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Abstract—We propose a downlink beamforming scheme that
combines spatial division and orthogonal space-time block coding
(OSTBC) in multi-user massive MIMO systems. The beamformer
is divided into two parts: a pre-beamforming matrix to separate
the users into different beams with no interference between each
other, which is designed based on the low rank covariance matrix
of the downlink channel, and a linear precoding matrix using
partial or even no channel state information (CSI) concatenated
by an OSTBC. To construct the pre-beamforming matrix, a
simple method that selects columns from DFT matrix is pre-
sented. To design the linear precoding matrix with partial CSI
of the effective channel after the pre-beamforming, we solve an
optimization problem to minimize the pairwise error probability
(PEP) of the users under an individual power or sum power
constraint, respectively. For the individual power constraint, a
semi-definite relaxing (SDR) method with a sufficient condition
achieving the globally optimal solution is proposed to provide
a performance benchmark. In addition, an efficient iterative
successive convex approximation (SCA) method is provided to
achieve a suboptimal solution. Furthermore, closed form solutions
are derived under some special cases. For the sum power
constraint, we consider two different designs, i.e., minimizing
the average PEP and minimizing the maximum PEP of all
users. We find that both non-convex problems have a similar
structure, and proposed a unified SCA-Alternating Direction
Method of Multipliers (ADMM) algorithm to handle them. The
SCA-ADMM method can be implemented in a parallel manner,
and thus is with great efficiency. Simulation results show the
efficiency of our proposed JSDD scheme and the optimization
method.

Index Terms—Massive MIMO, spatial division, orthogonal
space-time block code, partial channel state information, SDR
method, ADMM method.

I. INTRODUCTION

Massive multiple-input and multiple-output (MIMO) is

widely recognized as a critical technique in the future 5G

wireless communications systems [1]–[4]. With a large number

of antennas, the channel vectors of multiple users are nearly

orthogonal, and thus the uncorrelated multi-user interference

and thermal noise go to zeros by simple transmit or receive

techniques, e.g. MRT or MRC [1], [3], which greatly increases

the energy and spectral efficiencies [4]. In addition, massive

MIMO is also a promising technique to secure the wireless

transmissions in the physical layer [5]–[7].

A. CSIT for Massive MIMO downlink

The great potential of massive MIMO dependents heavily on

the perfect channel state information (CSI) at the transmitter

(generally BS), i.e., CSIT. Since the number of antennas is

very large, the CSI acquisition brings a heavy burden. To

reduce the overhead, channel reciprocity is used in a time

division duplex (TDD) system to obtain the downlink channel

information from the uplink training sequence. However, chan-

nel reciprocity is always impaired by many imperfect factors,

which leads to CSI errors and thus extra calibration is required

to suppress the imperfections of channel reciprocity. On the

other hand, frequency division duplex (FDD) massive MIMO

system is an even more severe challenge, where the channel

reciprocity does not hold anymore. Furthermore, significant

performance degradation exists in practice due to channel

estimation error, feedback delay, and quantization error.

To address this challenge, one afford is to exploit the low

rank property of the downlink channel. In a massive MIMO

system, (i) the antenna spacing of the antenna array is usually

as small as half wave-length in order to keep the whole array

aperture small; (ii) BS with large-scale antenna array has to

be elevated at the top of high buildings such that there are

few local scattering. Due to these reasons, the channel spatial

spread of angles of departure (AOD) at the BS is always

narrow [8], [14], which leads to a spatially correlated downlink

channel. Mathematically, the independently and identically

distributed (i.i.d.) channel assumption violates and the rank

of the channel covariance matrix is significantly lower than

the number of transmit antennas. Therefore, by exploiting this

low-rank property, tremendous studies have been focused on

the topic of downlink channel estimation [8]–[10], simplified

CSI feedback schemes [11]–[13] and downlink signal and

transmission scheme designs [14]–[16]. In this paper, we

concentrate on the downlink transmission scheme designs.

B. Joint spatial division and multiplexing (JSDM) scheme

In [14], a joint spatial division and multiplexing (JSDM)

scheme for the FDD system is proposed. The downlink beam-

forming is divided into two stages: a pre-beamforming matrix

based on the channel second-order statistics, and a multi-user

MIMO (MU-MIMO) precoding matrix based on the efferctive

channel coefficeints. Under the JSDM scheme, the users are

divided into K groups, and each user group consists of J
users. Due to the low-rank property, after pre-beamforming,

the effective channel realizations of the users in each user

group have significantly reduced dimensions compared with

the number of antennas. Then the subsequent MU-MIMO

precoding is designed based on the downlink training and the

CSI feedback of the instantaneous effective channel realization

of each user group with J users, the overhead of which could

be reduced by a factor of 10. In a word, spatial division (pre-

beamforming) is exploited to separate users into groups and

spatial multiplexing (MU-MIMO precoding) is utilized to send
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data streams to multiple users in each group. A similar idea

has been adopted for users with multiple antennas in [16].

Nevertheless, after pre-beamforming, the downlink training

and the CSI feedback of the instantaneous effective channel

realizations of multiple users are still required. When the

effective channel information is not perfectly estimated and

fed back to the BS, the performance of the system will be

greatly impaired, due to the sensitivity of the beamforming

technique to the CSIT, such as in the JSDM scheme proposed

in [14].

On the other hand, we know that space-time coding (STC)

technique is designed to provide transmit diversity gain when

the transmitter with multiple antennas does not have the CSIT

[17]–[19]. Among various kinds of STCs, orthogonal space-

time block codes (OSTBC) received widely concerns due to

its full diversity property with a linear decoding complexity. 1

In addition, if some certain but not perfect CSIT is available,

partial channel information could be utilized to improve the

OSTBC performance further [22], [23]. It has been shown

that this strategy outperforms the conventional beamforming

(without perfect CSIT) as well as conventional OSTBC sig-

nificantly.

C. Our proposed scheme

The low rank property of the spatial channel and the robust-

ness of the OSTBCs to accurate CSIT motivate us to combine

them together to release the burden of CSIT acquisition in

massive MIMO systems, and to provide sufficient spatial

multiplexing and diversity gain for multiple users. In this

paper, we propose a new transmission scheme that combines

the spatial division with the OSTBC in the massive MIMO

downlink transmissions. In our scheme, for each user group,

the BS schedules only one user at each time, and therefore,

the BS simultaneously serves K users. The basic idea is

to permit K users to access the downlink transmissions via

spatial division by utilizing the low-rank property of channels,

and for each user OSTBC with partial CSI (estimated CSI

with errors) is utilized to provide diversity gain. Therefore,

we name our scheme as joint spatial division and diversity

(JSDD) scheme.

Specially, the beamformer in the proposed JSDD transmis-

sion scheme is composed of two parts: (i) a pre-beamforming

matrix to spatially separate the users and eliminate the inter-

user interference, and (ii) a linear precoding matrix combining

the OSTBCs of the users to achieve diversity gain. For

the pre-beamformer, we design a DFT matrix based eigen-

beamforming scheme. More specifically, for the uniform linear

array in the massive MIMO transmitter, the covariance matrix

of the channel can be well approximated by a circular matrix

as the number transmit antenna gets large [14]–[16]. Hence,

the eigenvectors of the channel covariance matrix forms a

DFT matrix. Due to the low rank property, we propose a low

1It is well known that Maximum likelihood (ML) decoding to achieve the
full diversity gain is equivalent to linear decoding for OSTBCs. Furthermore,
some advanced designs have also provided full diversity gain with linear
receivers instead of ML decoding, such as zero-forcing and MMSE receivers
[20], [21]. They get rid of the orthogonal structure to improve the OSTBC
rate further.

complexity method to directly find those columns from the

DFT matrix to form the eigenvectors matrix. The eigenvector

matrix is the corresponding pre-beamforming matrix when

multiple users have non-overlapped angular spreads. After pre-

beamforming, the users are spatially separated and for each

user the dimension of the effective channel has been greatly

reduced, which significantly releases the channel acquisition

overhead burden. In the second part of the proposed JSDD

scheme, a linear precoding matrix for transmitting the OST-

BCs of the users is designed and optimized by utilizing the

partial CSIs of the effective channels, where we take the im-

perfection of effective channel acquisition into consideration.

The optimization objective is to minimize the pairwise error

probability (PEP). In such a way, the JSDD scheme has a light

burden for the CSIT acquisition, and is very robust to the CSIT

imperfection.

A critical problem in the JSDD scheme is how to optimize

the linear precoding matrix, which is a non-convex problem.

In the paper, we try to solve this problem under both the

individual user power and sum power constraints, respectively.

For the individual user power constraint, we first solve the

problem using semidefinite relaxation (SDR) and Gaussian

randomization method. In addition, a sufficient condition is

presented to achieve the global optimum, i.e., the rank con-

straint is met. The SDR solution can be taken as a benchmark

of the performance. We then propose a successive convex

approximation (SCA) based iterative optimization method to

obtain a suboptimal solution. Furthermore, some special cases

with closed-form optimal solutions are also discussed, includ-

ing the hign SNR, low SNR and no effective CSIT cases. For

the sum power constraint, two different performance metrics,

i.e., min-max and average PEP of the system, are investigated.

An SCA method combined with ADMM algorithm is proposed

to handle both of the two problems. The proposed method can

be implemented in a parallel manner, and therefore is generally

much more efficient than the SDR method.

D. Application scenarios

Compared with JSDM, the proposed JSDD scheme has

reduced the number of data streams from KJ to K , and

thus the overall throughput is reduced. However, higher di-

versity gain could be achieved so the bit error rate is lower,

which will be shown in the numeric part in this paper. In

many applications in 5G wireless communications, such as

ultra reliable low latency communications (uRLLC), higher

reliability is more important than larger data rate. The JSDD

scheme could be applied in various scenarios in massive

MIMO downlink transmissions. For example, in a multiple-

group multicast scenario. The BS is required to broadcast

multiple data streams to multiple geographically separated

groups of users, respectively, where each group of users co-

located in a cluster are interested in a same file. Another

example is directional broadcasting a common message to a

cluster of users in a same region with uRLL requirement.

The paper is organized as follows. In Section II, the channel

model is presented, where the channel representation and

the covariance matrix approximated by the DFT matrix are
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proposed. The transmission scheme combining spatial division

with OSTBC is proposed in Section III. The individual user

power constraint is addressed in Section IV while the sum

power constraint in Section V. Simulation results are presented

in Section VI and Section VII concludes the paper.

Notation: In this paper, we use the upper-case and lower-

case boldface letters for matrices and vectors respectively.

(···)T , (·)H , (·)−1, det(·), Re(·), tr(·), || · ||F , and || · ||2 denote

the transpose, conjugate transpose, inversion, determinant, real

part, trace, Frobenius norm, and l2 norm, respectively. IIIm
denotes the m-by-m identity matrix. E(·) is the statistical

expectation. mod(x, y) denotes modulus after x divided by y.

CN (µµµ,RRR) denotes the circularly symmetric complex Gaussian

distribution with mean value and covariance matrix given by

µµµ and RRR, respectively.

II. CHANNEL MODEL

Fig. 1 depicts a massive MIMO downlink system, where a

BS equipped with M antennas serves K single-antenna users

simultaneously. In this paper, we consider the uniform linear

array (ULA) with half wavelength interval between antennas

at the BS, and in the user terminal, the one-ring scatter channel

model is considered [8], [14], [24], [25], where the k-th user is

surrounded by a ring of scatters of radius Rk and the distance

from the k-th user to the BS is Dk. The downlink channel

vector hhhk ∈ C
M×1 of the k-th user can be expressed as [8],

hhhk =
1√
Q

Q
∑

q=1

αk,qaaa(θk,q), k = 1, 2, · · · ,K, (1)

where Q denotes the number of i.i.d. paths, and αk,q ∼
CN (0, 1) is the complex gain, which is independent over user

index k and path index q. Besides, aaa(θk,q) is the steering

vector with azimuth angle θk,q and has the form aaa(θk,q) =
[

1, e−jπ sin(θk,q),··· ,e
−jπ(M−1) sin(θk,q)

]T

. BS equipped with a

large number of antennas is elevated at a high altitude, say

on the top of a high building, or a dedicated tower, such that

there are few surrounding scatterers. In this case, the one-ring

model is a reasonable channel model, and the angular spread

of the k-th user’s channel is restricted within a narrow region
[

θ̄k −∆k, θ̄k +∆k

]

with θ̄k ∈ [−90o, 90o] the mean azimuth

angle, and ∆k ≈ arctan(Rk/Dk) the angular spread of the

k-th user’s channel. According to [14], the covariance matrix

of the k-th user channel RRRk = E(hhhkhhh
H
k ) can be calculated by

the Toeplitz form

[RRRk]m,n =
1

2∆k

∫ θ̄k+∆k

θ̄k−∆k

e−jπ(m−n) sin(θ)dθ, (2)

where [RRRk]m,n denotes the entry in the m-th row, n-th column

of RRRk with m,n = 1, 2, · · · ,M . We have hhhk ∼ CN (000,RRRk)
and the channel vector has a low rank expression as

hhhk = UUUkΛΛΛ
1/2
k vvvk, (3)

where vvvk ∈ Crk×1 ∼ CN (000, IIIrk), RRRk = UUUkΛΛΛkUUU
H
k

is the eigenvalue decomposition of the covariance ma-

trix, UUUk ∈ CM×rk satisfies UUUH
k UUUk = IIIrk , ΛΛΛk =

diag (λk,1, λk,2, · · · , λk,rk) is a diagonal matrix with ordered

eigenvalue as diagonal elements, i.e., λk,1 ≥ λk,2 ≥ · · · ≥
λk,rk , and rk is the rank.

In a downlink massive MIMO system, the acquisition of the

channels {hhhk}Kk=1 at the BS is critical but also difficult due to

the large M . However, the covariance matrix RRRk possesses a

low-rank property due to the high correlation among aaa(θk,p)’s,

and the dimension of vvvk is much less than M , i.e., rk ≪ M
in (3). Since the covariance matrix RRRk is determined by the

azimuth angle and the angular spread, which is slowly changed

and reciprocal for both FDD and TDD systems, an efficient

way to estimate {hhhk}Kk=1 is to calculate RRRk according to (2)

first, and then do the eigenvalue decomposition to obtain UUUk

and ΛΛΛk, and finally estimate vvvk for several or tens of channel

coherence time intervals.

However, the accompanied computational complexity in-

volved in the eigenvalue decomposition of high-dimensional

covariance matrix in a massive MIMO system is hardly

affordable. In [8], [14], [26], [27], a DFT-matrix based method

to calculate UUUk and ΛΛΛk is proposed, namely, the columns

of UUUk could be well approximated by some columns of M
dimension DFT matrix. To make the paper self-contained, we

cite the following proposition to give a way to determine the

indices of these columns.

Proposition 1. If the column index i satisfies I
(k)
min ≤ i ≤ I

(k)
max,

then the i-th column of DFT matrix should be selected as an

approximate eigenvector of RRRk, where Imin,k and Imax,k are

I
(k)
min = argmin

i

∣

∣

∣

∣

Ξmin −
2π(i− 1)

M

∣

∣

∣

∣

,

I(k)max = argmin
i

∣

∣

∣

∣

Ξmax −
2π(i− 1)

M

∣

∣

∣

∣

,

(4)

with Ξmin , mod
(

π sin
(

θ
(k)
min

)

, 2π
)

, Ξmax ,

mod
(

π sin
(

θ
(k)
max

)

, 2π
)

, θk,min , θ̄k − ∆k and

θk,max , θ̄k + ∆k. Note that if Imax,k < Imin,k, for

example (θk,max > 0) ∩ (θk,min < 0), then we should

selected those columns with their column indices satisfying

(i ≥ Imin,k) ∪ (i ≤ Imax,k).

Proof: See the proofs in [14], [26], [27]. The basic idea

behind Proposition 1 is that the steering vectors of an ULA

for different AoDs tend to be orthogonal when the number of

antennas is large, see references such as [12], [13].

Based on Proposition 1, we simply select those columns of

DFT matrix to form UUUk, and multiply RRRk by these vectors as

UUUH
k RRRkUUUk to get the eigenvalues. In this paper, as depicted in

Fig. 1, we assume that the K users who are simultaneously

served by the BS are non-overlapped considering the angular

spread. This can be guaranteed by letting the BS perform

user scheduling according to the locations of the users. More

specifically, following [14], we assume the BS divides multiple

users into several user groups, which satisfies that the users

in the same group have similar AoDs while for the users in

different groups, their AoDs are significantly distinct. At each

time, we assume that the BS selects one user from each user

group to serve. Similar assumption has also been assumed in

[16]. Based on this assumption, when we use (4) to select
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columns from the M -dimension DFT matrix, the columns for

different users are different, i.e., the eigenvectors of K users

are orthogonal to each other as

UUUH
k UUUm = 000 k,m = 1, 2, · · · ,K, k 6= m. (5)

This property can be used to relieve the inter-user interference,

which will be discussed in the following section.

III. JSDD SCHEME

Based on the channel model introduced in Section II, we

now propose our beamforming with OSTBC transmission

scheme for multi-user downlink communications. The basic

idea is as follows: First, a DFT-matrix based pre-beamforming

is used to separate multiple users with nearly orthogonal

eigenspace. After the pre-beamforming, the inter-user inter-

ferences are eliminated. For each user, the equivalent channel

vector is now vvvk, whose dimension is greatly reduced from

M to rk according to (3). However, to obtain the accurate

equivalent instant channel vvvk, channel estimation and feedback

are still required. When the feedback channel information is

not accurate, i.e., channel information is outdated or channel

estimation and feedhack have errors, the performance of the

beamforming schemes will be greatly deteriorated, such as

in the JSDM scheme proposed in [14]. On the other hand,

we know that OSTBC schemes do not require the CSI at

the transmitter, which means that OSTBC is robust to CSI

errors at the transmitter end. Motivated by this observation, we

then propose to combine the conventional OSTBC with partial

CSIT after the DFT-based pre-beamforming [22]. Specifically,

the transmitted symbols are first encoded by OSTBC encoder

and then a linear precoding matrix is exploited to minimize the

pairwise error probability (PEP) by using the partial equivalent

downlink channel state information on vvvk. We now detail the

JSDD scheme.

A. JSDD scheme

Let sk,i, k = 1, 2, · · · ,K , i = 1, 2, · · · , Lk, denote the i-th
transmitted symbol to the k-th user, where Lk is the number

of symbols embedded in a OSTBC block for the k-th user.

We assume that E|sk,i|2 = 1 and E

(

sRk,i(s
I
k,i)

∗
)

= 0 with

sRk,i and sIk,i the real and imaginary part of sk,i respectively.

Besides, we assume that the symbols for different users are

independent. The OSTBC codeword matrix of the k-th user

ZZZk ∈ C
Nk×Tk can be expressed as [28],

ZZZk =

Lk
∑

i=1

ΦΦΦk,is
R
k,i + j

Lk
∑

i=1

ΨΨΨk,is
I
k,i, (6)

where ΦΦΦk,i,ΨΨΨk,i ∈ RNk×Tk are OSTBC precoding matrices

with entries drawn from {−1, 0, 1}. For the OSTBC, the

following two equivalent conditions holds true:

1) ZZZkZZZ
H
k =

(

Lk
∑

i=1

|sk,i|2
)

IIINk
, (7)

2)























∀i : ΦΦΦk,iΦΦΦ
H
k,i = IIINk

,ΨΨΨk,iΨΨΨ
H
k,i = IIINk

∀n 6= i :

{

ΦΦΦk,nΦΦΦ
H
k,i = −ΦΦΦk,iΦΦΦ

H
k,n,

ΨΨΨk,nΨΨΨ
H
k,i = −ΨΨΨk,iΨΨΨ

H
k,n,

∀n, i : ΦΦΦk,nΨΨΨ
H
k,i = ΨΨΨk,nΦΦΦ

H
k,i.

(8)

In fact, the diversity gain that can be achieved by a certain

kind of OSTBC scheme mainly depends on its order, i.e.,

Nk, and the number of channel usages that are required to

transmit an OSTBC codeword matrix is given by Tk. The

rate of such a OSTBC codeword is given by Lk/Tk. As

shown in [19], [29], the rate-1 complex-symbol OSTBC exists

only for Nk = 2, which is the well-known Alamouti code.

For Nk = 3, 4, rate-3/4 OSTBC exists, while for Nk > 4,

only rate-1/2 has been constructed. Besides, the equivalent

channel dimension is rk , then we have Nk ≤ rk, which will

be the rank constraint in the optimization problem. In this

paper, to simplify the mathematical description, we assume

that T1 = T2 = · · · = TK = T , however, the proposed method

in this paper also suits to the case where T1, T2, · · · , TK are

different.

Stacking the OSTBC codeword matrices for all the users

together yields ZZZ =
[

ZZZT
1 ,ZZZ

T
2 , · · · ,ZZZT

K

]T ∈ CN×T , where

N =
∑K

k=1 Nk. The OSTBC codewords are then linearly

weighted by a matrix WWW ∈ CM×N before the downlink

transmission. We will derive the detailed form of WWW in the

following. At the receiver, the received symbols of the k-th

user are

yyyk = hhhH
k WZWZWZ + eeek, (9)

where yyykC
1×T consists of the received symbols and eeek ∈

C1×T is the noise vector. The entries of eeek are assumed to be

i.i.d. complex Gaussian random variables with zero mean and
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variance σ2.

Denoting WWW = [WWW 1,WWW 2, · · · ,WWWK ] with WWW k ∈
CM×Nk , k = 1, 2, · · · ,K , (9) can be rewritten as

yyyk = hhhH
k WWW kZZZk +

K
∑

m=1,m 6=k

hhhH
k WWWmZZZm + eeek. (10)

The first term in (10) contains the intended symbols for the

k-th user while the second term is the inter-user interference.

Substituting (3) into (10), for k = 1, 2, · · · ,K , we have

yyyk = vvvHk ΛΛΛ
1/2
k UUUH

k WWW kZZZk

+

K
∑

m=1,m 6=k

vvvHk ΛΛΛ
1/2
k UUUH

k WWWmZZZm + eeek. (11)

We can see that if we design WWW k to satisfy UUUH
k WWWm = 0, m =

1, 2, · · · ,K,m 6= k, then the inter-user interference vanishes.

To satisfy this constraint, we design WWW k as

WWW k = UUU⊥
kMMMk, (12)

where UUU⊥
k ∈ CM×rk is the null space projection matrix of

UUU k̄ , [UUU1,UUU2, · · · ,UUUk−1,UUUk+1, · · · ,UUUK ], i.e., UUUH
k̄ UUU⊥

k = 000,

and
(

UUU⊥
k

)H
UUU⊥

k = IIIrk , MMMk ∈ Crk×Nk is a matrix whose

entries are our concern afterwards.

From (5), if the eigenspace of the K users has no overlap,

which is equivalent to the case that the angle spread range

of all the users are not overlap, the projection matrix can be

chosen as UUU⊥
k = UUUk directly. Then (11) turns to be

yyyk = v̄vvHk MMMkZZZk + eeek, (13)

where v̄vvHk , vvvHk ΛΛΛ
1/2
k is the equivalent channel between the BS

and the k-th user. A detailed block diagram of the proposed

JSDD scheme is depicted in Fig. 1. 2

Now each user has an equivalent channel vector v̄vvk with the

covariance matrix R̄RRkk = E
{

v̄vvkv̄vv
H
k

}

= ΛΛΛk. The matrix MMMk

becomes a precoding matrix after the OSTBC code matrix of

user k. Assume that the estimated equivalent channel is ˆ̄vvvk,

and the true channel and estimated channel have the relation

v̄vvk = ξk ˆ̄vvvk +
√

1− ξ2kτττk, (14)

where v̄vvk and ˆ̄vvvk are jointly complex Gaussian distributed with

correlation coefficient ξk, and τττk is the i.i.d. complex Gaussian

estimation error vector with zero mean and variance matrixΛΛΛk.

Obviously, in (14), if ξk = 1, then we have v̄vvk = ˆ̄vvvk, which

means that the BS has the perfect knowledge of the k-th user’s

CSI. However, in this paper, we only focus on the cases where

ξk < 1 for k = 1, 2, · · · ,K , i.e., the CSITs are imperfect.

Denote the total transmit power of the BS as PT . In general,

PT is limited by the maximal power budget of the BS, denoted

2We note that the proposed JSDD scheme can be extended to the cases
where the BS are equipped with an uniform planar array. More specifically,
as shown in [14], for a rectangular antenna array with N rows and M columns,
the channel covariance matrix RRRk can be written as RRRk = RRRk,H ⊗RRRk,V ,

where RRRk,H ∈ CM×M and RRRk,V ∈ CN×N are the horizontal and vertical
channel covariance matrices, respectively. Note that as M (N ) becomes large,
the eigenvectors of RRRk,H (RRRk,V ) can be approximated by selecting the
columns from a DFT-matrix according to Proposition 1. As a results, the
beamforming design in the case of UPA follows the same as that will be
discussed in this paper.

by PT,max, which can be written as

PT =

K
∑

k=1

Pk =

K
∑

k=1

1

T
E

{

‖WWW kZZZk‖2F
}

=
K
∑

k=1

Lk

T
‖WWW k‖2F =

K
∑

k=1

Lk

T
‖MMMk‖2F ≤ PT,max. (15)

B. Pairwise error probability analysis

In this subsection we analyze the PEP of each user under

the channel model and the proposed JSDD scheme. Since for

OSTBC the maximal likelihood (ML) detection is equivalent

to symbol-by-symbol detection, we assume each user uses ML

detection. It is also reasonable to assume that the BS has

partial information about the equivalent downlink channel, i.e.,
ˆ̄vvvk, while the k-th user has the perfect information about the

equivalent downlink channel, i.e., v̄vvk.

For user k, let Z̄ZZk , MMMkZZZk. With the ML decoder, the

decoding criteria is

ˆ̄ZZZk = argmin
Z̄ZZk

∥

∥yyyk − v̄vvHk Z̄ZZk

∥

∥

F
, (16)

where ˆ̄ZZZk is the codeword decision. Computing the codeword

error probability directly is difficult, if not impossible. Similar

to [22], we consider PEP conditioned on the estimated channel
ˆ̄vvvHk , which is given by (17), where Q(x) is the Gaussian tail

function. In (17), the first equality follows the total probability

law and the last inequality is the Chernoff bound. According

to (14), for ξk < 1, we have

p(v̄vvHk |ˆ̄vvvHk ) =
exp

(

− 1
(1−ξ2

k
)

(

v̄vvHk − ξk ˆ̄vvv
H
k

)

ΛΛΛ−1
k

(

v̄vvk − ξk ˆ̄vvvk
)

)

πrk det ((1− ξ2k)ΛΛΛk)
,

and substitute p(v̄vvHk |ˆ̄vvvHk ) into (17), the exponent part of the

integrand can be written as (18) where AAAk ,
(

1− ξ2k
)

ΛΛΛk,

µµµk , ξkAAA
−1
k

ˆ̄vvvk and BBBk , 1
4σ2

(

Z̄ZZk − ˆ̄ZZZk

)(

Z̄ZZk − ˆ̄ZZZk

)H

+

AAA−1
k . Hence, combing p(v̄vvHk |ˆ̄vvvHk ) and (18), for ξk < 1, the

conditioned PEP (17) is upper bounded by (19). The last

equality in (19) holds due to the integral term equals one since

it is a integral of a complex Gaussian pdf. Since Z̄ZZk =MMMkZZZk

and ZZZk is an OSTBC block, based on (8), BBBk could be

rewritten as

BBBk = ρsssk,ŝsskMMMkMMM
H
k +AAA−1

k , (20)

where ρsssk,ŝssk ,
||sssk−ŝssk||

2
2

4σ2 , and sssk and ŝssk are the symbol

vectors corresponding to the codeword matrices Z̄ZZk and ˆ̄ZZZk,

respectively. We note that gk(MMMk) is related to ρsssk,ŝssk , which

is determined by the symbol vector pair (sssk, ŝssk). And it is

not difficult to verify that gk(MMMk) is a decreasing function of

ρsssk,ŝssk , which means that the error probability is dominated by

the codeword pairs with minimal value of ρsssk,ŝssk . Hence, we

should design MMMk to minimize

g̃k(MMMk) , gk(MMMk)|ρsssk,ŝssk
=ρk,min

, (21)

where ρk,min = minsssk 6=ŝssk ρsssk,ŝssk . For example, recall that we

have assumed that E|sk,i|2 = 1, and therefore, for QPSK
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P
(

Z̄ZZk → ˆ̄ZZZk|ˆ̄vvvHk
)

=

∫

P
(

Z̄ZZk → ˆ̄ZZZk|v̄vvHk , ˆ̄vvvHk

)

p(v̄vvHk |ˆ̄vvvHk )dv̄vvHk

=

∫

Q









√

√

√

√

∥

∥

∥v̄vvHk

(

Z̄ZZk − ˆ̄ZZZk

)∥

∥

∥

2

F

2σ2









p(v̄vvHk |ˆ̄vvvHk )dv̄vvHk ≤
∫

1

2
exp






−

∥

∥

∥v̄vvHk

(

Z̄ZZk − ˆ̄ZZZk

)∥

∥

∥

2

4σ2






p(v̄vvHk |ˆ̄vvvHk )dv̄vvHk . (17)

−
||v̄vvHk

(

Z̄ZZk − ˆ̄ZZZk

)

||2F
4σ2

−
(

v̄vvHk − ξk ˆ̄vvv
H
k

)

AAA−1
k

(

v̄vvk − ξk ˆ̄vvvk
)

−
(

v̄vvk − ξkBBB
−1
k AAA−1

k
ˆ̄vvvk
)H

BBBk

(

v̄vvk − ξkBBB
−1
k AAA−1

k
ˆ̄vvvk
)

= µµµH
k

(

BBB−1
k −AAAk

)

µµµk −
(

v̄vvk −BBB−1
k µµµk

)H
BBBk

(

v̄vvk −BBB−1
k µµµk

)

, (18)

P(Z̄ZZk → ˆ̄ZZZk|ˆ̄vvvHk ) ≤ det
(

BBB−1
k

)

exp
(

µµµH
k

(

BBB−1
k −AAAk

)

µµµk

)

2 det (AAAk)

∫

exp
(

−
(

v̄vvHk −µµµH
k BBB

−1
k

)

BBBk

(

v̄vvk −BBB−1
k µµµk

))

πrk det
(

BBB−1
k

) dv̄vvHk

= gk(MMMk) ,
det
(

BBB−1
k

)

exp
(

µµµH
k

(

BBB−1
k −AAAk

)

µµµk

)

2 det (AAAk)
. (19)

modulation, ρk,min = 2
4σ2 = 1

2σ2 , and for BPSK modulation,

ρk,min = 4
4σ2 = 1

σ2 .

So far, we have shown that for each user, the maximal

PEP of the ML decoding is upper bounded by (21), and the

problem now becomes how to design MMMk, k = 1, 2, · · · ,K ,

to minimize (21) under a pre-given transmit power constraint.

Basically, the sum power constraint of all K users should be

considered since they are all transmitted from a same BS.

However, from (13) we know that each user could be handled

independently if the constraint PT ≤ PT,max is decomposed

into K independent constraints on Pk for 1 ≤ k ≤ K , i.e.,

Pk ≤ Pk,max with Pk,max being the maximum power of the

k-th user. We note that it is useful to consider the individual

power constraint for the following reason:

1) Under the individual user power constraint, the PEP min-

imization problem for multiple users can be divided into

several parallel sub-problems. Solving the sub-problems

separately can be computationally efficient, and for some

special cases, the optimal closed-from solutions can be

obtained as shown in Section IV.

2) Simulation results show that uniformly allocating the

power for the users does not cause too much performance

loss, especially when the power budget of the BS is low

as shown in Section VI. Therefore, the individual user

power constraint can be viewed as a trade-off between

the computational complexity and the achievable system

performance.

3) Solving the individual user power constrained PEP min-

imization problem provides a guidance for solving the

PEP minimization problem under the sum power con-

straint. In fact, the proposed numerical algorithm for

solving the latter problem is partially based on that for

the former one.

Based on the above observations, in the following, the indi-

vidual user power constraint is discussed first, and after that

we consider the sum power constraint.

IV. INDIVIDUAL USER POWER CONSTRAINT

In this section, we consider the individual user power con-

straint, namely, Pk ≤ Pk,max for k = 1, 2, · · · ,K with Pk,max

being a constant, and
∑K

k=1 Pk,max = PT,max. These power

constraints are equivalent to ‖MMMk‖2F ≤ αk, k = 1, 2, · · · ,K
with αk ,

TPk,max

Lk
. According to (13), we can design MMMk for

each user independently.

According to the PEP criteria, our goal is to design MMMk

to minimize the objective function in (21), and therefore, the

optimization problem can be written as

min
MMMk

f̃k(MMMk), s.t. ‖MMMk‖2F ≤ αk, (22)

where f̃k (MMMk) , ln (g̃k (MMMk)) = µµµH
k (ρk,minMMMkMMM

H
k +

AAA−1
k )−1µµµk− ln det(ρk,minMMMkMMM

H
k +AAA−1

k )− bk with bk being

a constant given by bk , µµµH
k AAAkµµµk + ln 2 + ln det (AAAk).

Optimizing problem (22) directly is difficult since the object

function f̃k(MMMk) is non-convex. In the following we focus on

solving this problem. We first provide an SDR-based method

and a sufficient condition to achieve the global optimum. We

then propose a low-complexity SCA-based iterative optimiza-

tion method to obtain a suboptimal solution. Furthermore,

some special cases with closed-form solutions are also dis-

cussed, including the hign SNR, low SNR and no effective

CSIT cases.

A. SDR solution

In order to handle the problem, we first let ΩΩΩk =MMMkMMM
H
k .

Then, the optimization problem becomes

min
ΩΩΩk,rank(ΩΩΩk)≤Nk

f̆k(ΩΩΩk), (23)

s.t. tr(ΩΩΩk) ≤ αk, ΩΩΩk = ΩΩΩH
k � 0, (24)

with f̆k(ΩΩΩk) , µµµH
k (ρk,minΩΩΩk+AAA

−1
k )−1µµµk−ln det(ρk,minΩΩΩk+

AAA−1
k ). The rank constraint is due to MMMk ∈ Crk×Nk and

Nk ≤ rk. We know that the rank constraint is nonconvex.
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To deal with it, SDR method is used, i.e., we remove the rank

constraint.

1) SDR method: Without the rank constraint, the problem

(23) is convex. To see it clearly, by introducing a slack variable

η, (23) is equivalent to

min
ΩΩΩk,η

η − ln det
(

ρk,minΩΩΩk +AAA−1
k

)

(25a)

s.t. µµµH
k

(

ρk,minΩΩΩk +AAA−1
k

)−1
µµµk ≤ η, (25b)

tr(ΩΩΩk) ≤ αk, ΩΩΩk = ΩΩΩH
k � 0, (25c)

due to the fact that the inequality constraint in (25b) is active at

the optimum. In (25), it is obvious that the objective function

is convex, and by using Schur complement, (25b) is equivalent

to
[

ρk,minΩΩΩk +AAA−1
k µµµk

µµµH
k η

]

� 0, (26)

which is also convex. Therefore, we conclude that (25) is a

convex optimization problem [30].

Now the problem (25) is an SDP problem, which can be

solved efficiently [31]. If the optimal solution ΩΩΩo
k of (25)

satisfies the rank constraint of (23), then eigenvalue decompo-

sition is used to obtain the optimal MMMo
k. Otherwise, Gaussian

randomization method could be used to obtain a suboptimal

solution.

Since whether the optimal MMMo
k could be obtained depends

on the rank of ΩΩΩo
k, we next give a sufficient condition to

guarantee that the rank constraint is met, i.e., the global

optimum of (22) is obtained.

2) A sufficient condition achieving global optimum: The

Lagrange function of (25) is

L(ΩΩΩk, η, κ1, κ2,QQQ)

=η − ln det
(

ρk,minΩΩΩk +AAA−1
k

)

+ κ2 (tr(ΩΩΩk)− αk)

− tr(QQQΩΩΩk) + κ1

(

µµµH
k

(

ρk,minΩΩΩk +AAA−1
k

)−1
µµµk − η

)

,

(27)

where κ1, κ2 ≥ 0 and QQQ � 0 are the lagrange multipliers.

Define B̃BBk(ΩΩΩk) ,
(

ρk,minΩΩΩk +AAA−1
k

)−1
, and we have the

following proposition.

Proposition 2. If rank
(

κ2III − ρk,minB̃BB
T

k (ΩΩΩk)
)

≥ rk+1−Nk,

we have rank(ΩΩΩk) ≤ Nk, i.e., the rank constraint is satisfied.

Proof: Please refer to Appendix B.

In fact, the SDR method provides a lower bound on the

object function of problem (22), and establishes a performance

benchmark. In the following, we propose an SCA-based iter-

ative method to solve the original problem (22).

B. SCA Method

The basic idea of SCA method is to approximate the original

non-convex constraint or objective function with a convex

function that satisfies some certain properties, and solve the

so-obtained approximate convex problem iteratively [32], [33].

The iteration can be guaranteed to converge to a stationary

solution of the original non-convex problem.

To use the SCA method to solve the problem (22), we first

rewrite the objective function as

f̃k (MMMk) = ωωωH
k

(

CCCkMMMkMMM
H
k CCCH

k + III
)−1

ωωωk

− ln det
(

CCCkMMMkMMM
H
k CCCH

k + III
)

− b̃k,

where b̃k , bk + ln det
(

AAA−1
k

)

, ωωωk , AAA
1/2
k µµµk, and CCCk ,

√
ρk,minAAA

1/2
k . Using the matrix inversion lemma, we have

ωωωH
k

(

CCCkMMMkMMM
H
k CCC

H
k + III

)−1
ωωωk

=ωωωH
k

(

III −CCCkMMMk

(

MMMH
k CCCH

k CCCkMMMk + III
)−1

MMMH
k CCCH

k

)

ωωωk

=ωωωH
k ωωωk −ωωωH

k CCCkMMMkGGG
−1
k MMMH

k CCC
H
k ωωωk,

where GGGk , MMMH
k CCC

H
k CCCkMMMk + III . Similarly, the second term

of fk(MMMk) can be rewritten as

− ln det
(

CCCkMMMkMMM
H
k CCC

H
k + III

)

= ln det
(

III −CCCkMMMk

(

MMMH
k CCCH

k CCCkMMMk + III
)−1

MMMH
k CCC

H
k

)

= ln det(PPP k),

where PPP k , III − CCCkMMMk

(

MMMH
k CCC

H
k CCCkMMMk + III

)−1
MMMH

k CCC
H
k .

Now, the optimization problem (22) is equivalent to

min
MMMk

f̃k,1 (MMMk) + f̃k,2 (MMMk) + ck, s.t. ‖MMMk‖2F ≤ αk, (28)

where f̃k,1 (MMMk) , −ωωωH
k CCCkMMMkGGG

−1
k MMMH

k CCCH
k ωωωk,

f̃k,2 (MMMk) , ln det(PPP k), and ck = ωωωH
k ωωωk − b̃k is a

constant.

Both f̃k,1 (MMMk) and f̃k,2 (MMMk) are non-convex, thus we

now reform problem (28) using SCA principle. The basic idea

of the SCA method to solve (28) iteratively is to find the

upper convex approximate function of the objective function

at the i-th iteration, and then minimize the so-obtained convex

objective function. The acquired optimal solution is then used

to construct a new convex approximate objective function

which will be minimized in the (i+ 1)-th iteration.

To solve (28), upper convex approximations for both

f̃k,1 (MMMk) and f̃k,1 (MMMk) are provided in the following propo-

sition to enable the SCA iteration.

Proposition 3. For arbitrary constant matrix M̂MMk,i, upper

convex approximations of f̃k,j (MMMk) for j ∈ {1, 2} are given

by

f̃k,j (MMMk) ≤ f̂k,j

(

MMMk, M̂MMk,i

)

, j ∈ {1, 2}, (29)

where f̂k,1(MMMk, M̂MMk,i) , tr(MMMH
k CCC

H
k CCCkMMMkγγγk,iγγγ

H
k,i) −

2Re(tr(MMMH
k CCCH

k ωωωkωωω
H
k CCCkM̂MMk,iĜGG

−1

k,i)) + a
(1)
k,i ,

f̂k,2(MMMk, M̂MMk,i) , tr(MMMH
k CCC

H
k CCCkMMMkΞΞΞk,i) −

2Re(tr(MMMH
k CCCH

k P̂PP
−1

k,iCCCkM̂MMk,iĜGG
−1

k,i)) + a
(2)
k,i , γγγk,i =

ĜGG
−1

k,iM̂MM
H

k,iCCC
H
k ωωωk, ĜGGk,i , M̂MM

H

k,iCCC
H
k CCCkM̂MMk,i + III ,

ΞΞΞk,i = ĜGG
−1

k,iM̂MM
H

k,iCCC
H
k P̂PP

−1

k,iCCCkM̂MMk,iĜGG
−1

k,i , P̂PP k,i ,

(III + CCCkM̂MMk,iM̂MM
H

k,iCCC
H
k )−1, a

(1)
k,i = γγγH

k,iγγγk,i, and

a
(2)
k,i = tr(ΞΞΞk,i) + ln det(P̂PP k,i) + tr(P̂PP

−1

k,i − I).

Proof: The detailed derivations of (29) are provided in

the Appendix C.
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It is not hard to see that both f̂k,1(MMMk, M̂MMk,i) and

f̂k,2(MMMk, M̂MMk,i) are convex functions of MMMk. Then, by ig-

noring the constant terms, in the i-th iteration, the SCA

optimization problem is

min
‖MMMk‖

2
F
≤αk

f̂
(i)
k (MMMk)

⇒ min
‖MMMk‖

2
F
≤αk

{

tr
(

MMMH
k CCC

H
k CCCkMMMk

(

γγγk,iγγγ
H
k,i +ΞΞΞk,i

))

− 2Re
(

tr
(

MMMH
k ΓΓΓk,i

))

}

,

(30)

where f̂
(i)
k (MMMk) , f̂k,1(MMMk, M̂MMk,i) + f̂k,2(MMMk, M̂MMk,i) and

ΓΓΓk,i , CCCH
k

(

ωωωkωωω
H
k + P̂PP

−1

k,i

)

CCCkM̂MMk,iĜGG
−1

k,i . Let the solution of

(30) be MMMo
k,i. In the (i + 1)-th iteration, we have M̂MMk,i+1 =

MMMo
k,i, where M̂MMk,i+1 is the constant matrix in the (i + 1)-th

iteration. In such a way, we solve the problem (30) iteratively

until convergence or the maximum iteration number is reached.

We have to point out that (30) is in fact a QCQP-1 problem,

which can be simply solve by bisection method as shown

in [34]. For the initialization step of the SCA method, we

can randomly select a matrix MMMk,1 satisfying the constraint

‖MMMk,1‖2F ≤ αk.

Both the SDR and SCA method could not guarantee the

optimal solution. In the following, we will consider some

special cases where the optimal solutions are obtained.

C. Special cases

1) High SNR: In the high SNR regime, we have σ2 → 0
and ρk,min → +∞, and thus, we can get

f̃k (MMMk) = ωωωH
k

(

ρk,minAAA
1
2

kMMMkMMM
H
k AAA

1
2

k + IIIrk

)−1

ωωωk

− ln det
(

ρk,minAAA
1
2

kMMMkMMM
H
k AAA

1
2

k + IIIrk

)

− b̃k,

≈ − ln det
(

IIINk
+ ρk,minMMM

H
k AAAkMMMk

)

, (31)

where (31) is because det(III + ABABAB) = det(III + BABABA), and

as ρk,min → +∞, we have ωωωH
k (ρk,minAAA

1
2

kMMMkMMM
H
k AAA

1
2

k +
IIIrk)

−1ωωωk = 0 if rank(MMMkMMM
H
k ) = rk and

ωωωH
k (ρk,minAAA

1
2

kMMMkMMM
H
k AAA

1
2

k + IIIrk)
−1ωωωk = O(1) if

rank(MMMkMMM
H
k ) < rk, where O(1) denotes a constant

that does not depend on ρk,min. By ignoring the constant

terms, the optimization problem (22) becomes

max
‖MMMk‖

2
F
≤αk

f̃
(H)
k (MMMk) , (32)

where f̃
(H)
k (MMMk) , ln det(III + ρk,minMMM

H
k AAAkMMMk). Based

on (32), the following proposition characterizes the optimal

beamforming matrix, denoted by MMMk,opt, at high SNR region.

Proposition 4. At high SNR region, MMMk,opt is given by

MMMo
k =

[√

αk

Nk
IIINk×Nk

,000Nk×(rk−Nk)

]T

. (33)

Proof: Denote the singular value decomposition of MMMk

as MMMk = UUUMMMk
DDDMMMk

VVV H
MMMk

, where UUUMMMk
∈ C

rk×Nk is a sub-

unitary matrix, DDDMMMk
= diag

(√
qk,1,

√
qk,2, · · · ,√qk,Nk

)

,

and VVVMMMk
∈ CNk×Nk is an unitary matrix. Then, f̃

(H)
k (MMMk)

in (32) can be written as

f̃
(H)
k (MMMk) = ln det

(

III + ρk,minDDDMMMk
UUUH

MMMk
AAAkUUUMMMk

DDDMMMk

)

.
(34)

Note that (34) does not depend on VVVMMMk
, and therefore, we

can simply set VVVMMMk
= IIINk

. Due to the fact that DDDMMMk
is

a diagonal matrix, (34) is maximized when UUUH
MMMk

AAAkUUUMMMk
is

diagonal. Recall that AAAk =
(

1− ξ2k
)

ΛΛΛk is already a diagonal

matrix with its diagonal elemets being in decreasing order, so

we have UUUMMMk
=
[

IIINk
,000(rk−Nk)×Nk

]T
. As a result, problem

(32) becomes,

max

Nk
∑

i=1

ln(1 +
(

1− ξ2k
)

ρk,minλk,iqk,i),

s.t.

Nk
∑

i=1

qk,i ≤ αk.

(35)

The Lagrange function of (35) is

L(qk,i, κ) =

Nk
∑

i=1

ln(1 +
(

1− ξ2k
)

ρk,minλk,iqk,i)

− κ

(

Nk
∑

i=1

qk,i − αk

)

,

where κ > 0 is the Lagrange multiplier. The corresponding

KKT conditions are

∂L(qk,i, κ)

∂qk,i
=

(

1− ξ2k
)

ρk,minλk,i

1 + (1− ξ2k) ρk,minλk,iqk,i
− κ = 0, (36)

κ

(

Nk
∑

i=1

qk,i − αk

)

= 0. (37)

Then the solution to (32) has the form of waterfilling as

qk,i =

[

1

κ
− 1

(1− ξ2k) ρk,minλk,i

]+

, (38)

where [x]+ = max(x, 0) and κ is selected to satisfy
∑Nk

i=1 qk,i = αk. Note that as ρk,min → +∞, we obtain

qk,1 = qk,2 = · · · = qk,Nk
= 1

κ = αk

Nk
.

According to Proposition 4, at the high SNR region, the

transmit power is uniformly allocated to the Nk OSTBC

streams. Besides, according to (19), (21) and (31), under the

condition that ξk < 1 and Nk ≤ rk , the diversity gain of the

k-th user, denoted by dg,k, satisfies that

dg,k = − lim
ρk,min→+∞

minρsssk,ŝssk
lnP(Z̄ZZk → ˆ̄ZZZk|ˆ̄vvvHk )

ln ρk,min

≥ − lim
ρk,min→+∞

ln g̃k(MMMk)

ln ρk,min

= lim
ρk,min→+∞

ln det
(

ρk,minMMM
H
k AAAkMMMk + IIINk

)

ln ρk,min

=
Nk ln ρk,min + ln det

(

MMMH
k AAAkMMMk

)

ln ρk,min
= Nk, (39)

which coincides with the diversity gain that can be achieved
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by the (Nk × Tk)-dimensional orthogonal space-time block

code when the receiver has one antenna.

2) Low SNR: Under the low SNR scenario, σ2 is large,

and we have ρk,min → 0. Using the Taylor expansion

ln det(III+XXX) = tr(XXX)+o(‖XXX‖) where o(·) denotes the higher

order infinitesimal, and Taylor series (III −XXX)
−1

=
∑∞

k=0XXX
k,

the objective function of (22) at the low SNR regime can be

approximated by

f̃k (MMMk) ≈ −ρk,minωωω
H
k AAA

1
2

kMMMkMMM
H
k AAA

1
2

kωωωk + ωωωH
k ωωωk − b̃k

− ρk,mintr
(

AAA
1
2

kMMMkMMM
H
k AAA

1
2

k

)

. (40)

After ignoring the constant term in (40), problem (22) can be

approximated as

max
‖MMMk‖

2
F
≤αk

f̃
(L)
k (MMMk) , (41)

where f̃
(L)
k (MMMk) , tr(AAA

1
2

kMMMkMMM
H
k AAA

1
2

k ) +

ωωωH
k AAA

1
2

kMMMkMMM
H
k AAA

1
2

kωωωk The optimal solution to problem

(41) is provided in the following proposition.

Proposition 5. Assume that θθθk,max is the normalized eigen-

vector corresponding to the maximum eigenvalue of ΘΘΘk ,

ΛΛΛk + ΛΛΛ
1/2
k αααkααα

H
k ΛΛΛ

1/2
k , then the optimal solution to prob-

lem (41), denoted by MMMo
k, can be written as vec(MMMo

k) =√
αk (aaa⊗ θθθk,max), where aaa can be any Nk-dimensional vector,

Proof: Due to the fact that tr
(

XXXHYYY
)

= vec(XXX)Hvec(YYY )

and vec (XY ZXY ZXY Z) =
(

ZZZT ⊗XXX
)

vec(YYY ), f̃
(L)
k (MMMk) in (41) can

be reformulated as

f̃
(L)
k (MMMk) = tr

(

MMMH
k

(

AAA+AAA
1
2

kωωωkωωω
H
k AAA

1
2

k

)

MMMk

)

= vec (MMMk)
H
(IIINk

⊗ΘΘΘk) vec (MMMk) , (42)

Note that (42) is in a positive semidefinite quadratic form,

and it is straight that vec(MMMo
k) =

√
αkuuuk, where uuuk is the

normalized eigenvector corresponding to the largest eigenvalue

of matrix (IIINk
⊗ΘΘΘk). Let ζk,max denote the largest eigen-

value of ΘΘΘk, and the corresponding normalized eigenvector is

θθθk,max. Then uuuk is in the form of uuuk = aaa ⊗ θθθk,max, where

aaa can be any normalized Nk-dimensional vector, because any

normalized Nk-dimensional vector is an eigenvector of IIINk
.

The result shows that at the low SNR regime, the optimial

transmission scheme is doing beamforming at each symbol

interval of the OSTBC.

3) Without CSI: We now consider the scenario that the BS

does not have any instantaneous CSI about v̄vvk, i.e., we have

ξk = 0 in (14). Then, by ignoring the constant term, (22)

becomes

max
‖MMMk‖

2
F
≤αk

ln det
(

ρk,minMMM
H
k ΛΛΛkMMMk + IIIrk

)

. (43)

Note that optimization problem (43) has the same mathe-

matical structure as that in (32), and therefore, the optimal

solution of (43) follows the water-filling principle in (38),

i.e., the optimal scheme is to allocate power to OSTBC

streams according to the water-filling principle according to

the statistical CSI ΛΛΛk.

V. SUM POWER CONSTRAINT

Section IV considers the individual user power constraint

where the linear weight matrix WWW is divided into K sub-

matrices which are designed independently to minimize the

PEP of each user under the corresponding power constraint.

In this section, we discuss the sum power constraint of all K
users, and design WWW k, k = 1, 2, · · · ,K jointly.

Since the performance of all the K users are optimized

together, we consider two performance criterions, i.e., the

min−max PEP and the average PEP problems. Specially, our

target is to minimize the largest PEP and the average PEP of

K users under the sum power constraint respectively. We still

focus on optimizing the upper bound of PEP in (19) in the

following.

A. min−max PEP Problem

Under this criterion, we design MMMk, k = 1, 2, · · · ,K to

minimize the worst-user PEP. Using the upper bound (19),

the optimization problem is written as

min
M∈D

max
k=1,··· ,K

g̃k (MMMk) , (44)

where g̃k (MMMk) is defined in (21),M , (MMM1,MMM2, · · · ,MMMK),

and D ,

{

M|∑K
k=1

Lk

T ‖MMMk‖2F ≤ PT,max

}

. By Introducing

a slack variable t and taking the logarithm with respect to

g̃k(MMMk) for 1 ≤ k ≤ K , the problem is equivalent to

min
t,M∈D

t, s.t. f̃k(MMMk) ≤ ln(t), ∀k = 1, 2, · · · ,K, (45)

The problem (45) is not a convex problem due to the non-

convex constraints. Before solving the problem, we first es-

stablish the average PEP problem.

B. Average PEP Problem

For this performance criterion, our target is to minimize the

average PEP of K users. The optimization problem can be

written as

min
M∈D

1

K

K
∑

k=1

g̃k(MMMk). (46)

Introducing tk, k = 1, 2, · · · ,K , we can obtain an equivalent

optimization problem as follow,

min
tk,M∈D

K
∑

k=1

tk, s.t. f̃k(MMMk) ≤ ln(tk), ∀k = 1, 2, · · · ,K.

(47)

We can see that both the problems (45) and (47) have

the similar forms. The difficulty of solving them lies in the

fact that f̃k(MMMk) for 1 ≤ k ≤ K are non-convex functions.

Similar to the previous discussions in the individual user power

constraint case, SDR and Gaussian Randomization method

could be exploited to solve them by taking ΩΩΩk =MMMkMMM
H
k and

impose the rank constraints rank(ΩΩΩk) ≤ Nk, k = 1, · · · ,K .

However, compared to the individual case, the problem

dimension is much larger. Besides, if the optimal solutions

obtained by SDR do not satisfy the rank constraints, Gaussian



10

Randomization should be used among K optimization vari-

ables, which is more difficult to be satisfied. Hence, in the

following, we provide a more efficient method, which can be

used to solve both of (45) and (47). The basic idea of our

method is that we first transform the complicated non-convex

optimization problem into a sequence of convex problems by

SCA method. Further more, we using the ADMM algorithm to

divide the obtained convex problem into several subproblems

which can be implemented in a parallel manner, and thus

significantly reduces the complexity of solving the problem.

C. SCA-ADMM Method

In this subsection, we solve the optimization problems

established in previous two subsections. For brevity, we take

the average PEP problem as an example and the min−max
PEP problem can be solved in a similar manner. Analogue

to the individual user power constraint, for the sum power

constraint, the optimization problem can still be solved by

SCA method. In the i-th iteration, we have the following

optimization problem,

min
tk,M∈D

K
∑

k=1

tk,

s.t. f̂
(i)
k (MMMk) + ck ≤ ln(tk), ∀k = 1, 2, · · · ,K,

(48)

where ck and f̂k,j

(

MMMk, M̂MMk,i

)

for j ∈ {1, 2} are defined in

(28) and (29), respectively. Note that (48) is a convex problem.

In the following, we solve (48) by using the ADMM algorithm

[35]. The main advantage of the ADMM algorithm is that

it decomposes (48) into several subproblems which can be

implemented in a parallel manner, and therefore significantly

reduces the time consumption if the BS is equipped with

multiple computing units.

First, we rewrite (48) as (49), which is given at the top of

the next page, where X , (XXX1,XXX2, · · · ,XXXK), δ > 0 is a

constant, VVV k for k = 1, 2, · · · ,K are any compatible matrix,

and χk for k = 1, 2, · · · ,K are some real numbers.

Using the principle of ADMM, (49) can be solved by

iterating the following steps:

1) For k = 1, 2, · · · ,K , update {XXXk, τk} with

{MMMk, tk,VVV k, χk}Kk=1 fixed as constants by solving

the following optimization problem,

min
τk,XXXk

τk +
δ

2
‖MMMk −XXXk +VVV k‖2F +

δ

2
(tk − τk + χk)

2
,

s.t. f̂
(i)
k (MMMk) + ck ≤ ln(τk),

(50)

which is a convex optimization problem. Besides, we can

solve {XXXk, τk} for different k in a parallel manner. We

show that this optimization problem can be efficiently

solved by a simple bisection method in the Appendix D.

2) For k = 1, 2, · · · ,K , update {MMMk, tk} with

{XXXk, τk,VVV k, χk}Kk=1 fixed as constants by solving

the following problem,

min
tk,M∈D

K
∑

k=1

(

‖MMMk −XXXk + VVV k‖2F + ‖tk − τk + χk‖2
)

.

Note that this is a QCQP-1 problem which can be

solved by bisection method [34]. For a special case,

where L1 = L2 = · · · = LK = L, denote

the optimal solution as {tk,opt,MMMk,opt}Kk=1, then we

have tk,opt = τk + χk, and m̄mmopt = x̄xx − v̄vv if

‖x̄xx− v̄vv‖2 ≤ TPT,max

L , otherwise, m̄mmopt = x̄xx−v̄vv
‖x̄xx−v̄vv‖ ,

where m̄mmopt , [vec (MMM1,opt)
H , · · · , vec (MMMK,opt)

H ]H ,

x̄xx , [vec (XXX1)
H , · · · , vec (XXXK)H ]H , and v̄vv ,

[vec (VVV 1)
H
, · · · , vec (VVV K)

H
]H .

3) Update {VVV k, χk} for k = 1, 2, · · · ,K as follows,

VVV k ← VVV k + (MMMk −XXXk) , χk ← χk + (tk − τk) . (51)

As shown in [35], {MMMk, tk} in the above iteration will finally

converge to the global optimal point of (49), and thus the

global optimal point of (48). By iteratively solving (48), we

can obtain a local optimal point of (47), i.e., solving the

average PEP problem. The min−max PEP problem can be

solved in a similar manner. We only need to replace the

constraint τk = tk in (49) with τk = t, and the subsequent

steps remain nearly the same.

VI. SIMULATION RESULTS

In this section, some simulation results are provided to

evaluate the performance of our proposed method. Unless

specified, for each ZZZk, we consider the well-known Alamouti

space-time code [17] which means that Nk = Lk = T = 2
for k = 1, 2, · · · ,K . All signal symbols are assumed to be

the QPSK symbol. We set ∆ = ∆1 = ∆2 = · · · = ∆K and

ξ = ξ1 = ξ2 = · · · = ξK for illustrative convenience. The

mean azimuth angles of the users are set to be evenly spaced

within [−60◦, 60◦]. When individual user power constraint is

considered, we set αk = PT,max/K, k = 1, 2, · · · ,K , i.e., the

power are uniformly allocated among different users.

A. BER when the BS has no CSI

In Fig. 2, we plot the BERs when the BS has no prior knowl-

edge of the instantaneous CSI. We compare the BERs between

the DFT approximation in (4) and the actual eigenvalue

decomposition under the individual user power constraint. As

we can see from Fig. 2, as M → ∞, the BERs of the DFT

approximation method is approaching to the actual perfor-

mance. It suggests that using (4) to obtain the eigenvalues and

eigenvectors of the channel covariance matrices will reduce the

computational complexity while maintaining almost the same

BER performance, when M is large. Besides, we also see that

under the condition that the BS has no prior knowledge of the

CSI, the increase of M has little impact on improving the

BER. Actually, if (5) is satisfied, M plays almost no effect on

the designs of MMMk as shown in Section IV-C3, which indicates

that using only the second-order statistics of the channel is

generally ineffective.

B. BER when the BS has partial CSIs

In this part, we check the system performance in terms of

the BER when partial CSIs are obtained at the BS.
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min
tk,τk,M∈D,X

K
∑

k=1

(

τk +
δ

2
‖MMMk −XXXk + VVV k‖2F +

δ

2
(tk − τk + χk)

2

)

, (49a)

s.t. f̂
(i)
k (MMMk) + ck ≤ ln(τk), ∀k = 1, 2, · · · ,K, (49b)

MMMk =XXXk, tk = τk, ∀k = 1, 2, · · · ,K, (49c)
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Fig. 2: BERs of the DFT approximation method in (4) and the actual
eigenvalue decomposition, where we set ∆ = 10

◦ and K = 4.
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(a) The convergence of the SCA method.
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(b) The convergence of the ADMM algorithm.

Fig. 3: The convergence of the proposed method.

In Fig. 3, we evaluate the convergence performance of the

SCA and the ADMM algorithm. We set M = 128 and K = 2
in the simulation. In Fig. 3(a), we plot the optimized values

of the objective function versus the SCA iteration steps when

solving solving the average PEP problem in (46). As we

-19 -17 -15 -13 -11 -9 -7 -5 -3
10-5

10-4

10-3

10-2

10-1

100

Fig. 4: BER versus PT,max under individual user power constraint,
where M = 128, ξ = 0.8, and ∆ = 7.5◦.

can see, the SCA method converges within a few number

of iterations. In Fig. 3(b), the convergence of the ADMM

algorithm when solving (48) is plotted. In fact, in the most

of our simulations, the ADMM algorithm usually converges

within tens of iterations. Note that when using the ADMM

algorithm, the updates of {tk,MMMk}Kk=1 and {VVV k, χk}Kk=1 are

obtained in closed form. Besides, the updates of {τk,XXXk}Kk=1

can be solved by a simple bisection method in a parallel

manner. Therefore, using the ADMM algorithm to solve (48)

is computationally efficient.

In Fig. 4, we plot the BER under the individual user power

constraint. In the simulation, we use two different methods to

obtain the beamforming matrices, i.e., the SDR method and

the SCA method proposed in Section IV-A and Section IV-B,

respectively. In the SDR method, if the optimization results

do not meet the rank constraint, then we use the Gaussian

randomization technique to recover a proper solution (selected

from 1000 randomly generated samples). As we can see, the

two methods achieve similar performance. However, in our

simulation settings, the SCA method is computationally much

more efficient than the SDR method. This is because we

generally have rk ≫ 2, and the number of variables in the

SDR method is
∑K

k=1 r
2
k , which is much larger than that in

the SCA method, i.e.,
∑K

k=1 2rk, and in each iteration in the

SCA method, the optimization problem becomes a QCQP-1

can be efficiently solved by a bisection method.

Fig. 5, we plot the BERs versus the numbers of the users,

where we set ξ as 0.7, 0.8, and 0.9. As shown in Fig. 5, with

the increase of K , the BER also increase due to the fact that

the power for each user is decreased. Besides, due to the fact

that the physical channels are not perfectly orthogonal to each

other, the interfering power among adjacent users also increase

with K , which also results in the increase of the BER.

Fig. 6 illustrates the BERs under different numbers of
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Fig. 5: BER versus K under individual power constraint, where M =

256, ∆ = 5
◦, and PT,max = −8 (dBm).
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Fig. 6: BER versus the number of antennas under individual power
constraint, where ξ = 0.8, K = 5, and ∆ = 5

◦.

antennas at the BS, i.e., M . As we can see, the increase of M
results in a significant decrease of the BER. Note that this is

different from the results in Fig. 2 wherein the BS does not

have any prior knowledge of the CSI and the BER improves

little by increasing M . Here, with partial CSIs, the BS is able

to align (even though imperfectly) its beamforming matrices

with the channels, and brings the antennas power gains at the

users. Therefore, with the partial CSIs, the BER decreases with

the increase of M .

Fig. 7 illustrates the BERs against the channel correlation

coefficients, i.e., ξ. In the simulation, we consider the sum

power constraint, and the power allocation among different

user are obtained by solving (46). According to (14), a larger

value of ξ means that the CSIs at the BS is more accurate.

From the simulations results in Fig. 7, we can see that the

BERs can be greatly reduced with the increase of ξ, especially

when the power budget of the BS is large.

In Fig. 8, we compare the BERs when the BS uniformly

allocates it power to different users and when the BS jointly

designs the beamforming matrices and the power allocation.

As we can see from Fig. 8, the BER performance under the

sum power constraint outperforms that under the individual

power constraint because the power allocation are optimized.

However, we also see that if PT,max is small, then the two

constraints lead to similar BER performance. This inspires

us that when the transmit power of the BS is low, allocating

the power uniformly among different users is a good method

to simplify the design of the beamforming matrices while
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Fig. 7: BER versus the channel correlation coefficient ξ under sum
power constraint, M = 128, K = 4 and ∆ = 7.5◦.
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Fig. 8: BER comparison between individual power constraint and
sum power constraint, M = 128, K = 6, and ∆ = 7.5◦.

ensuring little performance loss.

C. Comparison with JSDM scheme

In this subsection, we compare the proposed JSDD scheme

with the JSDM scheme proposed in [14] in term of the BER

when the BS only has partial CSIs. The simulation results are

illustrated in Fig. 9 and Fig. 10. In the simulation, we set

M = 128, K = 4, ∆ = 5◦. Note that the JSDM scheme can

serve more than 1 user in each user group, i.e., J ≥ 1, and

therefore, we include both the case where J = 1 and where

J = 2 in our simulation, which are referred to as JSDM-1 and

JSDM-2, respectively. The signal constellations are the BPSK

and QPSK in Fig. 9 and Fig. 10, respectively. For the proposed

JSDD scheme, we adopt the 8×8 and the 4×4 OSTBC in Fig.

9 and in Fig. 10, respectively 3. For computational efficiency in

our simulation, we adopt the individual user power constraint

for the proposed JSDD scheme.

As we can see in Fig. 9, for the case of JSDM-2, the BERs

are generally very high, and even the BS adopts a high transmit

power, the BER seems to be bounded by the decoding error

floor. This is because the CSIs at the BS are imperfect, and the

decoding error floor is caused by the intra-group interference.

For the case of JSDM-1, there is no intra-group interference,

and therefore, the BER keep decreasing with the increase

of the transmit power. Note that this means that under the

condition of imperfect CSIT, the JSDM scheme may be more

3For the construction of the mentioned OSTBC matrix, please see [19].
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Fig. 9: BER comparison between JSDD and JSDM, where we adopt
the 8× 8 OSTBC for the JSDD scheme.
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Fig. 10: BER comparison between JSDD and JSDM, where we adopt
the 4× 4 OSTBC for the JSDD scheme.

suitable to serve only one user in each group. Both Fig. 9

and Fig. 10 reveal the fact when the CSIT is inaccurate, i.e.,

ξ = 0.6 and 0.7, the proposed JSDD scheme outperforms the

JSDM-1 scheme in term of BER. This is mainly because with

the utilization of the OSTBC, the JSDD scheme can achieve

diversity gains, but the beams in the JSDM-1 scheme are

formed towards the wrong directions and the effective received

power at the users is significantly reduced.

VII. CONCLUSION

In this paper, we propose a JSDD downlink transmission for

multi-user massive MIMO system. The basic idea is to permit

K users to access the downlink transmissions via spatial

division by utilizing the low-rank property of channels, and for

each user OSTBC with partial CSI (estimated CSI with errors)

is utilized to provide diversity gain. We provide detailed design

under both individual user power and sum power constraint,

SDR method and SCA-ADMM algorithm are proposed to

solve the optimization problem. Some special cases with

closed-form solutions are also discussed. The JSDD scheme

is robust to CSIT errors and provides high reliability for

downlink transmission. The scheme could find its applications

in URLLC scenarios, multiple-group multicast scenarios, etc.

APPENDIX

A. Proof of Proposition 2

The corresponding KKT conditions on ΩΩΩk are

∂L

∂ΩΩΩk
= −ρk,minB̃BB

T

k (ΩΩΩk)−QQQ+ κ2III

− κ1ρk,min

[

B̃BBk(ΩΩΩk)µµµkµµµ
H
k B̃BBk(ΩΩΩk)

]T

= 000, (52)

QQQΩΩΩk = 000, (53)

From (53), we have 0 = rank(QQQΩΩΩk) ≥ rank(QQQ) +
rank(ΩΩΩk) − rk, i.e., rank(ΩΩΩk) ≤ rk − rank(QQQ).
Furthermore, (52) shows that QQQ = κ2III −
ρk,minB̃BB

T

k (ΩΩΩk) − κ1ρk,min

[

B̃BBk(ΩΩΩk)µµµkµµµ
H
k B̃BBk(ΩΩΩk)

]T

. Since

rank(κ1ρk,min[B̃BBk(ΩΩΩk)µµµkµµµ
H
k B̃BBk(ΩΩΩk)]

T ) = 1, then we have

rank(QQQ) ≥ rank
(

κ2III − ρk,minB̃BB
T

k (ΩΩΩk)
)

− 1, which leads to

the conclusion in proposition 2.

B. Derivation of (29)

Before deriving (29), we first provide an useful inequality:

for any two matrices XXX and YYY with compatible dimensions

and positive definite YYY , the following inequality holds

tr
(

XYXYXY −1XXXH
)

≥ tr
(

X̂XXŶYY
−1

X̂XX
H
)

+ 2Re
(

tr
((

XXX − X̂XX
)

ŶYY
−1

X̂XX
H
))

− tr
(

X̂XXŶYY
−1
(

YYY − ŶYY
)

ŶYY
−1

X̂XX
H
)

, (54)

where X̂XX, ŶYY are two constant matrices and ŶYY is pos-

itive definite. The proof simply follows the fact that

tr
(

XYXYXY −1XXXH
)

is jointly convex w.r.t. (XXX,YYY ), and Jensen’s

inequality. Based on (54), for f̃k,1 (MMMk), we have (55)

where M̂MMk,i is a constant matrix in the i-th iteration of

the SCA method, ĜGGk,i = M̂MM
H

k,iCCC
H
k CCCkM̂MMk,i + III . Simi-

larly, for f̃k,2 (MMMk), we have (56) where P̂PP k,i , III −
CCCkM̂MMk,i

(

M̂MM
H

k,iCCC
H
k CCCkM̂MMk,i + III

)−1

M̂MM
H

k,iCCC
H
k , step (a) is be-

cause log det(·) is a concave function, and step (b) is obtained

by using (54).

C. A bisection method to solve (50)

To solve (50), we first rewritten it as the following form,

min
τk,xxxk

τk +
δ

2
‖xxxk − vvvk‖2 +

δ

2
(τk − qk)

2
,

s.t. ϕk,i (xxxk) ≤ ln(τk),
(57)

where ϕk,i (xxx) , xxxHΨΨΨk,ixxx − 2ℜ{βββH
k,ixxx} + dk,i, xxxk =

vec (XXXk), vvvk = vec (MMMk +VVV k), qk = tk + χk, ΨΨΨk,i =
(

γγγ∗
k,iγγγ

T
k +ΞΞΞT

k,i

)

⊗
(

CCCH
k CCCk

)

, βββk,i = vec (ΓΓΓk,i), and dk,i =

ck + a
(1)
k,i + a

(2)
k,i . Denote τ̃k,opt as the optimal solution of

(57) when the inequality constraint is absent, then it can be

easily obtained that τ̃k,opt = δqk−1
δ . If δqk − 1 > 0 and

ϕk,i (vvvk) ≤ ln(τ̃k,opt), then the optimal solution of (57) is

given by xxxk,opt = vvvk and τk,opt = τ̃k,opt. Otherwise, to

obtain xxxk,opt and τk,opt, we write the KKT conditions of (57)

as: (a) xxxk (λk) = ((δ/2)III + λkΨΨΨk,i)
−1

((δ/2)vvvk + λkβββk,i),
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f̃k,1 (MMMk) = −ωωωH
k CCCkMMMkGGG

−1
k MMMH

k CCC
H
k ωωωk

≤ −ωωωH
k CCCk

(

MMMk − M̂MMk,i

)

ĜGG
−1

k,iM̂MM
H

k,iCCC
H
k ωωωk −ωωωH

k CCCkM̂MMk,iĜGG
−1

k,i

(

MMMH
k − M̂MM

H

k,i

)

CCCH
k ωωωk

+ωωωH
k CCCkM̂MMk,iĜGG

−1

k,i

(

GGGk − ĜGGk,i

)

ĜGG
−1

k,iM̂MM
H

k,iCCC
H
k ωωωk −ωωωH

k CCCkM̂MMk,iĜGG
−1

k,iM̂MM
H

k,iCCC
H
k ωωωk

= −2Re
(

ωωωH
k CCCkMMMkĜGG

−1

k,iM̂MM
H

k,iCCC
H
k ωωωk

)

+ωωωH
k CCCkM̂MMk,iĜGG

−1

k,iGGGkĜGG
−1

k,iM̂MM
H

k,iCCC
H
k ωωωk = f̂k,1

(

MMMk, M̂MMk,i

)

, (55)

f̃k,2 (MMMk) = ln det(PPP k)
(a)

≤ ln det(P̂PP k,i) + tr
(

P̂PP
−1

k,i

(

PPP k − P̂PP k,i

))

= ln det(P̂PP k,i)− tr(III) + tr
(

P̂PP
−1

k,iPPP k

)

(b)

≤ ln det(P̂PP k,i)− tr(III) + tr
(

P̂PP
−1

k,i

)

− tr
(

P̂PP
−1

k,iCCCk

(

MMMk − M̂MMk,i

)

ĜGG
−1

k,iM̂MM
H

k,iCCC
H
k

)

− tr
(

P̂PP
−1

k,iCCCkM̂MMk,iĜGG
−1

k,i

(

MMMH
k − M̂MM

H

k,i

)

CCCH
k

)

+ tr
(

P̂PP
−1

k,iCCCkM̂MMk,iĜGG
−1

k,i

(

GGGk − ĜGGk,i

)

ĜGG
−1

k,iM̂MM
H

k,iCCC
H
k

)

− tr
(

P̂PP
−1

k,iCCCkM̂MMk,iĜGG
−1

k,iM̂MM
H

k,iCCC
H
k

)

= f̂k,2

(

MMMk, M̂MMk,i

)

, (56)

(b) τk (λk) =

(

δqk − 1 +

√

(δqk − 1)
2
+ 4δλk

)

/

2δ, (c)

λk [ϕk,i(xxxk (λk))− ln (τk (λk))] = 0, and (d) ϕk,i(xxxk (λk))−
ln (τk (λk)) ≤ 0, λk ≥ 0, where λk is the dual variable with

respect to the inequality constraint. It can be easily checked

by the first order derivative that φ (λk) , ϕk,i(xxxk (λk)) −
ln (τk (λk)) is a monotonically decreasing function with re-

spect to λk, and we have φ (λk) → +∞ as λk → 0+.

Therefore, the optimal dual variable λk,opt should be the

one that satisfies φ (λk,opt) = 0, which can be searched by

the bisection method. Once λk,opt is obtained, the optimal

solution to (57) is then given by xxxk,opt = xxxk (λk,opt) and

τk,opt = tk (λk,opt).
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