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Abstract—In this paper, we investigate a multi-cell millimeter
wave (mmWave) massive multiple-input multiple-output (MIMO)
network with low-precision analog-to-digital converters (ADCs)
at the base station (BS). Each cell serves multiple users and
each user is equipped with multiple antennas but driven by
a single RF chain. We first introduce a channel estimation
strategy for the mmWave massive MIMO network and analyze
the achievable rate with imperfect channel state information.
Then, we derive an insightful lower bound for the achievable rate,
which becomes tight with a growing number of users. The bound
clearly demonstrates the impacts of the number of antennas and
the ADC precision, especially for a single-cell mmWave network
at low signal-to-noise ratio (SNR). It characterizes the tradeoff
among various system parameters. Our analytical results are
finally confirmed by extensive computer simulations.

Index Terms—Massive multiple-input multiple-output
(MIMO), millimeter wave (mmWave), analog-to-digital converter
(ADC), beamforming, imperfect channel state information (CSI).

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a crit-

ical technique to significantly improve the performance of

the fifth generation (5G) cellular network [1]. In massive

MIMO, the base station (BS) is equipped with hundreds,

or even thousands, of antennas to provide high spectral and

power efficiency. However, both cost and power consumption

increase dramatically with the number of antennas, partly

because each antenna requires a pair of dedicated analog-

to-digital converters (ADCs). Fortunately, there are two po-

tential means of alleviating this challenging issue. On one

hand, low-precision ADCs can be employed since the power
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consumption decreases exponentially with the quantization

precision [2]-[4]. An overview on channel estimation, signal

detector, and transmit precoding for massive MIMO using

low-precision ADCs in future networks has been provided

in [5]. Specifically in [6], it has shown that 1-bit ADCs

can achieve satisfactory performance in terms of theoretical

capacity and symbol error rate (SER) in massive MIMO uplink

systems. Furthermore, the spectral efficiencies of a mixed-

ADC system under energy constraint has been studied in [7].

The mixed-ADC architecture in frequency-selective channels

has been investigated in [8]. It has been demonstrated in [9]

that low-precision, e.g., 2-3 bits, ADCs only cause limited

sum rate loss under some mild assumptions for an amplify-

and-forward relay uplink network. Studies in [10] and [11]

have analyzed the performance of low-precision transceivers

in multiuser massive MIMO downlinks. On the other hand,

radio-frequency (RF) chains can be also constrained to reduce

the total number of required converters, which leads to a

hybrid transceiver architecture [12] [13]. A low-complexity

hybrid precoding method has been proposed in [14]. The study

in [15] has shown that hybrid beamforming can asymptoti-

cally approach the performance of fully digital beamforming

for a sufficiently large number of antennas. However, in

many scenarios, low-precision ADCs inevitably deteriorate the

performance while the architecture with limited RF chains

sacrifices the multiplexing gain. In practice, it is interesting to

find a cost-efficiency tradeoff when employing low-precision

ADCs and a limited number of RF chains [16] [17].

Meanwhile, in order to achieve ultra high data rates, the

spectrum ranging from 30 GHz to 300 GHz, namely millime-

ter wave (mmWave), looks attractive in 5G [18]. The ten-fold

increase in carrier frequency, compared to the current majority

of wireless systems, implies that mmWave signals experience

an order-of-magnitude increase in free-space loss [19] [20].

Fortunately, the decrease in wavelength enables to pack a large

number of antenna elements into small form factors. Large

antenna arrays in mmWave systems are leveraged to combat

severe pathloss through a large beamforming gain [21]. In

[22] and [23], hybrid beamforming has been investigated in

mmWave MIMO networks. A joint beam selection scheme

for analog precoding has been proposed in [24] and a relay

hybrid precoding design has been studied in [25]. Different

from conventional wireless channels in cellular networks,

spatial sparsity emerges as a dominant nature in mmWave

http://arxiv.org/abs/1810.02510v1
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propagations [26]. By exploiting the sparsity, a beamforming

training algorithm has been proposed in [27]. Then, random

beamforming has been studied in [28] as well as a user

scheduling algorithm proposed for beam aggregation. For low-

complexity hybrid precoding, an algorithm using generalized

orthogonal matching pursuit has been proposed in [29] when

the knowledge of channel sparsity is known.

It is known that the availability of channel state information

(CSI) plays a critical role in beamforming design [30]. A

two-stage precoding scheme has been proposed in [31] to

reduce the overhead of both channel training and CSI feed-

back in massive MIMO systems. Furthermore, an interference

alignment and soft-space-reuse based cooperative transmission

scheme has been proposed in [32] and a low-cost channel

estimator has been designed. For systems with low-precision

ADCs, conventional pilot-aided channel estimation can in

some scenarios be used to acquire the CSI [33]. However, it

can be hardly applied to the multiuser hybrid system because

the number of RF chains is much smaller than the antenna

number. Therefore, channel estimation using overlapped beam

patterns and rate adaptation has been proposed in [34] and a

limited feedback hybrid channel estimation has been studied in

[35]. To overcome the drawback of the feedback-based mech-

anism in these methods, a low-complexity channel estimation

method has been proposed in [36].

In this paper, we investigate a non-cooperative multi-cell

mmWave system with a large-scale antenna array, where low-

precision ADCs are used at the BS. We assume that each

cell serves multiple users and each user is equipped with

multiple antennas but driven by a single RF chain. Analog

beamforming is therefore conducted at user sides based on

the estimated CSI. Most of the existing works, like [5]-

[15], focused on either low-precision quantization or hybrid

architecture. In our work, we study both the low-precision

ADCs at the BS and analog beamforming at the user side. This

setup is of much interest due to its implementational popularity

in practice [16] [17]. To the best of our knowledge, there is

few works investigating the performance of the network [37].

Main contributions of this work are summarized as follows:

1) We derive the ergodic achievable rate of the network with

imperfect CSI by using an ADC quantization model based on

the Bussgang theorem. Although the popular tools, such as

the law of large numbers and the central limit theorem, do

not apply here due to the sparsity of mmWave channel, we

successfully derive a lower bound for the user ergodic rate

with the help of stochastic calculations.

2) Based on the derived lower bound, the impacts of various

system parameters, including the ADC precision, signal and

pilot SNRs, and the numbers of users and antennas, on

the system performance have been characterized. A typical

scenario of a single-cell network is investigated by retrieving

as a special case from our derived results. We find that

the received signal-to-interference-quantization-and-noise ra-

tio (SIQNR) can be expressed as a scaling value of the original

low SNR.

The rest of this paper is organized as follows. Both ADC

quantization and mmWave channel models are described in

Section II. In Section III, we introduce a two-step channel esti-

mation method for the multi-cell hybrid system. In Section IV,

we analyze the achievable uplink rate with imperfect CSI

and low-precision quantization error and derive a lower rate

bound. Then based on the bound, we analyze the performance

under two special scenarios in Section V. Simulation results

are presented in Section VI and conclusions are drawn in

Section VII.

Notations: AT , A∗ and AH represent the transpose, conju-

gate and conjugate transpose of A, respectively. ai represents

the ith column of A. diag(A) keeps only the diagonal elements

of A, while diag{a1, a2, ..., aN} generates a diagonal matrix

with entries a1, a2, ..., aN . E{·} is the expectation operator.

U[a, b] denotes the uniform distribution between a and b. −→
denotes the almost sure convergence.

II. SYSTEM MODEL

We consider a non-cooperative multi-cell system consisting

of L cells. In each cell, K user terminals are served simul-

taneously and N antennas are equipped at the BS. Universal

frequency reuse is exploited, and therefore both intra-cell and

inter-cell interferences exist.

A. Quantization Model for Low-Precision ADCs

As in Fig. 1, each user equips M antennas driven by a single

RF chain. The RF chain can access to all the M antennas

through M phase shifters, which allows analog beamforming

for both transmitting and receiving. At the BS side, a pair

of low-precision ADCs is exploited for each antenna for

processing the in-phase and quadrature input signals.

It is in general difficult to accurately analyze the signal

quantization error of low-precision ADCs. Fortunately, an

approximately linear representation has been widely adopted

by using the Bussgang theorem [38]. This quantization model

has been verified accurate enough for characterizing com-

monly used ADCs, especially for popular quantization levels

in practice [10] [39]. It decomposes the ADC quantization into

two uncorrelated parts as

QAD(y) = Fy + nq, (1)

where QAD(·) is the quantization operation of ADC, y ∈
CN×1 denotes the vector before quantization, F represents

the quantization processing matrix, and nq ∼ CN (0, σ2
q IN )

denotes the quantization noise. From [40] [41], it follows

F = (1 − ρAD)IN , (2)

and

E{nqnq
H} = ρAD(1− ρAD)diag

(
E{yyH}

)
, (3)

where ρAD represents the distortion factor. The distortion

factor depends on the ADC precision, b, representing the

number of the quantized bits of the ADC.

B. Channel Model with Hybrid Architecture

The uplink channel matrix from the kth user in the lth cell

to the jth BS, Hjlk ∈ C
N×M , can be expressed as [26] [42]

Hjlk = β
1
2

jlkhB,jlkhH
U,jlk, (4)
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Fig. 1. Block diagram of the multiuser massive MIMO system in each cell.

where βjlk denotes the large-scale fading from the kth user

in cell l to BS j, hU,jlk ∈ CM×1 and hB,jlk ∈ CN×1 denote

the antenna array response vectors of the kth user in cell l
and the BS in cell j, respectively. The small-scale fadings

are represented by hU,jlk and hB,jlk . Due to the sparsity of

mmWave channels, each of hU,jlk and hB,jlk is in general a

single line-of-sight (LoS) path depending on the corresponding

angle of incidence. In particular, we have

hU,jlk = [1, e−j2π d
λ
cosϕjlk , ..., e−j2π(M−1) d

λ
cosϕjlk ]T , (5)

and

hB,jlk = [1, e−j2π d
λ
cos θjlk , ..., e−j2π(N−1) d

λ
cos θjlk ]T , (6)

where ϕjlk ∼ U[0, π] and θjlk ∼ U[0, π] are the corresponding

angles of incidence at the antenna arrays of user k in cell

l and BS j, respectively, d is the distance between adjacent

antennas, and λ is the wavelength of radio signals at the carrier

frequency. Typically, let d = λ
2 to minimize the space occupied

by the massive antenna array while still achieving the optimal

diversity [42].

Since each user is equipped with a single RF chain even

if it has multiple antennas as illustrated in Fig. 1, analog

beamforming is conducted at the user sides. Let wlk ∈ C
M×1

be the beamforming vector at user k in cell l, which is

determined by the estimated angle of arrival (AoA) to be

elaborated in Section III.A. The equivalent uplink channel

from users in cell l to BS j can be expressed as

H̄jl = [Hjl1wl1,Hjl2wl2, ...,HjlKwlK ]

=
[

β
1
2

jl1cjl1hB,jl1, β
1
2

jl2cjl2hB,jl2, ..., β
1
2

jlkcjlKhB,jlK

]

,

(7)

where cjlk represents the beamforming gain of the kth user,

defined as

cjlk , hH
U,jlkwlk, k = 1, 2, ...,K. (8)

In the uplink, the received analog signals at BS are con-

verted by ADCs before detection. After the ADC operation,

maximal ratio combining (MRC) is utilized for signal de-

tection. At BS j, the received signal, yj ∈ CK×1, can be

expressed as

yj = Ĥ
H

jjQAD

(
√

Pt

L∑

l=1

H̄jlxl + nj

)

, (9)

where xl ∈ CK×1 is normalized uplink data from all K users

in cell l, i.e., E{xlxl
H} = IK , Pt is the transmit power of

each user, and nj ∼ CN (0, σ2
nIN ) denotes the additive white

Gaussian noise (AWGN) in cell j with σ2
n representing the

noise power. Here, Ĥjj denotes the estimate of equivalent

channel H̄jj within cell j, which will be discussed later in

Section III.B.

By substituting the ADC model in (1) to (9), the detected

signal at BS j can be expressed as

yj= (1−ρAD)
√

PtĤ
H

jj

L∑

l=1

H̄jlxl+(1−ρAD)Ĥ
H

jjnj+Ĥ
H

jjnq,j,

(10)

where nq,j ∼ CN (0, σq,j
2IN ) denotes the quantization noise

at BS j arising from low-precision ADCs. From (3), (6), (7)

and (9), we have

σq,j
2 = ρAD(1−ρAD)

(

σ2
n + Pt

L∑

l=1

K∑

k=1

βjlk|cjlk|2
)

. (11)

III. CHANNEL ESTIMATION

In the above communication process, a critical procedure

includes determining the analog beamforming vector, wlk,

at user side and the digital combining matrices, Ĥjj , at

the BS. The design relies on the availability of CSI at the

corresponding nodes.

A. AoA Estimation

In order to determine the beamforming vectors, we first

estimate the angle of incidence at each user from the BS in

the same cell. A similar procedure as in [36] is introduced.

In order to avoid inter-cell interference, each cell conducts

this step in an orthogonal way. Taking cell l for instance,

BS l broadcasts a frequency tone x = cos 2πft from an
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arbitrary antenna to all users. Assuming channel reciprocity,

the received signal at user k in cell l can be expressed as

rlk = β
1
2

llkw̃
T
lkh∗

U,llkx+ w̃
T
lknA

lk, (12)

where nA
lk is the AWGN at user k in cell l. The receiving

beamforming vector, w̃lk , is expressed as

w̃lk =
1√
M

[

1, e−j2π d
λ
cos ϕ̃lk , ..., e−j2π(M−1) d

λ
cos ϕ̃lk

]T

,

(13)

where ϕ̃lk is the phase shift of the receiving antenna array.

To estimate AoA, we resort to choosing the optimal ϕ̃lk

to maximize the power of received signal rlk . Since ideal

analog phase shifter with continuous phase is less practical,

we consider an analog beamformer of limited resolution. The

value of ϕ̃lk is chosen from a codebook:

ψ =
[
ζ, 3ζ, 5ζ, ..., (2B+1 − 1)ζ

]
, (14)

where ζ = π
2B+1 and B is the number of quantization bits for

phases. Then, the estimated AoA of user k in cell l is chosen

as

ϕ̂lk = arg max
ϕ̃lk∈ψ

|rlk|. (15)

After obtaining ϕ̂lk , the beamforming vector for user k in cell

l is accordingly set to:

wlk =
1√
M

[

1, e−j2π d
λ
cos ϕ̂lk , ..., e−j2π(M−1) d

λ
cos ϕ̂lk

]T

.

(16)

Given that wlk is determined, beamforming gain from BS j to

user k in cell l, i.e., cjlk in (8), can be obtained by measuring

the received signal power. Note that the above AoA estimation

is conducted in the downlink while the obtained analog

beamforming vector, wlk , is used for uplink transmission. This

is realizable thanks to the assumption of channel reciprocity

in time division duplex (TDD) mode.

B. Demodulation Channel Estimation

With wlk in (16) and the obtained beamforming gain cjlk ,

we can estimate the uplink channel by transmitting orthog-

onal pilots from users to the BS at this step. After analog

beamforming, we only need to estimate equivalent channel

H̄jl in (7), instead of the original Hjlk (k = 1, 2, ...,K)
in (4) with a much larger size. Thus, the number of the

required pilots decreases from MK to K and the dimension

of matrix computation is greatly reduced. If all cells reuse

the same pilot sequences, pilot contamination should also be

considered. Since low-precision ADCs are deployed at the BS,

the accuracy of channel estimation is also affected by the ADC

quantization.

Let user k in each cell send pilot vector φk ∈ Cτ×1 where

τ ≥ K is the pilot length, which is orthonormal for different

users. Define the pilot matrix, Ψ ∈ Cτ×K , as

Ψ = [φ1,φ2, ...,φK ], (17)

then Ψ
H
Ψ = IK . The received pilot signal at the jth BS

before ADCs equals

Yp,j =
√

Pp

L∑

l=1

H̄jlΨ
T + np,j , (18)

where Pp is the pilot power and np,j = [np,j1, np,j2, ..., np,jτ ]
denotes the AWGN with np,ji ∼ CN (0, σ2

nIN ) for i =
1, 2, ..., τ .

Note that Yp,j is quantized by the low-precision ADCs

before being processed for channel estimation. According

to (1) and (2), the received pilot symbols after the ADC

quantization can be expressed as

Yqp,j = QAD (Yp,j)

= (1−ρAD)
√

Pp

L∑

l=1

H̄jlΨ
T + (1−ρAD)np,j + nqp,j ,

(19)

where nqp,j = [nqp,j1, nqp,j2, ..., nqp,jτ ] denotes the quanti-

zation noise and nqp,ji ∼ CN (0, σ2
qp,jIN ) (i = 1, 2, ..., τ).

Applying a popular discrete Fourier transform matrix Ψ, by

substituting (3), (6), and (7), the quantized noise power equals

[43]

σ2
pq,j = ρAD(1− ρAD)

(

σ2
n +

Pp

τ

L∑

l=1

K∑

k=1

βjlk|cjlk|2
)

.

(20)

After the ADC quantization, the minimum mean-square-

error (MMSE) estimator in [44] is used. The channel estimate

can be expressed as

Ĥjj =
1

(1− ρAD)
√
Pp

Yqp,jΨ
∗Gj

=










H̄jj+
∑

l 6=j

H̄jl+
1

√
Pp

np,jΨ
∗+

1

(1−ρAD)
√
Pp

npq,jΨ
∗

︸ ︷︷ ︸

Ej










Gj ,

(21)

where Gj is the estimation matrix and Ej is the channel

estimation error matrix denoted as Ej = [ej1, ej2, ..., ejK ].
By using (7), we have

ejk =
∑

l 6=j

β
1
2

jlkcjlkhB,jlk +
1

√
Pp

np,jφ
∗
k

+
1

(1− ρAD)
√
Pp

npq,jφ
∗
k. (22)

To obtain Gj via MSE minimization, we utilize the asymp-

totical orthogonality of H̄jl for large N , which is presented

Lemma 5 in Appendix D. Further from (6) and (7), Gj is

directly derived as

Gj , BjjCH
jjCjj

[
L∑

l=1

BjlC
H
jlCjl + µjIK

]−1

, (23)

where we define that Cjl , diag{cjl1, cjl2, ..., cjlK}, Bjl ,

diag{βjl1, βjl2, ..., βjlK} for j, l = 1, 2, ..., L, and

µj ,
σ2
n

Pp
+

σ2
pq,j

(1− ρAD)2Pp
. (24)

IV. UPLINK ACHIEVABLE RATE

In this section, we are ready to analyze the uplink achievable

rate with low-precision ADC quantization and the above
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channel estimation. We also derive a tight lower bound for

the achievable rate, which provides more insights.

A. Ergodic Achievable Rate Analysis

Let us begin with the expression of the uplink received

signal with estimated CSI. Substituting the estimated channel

matrix in (21) into (10), the detected received vector is

expressed as

yj =(1−ρAD)
√

PtG
H
j (H̄

H
jj + EH

j )

L∑

l=1

H̄jlxl

+ (1 − ρAD)GH
j (H̄

H
jj + EH

j )nj + GH
j (H̄

H
jj + EH

j )nq,j .
(25)

For homogeneous users, without loss of generality, we focus

on the detected signal of user k, i.e., yjk . From (25) and by

substituting (7), the detected signal of user k is

yjk
gjk

=

(1−ρAD)
√

Pt

(

β
1
2

jjkc
∗
jjkhH

B,jjk+eHjk

) L∑

l=1

K∑

i=1

β
1
2

jlicjlihB,jlixli

︸ ︷︷ ︸

Sr,jk

+ (1− ρAD)
(

β
1
2

jjkc
∗
jjkhH

B,jjk + eHjk

)

nj

︸ ︷︷ ︸

In,jk

+
(

β
1
2

jjkc
∗
jjkhH

B,jjk + eHjk

)

nq,j

︸ ︷︷ ︸

Iq,jk

, (26)

where gjk denotes the kth diagonal element of Gj and xjk

denotes the kth element of vector xj . In (26), In,jk represents

the equivalent thermal noise, Iq,jk denotes the quantization

noise, and Sr,jk represents the received signal at BS j from

all the LK users, among which the desired signal term from

user k in cell j equals

Sd,jk = (1− ρAD)
√

Ptβjjk |cjjk|2hH
B,jjkhB,jjkxjk . (27)

Note that the common scaler, gjk, in the left hand side of

(26) does not affect the evaluation of the received SIQNR.

Therefore, we can drop out gjk and remove the subscript jk
for notational brevity. Using (27) and (6), the desired signal

power can be expressed as

S = Exj
{|Sd|2}

= (1− ρAD)2Ptβ
2
jjk|cjjk|4N2. (28)

From (26), we can get the power of interferences and noises

as

I = Ex1,x2,...,xL

{
|Sr + In + Iq|2 − |Sd|2

}

(a)
= Ex1,x2,...,xL

{
|In|2 + |Iq|2 + |Sr|2 − |Sd|2

}

(b)
= E{|In|2}+ E{|Iq|2}+ E{|Sr|2} − S, (29)

where (a) comes from the fact that both channel and quan-

tization noises are uncorrelated with the received signal and

(b) utilizes (28). Detailed derivations of the first three terms

in (29) are given in Appendix A. Thus far, the SIQNR can be

expressed as

γ =
S

I
. (30)

By applying the assumption of the worst-case Gaussian

interference, the ergodic achievable rate of each user can be

evaluated as follows

R = E {log(1 + γ)} . (31)

In most literature on massive MIMO, a concise closed-form

expression of R can be further achieved by applying the law

of large numbers to the expression of γ. The effectiveness

relies on the assumption that the dimension of the channel

matrix tends large and all the channel coefficients contain a

large amount of independent, and possibly identically, random

components. Here as observed in (50), (51), and (52) in

Appendix A, the terms involving the channel coefficients do

not tend to an asymptotically deterministic value even with

large N . This is because the mmWave MIMO channel is

sparse in general. The sparsity makes the channel matrix, Hjlk

in (4), to have only few terms and the law of large number

becomes invalid. In particular, even with an infinitely large

antenna number N , Hjlk consistently contains only two terms

coming from the random angles ϕjlk and θjlk in hU,jlk and

hB,jlk , respectively. On the other hand, the AoA estimation

error lies on the exponent term in the design of wlk and thus

affects the value of cjlk in (8) highly nonlinearly. Therefore,

the analog beamforming gain, |cjlk|, in (50), (51), and (52)

is also hard to express in closed form. Consequently, a direct

analysis on (31) is difficult.

B. Lower Rate Bound

Since the expression of the achievable rate in (31) is

complicated, especially the expression of I in (29), we derive

a tight lower bound for the rate. Assuming that long-term

uplink power control is conducted to compensate for the large-

scale fadings of different users in the same cell, the large-

scale fading within each cell can be considered identical. For

simplicity, assume that the attenuations between different cells

remain the same and we have

βjlk =

{

1, j = l,

β, j 6= l,
(32)

where 0 < β < 1. We have the following theorem on the

lower bound for the ergodic achievable rate.

Theorem 1. A lower bound for the ergodic uplink rate in (31)

is given by

RLB = log

[

1 +
(1− ρAD)2PtN

2

Pu + Pc + Pn + Pq + Pe

]

, (33)

where Pu and Pc represent the inter-user and inter-cell

interferences, respectively. Pn is the AWGN and Pq denotes

the interference caused by ADC quantization. Pe represents

the interference due to channel estimation error. They are

expressed as:

Pu = (1−ρAD)2Pt(K−1)Mc−2η2, (34)
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Pc = (1−ρAD)2Pt(L−1)KβMc−2η2, (35)

Pn=(1− ρAD)2σ2
nc

−4
[
Nc2 +Nµ

+(L−1)NβM+(L−1)(L−2)βMη1+2(L−1)β
1
2 cM

1
2 η1

]

,

(36)
Pq =ρAD(1− ρAD)(σ2

n + λPt)c
−4
[
Nc2 +Nµ

+(L−1)NβM+(L−1)(L−2)βMη1+2(L−1)β
1
2 cM

1
2 η1

]

,

(37)

Pe =(1− ρAD)2Ptc
−4
[
Nλµ+ (L − 1)N2β2M2

+ 2(L− 1)(L− 2)Nβ2M2η1

+ 2(L− 1)N
(

β
1
2 c3M

1
2 + β

3
2 cM

3
2

)

η1

+ (L − 1)KβM2η2 + (L− 1)(LK −K − 1)β2M2η2

+ (L − 1)(L− 2)KβM2η3

+ (L − 1)(L− 2)(LK −K − 2)β2M2η3

+ 2(L− 1)(K − 1)β
1
2 cM

3
2 η3

+2(L− 1)(LK −K − 1)β
3
2 cM

3
2 η3

]

. (38)

Proof. See Appendix E.

Due to the effect of pilot contamination, the uplink rate

converges to a constant with the antenna number increasing

to infinity, i.e., N → ∞. From (33), we have

RLB → log

[

1 +
c4

(L− 1)β2M2

]

, (39)

where we utilize the facts that

η1
N

=
1

N
+

lnN + a

π2N
→ 0, (40)

η2
N2

=
1

N
− 2

π2

(
1

N
− 1

N2

)

+
2

π2

(
lnN

N
+

a

N

)

→ 0,

(41)

and

η3
N2

=
η1
N2

+
2

N2

N−1∑

m=1

N−m−1∑

n=0

J0(mπ)J0(nπ)J0((n+m)π)

(a)
<

η1
N2

+
2

N2

N−1∑

m=1

N−m−1∑

n=0

J2
0 (mπ)

=
η1
N2

+
2

N2

N−1∑

m=1

(N −m)J2
0 (mπ)

<
η1
N2

+
2(N − 1)

N2

N−1∑

m=1

J2
0 (mπ)

(b)
=

η1
N2

+
2(N − 1)

N2π2
(lnN + a)

(c)→ 0, (42)

where (a) use the property of the Bessel function that J0(0) =
1, J0(nπ) < 1 and J0((n+m)π) < J0(mπ) for n > 0 [45],

(b) comes from
N−1∑

m=1
J2
0 (mπ) → 1

π2 (lnN + a) as indicated

in (60), and (c) utilizes (40). Further considering η3 > 0,

the result in (42) implies η3

N2 → 0. From (39), the desired

signal is interfered by signals from other L − 1 cells with

large-scaling fading β due to pilot reuse. c4 is a lower bound

for the analog beamforming gain at the user side while M2

represents an upper bound for beamforming gain from other

cells. Note that the asymptotic SIQNR is not affected by the

ADC distortion factor ρAD. It is because that the dominating

interference caused by pilot contamination is quantized as well

as the desired signal.

V. RATE ANALYSIS FOR SINGLE-CELL SCENARIO

Pilot contamination suppression has been widely inves-

tigated in literature, e.g., in [46]. This section then pays

attention to the performance of a single-cell network where

pilot contamination is temporarily assumed well suppressed.

By setting L = 1 in Theorem 1, we obtain the lower bound

for the achievable data rate in a single-cell network as in

(43) at the top of the next page, where γt , Pt

σ2
n

and

γp ,
Pp

σ2
n

are the uplink data and pilot SNRs, respectively.

Obviously, BS antenna number N , user antenna number M ,

ADC distortion factor ρAD, data SNR γt, and pilot SNR

γp contribute differently to the achievable rate. In addition,

the rate decreases with increasing K since more users cause

more pronounced multiuser interference. Due to the large

frequency bandwidth in mmWave communications and the use

of massive MIMO, low SNR is able to provide satisfactory

data transmission rate [47] [48]. In the following, we therefore

focus on low SNR scenarios, which is of common interest in

mmWave massive MIMO applications.

A. Imperfect CSI with Low Pilot SNR

First, we consider the case with low data and pilot SNRs,

i.e., γt ≪ 1 and γp ≪ 1. Under this condition, the lower

bound in (43) can be further simplified as

RLB,1
(a)
= log

[

1 + (1− ρAD)2NM2sinc4
(
M

2
πζ

)

γpγt

]

(b)≈ log
[
1 + (1− ρAD)2NM2γpγt

]

, log (1 + ξ1γt) , (44)

where (a) follows by substituting the expression of c in

Lemma 1 and applying the assumption that γt ≪ 1 and

γp ≪ 1, and (b) comes from the fact that sinc4
(
M
2 πζ

)
≈ 1

when the analog beamforming interval ζ is small enough. It

is obvious that the SIQNR is a scaled value of the data SNR

γt by a factor

ξ1 , (1 − ρAD)×NM × (1 − ρAD)Mγp, (45)

where (1 − ρAD) represents the SNR attenuation due to the

low-precision ADC quantization to the received data signals,

and NM represents the beamforming gain at both the BS

and user sides. Factor (1 − ρAD)Mγp represents the SNR

attenuation due to the channel estimation error. Specifically,

the channel estimation error is mainly caused by AWGN with

γp ≪ 1 and the pilot quantization error from low-precision

ADCs, while the analog beamforming at user side improves

the estimation accuracy by M .

From the above discussion, we have the following important

remarks:
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RLB,s=log



1+
(1 − ρAD)2N2

c−4N
γtγp

+c−2N
(
1−ρAD+ρADc−2λ/τ

γt
+ c−2λ

γp

)

+
(

1−ρAD+ c−2λ
τ

)

ρADNc−2λ+(1−ρAD)2M(K−1)c−2η2



 .

(43)

1) From (44), the achievable rate per user is independent of

user number K . This is because that the channel estimation

error is mainly caused by AWGN under the assumption of

γp ≪ 1, which overwhelms the effect of multiuser pilot

interference. When transmitting data with γt ≪ 1, the inter-

user interference is negligibly small compared to the thermal

noise and the interference caused by imperfect CSI. In this

condition, a large user number hardly degrades the achievable

rate of each user.

2) Expression (44) explicitly characterizing the relationship

between increasing the antenna number and the reduction in γp
and γt. In particular, a 3 dB reduction in data or pilot SNR

needs doubling the BS antennas, or alternatively increasing

user antennas by
√
2 times, in order to maintain the same

rate at a low SNR. Therefore, increasing antenna number at

the user side is more efficient than that at the BS. However,

in practice, the number of antennas at the user side is more

tightly restricted by the size of terminals than that at BS.

3) For fixed γt, RLB,1 remains the same if ξ1 in (45)

keeps as a constant. More antennas or higher pilot power

can compensate for the rate loss caused by low-precision

ADCs. According to typical values of ρAD [39], the BS

needs 2.5 times receiving antennas when ADC resolution b
decreases from 5 to 1, in order to maintain the same rate. In

particular at a low SNR, employing N = 32 (64, 96) antennas

with 5-bit ADCs at the BS achieves the same rate as using

N = 80 (160, 240) antennas with 1-bit ADCs, which is also

verified by numerical results in Section VI.B.

B. Imperfect CSI with ADC Quantization Error

In order to improve the accuracy of channel estimation, the

pilot power may be set higher than the data transmit power in

applications. Here we assume that γp ≫ 1 to clearly see the

impact of the low-precision ADCs on channel estimation. In

this case, the lower bound in (43) approximately equals

RLB,2
(a)
= log

[

1 +
(1− ρAD)2Nc2γt

1− ρAD + ρADc−2λ/τ

]

(b)≈ log

[

1 +
(1− ρAD)2

1− ρAD + K
τ ρAD

NMγt

]

, log (1 + ξ2γt) , (46)

where (a) comes from the assumption that γt ≪ 1 and γp ≫
1. (b) substitutes the definitions of c and λ in (53) and (73),

respectively, and uses the approximation sinc2
(
M
2 πζ

)
≈ 1 for

small ζ. The scaling factor is defined as

ξ2 , (1 − ρAD)×NM × 1− ρAD

1− ρAD + K
τ ρAD

=
1

Mγp
(
1− ρAD + K

τ ρAD

) ξ1, (47)

which shares some similarities as in (45). The factor (1 −
ρAD) represents the SNR attenuation caused by low-precision

ADCs, and NM represents the array gain obtained by beam-

forming. The difference between ξ2 and ξ1 is the factor
1−ρAD

1−ρAD+K
τ
ρAD

, representing the SNR attenuation due to dif-

ferent channel estimation qualities.

Based on the above result, we have the following remarks:

1) Comparing ξ2 in (47) with ξ1 in (45), the difference lies

in the last multiplicative term because the dominating factors

for the imperfect CSI are different. In channel estimation,

multiuser interference exists because the received pilot sig-

nals are quantized by low-precision ADCs. This quantization

operation, to some extent, breaks the orthogonality among

pilots from different users in Ψ. Under the assumption of

γp ≫ 1, the channel estimation error due to ADC quantization,

instead of AWGN, becomes dominating. On one hand, the

channel estimation error decreases with τ because longer

pilot improves the channel estimation accuracy. On the other

hand, a larger K yields more channel estimation error and

consequently leads to a lower rate. For a specific choice

of τ = K , the term 1−ρAD

1−ρAD+K
τ
ρAD

reduces to 1 − ρAD,

which becomes independent of K . This is because the channel

estimation error caused by ADC quantization no longer relies

on K when the pilot length τ changes with K simultaneously.

2) It is obvious that RLB,2 remains the same if ξ2γt keeps a

constant. On one hand, more antennas can compensate for the

reduction in rate with decreased transmit power. For example,

doubling BS antennas, or user antennas, can achieve the same

rate with 3 dB lower transmit power. On the other hand, the

numbers of BS and user antennas can compensate for each

other under the constraint that NM remains a constant.

3) In order to obtain the effective CSI, the required pilot

length is under the constraint that τ ≥ K . Then, we have

ξ2 ≥ (1 − ρAD)2NM according to (47). As for ξ1 in (45),

we have ξ1 ≤ (1− ρAD)2NM requiring Mγp ≤ 1 under the

assumption that γp ≪ 1. Thus, we have

ξ2 ≥ ξ1, (48)

which is reasonable since the high pilot SNR always provides

better rate performance than the low SNR case. Note that all

the above insights observed from a single-cell condition are

also valid for multi-cell scenarios, which is verified in the next

section.

Please note that the observations and derivation results in

this paper are based on a common assumption of perfect

synchronization in frequency domain. In general, this can be

achieved by using existing synchronization techniques [49]-

[51]. While recent works [52]-[54] have shown that frequency

synchronization is a challenging issue for implementation in

massive MIMO due to prohibitively increasing complexity

with a large antenna number. In [52], a constant envelope pilot
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Fig. 2. The lower bound for uplink achievable rate versus the number of
users.

signal based carrier frequency offset (CFO) estimation has

been proposed for massive MIMO systems. A blind frequency

synchronization method for multiuser massive MIMO uplink

transmission has been presented in [53]. By exploiting the

angle information of users, a new frequency synchronization

scheme has been designed in [54]. These recently proposed

synchronization methods can be applied in mmWave massive

MIMO networks to guarantee that our assumption makes

sense.

VI. SIMULATION RESULTS

In this section, we verify the derived lower rate bound in

(33) by numerical examples and test the effect of various

system parameters on the rate performance. In the following,

the inter-cell distortion factor β is set to be 0.1 for moderate

distance between adjacent cells [46]. The phase shifter resolu-

tion is set to B = 6, which has been shown accurate enough

in practice [36]. In order to reduce the pilot overhead, we

set τ = K under the constraint of τ ≥ K , unless otherwise

specified.

A. Lower Rate Bound Verifications

Fig. 2 compares the uplink achievable rate and the lower

bound in (33). We set N = 64, M = 2, and γp = τγt. 1-bit

ADCs are adopted. From this figure, the achievable rate first

decreases and then converges to a constant with increasing K .

This is because the interference caused by channel estimation

error dominates, overwhelming the inter-user interference even

with a large user number. In general, our derived bound is

tight with user number K ranging from 2 to 62. Moreover,

the bound tends tighter with increasing K due to the use of

Jensen’s inequality.

B. Imperfect CSI with Low Pilot SNR

We show the achievable rates from numerical results under

the assumptions that γt ≪ 1 and γp ≪ 1. Fig. 3 displays the

achievable rates with different ADC precisions and BS antenna
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Fig. 3. Achievable rate versus data SNR with various BS antenna numbers
and ADC precisions.
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Fig. 4. Achievable rate versus data SNR with various user antenna numbers.

numbers. We set L = 7, K = 4, M = 2, and γp = τγt. We

observe that 2.5 times antennas at BS achieves almost the same

rate when ADC precision b decreases from 5 to 1. This implies

that more receiving antennas can effectively compensate for

low-precision ADC quantization distortion.

Fig. 4 shows the achievable rate versus data SNR γt with

user antenna numbers M = 2, 4, and 8, using 1-bit ADCs.

We set γp = τγt and N = 128. For the single-cell condition

with L = 1, doubling M can trade for a reduction in both γt
and γp by 3 dB, as we have mentioned before. This implies

that adding antennas at user side can compensate for the SNR

reduction. While for the multi-cell case with L = 3, similar

observations can be obtained.

C. Imperfect CSI with ADC Quantization Error

In the following, we show the achievable rates by numerical

simulations under a low data SNR but with high pilot power,

i.e., γt ≪ 1, γp ≫ 1. Fig. 5 shows the achievable rate with

various user antenna numbers and ADC precisions, under both

single- and multi-cell conditions. The pilot SNR is set as γp =
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10 dB. It can be observed that 2.5 times more user antennas

can approximately provide the same rate with the number of

the ADC quantized bits decreasing from 5 to 1. This is because

under these two scenarios, the SNR scaling factor ξ2 remains a

constant with τ = K in (47). It implies that adding antennas

at the user side can also compensate for the low-precision

quantization distortions at the BS.

Fig. 6 displays the achievable rate with NM maintaining as

a constant. The parameters are set as K = 2 and γp = 10 dB.

3-bit ADCs are exploited. For the single-cell case, i.e., L = 1,

we set NM = 384 while for the multi-cell case with L = 3,

we set NM = 288. From this figure, the rates remain the

same when keeping NM as a constant under low SNRs. It

implies that adding antennas at the user side can compensate

for the lack of antennas at BS side, and vice versa.

Fig. 7 shows the achievable rate versus data SNR γt with

various BS antenna numbers N = 128, 256, 512, equipping 3-

bit ADCs. We set that L = 3, γp = 10 dB, K = 4, and M = 4.

We observe that doubling N can approximately compensate

for the rate loss due to a 3 dB reduction in γt, as indicated
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Fig. 7. Achievable rate versus data SNR with various BS antenna numbers.
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Fig. 8. Achievable rate versus data SNR for low and high pilot powers.

before. More antennas at BS can compensate for the SNR

reduction.

D. Comparison Between Low and High Pilot SNRs

Fig. 8 compares the achievable rates for low and high pilot

powers, i.e., γp = τγt and γp = 10 dB. We set L = 1,

K = 4, and N = 128, and use 3-bit ADCs. It is observed

that the achievable rate of lower pilot power increases more

significantly with increasing M than that of higher pilot power.

Under the scenario of small γp, it is therefore more efficient

to increase M for performance improvement.

Fig. 9 shows the achievable rate versus user number with

a low SNR, i.e., γt = −15 dB, using 3-bit ADCs. We

select K ranging from 2 to 16 and choose a fixed τ = 16
guaranteeing τ ≥ K . We set L = 3, M = 2 and compare

the high pilot power scenario, i.e., γp = 10 dB, with the

low pilot power condition, i.e., γp = −10 dB. For high

pilot SNR, the rates decrease with user number K increasing

from 2 to 16. This is because the multiuser interference in

channel estimation increases with K due to the low-precision
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ADC quantization. While for low pilot SNR, the rates are

approximately independent of K since the channel estimation

error is mainly caused by channel noise as indicated before.

It implies that adding users will not cause more rate loss with

both low data and pilot SNRs.

VII. CONCLUSION

In this work, we consider a multi-cell mmWave networks

using large antenna arrays. The BS equips low-precision

ADCs while each multi-antenna user is driven by a single RF

chain. Considering the ADC quantization distortion and the

analog beamforming gain, we analyze the uplink achievable

rate with imperfect CSI. Furthermore, a tight lower bound for

the user rate is derived. Specially, we focus on a single-cell

case and find that the received SIQNR can be expressed as a

scaling value of the original low SNR. The scaling factor is

proportional to NM2 with low pilot SNR while proportional

to NM with high pilot SNR, in which case the channel

estimation error is mainly caused by ADC quantization. The

system parameters, including the antenna numbers at both

the BS and user sides, the ADC precision, and the data and

pilot SNRs, can be adjusted in order to balance the rate

performance. A mixed-ADC architecture under more general

channel models, e.g., Rician fading channels, could be studied

in future work.

APPENDIX A

DERIVATION OF TERMS IN (29)

In this appendix, we derive the first three expectation terms

in (29) one by one. From (21), we first give the expression of

the estimated channel from user k in cell j to BS j as

ĥjjk

gjk

=β
1
2

jjkcjjkhB,jjk + ejk

=

L∑

l=1

β
1
2

jlkcjlkhB,jlk +
1

√
Pp

np,jφ
∗
k+

1

(1−ρAD)
√
Pp

npq,jφ
∗
k

︸ ︷︷ ︸

ñ

,

(49)

where ñ ∼ CN (0, µjIN ) is defined as an equivalent estimation

noise vector with µj defined in (24), including thermal and

ADC quantization noise. Note that pilot contamination exists

in (49) as the channel vectors from users in other cells are

also contained in the estimate.

From (26), the interference power caused by channel

AWGN can be expressed as

E
{
|In|2

}

=(1 − ρAD)2E

{∣
∣
∣

(

β
1
2

jjkc
∗
jjkhH

B,jjk + eHjk

)

nj

∣
∣
∣

2
}

(a)
=(1 − ρAD)2E

{(
L∑

l=1

β
1
2

jlkc
∗
jlkhH

B,jlk + ñ
H

)

njnH
j

×
(

L∑

l=1

β
1
2

jlkcjlkhB,jlk + ñ

)}

(b)
=(1 − ρAD)2σ2

nE

{(
L∑

l=1

β
1
2

jlkc
∗
jlkhH

B,jlk + ñ
H

)

×
(

L∑

l=1

β
1
2

jlkcjlkhB,jlk + ñ

)}

(c)
=(1−ρAD)

2σ2
n

(

Nµj+

L∑

l=1

L∑

t=1

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk

)

(d)
=(1−ρAD)

2σ2
n

(

Nµj +N
L∑

l=1

βjlk|cjlk|2

+

L∑

l=1

∑

t6=l

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk



, (50)

where (a) uses (49), (b) comes from the fact that AWGN n

is uncorrelated with the estimated channel vector, (c) utilizes

the fact that estimation noise ñ is uncorrelated with channel

vectors, and (d) uses (6).

Similarly for the interference due to ADC quantization, i.e.,



11

Iq in (26), we have

E
{
|Iq|2

}

=E

{∣
∣
∣

(

β
1
2

jjkc
∗
jjkhH

B,jjk + eHjk

)

nq,j

∣
∣
∣

2
}

(a)
=E

{(
L∑

l=1

β
1
2

jlkc
∗
jlkhH

B,jlk + ñ
H

)

nq,jnH
q,j

×
(

L∑

l=1

β
1
2

jlkcjlkhB,jlk + ñ

)}

(b)
=σ2

q,jE

{(
L∑

l=1

β
1
2

jlkc
∗
jlkhH

B,jlk + ñ
H

)

×
(

L∑

l=1

β
1
2

jlkcjlkhB,jlk + ñ

)}

(c)
=σ2

q,j

(

Nµj+
L∑

l=1

L∑

t=1

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk

)

(d)
=σ2

q,j

(

Nµj +N

L∑

l=1

βjlk|cjlk|2

+

L∑

l=1

∑

t6=l

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk



 , (51)

where (a)− (d) follow the same reasons as in deriving (50).

As for the received signal, i.e., Sr in (26), the signal power

can be derived as follows

E
{
|Sr|2

}

(a)
=(1 − ρAD)2Pt

× E







∣
∣
∣
∣
∣

(

β
1
2

jjkc
∗
jjkhH

B,jjk+eHjk

) L∑

l=1

K∑

i=1

β
1
2

jlicjlihB,jlixli

∣
∣
∣
∣
∣

2






(b)
=(1 − ρAD)2PtE

{(
L∑

l=1

β
1
2

jlkc
∗
jlkhH

B,jlk + ñ
H

)

×
(

L∑

l=1

K∑

i=1

βjli|cjli|2hB,jlih
H
B,jli

)(
L∑

l=1

β
1
2

jlkcjlkhB,jlk+ñ

)}

(c)
=(1−ρAD)

2Pt

(

µjN

L∑

l=1

K∑

i=1

βjli|cjli|2+
L∑

t=1

β
1
2

jtkc
∗
jtkhH

B,jtk

×
L∑

l=1

K∑

i=1

βjli|cjli|2hB,jlih
H
B,jli

L∑

r=1

β
1
2

jrkcjrkhB,jrk

)

=(1 − ρAD)2Pt

(

µjN

L∑

l=1

K∑

i=1

βjli|cjli|2 +
L∑

t=1

L∑

l=1

K∑

i=1

L∑

r=1

β
1
2

jtkβjliβ
1
2

jrkc
∗
jtk|cjli|2cjrkhH

B,jtkhB,jlih
H
B,jlihB,jrk

)

,

(52)

where (a) utilizes (26), (b) uses (49), and (c) comes from the

fact that ñ is uncorrelated with channel vectors. Finally, by

substituting (50), (51), and (52) into (29), the expression of

interference and noise power can be directly obtained.

APPENDIX B

LEMMA 1

Lemma 1. The analog beamforming gain within the cell l,
cllk, defined in (8) is bounded as follows

√
M ≥ |cllk| ≥

√
Msinc

(
M

2
πζ

)

, c, (53)

for l = 1, 2, ..., L and k = 1, 2, ...,K . While for the analog

beamforming gain from cell l to cell j, cjlk , there is the same

upper bound as follows

|cjlk| ≤
√
M, (54)

for j, l = 1, 2, ..., L, j 6= l, and k = 1, 2, ...,K .

Proof. Firstly, we consider the analog beamforming gain cllk .

Without causing misunderstanding, the index l and k are re-

moved for brevity in most places of the following derivations.

Substituting (5) and (16) into (8), we have

cllk =
1√
M

M−1∑

n=0

ejnπ(cosϕ−cos ϕ̂)

=
1√
M

e
1
2
j(M−1)π(cosϕ−cos ϕ̂) sin[

1
2Mπ(cosϕ−cos ϕ̂)]

sin[ 12π(cosϕ− cos ϕ̂)]

=
1√
M

e
1
2
j(M−1)π(cosϕ−cos(ϕ−∆ϕ))

× sin[ 12Mπ(cosϕ−cos(ϕ−∆ϕ))]

sin[ 12π(cosϕ− cos(ϕ−∆ϕ))]
, (55)

where we define ∆ϕ = ϕ − ϕ̂ as the AoA estimation error.

Obviously, the upper bound for
√
M is established. As for the

lower bound, assume ϕ ∼U[0, π] and ϕ̂ is chosen from the

codebook in (14) in order to maximize |cllk|. Although the

AoA estimation is affected by thermal noise nA as indicated

in (12) and (15), the power of the term w̃
T

nA has a constant

expectation over nA. Thus, the impact of nA on AoA esti-

mation is neglectable when averaged over the noise term. We

then make the assumption that the estimation error follows the

distribution ∆ϕ ∼U[−ζ, ζ], where ζ is the phase interval of a

quantized analog beamformer.

We temporarily focus on the condition that ∆ϕ < 0.

Assuming that the phase shifter resolution is reasonably high

so that ζ ≤ 2
M always holds, we have

0 ≤ cosϕ− cos(ϕ−∆ϕ) ≤ −∆ϕ ≤ ζ ≤ 2

M
, (56)

which comes from the fact

cosϕ− cos(ϕ−∆ϕ)

∆ϕ
≥ −1. (57)

Thus, we have 0 ≤ 1
2Mπ(cosϕ − cos(ϕ − ∆ϕ)) ≤ π and

0 ≤ 1
2π(cosϕ− cos(ϕ−∆ϕ)) ≤ π

M ≤ π
2 with M ≥ 2, which

implies that both the numerator and denominator of the last

term in (55) are positive. Using this, we have the magnitude
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of cllk bounded as

|cllk| =
1√
M

sin[ 12Mπ(cosϕ− cos(ϕ−∆ϕ))]

sin[ 12π(cosϕ− cos(ϕ−∆ϕ))]

(a)

≥ 1√
M

sin[ 12Mπ(cosϕ− cos(ϕ−∆ϕ))]
1
2π(cosϕ− cos(ϕ−∆ϕ))

=
√
Msinc

[
1

2
Mπ (cosϕ− cos(ϕ−∆ϕ))

]

(b)

≥
√
Msinc

(
M

2
πζ

)

, (58)

where (a) uses the fact that sin(x) ≤ x for 0 ≤ x ≤ π
2 at

the denominator, and (b) follows that sinc(x) is a decreasing

function w.r.t. x ∈ [0, π]. As for ∆ϕ > 0, the conclusion still

holds due to symmetry.

Similarly for cjlk (j 6= l), the upper bound for
√
M can be

easily established.

APPENDIX C

LEMMA 2-4

Lemma 2. For the two independent channel vectors hB,jlk

and hB,j′l′k′ , where (j, l, k) 6= (j′, l′, k′), it follows for large

N that

E{h
H
B,jlkhB,j′l′k′} → η1, (59)

where η1 , 1 + 1
π2 (lnN + a) and a is the Euler’s constant.

Proof. Using (6), we have

E{hH
B,jlkhB,j′l′k′}

=E

{
N−1∑

n=0

ejnπ(cos θjlk−cos θj′l′k′)

}

(a)
=

N−1∑

n=0

E
{
ejnπ cos θjlk

}
E
{
e−jnπ cos θj′l′k′

}

(b)
=

N−1∑

n=0

J2
0 (nπ)

(c)→1 +
1

π2

N−1∑

n=1

1

n

(d)→1 +
1

π2
(lnN + a). (60)

Firstly, (a) uses the fact that θjlk is independent of θj′l′k′ .

Secondly, (b) comes from the equality E
{
ejnπ cos θjlk

}
=

E
{
e−jnπ cos θj′l′k′

}
= J0(nπ). Take E

{
ejnπ cos θjlk

}
for

instance. Since θjlk follows the uniform distribution U[0, π],
we have

E
{
ejnπ cos θjlk

}

= E {cos(nπ cos θjlk) + j sin(nπ cos θjlk)}

=
1

π

∫ π

0

cos(nπ cos θjlk)dθjlk+
j

π

∫ π

0

sin(nπ cos θjlk)dθjlk

= J0(nπ), (61)

where the last step uses the integral equations [55, Eqs. (18),

(13), pp. 425], and Jν(·) is the νth Bessel function. Similarly,

the equality holds for E
{
e−jnπ cos θj′l′k′

}
= J0(nπ). Thirdly,

(c) comes from the fact that [45, Eq. 9.2.1]

Jν(x) →
√

2

πx
cos
(

x− νπ

2
− π

4

)

, (62)

for |x| → ∞ with ν = 0. Note that the asymptotical equality

in (62) behaves tight even for small x. Finally, (d) follows by

the assumption that N → ∞ and the definition of the Euler’s

constant [45] as

a , lim
n→∞

[
k=n−1∑

k=1

1

k
− lnn

]

. (63)

Lemma 3. For the two independent channel vectors hB,jlk

and hB,j′l′k′ , where (j, l, k) 6= (j′, l′, k′), it follows for large

N that

E

{

|hH
B,jlkhB,j′l′k′ |2

}

→ η2, (64)

where η2 , N − 2
π2 (N − 1) + 2N

π2 (lnN + a) and a is the

Euler’s constant.

Proof. According to (6), E{|hH
B,jlkhB,j′l′k′ |2} can be evalu-

ated as

E
{
|hH

B,jlkhB,j′l′k′ |2
}

=E

{
N−1∑

n=0

ejnπ(cos θjlk−cos θj′l′k′)×
N−1∑

n=0

e−jnπ(cos θjlk−cos θj′l′k′)

}

=N +
N−1∑

n=1

(N − n)

×
[

E

{

ejnπ(cos θjlk−cos θj′l′k′)
}

+E

{

e−jnπ(cos θjlk−cos θj′l′k′)
}]

(a)
=N +

N−1∑

n=1

(N − n)×
[
E
{
ejnπcos θjlk

}
E
{
e−jnπcos θj′l′k′

}

+E
{
e−jnπcos θjlk

}
E
{
ejnπcos θj′l′k′

}]

(b)
=N + 2

N−1∑

n=1

(N − n)J2
0 (nπ)

(c)→N + 2

N−1∑

n=1

N − n

nπ2

=N − 2

π2
(N − 1) +

2N

π2

N−1∑

n=1

1

n

(d)→N − 2

π2
(N − 1) +

2N

π2
(lnN + a), (65)

where (a) − (d) use the similar manipulations as the corre-

sponding derivations in (60).

Lemma 4. For the three independent channel vectors hB,jlk ,

hB,j′l′k′ and hB,j′′l′′k′′ , where (j, l, k) 6= (j′, l′, k′), (j, l, k) 6=
(j′′, l′′, k′′), and (j′, l′, k′) 6= (j′′, l′′, k′′), it follows for large

N that

E

{

h
H
B,jlkhB,j′l′k′h

H
B,j′l′k′hB,j′′l′′k′′

}

→ η3, (66)
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where η3 , η1 + 2
N−1∑

m=1

N−m−1∑

n=0
J0(mπ)J0(nπ)J0((n+m)π)

and η1 is defined in Lemma 2.

Proof. Using (6), E
{

hH
B,jlkhB,j′l′k′hH

B,j′l′k′hB,j′′l′′k′′

}
can

be evaluated as

E
{

hH
B,jlkhB,j′l′k′hH

B,j′l′k′hB,j′′l′′k′′

}

=E

{
N−1∑

n=0

ejnπ(cos θjlk−cos θj′l′k′)
N−1∑

n=0

ejnπ(cos θj′l′k′−cos θj′′l′′k′′)

}

=Eθj′l′k′

{

Eθjlk,θj′′l′′k′′ |θj′l′k′

{
N−1∑

n=0

ejnπ(cos θjlk−cos θj′l′k′)

×
N−1∑

n=0

ejnπ(cos θj′l′k′−cos θj′′l′′k′′)

}}

(a)
=Eθj′l′k′

{
N−1∑

n=0

e−jnπcos θj′l′k′

Eθjlk

{

ejnπ(cos θjlk)
}

×
N−1∑

n=0

ejnπcos θj′l′k′

Eθj′′l′′k′′

{

e−jnπ(cos θj′′l′′k′′ )
}
}

(b)
=Eθj′l′k′

{
N−1∑

n=0

J0(nπ)e
−jnπcos θj′l′k′

N−1∑

n=0

J0(nπ)e
jnπcos θj′l′k′

}

=Eθj′l′k′

{
N−1∑

n=0

J2
0 (nπ)+

N−1∑

m=1

(
e−jmπcos θj′l′k′ + ejmπcos θj′l′k′

)

×
N−m−1∑

n=0

J0(nπ)J0((n+m)π)

}

(c)
=

N−1∑

n=0

J2
0 (nπ)+2

N−1∑

m=1

N−m−1∑

n=0

J0(mπ)J0(nπ)J0((n+m)π)

(d)→η1 + 2
N−1∑

m=1

N−m−1∑

n=0

J0(mπ)J0(nπ)J0((n+m)π), (67)

where (a) utilizes the fact that θjlk is independent of

θj′′l′′k′′ , (b) and (c) come from E
{
e−jnπ cos θj′′l′′k′′

}
=

E
{
ejnπ cos θjlk

}
= E

{
ejnπ cos θj′l′k′

}
= E

{
e−jnπ cos θj′l′k′

}
=

J0(nπ) demonstrated in (61), and (d) uses (60).

APPENDIX D

LEMMA 5

Lemma 5. The mmWave MIMO channel matrix H̄jl in (7) is

asymptotically orthogonal with large N . Letting N → ∞, we

have

E

{
1

N
H̄

H
jl H̄jl

}

→ BjlC
H
jlCjl. (68)

Proof. Assume that βjlk = cjlk = 1 for j, l = 1, 2, ..., L
and k = 1, 2, ...,K for brevity, which does not affect the

orthogonality of channel matrix H̄jl. Substituting (6) to (7)

and applying Lemma 2, we have

E

{
1

N
H̄

H
jl H̄jl

}

→








1 η1

N · · · η1

N
η1

N 1 · · · η1

N
...

...
. . .

...
η1

N
η1

N · · · 1







. (69)

As N goes to infinity, the non-diagonal elements of the above

matrix asymptotically converge as

η1
N

=
1

N
+

lnN + a

Nπ2
→ 0. (70)

Thus, we have

E

{
1

N
H̄

H
jl H̄jl

}

→ IK . (71)

For general but finite values of βjlk and cjlk , the orthogonality

can be similarly established, which proves Lemma 5.

APPENDIX E

PROOF OF THEOREM 1

Proof. In this appendix, we give the proof of Theorem 1 by

applying Lemma 1-4 in Appendices B-C. Start with deriving

the lower bound for γ in (30). Substituting (32) into (28)

simplifies S and yields

S

|cjjk|4
= (1− ρAD)2PtN

2. (72)

Before considering E{|In|2}, E{|Iq|2}, and E{|Sr|2} in (29),

we introduce two definitions used for notational brevity.

Firstly, λ is defined as

1

|cjjk|2
L∑

l=1

K∑

i=1

βjli|cjli|2

(a)
=1 +

∑

i6=k

|cjji|2
|cjjk|2

+ β
∑

l 6=j

K∑

i=1

|cjli|2
|cjjk|2

(b)

≤c−2[c2 + (K − 1)M + β(L− 1)KM ]

,c−2λ, (73)

where (a) utilizes (32) and (b) applies Lemma 1. Secondly,

for µj defined in (24), substitute (20) and use Lemma 1 and

it yields

µj

|cjjk|2

=
σ2
n

(1−ρAD)Pp|cjjk |2
+

ρAD

(1− ρAD)τ |cjjk |2
L∑

l=1

K∑

i=1

βjli|cjli|2

≤c−2

[
σ2
n

(1 − ρAD)Pp
+

ρADλ

(1− ρAD)τ

]

,c−2µ, (74)

where the inequality uses (73) and Lemma 1.

Now from (50), an upper bound to 1
|cjjk|4

E{|In|2} is
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obtained as

1

|cjjk|4
E{|In|2}

=
1

|cjjk|4
(1− ρAD)

2σ2
n

(

Nµj+N

L∑

l=1

βjlk|cjlk|2

+

L∑

l=1

∑

t6=l

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk





(a)

≤ 1

|cjjk|2
(1− ρAD)2σ2

n

(

Nµc−2+
N

|cjjk |2
L∑

l=1

βjlk|cjlk|2

+
1

|cjjk|2
L∑

l=1

∑

t6=l

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk





(b)

≤c−4(1− ρAD)2σ2
n

×






Nµ+Nc2+N(L−1)βM+

∑

l 6=j

∑

t6=j
t6=l

βMhH
B,jlkhB,jtk

+ β
1
2 cM

1
2




∑

t6=j

hH
B,jjkhB,jtk +

∑

l 6=j

hH
B,jlkhB,jjk









,IUB,n, (75)

where (a) uses (74) and (b) utilizes Lemma 1 and (32).

Similarly, by substituting (51), an upper bound to
1

|cjjk |4
E{|Iq|2} is derived as

1

|cjjk|4
E{|Iq|2}

=
1

|cjjk|4
σ2
q,j

(

Nµj+N

L∑

l=1

βjlk|cjlk|2

+
L∑

l=1

∑

t6=l

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk





(a)

≤ c−2

|cjjk|2
ρAD(1−ρAD)(σ

2
n+λPt)

(

Nµj+N

L∑

l=1

βjlk|cjlk|2

+

L∑

l=1

∑

t6=l

β
1
2

jlkβ
1
2

jtkc
∗
jlkcjtkhH

B,jlkhB,jtk





(b)

≤c−4ρAD(1−ρAD)(σ
2
n+λPt)

×






Nµ+Nc2+N(L−1)βM+

∑

l 6=j

∑

t6=j
t6=l

βMhH
B,jlkhB,jtk

+ β
1
2 cM

1
2




∑

t6=j

hH
B,jjkhB,jtk +

∑

l 6=j

hH
B,jlkhB,jjk









,IUB,q, (76)

where (a) utilizes the inequality that

σ2
q,j

|cjjk |2
=ρAD(1−ρAD)

(

σ2
n

|cjjk |2
+

Pt

|cjjk|2
L∑

l=1

K∑

k=1

βjlk|cjlk|2
)

≤c−2ρAD(1− ρAD)(σ2
n + λPt), (77)

which uses (11) and the inequality utilizes Lemma 1 and (73),

and (b) utilizes the similar manipulations as in (75).

For the term of E{|Sr|2} in (29), we use (6) to rewrite the

expression in (52) as

E{|Sr|2}

=(1−ρAD)
2Pt

(

µjN

L∑

l=1

K∑

i=1

βjli|cjli|2+N2
L∑

t=1

β2
jtk|cjtk|4

+

L∑

t=1

∑

(l,i) 6=(t,k)

βjtkβjli|cjtk|2|cjli|2|hH
B,jtkhB,jli|2

+N

L∑

t=1

∑

r 6=t

β
3
2

jtkβ
1
2

jrkc
∗
jtk|cjtk|2cjrkhH

B,jtkhB,jrk

+N

L∑

t=1

∑

r 6=t

β
1
2

jtkβ
3
2

jrkc
∗
jtk|cjrk|2cjrkhH

B,jtkhB,jrk

+

L∑

t=1

∑

r 6=t

∑

(l,i) 6=(t,k)
(l,i) 6=(r,k)

β
1
2

jtkβjliβ
1
2

jrkc
∗
jtk|cjli|2cjrk

× hH
B,jtkhB,jlih

H
B,jlihB,jrk

)

, (78)

Then, by applying Lemma 1 and substituting (32), (73), and

(74) into (78), an upper bound to 1
|cjjk|4

E{|Sr|2} is obtained

as follows

1

|cjjk|4
E{|Sr|2}

≤(1− ρAD)2Ptc
−4

[

µNλ+N2c4 +N2(L− 1)β2M2

+ c2M
∑

i6=k

|hH
B,jjkhB,jji|2+βc2M

∑

l 6=j

K∑

i=1

|hH
B,jjkhB,jli|2

+ βM2
∑

t6=j

K∑

i=1

|hH
B,jtkhB,jji|2

+ β2M2
∑

t6=j

∑

(l,i) 6=(t,k)
l 6=j

|hH
B,jtkhB,jli|2

+N
(

β
1
2 c3M

1
2+β

3
2 cM

3
2

)∑

r 6=j

hH
B,jjkhB,jrk

+N
(

β
3
2 cM

3
2 + β

1
2 c3M

1
2

)∑

t6=j

hH
B,jtkhB,jjk

+ 2Nβ2M2
∑

t6=j

∑

r 6=j
r 6=t

hH
B,jtkhB,jrk +A

]

,SUB,r, (79)

where A comes from the last term in (78) which can be
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expressed as

A =β
1
2 cM

3
2

∑

r 6=j

∑

i6=k

hH
B,jjkhB,jjih

H
B,jjihB,jrk

+ β
1
2 cM

3
2

∑

t6=j

∑

i6=k

hH
B,tjkhB,jjih

H
B,jjihB,jjk

+ β
3
2 cM

3
2

∑

r 6=j

∑

(l,i) 6=(r,k)
l 6=j

hH
B,jjkhB,jlih

H
B,jlihB,jrk

+ β
3
2 cM

3
2

∑

t6=j

∑

(l,i) 6=(r,k)
l 6=j

hH
B,tjkhB,jlih

H
B,jlihB,jjk

+ βM2
∑

t6=j

∑

r 6=j
r 6=t

K∑

i=1

hH
B,jtkhB,jjih

H
B,jjihB,jrk

+ β2M2
∑

t6=j

∑

r 6=j
r 6=t

∑

(l,i) 6=(t,k)
(l,i) 6=(r,k)

l 6=j

hH
B,jtkhB,jlih

H
B,jlihB,jrk.

(80)

Thus, based on (29), (72), (75), (76), and (79), a lower bound

to γ in (30) is obtained as

γ =
S/|cjjk|4
I/|cjjk|4

≥ (1− ρAD)2PtN
2

IUB,n + IUB,q + SUB,r − S

, γLB. (81)

Then, using the Jensen’s inequality, a lower bound to the

achievable rate in (31) is established

R = E {log(1 + γ)}
≥ E {log(1 + γLB)}

≥ log

(

1 +
(1− ρAD)2PtN

2

E{IUB,n + IUB,q + SUB,r − S}

)

. (82)

Thus far, by further plugging the expectation values of

IUB,n in (75), IUB,q in (76), and SUB,r in (79) from

Lemma 2-4 in Appendix C, we obtain the desired bound in

(33).
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