(yTi

3,k|BR,k = 0, BR,k−1 = b̂R), (42)

Hence,

yTi

3,k

1
≷
0

ζ3π1vr

ln(1 + 1
η3 b̂R

)
= τTi(b̂R). (43)

which gives the adaptive threshold used at Ti (that is τTi(b̂R)).

It can be easily seen that when previous decoded message is zero, our ISI mitigating technique gives the

zero threshold (i.e., τTi(0) = 0). For the above decision rule, the error probability at Ti for bR ∈ {0, 1}

is obtained as

P(ETi

k |BR,k = bR) =
∑

b̃R,b̂R∈{0,1}

[

P{BR,k−1 = b̃R}P{B̂
Ti

R,k−1 = b̂R|b̃R}P
(

ETi

k |bR, b̃R, b̂R
)

]

, (44)

for i ∈ {1, 2}, where

P(BR,k−1 = 0) =
1

4

[

2− P(ER,k−1|B1,k−1 = 0, B2,k−1 = 0)− P(ER,k−1|B1,k−1 = 1, B2,k−1 = 1)
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+ P(ER,k−1|B1,k−1 = 0, B2,k−1 = 1) + P(ER,k−1|B1,k−1 = 1, B2,k−1 = 0)
]

, (45)

P(B̂Ti

R,k−1 = b̂R|b̃R) =











P(ETi

k−1|b̃R), if b̂R 6= b̃R,

1− P(ETi

k−1|b̃R), if b̂R = b̃R,

(46)

and P
(

ETi

k |BR,k = 0, b̃R, b̂R
)

= P
{

Y Ti

3,k > τTi(b̂R)|BR,k = 0, b̃R
}

, P
(

ETi

k |BR,k = 1, b̃R, b̂R
)

= P
{

Y Ti

3,k ≤

τTi(b̂R)|BR,k = 1, b̃R
}

. Hence, P(ETi

k |BR,k = bR) can be obtained recursively from (44). Since we have

two linear equations in (44) with two unknowns, a closed form equation can be easily obtained for

P(ETi

k |BR,k = bR).

Remark 5. (No error (NoE) approximation) The total error probability at the transceiver Ti can be

further simplified assuming that the message of the relay is decoded without error at the transceivers in

the previous super time slot (i.e., we ignore the error propagation). Hence, the error probability of the

second phase can be obtained simply from (44) assuming P(ETi

k−1|b̃R) = 0, and the total error probability

at the transceiver Ti can be obtained for i ∈ {1, 2} using (25):

pNoE
e,i =

1

16

(

(2− u1)
2 − u22

)

wi,1 +
1

16

(

(2− u2)
2 − u21

)

wi,2 +
1

4
(u1 + u2), (47)

where u1 = P(ER,k|B1,k = 0, B2,k = 0) + P(ER,k|B1,k = 1, B2,k = 1), u2 = P(ER,k|B1,k = 0, B2,k =

1) + P(ER,k|B1,k = 1, B2,k = 0) can be computed from (40) and (30), and

wi,1 = exp(−ζ3π1vr) +

∞
∑

l=τTi(1)+1

(ζ3π3vr)
l

l!
exp(−ζ3π3vr), (48)

wi,2 =

τTi (1)
∑

l=0

(ζ3(π1 + π3)vr)
l

l!
exp(−ζ3(π1 + π3)vr).

This provides a lower bound on the error probability of the SNC scheme as follows: from (24), we have

pe,i = P(ER) +
1
2

(

1− 2P(ER)
)

[P(ETi |BR = 0) + P(ETi |BR = 1)]; by ignoring the error propagation,

we obtain lower bounds on P(ETi |BR = 0) and P(ETi |BR = 1); now, since P(ER) ≤ 0.5, this is a

lower bound on pe,i.

B. The PNC scheme

Here, the error probability of the second phase is the same as that of the SNC given in (44), with the

difference that P(BR,k−1 = 0) must be computed separately from (45), since the error probabilities of

the first phase are not equal for two schemes. Thus, we only analyze the error probability of the first

phase. According to (18), the transceiver Ti uses the decoded message of the other transceiver in the

(k− 1)-th super time slot (B̂Ti

ī,k−1
) and the number of its own released molecules in the (k− 2)-th super

time slot (Xi,k−2) to determine the number of released molecules in the k-th super time slot. X1,k−2 and
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X2,k−2, themselves, depend on the previous decoded messages and hence, they may contain error. We

consider the error effect in (k − 1)-th super time slot and neglect the error effect in prior super times

slots to obtain an approximate value for the error probability of the first communication phase (however,

in Section VII, we simulate this system and obtain the error probability considering the effect of error in

Xi,k−2). With this assumption, the error probability of phase 1 in the k-th super time slot is obtained as

P(ER,k|B1,k = b1, B2,k = b2) =
1

4

∑

b̂1,b̂2,b̃1,b̃2∈{0,1}

[

P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b1, b2, b̃1, b̃2} (49)

×P
(

ER,k|(B1,k, B2,k, B1,k−1, B2,k−1, B̂
T2

1,k−1, B̂
T1

2,k−1) = (b1, b2, b̃1, b̃2, b̂1, b̂2)
)

]

.

The first term in the summation of (49) is the joint decoding probability at the transceivers, which is

independent of the current messages (b1, b2) and can be derived as a function of the error probabilities

in the (k − 1)-th super time slot as

P{B̂T2

1,k−1 = b̂1,B̂
T1

2,k−1 = b̂2|b1, b2, b̃1, b̃2} = P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b̃1, b̃2}

=
(

1− P(ER,k−1|b̃1, b̃2)
)

P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b̃1, b̃2, E
c
R,k−1}

+ P(ER,k−1|b̃1, b̃2)P{B̂
T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b̃1, b̃2, ER,k−1}. (50)

Now, considering the independent decoding at the transceivers, as well as the independent channels from

the relay to the transceivers, we obtain

P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b̃1, b̃2, E
c
R,k−1} (51)

= P{B̂T2

1,k−1 = b̂1|b̃1, b̃2, E
c
R,k−1}P{B̂

T1

2,k−1 = b̂2|b̃1, b̃2, E
c
R,k−1},

where the above probabilities would be the error probability in decoding the message of the relay at Ti

when b̂i 6= b̃i, for i ∈ {1, 2}, and thus:

P{B̂Tī

i,k−1 = b̂i|b̃1, b̃2, E
c
R,k−1} =











P(ETi

k−1|BR,k−1 = b̃1 ⊕ b̃2), if b̂i 6= b̃i

1− P(ETi

k−1|BR,k−1 = b̃1 ⊕ b̃2), if b̂i = b̃i

. (52)

Similar equations can be derived for P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b̃1, b̃2, ER,k−1}. Combining (50)-

(52) gives the first term in the summation of (49). To obtain the second term in the summation of

(49), i.e., P
(

ER,k|(B1,k, B2,k, B1,k−1, B2,k−1, B̂
T2

1,k−1, B̂T1

2,k−1) = (b1, b2, b̃1, b̃2, b̂1, b̂2)
)

, one must ob-

tain the concentration of each molecule type around the relay after reaction for all 26 realizations of

b1, b2, b̃1, b̃2, b̂1, b̂2. Then, the error probability at the relay for each case can be derived based on the

corresponding average number of counted molecules. The details are given in Appendix A, where the

second term in the summation of (49) is derived. Combing all these equations, a set of recursive equations

is obtained for the error probability of the relay in Appendix A.
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Remark 6. (NoE approximation) To further simplify the error performance results, we consider the

case where there is no error in the decoded messages of the previous super time slots. Then, the error

probability of phase 1 will be equal to the no ISI case, and the error probability of the second phase can

be obtained similar to the SNC scheme. Hence, we obtain the total error probability at the transceiver

Ti as follows:

pNoE
e,i =

1

16
(4− u2)wi,1 +

1

16
(2− u)2wi,2 +

1

4
u, (53)

for i ∈ {1, 2}, where u = exp(−ζ1π1vr) + exp(−ζ2π1vr), and wi,1, wi,2 are defined in (48). Note that,

ignoring the error propagation gives lower bounds on the error probabilities of each hop, while the

overall error probability cannot be proved to necessarily be a lower bound. However, in our simulation

results, it is always a lower bound.

VII. SIMULATION AND NUMERICAL RESULTS

In this section, we evaluate the performance of the PNC and SNC schemes in terms of the probability

of error. We consider the parameters D = 10−9 m2/s, d = 250 nm, and vr =
4
3π(50)

3 nm3 (consistent

with prior works [21], [35] ). In the no ISI case, we choose ts = t0 = 10.4167 µs which is the time that

the impulse responses of the channels take their maximum. In the ISI case, we assume t0 = 10.4167 µs

and ts is chosen such that ηq+2 = 0.05. For the simulations, we run the Monte-Carlo simulations for

5×106 transmitted bits (based on uniform distribution). For each bit, we generate a random number using

the distribution of the number of received molecules. Then, using the derived threshold in the receiver,

we decode each transmitted bit, and hereby estimate the bit error probability with bit error rate.

Fig. 3 shows the Avg-BEP versus the number of transmitted molecules from the transceivers and the

relay for information bit 1 (i.e., ζ1 = ζ2 = ζ3 = ζ) for the two schemes without ISI using (23), (35), and

(32) along with the Avg-BEP using simulation. It can be seen that the proposed PNC scheme outperforms

the SNC scheme. This is due to the reduction in the number of the molecules bound to the receptors

(thanks to reaction). Also, the simulations confirm the analytical results.

Fig. 4 shows the Avg-BEP versus the average number of transmitted molecules from the transceivers

and the relay (i.e., 1
2

∑2
i=1 X

PNC
i,avg = 1

2

∑2
i=1X

SNC
i,avg = 1

2ζ3 = Xavg) in the presence of ISI using analysis

and simulation along with the Avg-BEP using NoE approximations given in (53) and (47) for the channels

with memory of 3. It can be seen that the error performance of the SNC scheme, for which we adopt the

existing ISI mitigating techniques, is considerably worse than the error performance of the PNC scheme,

for which we have proposed a reaction-based ISI mitigating technique. The reason is that in the SNC

scheme, using adaptive rate at each transceiver mitigates the ISI only when the message of the transceiver
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Fig. 3: Average bit error probability with

respect to ζ1 = ζ2 = ζ3 = ζ without ISI.
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Fig. 4: Avg-BEP with respect to the average

number of transmitted molecules in the presence

of ISI (q = 3).
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Fig. 5: Avg-BEP with respect to channel

memory (q), in the presence of ISI (Xavg =

5000).
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Fig. 6: Average bit error probability of the PNC

scheme in 1-D with respect to ζ1 = ζ2 = ζ3 =

ζ without ISI for perfect and imperfect reaction

among molecules.

is 1. But, in the PNC scheme, using adaptive rates at the transceivers mitigates the ISI in all cases of the

sent messages. It is also seen that the NoE approximation of error probability of the PNC scheme is a

lower bound.

Fig. 5 shows the Avg-BEP versus the channel memory (q), in the presence of ISI. Here, we assume

1
2

∑2
i=1X

PNC
i,avg = 1

2

∑2
i=1 X

SNC
i,avg = 5000. It can be observed that the error probability increases by channel

memory. However, the PNC scheme using the proposed ISI mitigating technique performs much better

than the SNC scheme using the existing ISI mitigating techniques.
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In Fig. 6, we consider the effect of imperfect reaction on the error performance of the PNC scheme.

Fig. 6 depicts the Avg-BEP of the PNC scheme without ISI versus ζ1 = ζ2 = ζ3 = ζ , when we

have imperfect reaction among molecules of type M1 and M2. More specifically, we assume a finite

forward reaction rate constant and a positive reverse reaction rate constant among molecules (γ =

10, 102, 103, 104 Molecule−1.m.s−1 and κ = 10−1, 10−2, 10−3, 10−4 s−1, respectively) and solve the

reaction-diffusion equations in (9) for 1-D environment numerically using the finite difference method

(FDM) to obtain the concentration of each molecule type at the relay [38].14 Using the FDM, we discretize

time and space to small sections and approximate derivations with difference equations in each section.

Here, we assumed vr = 30 nm and ts = 31.25 µs. The optimum thresholds are not zero for imperfect

reaction and are obtained using simulation such that the error probability is minimized. It is observed

from this figure that for the considered parameters, by increasing the forward reaction rate constant and

decreasing the reverse reaction rate constant, the average error probability gets closer to that of the PNC

with perfect reaction.

VIII. CONCLUDING REMARKS

In this paper, we proposed the physical-layer network coding (PNC) for molecular communication

(MC) called the reaction-based PNC scheme, where we used different molecule types, reacting with each

other by a fast reversible reaction. Hence, we constructed a physical-layer XOR in this scheme without

requiring an XOR gate at the relay. This results in a simple implementation for the proposed scheme

compared to the straightforward network coding (SNC) scheme. To mitigate the ISI, we also used the

reaction characteristics of the PNC scheme and proposed a reaction-based ISI mitigating technique for

this scheme, where each transceiver using its previously decoded messages, cancels out the ISI of the

other transceiver using the reaction of molecules. Considering the transparent receivers with the signal

dependent noise, we investigated the error probabilities of the straightforward and the proposed network

coding schemes. As expected and confirmed by simulations, the reaction-based scheme decreases the

overall error probability in two-way relay MC, while having less complexity. Further, the proposed ISI

mitigating technique for the PNC scheme has significantly better performance compared to the SNC

scheme in which the existing techniques are applied to each hop. The main reason is that in the SNC,

using adaptive transmission rate at each transceiver, mitigates its own ISI only when its message is 1.

However, in the PNC, using adaptive rates at the transceivers mitigates the ISI for all sent messages. The

14Note that because of the time complexity of the FDM for 3-D environment, to see the effect of imperfect reaction on the

PNC scheme, we simulated the system for 1-D instead of 3-D
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effect of the imperfect reaction on the error probability of the PNC scheme is considered in simulations

using the finite difference method (FDM).

We have assumed that channel state information (CSI) is known at the transceivers, i.e., the transceivers

know the channel coefficients of both transceivers to the relay channels. This is justified if the nodes have

fixed distance, where the channel coefficients can be computed from the diffusion equation. Studying the

network coding schemes with limited (or no) CSI is an interesting future work. Further, we considered

the deterministic model for our analysis which ignores the channel noise. While in the presence of noise,

the derivations would be much more complex, the methods do not change.
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APPENDIX A

ERROR PROBABILITY OF PHASE 1 IN THE PROPOSED PNC SCHEME IN THE PRESENCE OF ISI

Consider the set of all 16 cases of the sent and decoded messages of the transceivers in the previous

super time slot (i.e., the set A = {(b̃1, b̃2, b̂1, b̂2)|b̃1, b̃2, b̂1, b̂2 ∈ {0, 1}}). We partition A into 5 subsets

shown by Ag, g = 1, ..., 5 (see Table III), based on the same error probability at the relay. In fact, in each

subset (group), the concentration of molecules (of each type) around the relay is the same after reaction

and thus the error probability is the same. Therefore, we rewrite the error probability at the relay, given

in (49), as

P(ER,k|B1,k = b1, B2,k = b2) =
1

4

9
∑

g=1

fgpg(b1, b2), (54)

where fg =
∑

(b̃1,b̃2,b̂1,b̂2)∈Ag
P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 = b̂2|b̃1, b̃2}, in which P{B̂T2

1,k−1 = b̂1, B̂
T1

2,k−1 =

b̂2|b̃1, b̃2} is given in (50), and

pg(b1, b2) = P(ER,k|B1,k = b1, B2,k = b2, (B1,k−1, B2,k−1, B̂
T2

1,k−1, B̂
T1

2,k−1) ∈ Ag).

According to (18), the concentration of molecule type M1 before reaction is cr · (B1,k + η3B̂
T1

2,k−1 +

η3B1,k−1) + η23 · (crB̂
T1

2,k−2 +X1,k−2π1 +X1,k−3π3). The concentration of M2 before reaction is similar.

Assuming only the error in decoding the message of the previous super time slot, we have

C1,k = max{0,
[

B1,k −B2,k + η3 · (B1,k−1 − B̂T2

1,k−1)− η3 · (B2,k−1 − B̂T1

2,k−1)
]

cr},

and C2,k can be obtained similarly (see Table III).

We assume the fixed thresholds at the relay as τR1 = τR2 = 0. For group 1, since all interference is

canceled out, the probability of error at the relay is equal to the no ISI case (obtained in (33)). For group
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TABLE III: Concentration of molecules around the relay after reaction (PNC scheme with ISI)

group g Ag C1,k C2,k

1
{(0, 0, 0, 0), (1, 0, 1, 0),

BR1,kcr BR2,kcr
(0, 1, 0, 1), (1, 1, 1, 1),

(0, 0, 1, 1), (1, 1, 0, 0)}

2
{(0, 0, 1, 0), (0, 1, 1, 1),

max{0, (B1,k −B2,k − η3)cr} max{0, (B2,k −B1,k + η3)cr}
(0, 1, 0, 0), (1, 1, 1, 0)}

3
{(0, 0, 0, 1), (1, 0, 1, 1),

max{0, (B1,k −B2,k + η3)cr} max{0, (B2,k −B1,k − η3)cr}
(1, 0, 0, 0), (1, 1, 0, 1)}

4 {(0, 1, 1, 0)} max{0, (B1,k −B2,k − 2η3)cr} max{0, (B2,k −B1,k + 2η3)cr}

5 {(1, 0, 0, 1)} max{0, (B1,k −B2,k + 2η3)cr} max{0, (B2,k −B1,k − 2η3)cr}

BRi,k = Bi,k · (B1,k ⊕B2,k), i ∈ {1, 2}.

TABLE IV: Probability of error at the relay for the PNC scheme in the presence of ISI

group g pg(0, 0) = pg(1, 1) pg(1, 0) pg(0, 1)

1 0 exp(−crvr) exp(−crvr)

2 1− exp(−η3crvr) exp(−(1− η3)crvr) exp(−(1 + η3)crvr)

3 1− exp(−η3crvr) exp(−(1 + η3)crvr) exp(−(1− η3)crvr)

4 1− exp(−2η3crvr) exp(−|1− 2η3|crvr) exp(−(1 + 2η3)crvr)

5 1− exp(−2η3crvr) exp(−(1 + 2η3)crvr) exp(−|1− 2η3|crvr)

2, according to Table III, when (B1,k, B2,k) ∈ {(0, 0), (1, 1)}, C1,k = 0 and C2,k = η3cr, and therefore,

P(ER1,k) = 0 and the error probability at the relay equals to P(ER2,k). When B1,k = 1, B2,k = 0

(assuming that η3 < 1), we have C1,k = (1 − η3)cr and C2,k = 0, and thus, P(ER2,k) = 0. When

B1,k = 0, B2,k = 1, we get C1,k = 0 and C2,k = (1 + η3)cr, and hence, P(ER1,k) = 0. Therefore,

p2(0, 0) = p2(1, 1) = 1− exp(−η3crvr),

p2(1, 0) = exp(−(1− η3)crvr), p2(0, 1) = exp(−(1 + η3)crvr).
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