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Abstract—In this paper, two new decoding algorithms to
decode Reed-Solomon (RS) codes during transmission over burst
Rayleigh fading channels with additive white Gaussian noise
(AWGN) are proposed. They only conduct error correction for
coded symbols located in the pure AWGN region, and conduct
error and erasure correction for those symbols located in the
burst fading region by treating those coded symbols that are very
likely erroneous as erasures. The first algorithm does not need to
know the fading locations in advance, while the second algorithm
assumes that the fading locations are known. In addition, the
performance of such two algorithms is studied when a pre-
computed threshold is used to determine the erasures of the code.
Simulation results show that our proposed algorithms not only
significantly perform better than the classic Berlekamp-Messay
(BM) algorithm with a comparable computational complexity,
but also achieve a better trade-off between the performance
and the computational complexity when compared with other
existing algorithms. In particular, our algorithms exhibit excellent
robustness for tested various code parameters and fading config-
urations. Furthermore, a more detailed mathematical analysis is
also developed in this paper in order to estimate the performance
of the new algorithms in the burst Rayleigh fading channels.
We observe that the performance of the first algorithm can
only be estimated relatively accurately when encountering burst
deep-fading, whereas the performance prediction for the second
algorithm is always in agreement with the simulation results for
various fading cases.

Index Terms—Reed-Solomon codes, Rayleigh fading, burst
error, error and erasure decoding.

I. INTRODUCTION

REED-SOLOMON (RS) codes for correcting both errors
and erasures are widely used in many digital communi-

cations and recording systems, such as space communication
links [1], high definition television (HDTV) [2], digital ver-
satile discs (DVD) [3], and the IEEE 802.16 standard [4].
The conventional unique decoding algorithms such as the
Berlekamp-Massey (BM) algorithm [5], [6], the Euclidean
algorithm [7], and the Berlekamp-Welch (BW) algorithm [8]
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are very efficient but the error-correcting capability of the code
is limited by the half Hamming distance bound. In contrast,
list decoding algorithms attempt to determine the codewords
within a specified distance from a received word and hence
improve the error-correcting capability of a given code.

Building on the BW algorithm, Sudan [9] discovered a
polynomial-time list decoding algorithm. It breaks through
the classical error-correcting capability bn−k

2 c, where bxc
denotes the largest integer less than or equal to x, and n
and k denote the code length and the information length of
an RS code, respectively. Nevertheless, such an algorithm
is effective merely when the code rate is less than 1

3 . For
this reason, in 1999, Guruswami and Sudan [10] developed
an improved version of Sudan’s algorithm, which is capable
of correcting more than bn−k

2 c errors with a polynomial-
time complexity for all code rates. This algorithm consists
of two steps: (i) computation of interpolation process, (ii)
factorization of a bivariate polynomial. Later, the algorithm in
[10] was modified by Koetter and Vardy, see [11], so that the
soft-decision reliability information provided by the channel
is inserted into the interpolation process. This is called the
Koetter-Vardy (KV) algorithm, which achieves a significant
gain over the preceding hard-decision (HD) decoding and list
decoding algorithms over AWGN channels. However, it is
still orders of magnitude higher in complexity than the HD
decoding algorithms. As a result, the KV algorithm is not
practical.

The two-dimensional interpolation needed in the KV algo-
rithm increases the decoding complexity and hence will be
much more time-consuming. Consequently, various simplified
interpolation approaches were developed. Among them, early
examples of using the coordinate transform of the interpolation
points were given by the authors in [12], [13]. Bellorado et
al. [14] presented a Chase-type interpolation, which exploits
the similarity among test vectors to obtain the set of candidate
codewords; thereby reducing the interpolation complexity. Wu
[15] developed a one-pass Chase algorithm for decoding RS
codes, which has a complexity of O(dn2), where d is the min-
imum distance. In [15], the corresponding VLSI architecture
was also designed. Chen et al. [17] proposed a progressive
algebraic soft-decision (ASD) decoding algorithm in which
the factorization output list size is enlarged progressively.

Clearly, the computational complexity of the ASD algo-
rithms mentioned above is still very high from the implemen-
tation point of view, which does not make these algorithms
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particularly suited for storage and deep space communications.
Towards this end, Lee et al. [23] proposed a simplified soft-
decision decoding algorithm of RS codes by constraining
the erasure positions according to the soft information and
utilizing successive error-and-erasure decoding (EED). They
also mathematically estimated the performance based on the
ordered statistics of symbol reliability. Simulation results show
that the algorithm in [23] exhibits considerable performance
gain over the previous soft-decision decoding schemes such as
the KV and Chase-II algorithms at a moderate computational
complexity. In [18], Ur-Rehman and Zivic proposed a list
decoding algorithm for RS codes based on Chase’s idea.
Such an algorithm erases λ symbols with least reliabilities
and then performs the EED iteratively by flipping different
combinations of η least reliable bits, thereby achieving a better
trade-off between the performance and the computational
complexity when compared with the algorithm in [23].

Actually, RS codes are capable of correcting up to n − k
symbol errors with relatively small probabilities of miscorrec-
tion if these errors are clustered into bursts. In [19], Chen
et al. developed a decoding algorithm for correcting a burst
of length greater than bn−k

2 c by utilizing syndromes. This
algorithm needs to solve a probably singular linear equation
system and thus has a high computational complexity. Dawson
and Khodkar [20] observed that the formation of key equations
and the calculation of the roots of key equations in [19] can
be obtained more efficiently in another manner, and developed
a simplified method to identify all single-bursts. However, the
method is still computationally costly because of having to
try different burst lengths. In 2001, Yin et al. [21] proposed
a simplified algorithm by utilizing the cyclic property of RS
codes. This algorithm avoids the complex division operation
by using a cyclic shift method. However, it still requires a
computational complexity O(v2n) where v , n−k. Recently,
Wu [22] developed a single-burst correction algorithm with
complexity O(vn). Furthermore, Wu generalized this algo-
rithm to the cases in which there are one or several random
errors beyond a single burst.

In this paper, we develop an erasure-marking technique
in the RS-coded burst Rayleigh fading channels with binary
phase shift keying (BPSK) modulation and present two simple
soft information based decoding algorithms of RS codes by
combining the new erasure-marking scheme and the conven-
tional error-and-erasure decoder. For instance, suppose that
there are b bits in a symbol and all the bits are independent.
If the error probabilities of some bits in each symbol exceeds
a threshold, then that symbol has a high likelihood of being
an error and can be treated as an erasure. This leads to extend
the error-correcting capability of the code if RS decoders for
correcting both errors and erasures are employed. Extensive
simulation results show that the new decoding algorithms per-
form very well while their decoding complexity is comparable
with that of the BM algorithm. In particular, the new algo-
rithms exhibit very outstanding robustness for different code
parameters and channel characteristics. Additionally, we also
analyze the performance of the new algorithms mathematically
over burst Rayleigh fading channels, which conforms to the
simulation results in the tested signal-to-noise ratio (SNR)

regions when the burst fading is deep.
The remainder of this article is organized as follows: The

background knowledge of RS codes is reviewed in Section
II. Section III demonstrates two methods of correcting errors
as well as erasures in which the erasures can be determined
by the symbols that have the high likelihood of being errors.
Moreover, the corresponding mathematical analysis is also
provided in this section. Simulation results are presented in
Section IV. Finally, this paper concludes with a brief summary
in the final section.

II. TERMINOLOGY AND BACKGROUND OF RS CODES

Let C be a (n, k) RS code over GF (2m) with minimum
distance d, where n < 2m is the block length, k is the number
of m-bit message symbols, and d − 1 = n − k is the number
of parity symbols, a property known as maximally distance
separable. The maximum number of errors in an RS code
which can be corrected is t = b(d − 1)/2c. The generator
polynomial g(x) is of the form

g(x) =

2t
∏

i=1

(x − αi), (1)

where α is a primitive element of the finite field GF (2m). For
any message polynomial u(x) = u0 + u1x + . . . + uk−1x

k−1,
the encoded codeword is c(x) = xn−ku(x) + p(x), where
c(x) = c0 + c1x + . . . + cn−1x

n−1 and p(x) is the parity
polynomial of degree less than n − k, given by

p(x) ≡ xn−ku(x) mod g(x). (2)

Since c(x) is a multiple of g(x), one obtains

c(αi) = 0 for i = 1, 2, . . . , 2t. (3)

A codeword having n symbols generated in this manner is
said to be a systematic codeword.

Suppose an RS codeword is transmitted through a noisy
channel. Let r = (r0, r1, . . . , rn−1) be the received hard-
decision vector. Its associated polynomial r(x) = r0 + r1x +
. . . + rn−1x

n−1 can be expressed as the sum of the code-
word polynomial c(x) and the error polynomial e(x), where
e(x) = e0 + e1x + . . . + en−1x

n−1. The following is a brief
review of the classical BM decoding algorithm, mentioned
in [5], [6]. Initially, a series of syndromes are obtained by
evaluating the received polynomial at 2t consecutive locators,
given by

Si = r(αi) for i = 1, 2, . . . , 2t. (4)

If all the syndromes are equal to zero, then we assume that
there were no errors during transmission; otherwise, the BM
decoder is used to determine the error locators and error
magnitudes.

Now, let us first define the syndrome polynomial S(x),
the error-locator polynomial Λ(x), and the error-evaluator
polynomial Ω(x) as follows:

S(x) = S0 + S1x + . . . + S2t−1x
2t−1. (5)

Λ(x) =

δ
∏

i=1

(1 − αix) = 1 + Λ1x + . . . + Λδx
δ . (6)
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Ω(x) =

δ
∑

i=1

γiαi

δ
∏

j=1,j 6=i

(1 − αjx)

= Ω0 + Ω1x + . . . + Ωδ−1x
δ−1. (7)

Here, γi, αi are the i-th errata amplitude and errata location,
respectively, and δ denotes the number of errors. The above
three polynomials jointly satisfy the well-known key equation
[26], namely,

Λ(x)S(x) ≡ Ω(x) mod x2t. (8)

The BM algorithm can be applied to solve Eq. (8) if δ ≤ t.
Another widely used approach to solve the key equation is the
Euclidean algorithm, see [7], [28].

When erasures are considered, Eq. (8) needs to be modified
as below:

Λ(x)Θ(x)S(x) ≡ Ω(x) mod x2t, (9)

where Θ(x) =
∏v

j=1(1−βjx) is the so-called erasure-locator
polynomial, v is the number of erasures and βj corresponds
to the j-th erasure location.

III. SOFT-DECISION DECODING OVER BURST-FADING
AWGN CHANNELS

A. Two New Soft Information Based Decoding Algorithms

Consider an RS code of length n with BPSK modulation
transmitted over burst-fading (that is, a series of consecutive
coded bits encounter fading) AWGN channels. This type of
channels can be seen as a special case of two-state hidden
Markov model (HMM) channels [32], in which the channel
states are partitioned into two cases: without burst-fading
and with burst-fading (both states are interfered by AWGN),
corresponding to good and bad states in HMM channels,
respectively. The received signal is z(t) = h(t)s(t) + w(t),
where s(t) is the transmitted signal, h(t) is the channel gain,
and w(t) is a zero-mean white Gaussian noise process whose
power spectral density is equal to N0/2. In order to detect
the k-th received bit, z(t) is sent through a demodulator
such that it produces a sequence of N numbers, denoted by
z1, z2, . . . , zN , where N = n × m. That is,

zξ = hsξ + wξ for ξ = 1, 2, . . . , nm. (10)

In Eq. (10), zξ denotes the ξ-th channel observation and its
absolute value is, what is called, bit magnitude hereinbelow,
sξ ∈ {−1, +1} is a transmitted binary digit, and wξ is a white
Gaussian random variable with zero mean and variance σ2.
The parameter h is defined to be

h =

{

a for fl ≤ ξ < fl + Lb,
1.0 otherwise. (11)

Here, a is a Rayleigh fading coefficient, fl is the starting point
of burst fading and Lb is the burst length. We assume that a
remains static over a codeword period. The probability density
function (PDF) of a is given by

p(a) =
a

σ2
a

e
−a2

2σ2
a , a ≥ 0. (12)

Here, σa is the scale parameter of a Rayleigh distribution.

Proposition 1: Assume a sequence of independent binary
random variables is transmitted over the AWGN channel and
BPSK modulation is used. Then the magnitudes of the received
symbols have the unique PDF.

Proof: Using the expression (−1)s, where s is a binary
symbol, one can map the input bits 0 and 1 to 1 and -1,
respectively. Namely, 0 → +1, 1 → −1. Then there exists two
different descriptions of received symbols; that is, z = +1+w
and z = −1 + w, where w is a Gaussian random variable
with zero mean and variance σ2, such that the PDFs of their
magnitudes, denoted by p1(Z) and p2(Z) where Z = |z|, are
given by

p1(Z) =
1√
2πσ

e−
(Z−1)2

2σ2 +
1√
2πσ

e−
(−Z−1)2

2σ2 for Z > 0,

p2(Z) =
1√
2πσ

e−
(Z+1)2

2σ2 +
1√
2πσ

e−
(−Z+1)2

2σ2 for Z > 0,

p1(Z) = p2(Z) =
1√
2πσ

e−
1

2σ2 for Z = 0. (13)

Clearly, p1(Z) = p2(Z) = p(Z) is valid for Z ≥ 0. Its graphic
explanation is illustrated in Fig. 1. In this figure, the blue solid
line (marked with ‘+ ’) is p(Z), which is obtained by adding
the red (marked with ‘◦ ’) and the purple (marked with ‘� ’)
solid ones in the region Z > 0.
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Fig. 1. The PDFs of p1(Z), p2(Z) and p(Z).

Let Aj be the average received bit magnitude of the j-th
coded symbol, or equivalently, Aj = 1

m

∑m
i=1 |z(j−1)∗m+i|.

When multiple codewords are transmitted over the burst-
fading AWGN channels, {Aj} can be partitioned into two
independent and identically distributed (i.i.d) sequences, where
the coded bits are assumed to be mutually independent. The
first sequence, denoted by A1, corresponds to pure AWGN,
and the other, denoted by A2, encounters burst fading. Ac-
cording to the law of large numbers, the components in A1

approximately satisfy a Gaussian distribution. On the other
hand, the distribution of the components in A2 changes with
the variation of σa. We observe that this distribution is similar
to Gaussian distribution when σa ≤ 1.0. The histograms of the
average bit magnitude of the received symbols and the fitted
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normal density functions are illustrated in Fig. 2, which is
obtained by transmitting 1000 randomly generated codewords
of a (255,223) RS code over pure AWGN and Rayleigh fading
AWGN channels, respectively, where fading coefficients keep
constant in a codeword period.

We define E1 and V1 to be the corresponding mean and
variance of components in A1. Then we have

E1 = E[(
1

m

m
∑

i=1

|ri|)|h = 1.0]

=
1

m

m
∑

i=1

E[(|ri|)|h = 1.0]

=
1

m
· m

∫ +∞

0

Zp(Z)dZ

=

∫ 0+

0

Zp(Z)dZ +

∫ +∞

0+

Zp(Z)dZ

≈
∫ +∞

0+

Z(
1√
2πσ

e−
(Z−1)2

2σ2 +
1√
2πσ

e−
(−Z−1)2

2σ2 )dZ

=
1

2
(erfc(

−1√
2σ

) − erfc(
1√
2σ

)) +

√
2σ√
π

e
−1

2σ2 . (14)

and

V1 = V ar[(
1

m

m
∑

i=1

|ri|)|h = 1.0]

=
1

m2
· m · V ar[(|r1|)|h = 1.0]

=
1

m
(E[|r1|2|h = 1.0] − E2

1)

≈ (

∫ +∞

0+

Z2(
1√
2πσ

e−
(Z−1)2

2σ2 +
1√
2πσ

e−
(−Z−1)2

2σ2 )dZ

−E2
1) · 1

m

=
1

m
(1 + σ2 − E2

1). (15)

Herein, E[·] and V ar[·] denote the expectation function and
the variance function, respectively, and ri, i = 1, . . . , m denote
m channel observations corresponding to m bits of a coded
symbol. The expectation E2 and the variance V2 corresponding
to A2 can be determined in a manner similar to the above
equations (a is a rayleigh variable) as follows:

E2 = E
[

E[(
1

m

m
∑

i=1

|ri|)|h = a]
]

≈
∫ +∞

0

[

∫ +∞

0+

Z(
1√
2πσ

e−
(Z−a)2

2σ2 +

1√
2πσ

e−
(−Z−a)2

2σ2 )dZ
]

p(a)da

=

∫ +∞

0

[a

2
(erfc(

−a√
2σ

) − erfc(
a√
2σ

)) +

√
2σ√
π

e
−a2

2σ2
]

p(a)da. (16)
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Fig. 2. The histogram of the components in A1 and A2

and

V2 = E
[

V ar[(
1

m

m
∑

i=1

|ri|)|h = a]
]

≈
∫ +∞

0

[ 1

m
(

∫ +∞

0+

Z2(
1√
2πσ

e−
(Z−a)2

2σ2 +

1√
2πσ

e−
(−Z−a)2

2σ2 )dZ − E2
2)

]

p(a)da

=
1

m

(

∫ +∞

0

[

∫ +∞

0+

Z2(
1√
2πσ

e−
(Z−a)2

2σ2 +

1√
2πσ

e−
(−Z−a)2

2σ2 )dZ
]

p(a)da − E2
2

)

=
1

m

(

∫ +∞

0

[

a2 + σ2
]

p(a)da − E2
2

)

. (17)

When the coded symbols are transmitted over pure AWGN
channels with no fading, the errors are often randomly dis-
tributed. This implies that there is, most likely, at most
one erroneous bit in each symbol. In this case, the error-
only decoder of RS codes is utilized. Contrarily, there exists



5

burst errors and random errors when the signal is affected
by burst fading and AWGN, and hence several bit errors
are regularly occurred in a coded symbol. Those symbols
containing multiple erroneous bits can be treated as erasures
since they are very likely incorrect. Consequently, the RS
decoder for correcting errors and erasures is employed instead.
Nevertheless, it is very difficult to determine the exact starting
and ending points of burst fading in a codeword period. In this
paper, we arrive at a scheme without estimating the starting
point and the length of burst fading to decode RS codes over
the burst Rayleigh fading channels. The complete decoding
algorithm, called Algorithm 1, is summarized below:

Algorithm 1:
1) Initially, compute E1, E2, V1, V2, and Aj , where 1 ≤

j ≤ n. The symbol E2 can be considered as a special
reliability of a coded symbol located in the burst-fading
region since it is the mean of the average received bit
magnitude of a coded symbol. Based on the idea given
in [27], the corresponding error probability has the form

Ts =
1

1 + e
2E2
σ2

. (18)

This parameter will be hereinafter used as a threshold.
If the bit-error probability of a coded bit exceeds this
threshold, then it is more likely erroneous.

2) Given a coded symbol yj , if its average bit magnitude
Aj < A∗, then this symbol can be supposed to be
located in the burst-fading region. Here, the parameter
A∗ is the intersection of two PDF functions f1(u) =

1√
2πV1

e−
(u−E1)2

2V1 and f2(u) = 1√
2πV2

e−
(u−E2)2

2V2 and can
be obtained according to Eq. (19).

3) The channel model in the burst fading region is z =
±a + w, where z and w are the channel output and
a AWGN noise symbol, respectively. Assume that ‘0’
and ‘1’ are uniformly distributed. The average bit-error
probability corresponding to the burst fading region can
be written explicitly as follows:

pBF = E[pa|a]

=

∫ +∞

0

[1

2

∫ 0

−∞

1√
2πσ

e
−(z−a)2

2σ2 dz +

1

2

∫ +∞

0

1√
2πσ

e
−(z+a)2

2σ2 dz
]

p(a)da

=

∫ +∞

0

∫ 0

−∞

1√
2πσ

e
−(z−a)2

2σ2 · p(a)dzda.

(20)

Herein, pa denotes the average bit-error probability
when the fading coefficient a is given. Then, L =
dpBF · me is the expectation number of erroneous bits
in a coded symbol, where dxe denotes the least integer
greater than or equal to x. To avoid L = 1 in some
cases, L = max(dpBF · me, 2) is chosen instead.

4) Proceed the received coded symbol yj for j = 1, . . . , n
satisfying Aj < A∗, and flag it as an erasure if the
number of bits in a coded symbol whose bit-error
probabilities satisfying the inequality Pj,i ≥ Ts is larger

than or equal to L1, where

Pj,i =
1

1 + e
2|z(j−1)∗m+i|

σ2

for i = 1, . . . , m. (21)

5) Conduct EED according to the erasure locations deter-
mined in Step 4. If no erasures are marked, then run the
BM decoder.

Remarks: When we simulate Algorithm 1, we find that
dpBF · me is typically equal to 1 or 2 in the tested SNR
regimes. Therefore, Step 3 of Algorithm 1 can be omitted
by fixing L to 2. Moreover, it can readily be understood
that the choice of the bit-error probability threshold in Step
1 of Algorithm 1 is extremely crucial for the error-rate
performance of this algorithm.

In Step 2 of the above algorithm, the probability that a
received symbol located in the pure AWGN region is mistaken
as being located in the burst fading region is given by the
formula

p̂ =

∫ A∗

0

1√
2πV1

e
−(Z−E1)2

2V1 dZ. (22)

One observes from Fig. 3 that this probability is high for σa ≥
0.5, which deteriorates the performance of Algorithm 1 since
several correct symbols located in the pure AWGN region are
marked as erasures.
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Fig. 3. The probability that a received symbol located in the pure AWGN
region is mistaken as being located in the burst fading region for different
σa.

If the starting and ending points of the burst fading are
known, then A∗ does not need to be determined. Consequently,
an improved version of Algorithm 1, called Algorithm 2, is
thus obtained as follows:

Algorithm 2:
1) Compute Aj for j = 1, 2, . . . , n and Ts.
2) Determine L in a manner similar to Step 3 of

Algorithm 1 (or simply set L to 2).

1Note that the expression 1/(1 + e2x/σ2
), x ≥ 0, is a monotonically

decreasing function. Thus, we only need to compare |z(j−1)∗m+i| with E2

when programming Algorithm 1.
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A∗ =

(

E2V1 − E1V2 + V1V2

√

((E1 − E2)2 − 2V1 log(
√

V2

V1
) + 2V2 log(

√

V2

V1
))/(V1V2)

)

V1 − V2
. (19)

3) Proceed the received symbols located in the burst fad-
ing region yj , ∀j ∈ [fs, fe], where fs and fe denote
the starting point and ending points of burst fading,
respectively, and flag a received symbol as an erasure
if the number of bits in this symbol whose bit-error
probabilities satisfying the inequality Pj,i ≥ Ts is larger
than or equal to L.

4) Conduct EED in accordance with the erasure locations
determined in Step 3. If no erasures are flagged, then
run the BM decoder.

B. Performance Analysis Of New Decoding Algorithms

We first derive a formula to estimate the performance of
Algorithm 2 in which the locations of the burst fading are
known in advance. Assume that a (n, k) RS code over GF (2m)
is transmitted over the burst Rayleigh fading channels with
BPSK modulation and Algorithm 2 is used to decode this
code. Without loss of generality, all-zero codewords are always
transmitted. The bit-error probability of each coded bit in the
pure AWGN region is given by

pA =

∫ 0

−∞

1√
2πσ

e
−(z−1)2

2σ2 dz (23)

We assume that the coded bits are mutually independent,
then the probability that a coded symbol in the pure AWGN
region is an error can be written as

PE1 = 1 − (1 − pA)m. (24)

In the burst-fading region, an incorrect coded symbol is
handled as an erasure with high probability. It is interesting to
note that a correct received symbol might be mistaken as an
erasure by the decoder based on Algorithm 2. Upon inspection
of the proposed algorithm, one knows that the j-th coded
symbol is an erasure if and only if there exist at least L bits in
that symbol whose corresponding channel observations have
magnitudes less than or equal to E2. Let r be the channel
observation of any coded bit located in the burst fading region,
then the probability that a coded symbol in the burst-fading
region will be marked as an erasure can be formulated as

Pera =

m
∑

u=L

Cu
m[Pr{|r| ≤ E2}]u[Pr{|r| > E2}]m−u. (25)

Herein,

Pr {|r| > E2}
= Pr{r > E2} + Pr{r < −E2}

=

∫ +∞

E2

f(r)dr +

∫ −E2

−∞
f(r)dr

=

∫ +∞

E2

1
√

2π(V ar[a] + σ2)
e

−(r−E[a])2

2(V ar[a]+σ2) dr

+

∫ −E2

−∞

1
√

2π(V ar[a] + σ2)
e

−(r−E[a])2

2(V ar[a]+σ2) dr

=
1

2
erfc

( E2 − E[a]
√

2(V ar[a] + σ2)

)

+

1

2
erfc

( E2 + E[a]
√

2(V ar[a] + σ2)

)

, (26)

where

E[a] =

∫ +∞

0

ap(a)da

=

√

π

2
σa. (27)

V ar[a] = E[a2] − (E[a])2 =
4 − π

2
σ2

a. (28)

Here, the third equality in Eq. (26) uses the fact that r is
approximately Gaussian distributed in the referred channels.
Then we obtain Pera by substituting Eq. (26) into Eq. (25),
where Pr{|r| ≤ E2} = 1 − Pr{|r| > E2}. Accordingly, the
probability that a wrong received symbol in the burst fading
region is not marked as an erasure is given by

PE2 = (1 − (1 − pBF )m)(1 − Pera). (29)

The probability of successful decoding by utilizing Algo-
rithm 2 can be clearly expressed as

Ps = Pr{2Ne + Nera ≤ d − 1}, (30)

where Ne and Nera denote the number of errors and erasures,
respectively. Let Ne1 and Ne2 be the number of errors in the
pure AWGN and burst-fading AWGN regions, respectively;
that is, Ne = Ne1 + Ne2. Then we have

Ps

=
∑

u,β,γ, s.t.2u+2γ+β≤d−1

Pr{Ne1 = u, Nera = β, Ne2 = γ}

=
∑

u,β,γ, s.t.2u+2γ+β≤d−1

Pr{Ne1 = u}Pr{Nera = β, Ne2 = γ}

=

b d−1
2 c

∑

u=0

d−1
∑

β=0

b d−1
2 c

∑

γ=0

(

Pr{Ne1 = u}Pr{Nera = β, Ne2 = γ}

·Π(2u + 2γ + β ≤ d − 1)
)

. (31)
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Here, Π(·) is the indicator function and satisfies

Π(x) =

{

1 x is ture,
0 otherwise. (32)

The second equality in (31) is valid because Ne1 is inde-
pendent with Ne2 and Nera. Note that Ne2 and Nera are
mutually dependent since both of which correspond to burst-
fading. To avoid the case ‘Nera + Ne2 > τ ’, where τ = dLb

m
e

represents the number of coded symbols in the burst fading
region, we state that Cj

i = 0 if i < j when the probability
Pr{Nera = β, Ne2 = γ} is determined as follows:

Pr{Nera = β, Ne2 = γ} = Cβ
τ (Pera)βCγ

τ−β(PE2)
γ ·

(1 − Pera − PE2)
τ−β−γ .

(33)

Additionally, it follows from Eqs. (23) and (24) that

Pr{Ne1 = u} = Cu
n−τ (PE1)

u(1 − PE1)
n−τ−u. (34)

Similar to the analysis given in [24], combining Eqs. (31),
(33), and (34) yields Ps as given in (31) and hence the frame
error rate (FER) is obtained immediately from the following
equation:

FER
= 1 − Ps

= 1 −
b d−1

2 c
∑

u=0

d−1
∑

β=0

b d−1
2 c

∑

γ=0

[

Cu
n−τ (PE1)

u(1 − PE1)
n−τ−u ·

Cβ
τ (Pera)βCγ

τ−β(PE2)
γ(1 − Pera − PE2)

τ−β−γ ·
Π(2u + 2γ + β ≤ d − 1)

]

. (35)

When Algorithm 1 is utilized, the probability that a
received symbol in the burst-fading region is marked as an
erasure is approximately computed by

P ′
era,2 =

∫ A∗

0

1√
2πV2

e
−(Z−E2)2

2V2 dZ · Pera. (36)

Correspondingly, the probability that an incorrect received
symbol in the burst fading region fails to be marked as an
erasure is determined by

P ′
E2 = (1 − (1 − pBF )m)(1 − P ′

era,2). (37)

Moreover, some received symbols in the pure AWGN region
are mistaken as being located in the burst fading region,
and they might also be flagged as erasures. Similarly, the
corresponding erasure probability, denoted by P ′

era,1, is given
by

P ′
era,1 =

∫ A∗

0

1√
2πV1

e
−(Z−E1)2

2V1 dZ ·

[

m
∑

u=L

Cu
m[Pr{|r′| ≤ E2}]u[Pr{|r′| > E2}]m−u

]

,

(38)

where r′ is the channel observation of a coded bit located in
the pure AWGN region and the probability Pr{|r′| > E2} is

computed by

Pr{|r′| > E2} = Pr{r′ > E2} + Pr{r′ < −E2}

=

∫ +∞

E2

f(r′)dr′ +

∫ −E2

−∞
f(r′)dr′

=

∫ +∞

E2

1√
2πσ2

e
−(r′−1)2

2σ2 dr′

+

∫ −E2

−∞

1√
2πσ2

e
−(r′−1)2

2σ2 dr′

=
1

2
erfc

(E2 − 1√
2σ2

)

+
1

2
erfc

(E2 + 1√
2σ2

)

.

(39)

Accordingly, the probability that an incorrect received symbol
in the pure AWGN region is not marked as an erasure is given
by

P ′
E1 = (1 − (1 − pA)m)(1 − P ′

era,1). (40)

Let N ′
era,2 and N ′

e2 (N ′
era,1 and N ′

e1) be the number of
erasures and errors in the burst fading (pure AWGN) region,
respectively. Similar to the above analysis, the probability of
successful decoding by utilizing Algorithm 1 is given by

P ′
s =

∑

v,u,β,γ, s.t.

2u+v+2γ+β≤d−1

Pr
{N ′

era,1=v,N ′
e1=u

N ′
era,2=β,N ′

e2=γ

}

=
∑

v,u,β,γ, s.t.

2u+v+2γ+β≤d−1

Pr{N ′
era,1 = v, N ′

e1 = u} ·

Pr{N ′
era,2 = β, N ′

e2 = γ}. (41)

According to the derivation of Eq. (31), the corresponding
FER of Algorithm 1, denoted by FER′, is directly obtained
by combining Eqs. (36), (40), and (41) as follows:

FER′

= 1 − P ′
s

= 1 −
d−1
∑

v=0

b d−1
2 c

∑

u=0

d−1
∑

β=0

b d−1
2 c

∑

γ=0

[

Cv
n−τ (P ′

era,1)
vCu

n−τ−v ·

(P ′
E1)

u(1 − P ′
era,1 − P ′

E1)
n−τ−v−u · Cβ

τ (P ′
era,2)

β ·
Cγ

τ−β(P ′
E2)

γ(1 − P ′
era,2 − P ′

E2)
τ−β−γ ·

Π(2u + v + 2γ + β ≤ d − 1)
]

. (42)

Proposition 2: Assume that an (n, k) RS code over
GF (2m) is transmitted over burst Rayleigh fading channels
and the BM algorithm is utilized to decode this code. Then
the FER can be explicitly expressed as

FERBM

= 1−
b d−1

2 c
∑

γ=0

γ
∑

u=0

[Cu
n−τ (PE1)

u(1 − PE1)
n−τ−u ·

Cγ−u
τ (1 − (1 − pBF )m)γ−u ·

((1 − pBF )m)τ−(γ−u)] (43)

Proof: For simplicity, the same notations mentioned
above are used. It is well-known that the BM algorithm can
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correct up to b d−1
2 c errors. Thus, the probability of successful

decoding is given by

P ′′
s = Pr{Ne1 + Ne2 ≤ bd − 1

2
c}

=

b d−1
2 c

∑

γ=0

Pr{Ne1 + Ne2 = γ}

=

b d−1
2 c

∑

γ=0

γ
∑

u=0

Pr{Ne1 = u} · Pr{Ne2 = γ − u}

=

b d−1
2 c

∑

γ=0

γ
∑

u=0

[Cu
n−τ (PE1)

u(1 − PE1)
n−τ−uCγ−u

τ ·

(1 − (1 − pBF )m)γ−u((1 − pBF )m)τ−(γ−u)].

(44)

The FERBM in (43) immediately follows from Eq. (44). The
proof of Proposition 2 is thus complete.

IV. SIMULATION RESULTS

In this section, simulations of the proposed and the existing
decoding algorithms for RS codes in the burst Rayleigh fading
channels with BPSK modulation are conducted using the C
programming language. Typically, we choose the BM algo-
rithm, Wu’s algorithm [22] and the IEED algorithm given in
[18] as counterparts. Hereafter, we let ‘IEED(λ, η)’ denote the
IEED algorithm with the parameters λ and η. In reality, we run
Algorithm 3 given in [22] when conducting Wu’s algorithm,
in which a supposed maximum number of random errors δ
needs to be preset. When δ is a small constant, Wu’s algorithm
requires O(vn) complexity, whereas such a complexity will
gradually increase up to O(v2n) with the increasement of δ.
Furthermore, increasing δ may result in a performance loss
in our applications since the maximum length of bursts that
can be determined will shorten. Thus, an appropriate δ needs
to be chosen in different scenarios. Consider three different
systematic RS codes with the following parameters:

Code C1 : n = 255, k = 223;
Code C2 : n = 1023, k = 959;
Code C3 : n = 528, k = 514.
In order to demonstrate the performance of the proposed

algorithms, cases of σa = 0.2, σa = 0.3 and σa = 0.4
are tested with four different fading configurations: 200-bit,
120-bit, 400-bit and 100-bit consecutive fading segments. For
comparison purposes, with the aid of Eqs. (35), (42) and
(43), the FER performance of the new algorithms and the
BM algorithm are mathematically estimated. All of simulation
curves are obtained when collecting 100 codeword errors
unless otherwise specified. The performance of the abovemen-
tioned decoding methods are illustrated by the following three
examples:

A. Example 1

The comparisons of FER performance for the four different
decoding algorithms with code C1 and 200-bit consecutive
burst fading under two fading parameters are demonstrated

in Figs. 4-5. It can be seen from Fig. 4 that Algorithm 1
achieves a substantial gain over the classic BM algorithm.
Meanwhile, this algorithm is approximately 0.4dB better than
Wu’s algorithm (δ = 1) but is inferior to the IEED (λ = 26,
η = 12) algorithm by about 0.6dB, respectively, at FER of
10−4. In order to compare Algorithm 1 with Wu’s algorithm
more deeply, the performance of the latter in the ideal situation
is also simulated by assuming the number of random errors
is known in advance. One observes from Fig. 4 that the ideal
Wu’s algorithm performs about 0.45dB better than Algorithm
1. Furthermore, Algorithm 2 slightly outperforms the IEED
algorithm. It is worth noting that the IEED algorithm has
a very high computational complexity. Therefore, only 20
frame errors are collected when declaring a FER of this
algorithm in the high SNR regimes. Nevertheless, Algorithm
1 performs well despite without the knowledge of the fading
locations and requires a low complexity. We observe that
the gap between the performance estimated from Eq. (42)
and the simulation curve for Algorithm 1 is approximately
0.5dB. Whereas, Eq. (43) cannot predict the performance of
the BM algorithm correctly since the fading coefficient a takes
values in a relatively large interval. It is of interest that the
performance analysis of Algorithm 2 is highly consistent with
the simulation results, in which the burst fading locations are
assumed to be known.

7 8 9 10 11 12 13
Eb/N0(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

FE
R

Algorithm 1
Algorithm 2
BM algorithm
Wu's algorithm
Wu's algorithm(ideal)
IEED algorithm
BM algorithm(estimated)
Algorithm 1(estimated)
Algorithm 2(estimated)

Fig. 4. FER performance of code C1 over burst Rayleigh fading channels
with σa = 0.4.

In Fig. 5, the performance of five decoding algorithms when
σa = 0.3 is compared. Observations illustrate that Algorithm
1 far outperforms the BM algorithm at the whole tested SNR
regimes. In this case, Algorithm 2 has only a gain of about
0.1dB over Algorithm 1 despite the known burst locations.
Algorithm 1 is 1.0dB better than Wu’s algorithm (δ = 1) at
FER of 2 × 10−4 and even outperforms Wu’s algorithm with
the ideal case. In this scenario, the IEED (λ = 25, η = 10)
algorithm is inferior to our proposed algorithms. Moreover,
Eq. (35) estimates the performance of Algorithm 2 very
accurately for moderate to high SNR, and the gap between
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the simulated and the estimated curves for Algorithm 1 is
merely 0.1dB.

6 7 8 9 10 11 12
Eb/N0(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

FE
R

Algorithm 1
Algorithm 2
BM algorithm
Wu's algorithm
Wu's algorithm(ideal)
IEED algorithm
Algorithm 1(estimated)
Algorithm 2(estimated)

Fig. 5. FER simulations of code C1 over burst Rayleigh fading channels
with σa = 0.3.

B. Example 2

In this example, the above five decoding algorithms are
compared in Fig. 6 when the code C1 and 120-bit consecutive
fading are considered. The fading parameters σa is equal to
0.2. It can be inferred from Fig. 6 that Algorithm 1 is approxi-
mately 2.5dB better than the BM algorithm at FER of 2×10−4.
The performance difference between Algorithms 1 and 2
is less than 0.1dB although the former has no information
on burst-fading locations. Moreover, Algorithm 1 provides
almost 0.3dB gain over Wu’s algorithm (δ = 6) at FER of
10−4 but performs worse than the IEED (λ = 16, η = 10)
algorithm. In this example, Eqs. (35) and (42) still anticipate
the FER performance relatively accurately. Nevertheless, Eq.
(43) cannot estimate the performance correctly.

As shown in Fig. 7, when a longer code, namely C2,
is utilized and 400-bit burst fading is encountered, the BM
decoder doesn’t work. Simultaneously, Algorithm 1 has the
almost completely same performance as Algorithm 2 in the
whole tested SNR regimes. This means that Steps 2 and 4
in Algorithm 1 jointly avoid treating a coded symbol that
encounters no fading as an erasure with a probability close to
1.0. Furthermore, our algorithms have approximately 0.3dB
and 0.2dB gains when compared with Wu’s algorithm (δ = 9)
and the IEED (λ = 41, η = 10) algorithm, respectively. In
this example, Eqs. (35) and (42) predict the FER performance
very accurately.

C. Example 3

Fig. 8 demonstrates the error-correction performance of
code C3 when 100-bit burst fading is encountered with σa =
0.4 and σa = 0.2. It is actually a shorten version of the (1023,

6 6.5 7 7.5 8 8.5 9
Eb/N0(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

FE
R

Algorithm 1
Algorithm 2
BM algorithm
Wu's algorithm
IEED algorithm
Algorithm 1(estimated)
Algorithm 2(estimated)
BM algorithm(estimated)

Fig. 6. FER simulations of code C1 over burst Rayleigh fading channels
with σa = 0.2.
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Algorithm 2

BM algorithm

Wu's algorithm

Wu's algorithm(ideal)

IEED algorithm

Algorithm 1(estimated)

Algorithm 2(estimated)

Fig. 7. FER simulations of code C2 over burst Rayleigh fading channels
with σa = 0.2.

1009) RS code and has been adopted for 100 Gb/s copper
backplane transmission [30]. One observes from this figure
that Algorithm 1 performs evidently worse than the IEED
(λ = 11, η = 10) algorithm when σa = 0.4. In this case,
Algorithm 2 performs nearly as well as the IEED algorithm.
When σa is reduced down to 0.2, Algorithm 1 exhibits a
very good performance despite unknown fading locations. The
gap between Algorithms 1 and 2 is merely about 0.2dB. As
can be seen from this figure, Algorithm 1 outperforms the
IEED algorithm at low-to-moderate SNR while performs a
little worse than the latter in the high SNR regimes. In this
example, Wu’s algorithm (δ = 1) exhibits evident error floors
since the error correcting capability of the code C3 is too low
to correct such a long burst. In contrast, no error floor appears



10

at FER ≥ 3 × 10−6 when considering 80-bit burst fading.

8 8.5 9 9.5 10 10.5 11
Eb/N0(dB)

10-5

10-4

10-3

10-2

10-1

100

FE
R

Algorithm 1
Algorithm 2
IEED algorithm
Wu's algorithm
Algorithm 1
Algorithm 2
IEED algorithm
Wu's algorithm

Fig. 8. FER simulation results of code C3 when encountering 100-bit burst-
fading for σa = 0.4(solid lines) and σa = 0.2(dashed lines).

D. Complexity Analysis

In Algorithm 1, Steps 1, 2 and 3 require low calculation
amounts. Hence, we mainly consider steps 4 and 5 when
measuring the computational complexity of Algorithm 1.
Step 4 needs m × n real-number comparisons while Step 5
has complexity O(vn). As a consequence, the algorithmic
complexity of Algorithms 1 and 2 is of the same order
as Wu’s algorithm (with a small constant δ), O(vn). In
comparison, the IEED algorithm conducts 2η EED, and hence
has the worst-case complexity of O(2ηvn). It should be noted
that some steps of the EED needs to be conducted n times
in Wu’s algorithm when computing the error locator polyno-
mial corresponding to up to δ random errors. Consequently,
Algorithm 1 certainly runs faster than Wu’s algorithm even
if their complexities are of the same order.

For a more detailed comparison, we also test the average
decoding time of Algorithm 1, Wu’s algorithm (δ = 1)
and the IEED (λ = 26, η = 12) algorithm on a 4.20 GHz
Intel Core i7 Processor by taking the code C1 as an example
with 200-bit burst fading and σa = 0.4. As shown in Table
I, Algorithm 1 averagely performs 20.6 times and 1568.8
times faster than Wu’s algorithm and the IEED algorithm,
respectively. Such a substantial improvement on decoding
speed is reasonable since Wu’s algorithm conducts some steps
of the EED multiple times and the IEED algorithm runs the
whole EED thousands of times, whereas Algorithm 1 only
run EED once.

E. Summary

In the simulation tests mentioned above, different RS code
rates, lengths, as well as various burst-fading configurations

TABLE I
COMPARISON OF AVERAGE CPU RUNTIME OF DECODING A CODEWORD (MS) AMONG THREE

ALGORITHMS

Eb/N0(dB) Algorithm 1 Wu’s algorithm IEED algorithm
7.0 1.379 36.665 2227.033
8.0 1.461 30.227 2220.900
9.0 1.477 26.419 2242.067
10.0 1.364 23.481 2212.733

are considered. From the different tests, We have demonstrated
that the newly proposed decoding algorithms provide substan-
tial performance gains when compared with the classic BM
algorithm in terms of FER.

In the cases with small σa which correspond to deep
fading, Algorithm 1 performs nearly as well as Algorithm
2 despite the fact that the former has no fading location
information. Also, Algorithm 1 always outperforms Wu’s
algorithm and even performs better than the IEED algorithm
in some scenarios.

When the parameter σa is relatively large (typically, say
σa ≥ 0.4), the IEED algorithm often achieves better
performance when compared with Algorithm 1 whereas
Algorithm2 always works very well since the fading locations
are assumed to be aforehand known. We also note that the
IEED algorithm performs better than our proposed algorithms
when the burst length is comparatively short even if σa is
small. Nonetheless, it should be highlighted that the IEED
algorithm requires a very high computational complexity.

We also observe from the above figures that the performance
prediction of the proposed algorithms matches well with
the simulations in the deep-fading region. In some cases,
the estimated and simulated performance curves are almost
indistinguishable. Along with the increase of σa, the accuracy
of prediction of Algorithm 1 drops gradually while the
performance of Algorithm 2 can still be estimated very well.

V. CONCLUSION

In this paper, two new soft information based decoding
algorithms for RS codes transmitted over the burst Rayleigh
fading channels are proposed. They originate from the fact
that the capability of correcting erasures is twice as much
as that of correcting errors. By treating some erroneous
received symbols that satisfy the threshold criteria as erasures,
the proposed algorithms significantly outperform the BM
algorithm in terms of FER performance with a comparable
computational complexity. In particular, the new algorithms
exhibit robustness for various code parameters and fading
configurations, and achieve a better trade-off when compared
with the existing decoding algorithms from error-correcting
performance and computational complexity points of view.

Additionally, the FER performance of the proposed decod-
ing algorithms and the BM algorithm over the burst Rayleigh
fading channels can be mathematically analyzed, which avoids
extensive time-consuming simulations when one is interested
in the gain of new algorithms at very low FER, say FER ≤
10−8. It is expected that the ideas presented in this paper can
be generalized to other burst error scenarios.
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