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Abstract—High power consumption and expensive hardware
are two bottlenecks for practical massive multiple-input multiple-
output (mMIMO) systems. One promising solution is to employ
low-resolution analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs). In this paper, we consider a general
multipair mMIMO relaying system with a mixed-ADC/DAC
architecture, in which some antennas are connected to low-
resolution ADCs/DACs, while the rest of the antennas are
connected to high-resolution ADCs/DACs. Leveraging on the
additive quantization noise model, both exact and approximate
closed-form expressions for the achievable rate are derived. It is
shown that the achievable rate can approach the unquantized one
by using only 2-3 bits of resolutions. Moreover, a power scaling
law is presented to reveal that the transmit power can be scaled
down inversely proportional to the number of antennas at the
relay. We further propose an efficient power allocation scheme
by solving a complementary geometric programming problem.
In addition, a trade-off between the achievable rate and power
consumption for different numbers of low-resolution ADCs/DACs
is investigated by deriving the energy efficiency. Our results reveal
that the large antenna array can be exploited to enable the mixed-
ADC/DAC architecture, which significantly reduces the power
consumption and hardware cost for practical mMIMO systems.

Index Terms—Massive MIMO, multipair relay, mixed-
ADC/DAC, achievable rate, energy efficiency.
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I. INTRODUCTION

As one of the disruptive technologies for the fifth-

generation (5G) wireless communications, massive multiple-

input multiple-output (mMIMO) has attracted extensive re-

search interests in recent years [1]–[4]. By exploiting quasi-

orthogonal random channel vectors between different users,

mMIMO can mitigate the inter-user interference to provide

high spectral efficiency and energy efficiency via simple linear

signal processing, e.g., maximum-ratio combining (MRC) and

zero-forcing (ZF) precoding. On the other hand, relaying is an

important way of extending coverage and providing uniform

service. The inter-user interference of the multiuser relaying

system can be suppressed by equipping the relay with a large

number of antennas [5]–[7].

The practical implementation of an mMIMO relaying sys-

tem with hundreds or even thousands of antennas is a sig-

nificant challenge [8]–[10]. For example, the perfect synchro-

nization is difficult in mMIMO relaying system. One possible

solution is to employ rateless network coding [11]. Typically,

each antenna in mMIMO systems is connected to an analog-

to-digital converter (ADC) and a digital-to-analog converters

(DAC) in the radio frequency (RF) chain, respectively. It is

well known that the power consumption and hardware cost

of ADCs and DACs linearly increase with the bandwidth and

exponentially increase with the number of quantization bits

[12]. Thus, high-resolution ADCs and DACs (e.g., 8-12 bits

for commercial use) will result in high power consumption

and hardware cost in practical mMIMO relaying systems.

To solve this challenging problem, a promising solution

is to replace power-hungry high-resolution ADCs and DACs

(e.g., 8-12 bits) with low power low-resolution ADCs and

DACs (e.g., 1-3 bits) [13], [14]. However, significant signal

processing challenges and complex front-end designs (e.g.,

channel estimation, phase/frequency synchronization, and mul-

tiuser detection) inevitably occur due to the strong nonlinear

characteristic of coarse quantization [15]. As recently reported

in [16], a high signal-to-noise ratio (SNR) channel estimation

error floor exists due to the one-bit quantization. Furthermore,

the authors in [17] proposed a mixed-ADC architecture, where

only a small fraction of ADCs are high-resolution, to facilitate

the aforementioned signal processing and the establishment

of front-end designs. For example, the CSI for each antenna

can be obtained by using the high-resolution ADCs in a

round-robin manner, which has been clearly explained in

http://arxiv.org/abs/1809.03117v1
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[17]. Moreover, the mixed-ADC architecture is economically

beneficial and easier to implement compared with architectures

with uniform converter resolution, as it adds some antennas

with low-resolution ADCs to the existing high-resolution con-

ventional MIMO system [18].

A. Related Works

Most of recent works focused on the single-hop mMIMO

system with a mixed-ADC architecture. For instance, the

mutual information of mixed-ADC mMIMO systems has been

investigated in [17], [19], which reveals that the mixed-ADC

architecture is able to approach the ideal channel capacity

of unquantized systems over both frequency-flat [17] and

frequency-selective fading channels [19]. In addition, the

achievable rate performance of multi-user mMIMO systems

with a mixed-ADC architecture is comparable for Rayleigh

[20] and Rician fading channels [21]. This architecture can

achieve a better energy-rate trade-off compared with the ideal

infinite-resolution and low-resolution ADC architectures. By

applying probabilistic Bayesian inference, a family of de-

tectors for mixed-ADC mMIMO systems was developed in

[22]. It proves that the available high-resolution ADCs are

practically essential since they can effectively eliminate the

error floor of a relaxed Bayesian detector. Given the energy

constraint at the base station (BS), the sum achievable rate

has been maximized in [23], which shows that the optimal

rate can be obtained by using only one-bit ADCs in most

realistic scenarios. Moreover, [24] considered the downlink

mMIMO with both mixed-resolution DACs at the BS and

mixed-resolution ADCs at the user side. These important

contributions have shown that the power consumption and

hardware cost of the single-hop mMIMO system with a mixed-

ADC architecture can be considerably reduced while keeping

most of the gains in the achievable rate.

In contrast to single-hop systems, very little attention has

been paid to the two-hop mMIMO relaying system with both

mixed-resolution ADCs and mixed-resolution DACs. Very

recently, the authors in [25]–[29] investigated the performance

of a multipair mMIMO relaying system with low-resolution

ADCs and DACs at the relay. The achievable rate of such a

system is limited by using very coarse quantization (e.g., one-

bit). In this paper, we consider a more general architecture,

where ADCs and DACs with arbitrary resolution profile are

employed at the relay to achieve a possibly higher rate.

B. Contributions

In this paper, we focus on a general two-hop mixed-

ADC/DAC mMIMO relaying system, where some antennas

are connected to low-resolution ADCs/DACs, while the rest

of the antennas are connected to high-resolution ADCs/DACs.

This study aims to analyse the performance analysis of the

multipair mMIMO relaying system with arbitrary quantization

noise, which is in contrast to the previous study [25] that

employs only one-bit ADCs and DACs. We demonstrate that

the achievable rate of the considered system can approach that

of the ideal unquantized system. The main contributions of this

paper are summarized as follows:

• Leveraging on AQNM, we present a unified frame-

work to derive the exact closed-form expressions for the

achievable rate of mixed-ADC/DAC mMIMO systems.

Compared with the Bussgang theorem used in [25],

the AQNM can offer analytical tractability for multi-bit

ADCs and DACs. Furthermore, approximate achievable

rate expressions are derived by using asymptotic argu-

ments. These results can provide insights into the effects

of the number of relay antennas, user transmit power,

quantization bits, and the fraction of high-resolution

quantizers on the achievable rate, respectively.

• The power-scaling law of the mixed-ADC/DAC architec-

ture is investigated for power saving in the data transmis-

sion phase of the relay. Our results reveal that when the

number of relay antennas, M , gets asymptotically large,

the transmit power of each antenna can be scaled down

by 1/M without any rate loss for the considered system.

Moreover, the achievable rate gap between the mixed-

ADC/DAC relay system and the unquantized system is a

constant in the low power regime.

• In order to compensate for the rate degradation caused by

the coarse quantization, a low-complexity power alloca-

tion algorithm is proposed for the considered system. The

power allocation problem can be solved by transforming

it into a sequence of geometric programming (GP) prob-

lems.

• Finally, using a generic power consumption model, we

study the effects of the fraction of high-resolution ADCs

and quantization bits on energy efficiency. In order to

maximize energy efficiency, the optimal number of quan-

tization bits is derived through numerical computations.

Furthermore, our analysis proves that the considered

system can significantly reduce power consumption and

hardware cost while maintaining considerable perfor-

mance.

C. Outline

The remaining parts of the paper are structured as follows.

The mixed-ADC/DAC multipair mMIMO relaying system

model is briefly introduced in Section II. Both exact and

asymptotic achievable rate expressions are derived in Section

III. Moreover, the power-scaling laws for the considered sys-

tem is presented in Section III. In Section V, a simple power

allocation scheme is proposed to compensate for the rate

loss. Furthermore, numerical results are provided in Section

V to illustrate the effect of various system parameters on the

achievable rate and energy efficiency. Finally, key findings are

concluded in Section VI. Most of the mathematical proofs are

given in Appendices A and B.

D. Notations

In this paper, x and X in bold typeface are used to

represent vectors and matrices, respectively, while scalars are

presented in normal typeface, such as x. We use XT and

XH to represent the transpose and conjugate transpose of

a matrix X, respectively. IN stands for an N × N identity

matrix, and ‖X‖F denotes the Frobenius norm of a matrix
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X. Furthermore, E{·} denotes the expectation operator, and

x ∼ CN (m, σ2I) represents a circularly symmetric complex

Gaussian stochastic vector with mean vector m and covariance

matrix σ2I. Finally, diag (X) denotes a diagonal matrix by

keeping only the diagonal elements of matrix X.

II. SYSTEM MODEL

Let us consider a multipair relaying system with K single-

antenna user pairs, denoted as Sk and Dk, k = 1, . . . ,K ,

applying the relay to exchange information with each other.

We assume that the direct links between Sk and Dk do not

exist because of large obstacles or severe shadowing. The

large-scale relay is equipped with M pairs of antennas, namely

receive antennas and transmit antennas, with mixed-resolution

ADCs and DACs. In the mixed-ADC/DAC architecture, only

M0 pairs of costly high-resolution ADCs and DACs are

connected to M0 relay antennas, while the remaining M1

(= M − M0) pairs of less expensive low-resolution ADCs

and DACs are connected to M1 relay antennas. Furthermore,

we use κ
∆
= M0/M (0 ≤ κ ≤ 1) to denote the fraction of

high-resolution ADCs and DACs in the mixed architecture.

The low-resolution ADCs bring about severe quantization

errors for data reception and the low-resolution DACs lead

to obvious signal distortion for data transmission. Therefore,

the correlation of the quantization noise is taken into account

for the multipair mMIMO relaying system. Furthermore, we

assume that the relay operates in half-duplex mode, so it

cannot receive and transmit signals simultaneously. Hence,

information transmission from Sk to Dk is completed in two

time slots. In the first time slot, the K users in the source

set Sk transmit xS ∈ CK×1 data to the relay independently,

and in the next time slot the relay transmits the correlated-

quantized signals x̃R ∈ CM×1 to K users in the destination

set Dk. The received signal yR ∈ CM×1 at the relay and the

received signal yD ∈ CK×1 can be respectively given by

yR = GSRPS
1/2xS + nR, (1)

yD = γGT
RDx̃R + nD, (2)

where γ is the normalization factor in order to make the total

power at the relay constrained to pR, i.e., E
{

‖γx̃R‖2
}

= pR.

Moreover, PS is a diagonal matrix representing the transmit

power of the K source users and its kth element is given

by [PS ]kk = pS,k. nR ∼ CN (0, IM ), nD ∼ CN (0, IK)
denote the additive white Gaussian noise (AWGN) matrix with

independently and identically distributed (i.i.d.) components

following the distribution CN (0, 1). We further follow the

general assumption that the transmit signal vector xS is Gaus-

sian distributed. The matrices GSR =
[
gSR,1, . . . ,gSR,K

]
and

GT
RD =

[
gRD,1, . . . ,gRD,K

]T
refer to the Rayleigh fading

channels from the K sources to the relay with gSR,k ∼
CN (0, βSR,kIM ) and the channels from the relay to the K
destinations with gRD,k ∼ CN (0, βRD,kIM ), respectively.

The terms βSR,k and βRD,k stand for the large-scale fading

and are assumed to be known at the relay.

Furthermore, we define GSR0 as the M0×K channel matrix

from the K sources to the M0 relay antennas connected with

high-resolution ADCs, and GSR1 as the M1 × K channel

matrix from the K sources to the remained M1 relay antennas

connected with low-resolution ADCs. Therefore, we have

GSR =

[
GSR0

GSR1

]

. (3)

Similarly, we can also define GT
RD0 as the K ×M0 channel

matrix from the M0 relay transmit antennas connected with

high-resolution DACs to the K destinations, and GT
RD1 as the

M1 ×K channel matrix from the M1 relay transmit antennas

connected with low-resolution DACs to the K destinations.

Then, GRD can be expressed as

GRD =

[
GRD0

GRD1

]

. (4)

With the help of (3) and (4), (1) and (2) can be rewritten as

yR =

[
yR0

yR1

]

=

[
GSR0PS

1/2xS + nR0

GSR1PS
1/2xS + nR1

]

, (5)

yD =

[
yD0

yD1

]

= γGT
RD0x̃R0 + γGT

RD1x̃R1 + nD, (6)

where yR0 denotes the first M0 rows of the overall received

signals vector yR, and yR1 denotes the rest M1 rows of yR.

Without loss of generality, the notations yD0, yD1, nR0, nR1,

x̃R0 and x̃R1 can also be explained in a similar way.

A. Quantization with Mixed-Resolution ADCs

For the mixed-ADC architecture, the quantized received

signal at the relay can be written as

ỹR =

[
ỹR0

ỹR1

]

=

[
yR0

Q (yR1)

]

, (7)

where Q (·) is the scalar quantization function, ỹR0 denotes the

quantized received signals at the output of M0 high-resolution

ADCs, and ỹR1 is the quantized received signals at the output

of M1 low-resolution ADCs. According to the AQNM [30,

Eq. (1)], the quantization operation can be expressed as

ỹR1 = Q (yR1) = αyR1 + nqa
, (8)

where nqa
refers to the additive Gaussian quantization noise

vector which is uncorrelated with yR1, and α denotes a linear

gain given by [31, Eq. (13)]

α = 1− ρ = 1− E

{

‖ỹR1 − yR1‖2
}

/E
{

‖ỹR1‖2
}

, (9)

with ρ as the distortion factor of the low-resolution ADCs. The

exact values of ρ are given in Table I with respect to different

resolution bits [32]. For large quantization bits (e.g., b > 5),

the distortion factor ρ can be approximated as ρ ≈ π
√
3

2 2−2b

[32]. With the help of (5), (8) and (9), the covariance matrix

of nqa
is expressed as

Rnqa
= αρdiag

(

GSR1PSG
H
SR1 + IM1

)

. (10)

Moreover, (7) can be rewritten as

ỹR =

[
ỹR0

ỹR1

]

=

[
GSR0PS

1/2xS+nR0

αGSR1PS
1/2xS+αnR1+nqa

]

. (11)



4

TABLE I
DISTORTION FACTORS FOR DIFFERENT QUANTIZATION BITS.

b 1 2 3 4 5

ρ 0.3634 0.1175 0.03454 0.009497 0.002499

B. Maximum Ratio (MR) Processing at the Relay

We assume that the relay adopts a simple amplify-and-

forward (AF)1 protocol to process the quantized received

signals, yielding

xR = WỹR, (12)

where W = G∗
RDG

H
SR denotes the MR processing. The MR

processing is used at the relay due to its low-complexity, being

suitable for the low-cost multipair mMIMO relaying system.

Furthermore, according to some research, the MR processing

can achieve similar performance as zero-forcing receiver/zero-

forcing transmission (ZFR/ZFT) or minimum mean square

error (MMSE). By applying (3) and (4), (12) is rewritten as

xR =

[
G∗

RD0G
H
SR0ỹR0+G∗

RD0G
H
SR1ỹR1

G∗
RD1G

H
SR0ỹR0+G∗

RD1G
H
SR1ỹR1

]

. (13)

C. Quantization with Mixed-Resolution DACs

For simplicity, we assume that the DACs and ADCs have

the same resolution. The analysis method can be extended

to arbitrary resolution cases. With mixed-DAC architecture at

the transmitter, the mixed-ADC/DAC signals from the relay’s

transmit antennas can be expressed as

x̃R =

[
x̃R0

x̃R1

]

=

[
xR0

Q (xR1)

]

=

[
xR0

αxR1 + nqD

]

, (14)

where α is the distortion factor of the low-resolution DACs,

and nqD
denotes the quantization noise of low-resolution

DACs, which is uncorrelated with xR1. Note that x̃R0 = xR0

because of using high-resolution DACs. Similar as for (10),

we can derive the covariance matrix of nqD
as

RnqD
= αρdiag (RxR1

) , (15)

where RxR1
is the covariance matrix of xR1. According to

(13), RxR1
can be written as

RxR1
= G∗

RD1G
H
SR0RỹR0ỹR0

GSR0G
T
RD1

+G∗
RD1G

H
SR0RỹR0ỹR1

GSR1G
T
RD1

+G∗
RD1G

H
SR1RỹR1ỹR0

GSR0G
T
RD1

+G∗
RD1G

H
SR1RỹR1ỹR1

GSR1G
T
RD1,

(16)

where

RỹR0ỹR0
= GSR0PSG

H
SR0 + IM0

, (17)

RỹR0ỹR1
= αGSR0PSG

H
SR1, (18)

RỹR1ỹR0
= αGSR1PSG

H
SR0, (19)

RỹR1ỹR1
= α2

(

GSR1PSG
H
SR1 + IM1

)

+ αρdiag
(

GSR1PSG
H
SR1 + IM1

)

. (20)

1The AF protocol is considered herein due to its lower implementation
complexity compared with the decode-and-forward (DF) protocol [5].

Consequently, the normalization factor γ can be expressed as

γ =

√

pR/E
{

‖x̃R‖2
}

. (21)

Lemma 1. For mixed-ADC/DAC multipair mMIMO relaying

systems, the expectation of the total transmit power at the relay

can be expressed as

E

{

‖x̃R‖2
}

= µ (M0 + αM1) , (22)

where µ is given by

µ = α (1− α)M1

K∑

k=1

pS,kβ
2
SR,kβRD,k. (23)

Proof: Please refer to Appendix A.

Substituting (22) into (21), the normalization factor γ can

be obtained as

γ =
√

pR/µ (M0 + αM1). (24)

With the normalization factor in hand, we can derive the

achievable rate in the following section.

III. ACHIEVABLE RATE ANALYSIS

A. Exact Achievable Rate Analysis

It is assumed that the destination Dk applies only statistical

CSI to decode the signal, due to the reason that instantaneous

CSI leads to excessive high computational complexity for large

antenna arrays in a practical mMIMO system. Combining (1),

(2), (11), (13) and (14), the received signal at the destination

Dk can be expressed as

yD,k =
√
pS,kE {Tk,k} xS,k

︸ ︷︷ ︸

desired signal

+ ñD,k
︸︷︷︸

effective noise

, (25)

where

Ti,j=γgT
RD0,iG

∗
RD0G

H
SR0gSR0,j+γαgT

RD0,iG
∗
RD0G

H
SR1gSR1,j

+ γαgT
RD1,iG

∗
RD1G

H
SR0gSR0,j+γα2gT

RD1,iG
∗
RD1G

H
SR1gSR1,j,

and

ñD,k =
√
pS,k (Tk,k − E {Tk,k})xS,k

︸ ︷︷ ︸

estimation error

+
∑

i6=k

Tk,ixS,i

︸ ︷︷ ︸

inter-pair interference

+ γ
(

gT
RD0,kG

∗
RD0G

H
SR0nR0 + αgT

RD1,kG
∗
RD1G

H
SR0nR0

)

︸ ︷︷ ︸

noise of high-resolution quantization at the relay

+γ
(

αgT
RD0,kG

∗
RD0G

H
SR1nR1+α2gT

RD1,kG
∗
RD1G

H
SR1nR1

)

︸ ︷︷ ︸

noise of low-resolution quantization at the relay

+ γ
(

gT
RD0,kG

∗
RD0G

H
SR1nqa

+ αgT
RD1,kG

∗
RD1G

H
SR1nqa

)

︸ ︷︷ ︸

quantization noise of ADCs

+ γgT
RD1,knqD

︸ ︷︷ ︸

quantization noise of DACs

+nD,k
︸︷︷︸

noise

, (26)

where nD,k is the kth element of the vector nD. We

can derive the signal-to-interference-plus-noise ratio (SINR)

expression by using [33, Eq. (18)]. Since the “desired signal”
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and the “effective noise” in (25) are uncorrelated, the exact

achievable rate for the k-th destination is given in Theorem 1.

Theorem 1. For mixed-ADC/DAC multipair mMIMO relaying

systems and using the capacity bound in [34], the exact closed-

form achievable rate of the k-th destination is given as

Rk=
τc−2τp
2τc

log2

(

1+
Ak

Bk+Ck+Dk+Ek+Fk+Gk+1

)

,

(27)

where τc denotes the length (in symbols) of each coherence

interval, τp represents the length of the mutually orthogonal

pilot sequences, and

Ak = pS,kγ
2(M0 + αM1)

4β2
SR,kβ

2
RD,k, (28)

Bk = pS,kγ
2
(
M0 + α2M1

)
βSR,kβRD,k

[
2(M0+αM1)

2

× βSR,kβRD,k+
(
M0 + α2M1

)
K∑

m=1

βSR,mβRD,m

]
, (29)

Ck = γ2
(
M0 + α2M1

)∑

i6=k

pS,i

×
[

(M0 + αM1)
2 (

βSR,kβ
2
RD,kβSR,i + βRD,kβ

2
SR,iβRD,i

)

+
(
M0 + α2M1

)
βRD,kβSR,i

K∑

m=1

βSR,mβRD,m

]

, (30)

Dk = γ2M0(M0 + αM1)
2
βSR,kβ

2
RD,k

+ γ2M0

(
M0 + α2M1

)
βRD,k

K∑

m=1

βSR,mβRD,m, (31)

Ek = γ2α2M1(M0 + αM1)
2
βSR,kβ

2
RD,k

+ γ2α2M1

(
M0 + α2M1

)
βRD,k

K∑

m=1

βSR,mβRD,m, (32)

Fk = αργ2M1βRD,k

{

(
M0 + α2M1

)
K∑

m=1

[

βSR,mβRD,m

×
(

K∑

i=1

pS,iβSR,i + pS,mβSR,m + 1

)
]

+ (M0 + αM1)
2

× βSR,kβRD,k

(
K∑

i=1

pS,iβSR,i + pS,kβSR,k + 1

)}

, (33)

Gk = αργ2M1 (M0 + αM1)βRD,k

{

βSR,kβRD,k

×
(

K∑

i=1

pS,iβSR,i+1+(M0+αM1) pS,kβSR,k

)

+

K∑

m=1

βSR,m

× βRD,m

(
K∑

i=1

pS,iβSR,i + 1 + (M0 + αM1) pS,mβSR,m

)
}

+α2ρ2γ2M2
1βRD,k

(
K∑

i=1

pS,iβ
2
SR,iβRD,i+pS,kβ

2
SR,kβRD,k

)

.

(34)

Proof: Please refer to Appendix B.

With the help of (24) and after some simplifications, we can

derive the compact expression for the sum achievable rate as

R =
τc − 2τp

2τc

K∑

k=1

log2 (1 + νk), (35)

where

νk = pS,k/ξk, (36)

ξk =

K∑

i=1

pS,iaki + p−1
R

(
K∑

i=1

pS,ibki + ck

)

+ dk, (37)

bki =
1

(M0 + αM1)

β2
SR,iβRD,i

β2
SR,kβ

2
RD,k

[

1 +
αρM1

(M0 + αM1)
2

]

+
1

(M0 + αM1)
2

βSR,i

K∑

m=1
βSR,mβRD,m

β2
SR,kβ

2
RD,k

, (38)

ck =
1

(M0 + αM1)
2

K∑

m=1
βSR,mβRD,m

β2
SR,kβ

2
RD,k

, (39)

dk =
1

(M0 + αM1)

1

βSR,k

+
αρM1

(M0 + αM1)
3

1

βSR,k

+
1

(M0 + αM1)
2

K∑

m=1
βSR,mβRD,m

β2
SR,kβRD,k

, (40)

with aki given by (??) at the bottom of next page.

B. Asymptotic Analysis

Note that Fk and Gk are respectively derived by using exact

values of the covariance matrices Rnqa
and RnqD

, which

make results in (33) and (34) cumbersome. In order to provide

more insights into the effect of various parameters on the

achievable rate, we consider a large number of antennas and

use the law of large numbers. The covariance matrix Rnqa
in

(10) is given by

Rnqa
≈ αρ

(
K∑

k=1

pS,kβSR,k + 1

)

IM1
. (42)

Similarly, the covariance matrix RnqD
is approximated as

RnqD
≈ E

{

RnqD

}

= αρµIM1
, (43)

where µ is given by (23). Note that the expression of the

approximate RnqD
is obtained in (94), in Appendix A. Based

on the aforementioned discussion, we can derive a more

concise close-form approximation for the achievable rate by

simplifying Fk and Gk as in (42) and (43), respectively. Sim-

ilar to Theorem 1, we can derive the approximate achievable

rate R̂k by calculating the power expectations of the signal

and interference as shown in the following theorem.

Theorem 2. For mixed-ADC/DAC multipair mMIMO relaying

systems, the approximate achievable rate of the k-th destina-

tion is

R̂k=
τc−2τp
2τc

log2

(

1+
Ak

Bk+Ck+Dk+Ek+F̂k+Ĝk+1

)

,

(44)
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where Ĝk = γ2αρµM1βRD,k,

F̂k = γ2αρ

(
K∑

k=1

pS,kβSR,k + 1

)

M1βRD,k

(

(M0 + αM1)
2

× βSR,kβRD,k +
(
M0 + α2M1

)
K∑

m=1

βSR,mβRD,m

)

, (45)

and Ak , Bk, Ck, Dk and Ek are given by (28), (29), (30),

(31), and (32), respectively.

Proof: From (111) in Appendix B, we have

F̂k =
ρ

α

(
K∑

k=1

pS,kβSR,k + 1

)

Ek. (46)

Substituting (42) into (46), we obtain (45). Similarly, we

derive Ĝk = γ2αρµE
{∣
∣
∣gT

RD1,kg
∗
RD1,k

∣
∣
∣

}

. Using the fact that

E

{∣
∣
∣gT

RD1,kg
∗
RD1,k

∣
∣
∣

}

= M1βSR,k, we can then derive Ĝk.

Following a similar reasoning as in the exact achievable rate

analysis, we substitute (23) and (24) into Theorem 2 to deduce

the compact expression for the approximate achievable rate as

R̂k = ((τc − 2τp)/2τc)
K∑

k=1

log2 (1 + ν̂k), (47)

where

ν̂k =pS,k/ξ̂k, (48)

ξ̂k =

K∑

i=1

pS,iâki +

(
K∑

i=1

pS,ibki + ck

)

/pR + d̂k, (49)

d̂k =
1

(M0 + αM1)βSR,k

+
1

(M0 + αM1)
2

K∑

m=1
βSR,mβRD,m

β2
SR,kβRD,k

,

with âki given as

âki =
1

(M0+αM1)

βSR,i

βSR,k

{

1+
βSR,iβRD,i

βSR,kβRD,k

×
[

1+
α2ρ2M2

1

(M0+αM1)
3

]

+
1

(M0+αM1)

K∑

m=1
βSR,mβRD,m

βSR,kβRD,k

}

.

Note that bki and ck have been defined in (38) and (39),

respectively.

It is clear to see from (47) that the approximate achievable

rate R̂k increases with the total power of the relay pR, and

decreases with the transmit power of other sources. The mixed-

ADC/DAC multipair mMIMO relaying system is interference-

limited, which is consistent with [25]. Moreover, we find that

including more low-resolution ADCs and DACs decreases R̂k.

This is reasonable since the quantization noise increases.

C. Power Scaling Law

In this subsection, we investigate the potential for power

saving in the data transmission phase due to the deployment

of a very large antenna array at the relay. Here, let pS =
ES/M (i.e., the power of all sources is the same, pS = pS,k,

k = 1, . . . ,K) and pR = ER/M , where the transmit power

of the source ES and of the relay ER are fixed. As M → ∞,

the exact and approximate achievable rate for the considered

system is provided in the following Corollary.

Corollary 1. With pS = ES/M , pR = ER/M and ES, ER

fixed, the achievable rate limit of mixed-ADC/DAC multipair

mMIMO relaying systems is given by (??) at the bottom of

this page.

Proof: We start with the approximate achievable rate R̂k.

Let pS = ES/M , pR = ER/M , and with the help of (48) and

(49), we can obtain

ν̂k =
ES

ES

K∑

i=1

âki + E−1
R

(
K∑

i=1

ESMbki +M2ck

)

+Md̂k

.

(51)

As M → ∞, the terms related to M in (51) are derived as

âki → 0, (52)

Mbki → β2
SR,iβRD,i/(α+ ρκ)β2

SR,kβ
2
RD,k, (53)

M2ck → 1

(α+ ρκ)2

K∑

m=1
βSR,mβRD,m

β2
SR,kβ

2
RD,k

, (54)

Md̂k → 1

(α+ ρκ)

1

βSR,k

. (55)

Substituting (52), (53), (54) and (55) into (51), we can derive

the limit of R̂k after some simple mathematical manipulations.

Following a similar way, the limit of exact achievable rate Rk

can be derived. With pS = ES/M and pR = ER/M , (36) can

be rewritten as

νk =
ES

ES

K∑

i=1

aki+E−1
R

(
K∑

i=1

ESMbki+M2ck

)

+Mdk

. (56)

As M → ∞, the terms related to M in (56) are given by

aki → 0, (57)

Mdk → 1

(α+ ρκ)

1

βSR,k

, (58)

and the limits of Mbki and M2ck are given by (53) and (54),

respectively. Since the limit of aki and dk are separately the

same as âki and d̂k with M → ∞, Rk approaches the same

constant limit as R̂k. After some simplifications, the proof is

concluded by deriving (??).

It is clear from (??) that both exact and approximate results

tend to a same constant value with M → ∞. We can

find that the proportion of the high-resolution ADCs/DACs κ
and the distortion factor of the low-resolution ADCs/DACs

ρ have effects on the limit rate when scaling down the

transmit power proportion to 1/M . More specifically, the

limit can be improved by increasing κ. Adopting the fact that

ρκ + α = (1− κ)α + κ is a monotonic increasing function

of α, the limit of achievable rate monotonically increases

with α, which means that we can boost the achievable rate

by using higher quantization bits in the M1 low-resolution

ADCs/DACs.

Proposition 1. With pS = ES/M , pR = ER/M and ES → 0,
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ER fixed, we can derive the factor of the sum rate gap between

the mixed-ADC/DAC relay system and the unquantized one as

Rk

Rp
k

→
(α+ ρκ)

2

(

ERβSR,kβ
2
RD,k +

K∑

m=1
βSR,mβRD,m

)

(α+ ρκ)ERβSR,kβ2
RD,k +

K∑

m=1
βSR,mβRD,m

.

Proposition 2. With pS = ES/M , pR = ER/M and ES fixed,

ER → 0, we can derive the factor of the sum rate gap between

the mixed-ADC/DAC relay system and the unquantized one as

Rk

Rp
k

→
(α+ ρκ)2

(

ES

K∑

m=1
β2
SR,mβRD,m +

K∑

m=1
βSR,mβRD,m

)

(α+ ρκ)ES

K∑

m=1
β2
SR,mβRD,m +

K∑

m=1
βSR,mβRD,m

.

(59)

From Propositions 1 and 2, it is clear that the sum rate gap

between the mixed-ADC/DAC relay system and the unquan-

tized system is a constant factor in the low power regime.

The factors in the case ES → 0 or ER → 0 are both related

to α + ρκ. Using the fact that ρκ + α = (1− κ)α + κ is

a monotonic increasing function of α, we can find that the

factors also increase with α. For the special case of α = 1,

i.e., α+ ρκ = 1, the achievable rate of the mixed-ADC/DAC

system is the same as that of the ideal unquantized system.

IV. POWER ALLOCATION

In this section, we try to maximize the sum achievable rate

of the mixed-ADC/DAC multipair mMIMO relaying system

constrained to a given total sum power PT, i.e.,
K∑

k=1

pS,k +

pR ≤ PT, and formulate it as a power allocation problem.

Let us define pS = [pS,1, . . . , pS,K ]T , the power allocation

problem can be expressed as

P1 : maximize
pS,pR

τc − 2τp
2τc

K∑

k=1

log2 (1 + νk) (60)

subject to

K∑

k=1

pS,k + pR ≤ PT (61)

pS ≥ 0, pR ≥ 0. (62)

Since log (·) is a monotonic increasing function, the prob-

lem P1 can be reformulated as

P2 : minimize
pS,pR

K∏

k=1

(1 + νk)
−1

(63)

subject to

K∑

k=1

pS,k + pR ≤ PT (64)

pS ≥ 0, pR ≥ 0. (65)

Problem P2 is a general nonconvex complementary geometric

program (CGP), which can be approximated by solving a se-

quence of GP problems. After that, we can use standard convex

optimization tools (e.g., CVX) to solve the GP problems [35].

The detailed steps of the power allocation algorithm are pro-

vided in Algorithm 1. Following the successive approximation
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Fig. 1. Sum achievable rate against the number of relay antennas M for
pS = 10 dB, pR = 10 dB, K = 10 and κ = 1/2.

algorithm in [25], it is efficient to solve the power allocation

problem.

Algorithm 1: Successive approximation algorithm for P2

1) Initialization. Define a tolerance ǫ and parameter θ.

Set j = 1 and set the initial value ν̃k according to the

SINR expression in Theorem 1 with pS,k = PT

2K and

pR = PT

2 . 2) iteration j. Compute δk = ν̃k
1+ν̃k

. Then

solve the GP problem P3:

P3 : minimize
pS,pR

K∏

k=1

νk
−δk (66)

subject to θ−1ν̃k ≤ νk ≤ θν̃k, k = 1, · · · ,K
(67)

νkpS,k
−1ξk ≤ 1, k = 1, · · · ,K (68)

K∑

k=1

pS,k + pR ≤ PT (69)

pS ≥ 0, pR ≥ 0. (70)

Denote the optimal solutions by νk
(j), for

k = 1, · · · ,K . 3) Stopping criterion. If

maxk
∣
∣νk

(j) − ν̃k
∣
∣ < ǫ, stop; otherwise, go to step 4). 4)

Update initial values. Set νk = νk
(j), and j = j +1. Go

to step 2)

V. NUMERICAL RESULTS

In this section, we conduct numerous simulations to verify

the accuracy of the analytical results. Apart from that, insights

are also provided. Then, the benefit of the proposed power

allocation algorithm is demonstrated. Moreover, we investigate

the energy efficiency to show the advantage of the mixed-

ADC/DAC architecture.

In the Monte Carlo simulation, we assume that the users

are distributed in a hexagonal cell with a radius of 1000
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Fig. 2. Sum achievable rate against the number of relay antennas for pS = 10

dB, pR = 10 dB, K = 10 and b = 1.

meters, while the minimum distance between the users and

relay is rmin = 100 meters. The length of the coherence

interval and pilot sequence are set as τc = 20K and τp = K ,

respectively. Furthermore, the large-scale fading coefficients

are arbitrarily generated by βSR,k = zk(rSR,k/rmin)
−α

and

βRD,k = zk(rRD,k/rmin)
−α

, where zk is a log-normal random

variable with standard derivation 8 dB, rSR,k and rRD,k

represent the distances from the sources to the relay and

destinations to the relay, respectively, and α = 3.8 denotes

the pathloss exponent.

A. Achievable Rate

In Fig. 1, the simulated achievable rate, the analytical exact

result (35) and the approximate result (47) are plotted against

the number of relay antennas. It can be seen that the analytical

exact and approximate results, as well as simulation results

are close to each other, which validates the correctness of our

derived expressions. For a small number of antennas at the

relay, the sum achievable rates for the cases of b = 1, 2,∞
matches well with each other. While as the quantization bits

b increase, the gap between the approximate and simulated

curves becomes small. Finally, better rate performance is

achieved with a larger number of quantization bits (b > 1).

In Fig. 2, we investigate the power scaling law of the mixed-

ADC/DAC multipair mMIMO relaying system. The fraction

of the number of high-resolution ADCs/DACs in the mixed-

ADC/DAC architecture is κ = 0, 1/2 and 1, respectively. It

can be seen that the exact and approximate expressions tend

to a constant for M → ∞, and a higher value of κ increases

the achievable rate, which agrees with Corollary 1.

B. Power Allocation

We show the impact of the efficient power allocation scheme

on the sum achievable rate in Fig. 3. The uniform power

allocation scheme, i.e., pS = PT

2K and pR = PT

K
, is also
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Fig. 3. Sum achievable rate against the number of relay antennas M for
K = 10, κ = 1/2 and PT = 10 dB.

investigated as a benchmark for comparison. It is clear that

the proposed optimal power allocation scheme significantly

boosts the sum rate compared with the one of the unquantized

system with uniform power allocation. This important finding

demonstrates the significance of adopting an efficient power

allocation scheme in the mixed-ADC/DAC multipair mMIMO

relaying system.

C. Energy Efficiency

Up to now, we have investigated the achievable rate of

mixed-ADC/DAC multipair mMIMO relaying systems. As

expected, under the same power allocation, the sum rate of

unquantized system outperforms the one with mixed-resolution

ADCs/DACs, at the cost of expensive hardware and power

consumption. There should be a fundamental trade-off be-

tween the achievable rate and energy efficiency, and therefore,

we also study the energy efficiency of mixed-ADC/DAC

multipair mMIMO relaying systems.

According to [21], the energy efficiency can be defined as

ηEE =
R×B

Ptotal
bit/Joule, (71)

where R denotes the sum achievable rate, B refers to the

transmission bandwidth assumed to be 20 MHz, and Ptotal is

the total power consumption. Combining [21, Eq. (43)] and

[36, Eq. (9)], Ptotal can be expressed as

Ptotal = M (Pmix + Pfilt) + 2Psyn +M1

(
cPAGC + PL

DAC

)

+M (PLNA + Pmix + PIFA + Pfilr) +M0

(
PAGC + PH

ADC

)

+M1

(
cPAGC + PL

ADC

)
+M0

(
PAGC + PH

DAC

)
, (72)

where Pmix, Pfilt, Psyn, PLNA, PIFA, Pfilr, PAGC, PH
ADC,

PL
ADC, PH

DAC and PL
DAC are the power consumption val-

ues for the mixer, the active filters at the transmitter side,

the frequency synthesizer, low-noise amplifiers (LNA), the

intermediate frequency amplifier (IFA), the active filters at
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the receiver side, the automatic gain control (AGC), high-

resolution ADCs, low-resolution ADCs, high-resolution DACs

and low-resolution DACs, respectively. In addition, c denotes

the flag related to quantization bits of low-resolution ADCs,

which is given by

c =

{
0, b = 1,
1, b > 1.

(73)

According to [37], the power consumed in DACs and ADCs

can be respectively expressed in terms of the number of

quantization bits as

PDAC =
1

2
VddI0

(
2b − 1

)
+ bCp (2B + fcor)V

2
dd, (74)

PADC =
3V 2

ddLmin (2B + fcor)

10−0.1525b+4.838
, (75)

where b denotes the quantization bits, B is the bandwidth of

the original signal assumed to be 20 MHz, Vdd is the power

supply of converter, I0 is the unit current source corresponding

to the least significant bit (LSB), Cp is the parasitic capaci-

tance of each switch in the converter, Lmin is the minimum

channel length for the given CMOS technology, fcor is the

corner frequency of the 1/f noise and all those parameters

are specifically defined in [37]. (74) holds for binary-weighted

current-steering DACs [37] and (75) is established for the

complete class of CMOS Nyquist-rate high speed ADCs [38].

In numerical examples, we consider the following classical

values: Pmix = 30.3 mW, Pfilt = Pfilr = 2.5 mW, Psyn = 50.0
mW, PLNA = 20 mW, PIFA = 3 mW and PAGC = 2 mW as

in [21] and [36], and the power consumption values of other

various circuit blocks have been discussed in [37].

The energy efficiency of mixed-ADC/DAC multipair

mMIMO relaying systems against the quantization bits is

illustrated in Fig. 4. It is clear from the figure that the

relay adopting pure low-resolution ADCs/DACs attains the

best energy efficiency. That means the energy efficiency in-

creases with the proportion of the number of low-resolution

ADCs/DACs (1 − κ) in the mixed-ADC/DAC architecture.

Although the pure low-resolution ADC/DAC architecture can

achieve better energy efficiency than the mixed-ADC/DAC

architecture, as shown in 1, the spectral efficiency of the low-

resolution ADC/DAC architecture is much lower than that of

the mixed-ADC/DAC architecture. Moreover, the channel esti-

mation in the mixed-ADC/DAC architecture is more tractable

than that in the low-resolution ADC/DAC architecture due to

the use of partial high-resolution ADCs. Moreover, the pure

low-resolution ADCs/DACs has low spectrum efficiency. Fig.

4 indicates that we can achieve a better spectral efficiency by

reducing the burden of power consumption considerably by

using the mixed-ADC/DAC architecture.

VI. CONCLUSIONS

In this paper, we investigated the achievable rate of a mul-

tipair mMIMO relaying system with mixed-resolution ADCs

and DACs at the relay. Both exact and approximate closed-

form expressions for the achievable rate were derived. Then,

we proved that the transmit power of each users can be

scaled down as 1/M for the considered system. Despite the

rate loss due to the use of low-resolution ADCs and DACs,

employing massive antenna arrays still enables high achievable

rate and large power saving. Furthermore, we proposed an

efficient power allocation scheme, which can compensate for

the rate degradation caused by low-resolution ADCs and

DACs. Finally, the energy efficiency was investigated, and

showed that the mixed-ADC/DAC architecture can attain a

considerable rate and energy efficiency simultaneously, which

is promising for practical mMIMO relaying systems.

APPENDIX A

PROOF OF LEMMA 1

For E
{

‖x̃R‖2
}

= E

{

‖x̃R0‖2
}

+ E

{

‖x̃R1‖2
}

, we first

1) Calculate E

{

‖x̃R0‖2
}

:

Rx̃R0x̃R0
= G∗

RD0G
H
SR0RỹR0ỹR0

GSR0G
T
RD0

+G∗
RD0G

H
SR0RỹR0ỹR1

GSR1G
T
RD0

+G∗
RD0G

H
SR1RỹR1ỹR0

GSR0G
T
RD0

+G∗
RD0G

H
SR1RỹR1ỹR1

GSR1G
T
RD0

= Q1 +Q2 +Q3 +Q4,

(76)

where RỹR0ỹR0
, RỹR0ỹR1

, RỹR1ỹR0
and RỹR1ỹR1

are sepa-

rately given by (17) to (20), and Q1, Q2 ,Q3 and Q4 are

defined as the four parts of Rx̃R0x̃R0
, respectively.

E {Q1} = E

{

G∗
RD0G

H
SR0GSR0PSG

H
SR0GSR0G

T
RD0

}

+ E

{

G∗
RD0G

H
SR0GSR0G

T
RD0

}

. (77)

Using E

{∥
∥gSR0,m

∥
∥
4
}

= M0 (M0 + 1)β2
SR,m, we have

E

{

G∗
RD0G

H
SR0GSR0G

T
RD0

}

= M0

K∑

m=1

βSR,mβRD,mIM0,

(78)
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E

{

G∗
RD0G

H
SR0GSR0PSG

H
SR0GSR0G

T
RD0

}

= M0

K∑

m=1

βSR,mβRD,m

(
K∑

i=1

pS,iβSR,i+M0pS,mβSR,m

)

IM0.

(79)

Then substituting (79) and (78) into (77), we directly obtain

E {Q1} = M0

K∑

m=1

βSR,mβRD,m

×
(

K∑

i=1

pS,iβSR,i +M0pS,mβSR,m + 1

)

IM0.

(80)

Similar to the computation of Q1, the expectation of Q2, Q3

and Q4 can be derived respectively as

E {Q2} = αM0M1

K∑

m=1

pS,mβ2
SR,mβRD,mIM0, (81)

E {Q3} = αM0M1

K∑

m=1

pS,mβ2
SR,mβRD,mIM0. (82)

E {Q4} = α2M1

K∑

m=1

βSR,mβRD,m

×
(

K∑

i=1

pS,iβSR,i +M1pS,mβSR,m + 1

)

IM0

+ αρE
{

G∗
RD0G

H
SR1Rnqanqa

GSR1G
T
RD0

}

. (83)

where

E

{

G∗
RD0G

H
SR1Rnqanqa

GSR1G
T
RD0

}

= E

{

G∗
RD0E

[

GH
SR1diag

(

GSR1PSG
H
SR1

)

GSR1

]

GT
RD0

}

+M1

K∑

m=1

βSR,mβRD,mIM0. (84)

The expectation of the diagonal term can be decomposed as

E

{

gH
SR1,idiag

(

GSR1PSG
H
SR1

)

gSR1,j

}

=







0, i 6= j,
M1∑

m=1

pS,nE
{

|gSR1,mn|4
}

+

M1∑

m=1

K∑

i6=n

pS,iE
{

|gSR1,mn|2
}

E

{

|gSR1,mi|2
}
, i=j=n.

(85)

Applying the fact that E
{

|gSR1,mn|4
}

= 2β2
SR,n, (85) can be

expressed as

E

{

gH
SR1,idiag

(

GSR1PSG
H
SR1

)

gSR1,j

}

=







0, i 6= j,

M1βSR,n

(
K∑

i=1

pS,iβSR,i + pS,nβSR,n

)

, i = j = n.

(86)

Substituting (86) into (84), we can obtain

E

{

G∗
RD0G

H
SR1Rnqanqa

GSR1G
T
RD0

}

= M1

K∑

m=1

βSR,mβRD,m

(
K∑

i=1

pS,iβSR,i+pS,mβSR,m+1

)

IM0.

(87)

With the help of (83) and (87), we derive E {Q4} as

E {Q4} = αM1

K∑

m=1

βSR,mβRD,m

×
(

K∑

i=1

pS,iβSR,i+αM1pS,mβSR,m+ρpS,mβSR,m+1

)

IM0.

(88)

Combining (80), (81), (82) and (88), we can derive

E {Rx̃R0x̃R0
} = E {RxR0xR0

} = µIM0. (89)

E

{

‖x̃R0‖2
}

= E

{

‖xR0‖2
}

= µM0. (90)

2) Calculate E

{

‖x̃R1‖2
}

:

E

{

‖x̃R1‖2
}

= α2E

{

‖xR1‖2
}

+ E
{
nH
qD

nqD

}
. (91)

Similar to the calculation of (89) and (90), E {RxR0xR0
} and

E

{

‖xR1‖2
}

can be respectively expressed as

E {RxR1xR1
} = µIM1, (92)

E

{

‖xR1‖2
}

= µM1. (93)

As for E
{
nH
qD

nqD

}
, considering (15) and (92), we can derive

RnqD
as

E

{

RnqD

}

= αρE {RxR1xR1
} = αρµIM1. (94)

Hence,

E
{
nH
qD

nqD

}
= αρµM1. (95)

Substituting (93) and (95) into (91), we can directly obtain

E

{

‖x̃R1‖2
}

= µαM1. (96)

Therefore, E

{

‖x̃R‖2
}

= E

{

‖x̃R0‖2
}

+ E

{

‖x̃R1‖2
}

=

µ (M0 + αM1). The proof is concluded.

APPENDIX B

PROOF OF THEOREM 1

The argument of the log function in the right-hand side of

(27) consists of six terms: 1) desired signal power Ak; 2)

estimation error Bk; 3) inter-pair interference Ck; 4) noise at

the relay Dk and Ek; 5) quantization noise of ADCs Fk; 6)

quantization noise of DACs Gk.

1) Compute Ak: Since

E {Tk,k} = γ (M0 + αM1)
2 βSR,kβRD,k, (97)

we have

Ak = pS,kγ
2(M0 + αM1)

4
β2
SR,kβ

2
RD,k. (98)
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2) Compute Bk:

Bk = pS,kVar (Tk,k) = pS,kE
{

|Tk,k|2
}

−Ak, (99)

We define t1 to t10 as the decomposed terms of E
{

Tk,iT
H
k,i

}

in order. Note that the undefined terms in tk mean that they

are included in the expressions if and only if i = k.

t1 = E

{

gT
RD0,kG

∗
RD0G

H
SR0gSR0,ig

H
SR0,iGSR0G

T
RD0g

∗
RD0,k

}

= M2
0βSR,iβRD,k(M0βSR,kβRD,k+

K∑

m=1

βSR,mβRD,m

+M0βSR,iβRD,i) +M4
0β

2
SR,kβ

2
RD,k, (100)

t2 = E

{

α2gT
RD0,kG

∗
RD0G

H
SR1gSR1,ig

H
SR1,iGSR1G

T
RD0g

∗
RD0,k

}

= α2M0M1βSR,iβRD,k(M0βSR,kβRD,k+

K∑

m=1

βSR,mβRD,m

+M1βSR,iβRD,i) + α2M2
0M

2
1β

2
SR,kβ

2
RD,k, (101)

t3 = E

{

α2gT
RD1,kG

∗
RD1G

H
SR0gSR0,ig

H
SR0,iGSR0G

T
RD1g

∗
RD1,k

}

= α2M0M1βSR,iβRD,k(M1βSR,kβRD,k +

K∑

m=1

βSR,mβRD,m

+M0βSR,iβRD,i) + α2M2
0M

2
1β

2
SR,kβ

2
RD,k, (102)

t4 = E

{

α4gT
RD1,kG

∗
RD1G

H
SR1gSR1,ig

H
SR1,iGSR1G

T
RD1g

∗
RD1,k

}

= α4M2
1βSR,iβRD,k

(

M1βSR,kβRD,k +

K∑

m=1

βSR,mβRD,m

+M1βSR,iβRD,i

)

+ α4M4
1β

2
SR,kβ

2
RD,k, (103)

t5 = E

{

αgT
RD0,kG

∗
RD0G

H
SR0gSR0,ig

H
SR1,iGSR1G

T
RD0g

∗
RD0,k

}

= αM2
0M1β

2
SR,iβRD,k (βRD,i +M0βRD,k) , (104)

t6 = E

{

αgT
RD0,kG

∗
RD0G

H
SR0gSR0,ig

H
SR0,iGSR0G

T
RD1g

∗
RD1,k

}

= αM2
0M1βSR,kβ

2
RD,k(βSR,i +M0βSR,k), (105)

t7 = E

{

α2gT
RD0,kG

∗
RD0G

H
SR0gSR0,ig

H
SR1,iGSR1G

T
RD1g

∗
RD1,k

}

= α2M2
0M

2
1β

2
SR,kβ

2
RD,k, (106)

t8 = E

{

α2gT
RD0,kG

∗
RD0G

H
SR1gSR1,ig

H
SR0,iGSR0G

T
RD1g

∗
RD1,k

}

= α2M2
0M

2
1β

2
SR,kβ

2
RD,k, (107)

t9 = E

{

α3gT
RD0,kG

∗
RD0G

H
SR1gSR1,ig

H
SR1,iGSR1G

T
RD1g

∗
RD1,k

}

= α3M0M
2
1βSR,kβ

2
RD,k(βSR,i +M1βSR,k), (108)

t10 = α3M0M
2
1β

2
SR,iβRD,k(βRD,i +M1βRD,k). (109)

Substituting (100) into (109), we have

E
{
Tk,iT

H
k,i

}
= γ2

(

t1 + t2 + t3 + t4 + 2t5 + 2t6

+ 2t7 + 2t8 + 2t9 + 2t10

)

. (110)

After some simplifications with i = k, we can obtain (29).

3) Compute Ck: Similar to the calculation of Bk, We can

derive the expression (31) of Ck.

4) Compute Dk and Ek: Similar to the calculation of Bk,

we can obtain (32) and (33).

5) Compute Fk:

Fk = γ2E

{∣
∣
∣g

T
RD0,kG

∗
RD0E

{

GH
SR1Rnqanqa

GSR1

}

GT
RD0g

∗
RD0,k

+ αgT
RD0,kG

∗
RD0E

{

GH
SR1Rnqanqa

GSR1

}

GT
RD1g

∗
RD1,k

+ αgT
RD1,kG

∗
RD1E

{

GH
SR1Rnqanqa

GSR1

}

GT
RD0g

∗
RD0,k

+ α2gT
RD1,kG

∗
RD1E

{

GH
SR1Rnqanqa

GSR1

}

GT
RD1g

∗
RD1,k

∣
∣
∣

}

.

(111)

Using results in (86), we have

E

{

GH
SR1Rnqanqa

GSR1

}

= diag (a1, ..., aK) , (112)

where an = M1βSR,n

(
K∑

i=1

pS,iβSR,i + pS,nβSR,n + 1

)

.

Substituting (112) into (111), we can obtain (33).

6) Compute Gk: With the help of (16), we can obtain

(34) by applying similar approaches in the derivations of

E {Rx̃R0x̃R0
}.

Combining all derived terms completes the proof.
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