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Construction of Capacity-Achieving Lattice

Codes: Polar Lattices

Ling Liu, Yanfei Yan, Cong Ling, Member, IEEE and Xiaofu Wu, Member, IEEE

Abstract

In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve

the capacity 1

2
log(1 + SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the

multilevel approach of Forney et al., where we construct a capacity-achieving polar code on each level. The component

polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction.

We prove that polar lattices are AWGN-good. Furthermore, using the technique of source polarization, we propose

discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are

explicit, and the overall complexity of encoding and decoding is O(N logN) for any fixed target error probability.

Index Terms

AWGN-good lattices, discrete Gaussian shaping, lattice codes, multilevel construction, polar codes.

I. INTRODUCTION

A fast-decodable, structured code achieving the capacity of the power-constrained additive white Gaussian-noise

(AWGN) channel is a major goal of communication theory. Polar codes, proposed by Arıkan in [1], can provably

achieve the capacity of binary memoryless symmetric (BMS) channels. An attempt to construct polar codes for

the AWGN channel was given in [2], based on nonbinary polar codes or on the technique for the multi-access

channel. Although coded modulation using polar codes has been investigated in literature [3], [4], the AWGN

channel capacity has not been achieved, to the best of our knowledge.

Lattice codes are counterparts of linear codes in the Euclidean space. The existence of lattice codes achieving

the Gaussian channel capacity has been well established using the random coding argument [5], [6]. In the classical

point-to-point channel, lattice codes offer a low-complexity solution compared to Gaussian random codes. More

recently, thanks to their rich structures, lattice codes have emerged as a novel framework of coding for multiuser

communications, such as compute-and-forward [7], [8] and index coding [9]. In many problems of Gaussian

multiuser networks, lattice codes demonstrate a clear advantage and outperform best known solutions based on

random codes. This is because lattice codes enjoy the benefit of coordination despite the distributed nature of
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coding in a network. Readers are referred to [10, Chap. 12] for an extensive overview of the applications of lattice

codes to Gaussian networks and their advantages over classical random coding approaches.

It is well known that the design of a lattice code consists of two essentially separate problems: AWGN coding and

shaping. AWGN coding is addressed by the notion of AWGN-good lattices [5], [11]. Recently, several new lattice

constructions with good performance have been introduced [12]–[14]. On the other hand, shaping takes care of the

finite power constraint of the Gaussian channel. Capacity-achieving shaping techniques include Voronoi shaping

[5] and lattice Gaussian shaping [6], [15], [16]. Despite these significant progresses, an explicit construction of

lattice codes achieving the capacity of the Gaussian channel is still open (since this work was completed, we have

become aware of the work [13] which shows low density Construction-A (LDA) lattices achieve capacity when the

signal-to-noise ratio (SNR) > 1 in magnitude).

In this paper, we settle this open problem by employing the powerful tool of polarization in lattice construction.

The novel technical contribution of this work is two-fold:

• The construction of polar lattices and the proof of their AWGN-goodness. We follow the multilevel construction

of Forney, Trott and Chung [17], where for each level we build a polar code to achieve its capacity. We prove

that the subchannels arising from some lattice partition chains are successively degraded, which guarantees

that the component polar codes are naturally nested, as required by the multilevel construction. This compares

favorably with existing multilevel constructions [12], where extra efforts are needed to nest the component

codes.

• The Gaussian shaping technique for polar lattices in the power-constrained AWGN channel. This is based on

source polarization and may be viewed as inverse source coding. Finally, our scheme is able to achieve the

capacity 1
2 log(1 + SNR) with low-complexity multistage successive cancellation (SC) decoding for any given

SNR. It is worth mentioning that our proposed shaping scheme is not only a practical implementation of lattice

Gaussian shaping, but also an improvement in the sense that we successfully remove the restriction SNR > e

in [6, Theorem 3].

Overall, both source and channel polarization are employed in the construction, resulting in an integrated

approach in the sense that error correction and shaping are performed by one single polar code on each level.

Moreover, capacity is achieved with minimum mean-square error (MMSE) lattice decoding. The construction of

polar lattices with Gaussian shaping is as explicit as that of polar codes themselves, and the complexity is quasilinear:

O(N log2 N) for a sub-exponentially vanishing error probability and O(N logN) for a fixed error probability,

respectively.

Further, it is worth pointing out that each aspect may also be of independent interest. AWGN-good lattices

have many applications in coding and network information theory, while lattice Gaussian shaping, i.e., generating

a Gaussian distribution over a lattice, is useful in lattice-based cryptography as well [18]. Both theoretical and

practical aspects of polar lattices are addressed in this work. We not only prove the theoretical goodness of polar

lattices, but also give practical rules for designing these lattices.
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A. Relation to Prior Works

This paper is built on the basis of our prior attempt to build lattices from polar codes [19], [20], and significantly

extends it by employing Gaussian shaping. We are aware of the contemporary and independent work on polar-coded

modulation [3], which follows the multilevel coding approach of [21]. It is known that Forney et al.’s multilevel

construction is closely related to multilevel coding [17], [21]. The main conceptual difference between lattice coding

and coded modulation is that lattices are infinite and linear in the Euclidean space. The linear structure of lattices

is much desired in many emerging applications, e.g., in network information theory for the purpose of coordination

[7], [22].

This paper may be viewed as an explicit construction of the lattice Gaussian coding scheme proposed in [6],

where it was shown that Gaussian shaping over an AWGN-good lattice is capacity-achieving. Our approach is

different from the standard Voronoi shaping which involves a quantization-good lattice [5]. The proposed Gaussian

shaping does not require such a quantization-good lattice any more.

The sparse superposition code [23], [24] also achieves the Gaussian channel capacity with polynomial complexity.

However, its decoding complexity is considerably higher than that of the polar lattice; moreover, it requires a

random dictionary shared by the encoder and decoder, which incurs substantial storage complexity. In comparison,

the construction of polar lattices is as explicit as that of polar codes themselves, and the complexity is quasilinear:

O(N log2 N) for a sub-exponentially vanishing error probability and O(N logN) for a fixed error probability,

respectively.

B. Organization and Notation

The rest of this paper is organized as follows. Section II presents the background of lattice codes. In Section

III, we construct polar latices based on Forney et al.’s approach and prove their AWGN-goodness. In Section IV,

we propose Gaussian shaping over the polar lattice to achieve the capacity. Section V gives design examples and

simulation results. Section VI concludes the paper.

All random variables (RVs) will be denoted by capital letters. For a set I, Ic denotes its complement, and |I|
represents its cardinality. Following the notation of [1], we denote N independent uses of channel W by WN . By

channel combining and splitting, we get the combined channel WN and the i-th subchannel W
(i)
N . Throughout this

paper, we use the binary logarithm, denoted by log, and information is measured in bits. We follow the standard

asymptotic notation f (x) = O (g (x)) if lim supx→∞ |f(x)/g(x)| <∞.

II. BACKGROUND ON LATTICE CODING

A lattice is a discrete subgroup of Rn which can be represented by

Λ = {λ = Bx : x ∈ Z
n},

where the generator matrix B is assumed to be of full rank in this paper. The theta series of Λ is defined as

ΘΛ(τ) =
∑

λ∈Λ

e−πτ‖λ‖2

, τ > 0.
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Readers are referred to the text [10] for basic definitions of lattices.

In this work, we are mostly concerned with the block error probability Pe(Λ, σ
2) of lattice decoding. It is the

probability P{x /∈ V(Λ)} that an n-dimensional independent and identically distributed (i.i.d.) Gaussian noise vector

x with zero mean and variance σ2 per dimension falls outside the Voronoi region V(Λ). For an n-dimensional lattice

Λ, the volume of a fundamental region is given by V (Λ) = |det(B)|. Define the VNR by

γΛ(σ) ,
V (Λ)

2
n

σ2
.

A sequence of lattices Λ(N) of increasing dimension N is AWGN-good if, for any fixed VNR greater than 2πe,

lim
N→∞

Pe(Λ
(N), σ2) = 0.

It is worth mentioning here that we do not insist on exponentially vanishing error probabilities, unlike Poltyrev’s

original treatment of good lattices for coding over the AWGN channel [11]. This is because a sub-exponential or

polynomial decay of the error probability is often good enough.

For σ > 0 and c ∈ R
n, the Gaussian distribution of mean c and variance σ2 is defined as

fσ,c(x) =
1

(
√
2πσ)n

e−
‖x−c‖2

2σ2 ,

for all x ∈ R
n. For convenience, let fσ(x) = fσ,0(x).

Given a lattice Λ, we define the Λ-periodic function as

fσ,Λ(x) =
∑

λ∈Λ

fσ,λ(x) =
1

(
√
2πσ)n

∑

λ∈Λ

e−
‖x−λ‖2

2σ2 ,

for x ∈ R
n. Note that fσ,Λ(x) is a probability density if x is restricted to a fundamental region R(Λ). It is

actually the probability density function (PDF) of the Λ-aliased Gaussian noise, i.e., the Gaussian noise after the

mod-R(Λ) operation [17]. When σ is small, the effect of aliasing becomes insignificant and the Λ-aliased Gaussian

density fσ,Λ(x) approaches a Gaussian distribution. When σ is large, fσ,Λ(x) approaches a uniform distribution.

This phenomenon is characterized by the flatness factor, which is defined for Λ as [25]

ǫΛ(σ) , max
x∈R(Λ)

|V (Λ)fσ,Λ(x) − 1| .

It can be interpreted as the maximum variation of fσ,Λ(x) from the uniform distribution over R(Λ).
We define the discrete Gaussian distribution over Λ centered at c ∈ R

n as the following discrete distribution

taking values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
, ∀λ ∈ Λ,

where fσ,c(Λ) ,
∑

λ∈Λ fσ,c(λ) = fσ,Λ(c). Again for convenience, we write DΛ,σ = DΛ,σ,0. Figure 1 illustrates

the discrete Gaussian distribution over Z2. As can be seen, it resembles a continuous Gaussian distribution, but is

only defined over a lattice. In fact, discrete and continuous Gaussian distributions share similar properties, if the

flatness factor is small. The discrete Gaussian distribution can also be sampled from a shifted lattice Λ− c:

DΛ−c,σ(λ − c) =
fσ(λ− c)

fσ,c(Λ)
, ∀λ ∈ Λ.

Note the relation DΛ−c,σ(λ− c) = DΛ,σ,c(λ), namely, they are a shifted version of each other.
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Fig. 1. Discrete Gaussian distribution over Z
2. A two-dimensional lattice point is denoted by λ = (λ1, λ2).

If the flatness factor is negligible, the discrete Gaussian distribution over a lattice preserves the capacity of the

AWGN channel [6, Theorem 2].

Theorem 1 (Mutual information of discrete Gaussian distribution [6]): Consider an AWGN channel Y = X+E

where the input constellation X has a discrete Gaussian distribution DΛ−c,σs
for arbitrary c ∈ R

n, and where the

variance of the noise E is σ2. Let the average signal power be P so that SNR = P/σ2, and let σ̃ , σsσ√
σ2
s+σ2

.

Then, if ε = ǫΛ (σ̃) < 1
2 and πεt

1−ǫt
≤ ε where

εt ,







ǫΛ

(

σs/
√

π
π−t

)

, t ≥ 1/e

(t−4 + 1)ǫΛ

(

σs/
√

π
π−t

)

, 0 < t < 1/e

the discrete Gaussian constellation results in mutual information

ID ≥
1

2
log (1 + SNR)− 6ε

n
(1)

per channel use.

The statement of Theorem 1 is non-asymptotical, i.e., it can hold even if n = 1. A lattice Λ or its coset Λ−c with

a discrete Gaussian distribution is referred to as a good constellation for the AWGN channel if ǫΛ(σ̃) is negligible

[6].

It is further proved in [6] that the channel capacity is achieved with Gaussian shaping over an AWGN-good

lattice and MMSE lattice decoding. To this aim, we use a codebook L − c, where L is an AWGN-good lattice

and c is a proper shift. The encoder maps the information bits to points in L− c, which obey the lattice Gaussian

distribution DL−c,σs
. Since the lattice points are not equally probable a priori in the lattice Gaussian coding, we

apply maximum-a-posteriori (MAP) decoding. It is proved in [6] that MAP decoding is equivalent to MMSE lattice

decoding

x̂ = QL−c (αy) (2)

where α =
σ2
s

σ2
s+σ2 is asymptotically equal to the MMSE coefficient P

P+σ2 and QL−c denotes the minimum

Euclidean-distance decoder for shifted lattice L− c.
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III. CONSTRUCTION OF POLAR LATTICES

We now follow Forney et al.’s multilevel approach [17] to construct polar lattices. Bear in mind that, in order

to achieve the capacity of the AWGN channel with the noise variance σ2, the concerned noise variance for the

AWGN-good lattice is in fact σ̃2 (recall σ̃ , σsσ√
σ2
s+σ2

), which is the variance of the equivalent noise after MMSE

rescaling [6].

A. Forney et al.’s Construction

Given a sublattice Λ′ ⊂ Λ, the quotient group Λ/Λ′ induces a partition of Λ into equivalence classes modulo Λ′.

We call Λ/Λ′ a lattice partition [17]. The order of the partition is denoted by |Λ/Λ′|, which is equal to the number

of cosets. If |Λ/Λ′| = 2, we call this a binary partition. Similarly, if Λ′ ⊆ Λr−1 ⊆ · · · ⊆ Λ1 ⊆ Λ for r ≥ 1 is a

chain of lattices with quotients Λ/Λ1/ · · · /Λr−1/Λ
′, then Λ/Λ1/ · · · /Λr−1/Λ

′ is called an n-dimensional lattice

partition chain. For each partition Λℓ−1/Λℓ (1 ≤ ℓ ≤ r with convention Λ0 = Λ and Λr = Λ′), a code Cℓ over

Λℓ−1/Λℓ selects a sequence of representatives aℓ for the cosets of Λℓ. Consequently, if each partition is a binary

partition, the codes Cℓ are binary codes.

Construction D requires a set of nested linear binary codes C1 ⊆ C2 · ·· ⊆ Cr [17]. Suppose Cℓ has block length

N and the number of information bits kℓ for 1 ≤ ℓ ≤ r. Choose a basis g1,g2, · · · ,gN such that g1, · · ·gkℓ
span

Cℓ. In this work, we focus on the one-dimensional partition chain Z/2Z/ · · ·/2rZ for the simplicity of presentation.

Accordingly, the lattice L admits the form [17]

L =

{
r∑

ℓ=1

2ℓ−1
kℓ∑

i=1

ui
ℓgi + 2rZN | ui

ℓ ∈ {0, 1}
}

(3)

where the addition is carried out in R
N . The fundamental volume of a lattice obtained from this construction is

given by

V (L) = 2−NRCV (Λ′)N ,

where RC =
∑r

ℓ=1 Rℓ =
1
N

∑r
ℓ=1 kℓ denotes the sum rate of component codes.

The following is an example of Construction D: Barnes-Wall lattices constructed from Reed-Muller codes [26].

We give the example of Barnes-Wall lattices as a benchmark particularly because of the connection between Reed-

Muller codes and polar codes [1]. The advantage of polar codes over Reed-Muller codes will translate into the

advantage of polar lattices over Barnes-Wall lattices. Reed-Muller codes RM(N, k, d) are a class of linear block

codes over GF(2), where N is the length of the codeword, k is the length of the information block and d is the

minimum Hamming distance. Conventionally, Reed-Muller codes are denoted by RM(r′,m) (0 ≤ r′ ≤ m) with

following relation among N , k and d:

N = 2m, k = 1 +

(
m

1

)

+ · · ·+
(
m

r′

)

, d = 2m−r′ .

The m-th member of the family of Barnes-Wall lattices is an N = 2m dimensional complex lattice or 2N

dimensional real lattice. For example, the code formula of the 1024-dimensional Barnes-Wall lattice is:

BW1024 = RM(1, 10) + 2RM(3, 10) + · · ·+ 25Z1024. (4)
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A mod-Λ Gaussian channel is a Gaussian channel with an input in V(Λ) and with a mod-V(Λ) operator at the

receiver front end [17]. The capacity of the mod-Λ channel for noise variance σ2 is

C(Λ, σ2) = logV (Λ)− h(Λ, σ2), (5)

where h(Λ, σ2) is the differential entropy of the Λ-aliased noise over V(Λ):

h(Λ, σ2) = −
∫

V(Λ)

fσ,Λ(x) log fσ,Λ(x)dx.

Given lattice partition Λ/Λ′, the Λ/Λ′ channel is a mod-Λ′ channel whose input is restricted to discrete lattice

points in (Λ + a) ∩R(Λ′) for some translate a. The capacity of the Λ/Λ′ channel is given by [17]

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2)

= h(Λ, σ2)− h(Λ′, σ2) + log(V (Λ′)/V (Λ)).
(6)

Further, if Λ/Λ1/ · · · /Λr−1/Λ
′ is a lattice partition chain, then

C(Λ/Λ′, σ2) = C(Λ/Λ1, σ
2) + · · ·+ C(Λr−1/Λ

′, σ2). (7)

The key idea of [17] is to use a good component code Cℓ to achieve the capacity C(Λℓ−1/Λℓ, σ
2) for each level

ℓ = 1, 2, . . . , r in Construction D. For such a construction, the total decoding error probability with multistage

decoding is bounded by

Pe(L, σ
2) ≤

r∑

ℓ=1

Pe(Cℓ, σ2) + Pe((Λ
′)N , σ2). (8)

To achieve a vanishing error probability, i.e., to make Pe(L, σ
2) → 0, we need to choose the lattice Λ′ such that

Pe((Λ
′)N , σ2)→ 0 and that all the codes Cℓ for the Λℓ−1/Λℓ channels have error probabilities tending to zero.

Since V (L) = 2−NRCV (Λ′)N , the logarithmic VNR of L is

log

(
γL(σ)

2πe

)

= log
V (L)

2
nN

2πeσ2

= log
2−

2
n
RCV (Λ′)

2
n

2πeσ2

= − 2

n
RC +

2

n
logV (Λ′)− log 2πeσ2. (9)

Define 





ǫ1 = C(Λ, σ2)

ǫ2 = h(σ2)− h(Λ′, σ2)

ǫ3 = C(Λ/Λ′, σ2)−RC =
∑r

ℓ=1C(Λℓ−1/Λℓ, σ
2)−Rℓ,

(10)

where h(σ2) = n
2 log 2πeσ2 is the differential entropy of the Gaussian noise. We note that, ǫ1 ≥ 0 represents the

capacity of the mod-Λ channel, ǫ2 ≥ 0 (due to the data processing inequality) is the difference between the entropy

of the Gaussian noise and that of the mod-Λ′ Gaussian noise, and ǫ3 ≥ 0 is the total capacity loss of component

codes.

Then we have

log

(
γL(σ)

2πe

)

=
2

n
(ǫ1 − ǫ2 + ǫ3).
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Since ǫ2 ≥ 0, we obtain the upper bound1

log

(
γL(σ)

2πe

)

≤ 2

n
(ǫ1 + ǫ3). (11)

Since log
(

γL(σ)
2πe

)

= 0 represents the Poltyrev capacity [11] [10, Theorem 6.3.1], i.e., the capacity per unit volume

of an unconstrained AWGN channel, the right hand side of (11) gives an upper bound on the gap to the Poltyrev

capacity. The bound is equal to 6.02
n (ǫ1 + ǫ3) decibels (dB), by conversion of the binary logarithm into the base-10

logarithm.

To approach the Poltyrev capacity, we would like to have Pe(L, σ
2)→ 0 for any log

(
γL(σ)
2πe

)

> 0. Thus, from

(11), we need that both ǫ1 and ǫ3 are arbitrarily small. In the following lemma, we upper-bound ǫ1 by the flatness

factor ǫΛ(σ) of the top lattice.

Lemma 1: The capacity C(Λ, σ2) of the mod-Λ channel is bounded by

C(Λ, σ2) ≤ log (1 + ǫΛ(σ)) ≤ log(e) · ǫΛ(σ). (12)

Proof. By the definition of the flatness factor, we have

fσ,Λ(x) ≤
1 + ǫΛ(σ)

V (Λ)
.

Thus, the differential entropy of the mod-Λ Gaussian noise is bounded by

h(Λ, σ2) = −
∫

V(Λ1)

fσ,Λ(x) log fσ,Λ(x)dx

≥ −
∫

V(Λ1)

fσ,Λ(x) log
1 + ǫΛ(σ)

V (Λ)
dx

= − log
1 + ǫΛ(σ)

V (Λ)

= logV (Λ)− log (1 + ǫΛ(σ)).

Therefore, from (5), C(Λ, σ2) is bounded by log (1 + ǫΛ(σ)). The second inequality in (12) follows from the fact

log(1 + x) = log2(e) · loge(1 + x) ≤ log(e) · x for x > 0.

Thus, we have the following design criteria:

• The top lattice Λ has a negligible flatness factor ǫΛ(σ).

• The bottom lattice Λ′ has a small error probability Pe(Λ
′, σ2).

• Each component code Cℓ is a capacity-approaching code for the Λℓ−1/Λℓ channel.

Asymptotically, the error probability of a polar code of codeword length N decreases approximately as O(2−
√
N )

[27] and we may desire a similar form for the error probability of a polar lattice. In (8), we can let Pe((Λ
′)N , σ2)

decrease exponentially by increasing the volume of the bottom lattice Λ′ or equivalently by expanding the partition

chain. More explicitly, the next lemma shows that the first two ceriteria can be satisfied by r growing with logN

(see Appendix A for a proof).

1It was shown in [17] that ǫ2 ≈ πPe(Λ′, σ2), which is negligible compared to the other two terms.
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Lemma 2: Consider a partition chain Λ/Λ1/ · · · /Λr−1/Λ
′. There exists a sequence of numbers of levels r =

O(logN) such that ǫΛ(σ) = O(e−N ) and Pe(Λ
′, σ2) = O(e−N ).

Remark 1: Lemma 2 is mostly of theoretical interest, e.g., for proving a partition chain with increasing levels

is capacity achieving. In practical designs, if the target error probability is fixed, e.g., Pe(L, σ
2) = 10−5, a small

number of levels will suffice. This is because one can choose a top lattice such that ǫΛ(σ) ≈ 10−2 and a bottom

lattice such that Pe(Λ
′, σ2) ≈ 10−6, for instance. In fact, it was shown in [17] that a two-level partition chain

Z/2Z/4Z is enough if n = 1, although slightly more levels are needed if n > 1. Readers are referred to [17] for

more details and Section V for design examples.

B. Polar Lattices

It is shown in [17] that the Λℓ−1/Λℓ channel is symmetric, and the optimum input distribution is uniform

[17]. Since we use a binary partition Λℓ−1/Λℓ, the input Xℓ is binary for ℓ ∈ {1, 2, . . . , r}. Associate Xℓ with

representative aℓ of the coset in the quotient group Λℓ−1/Λℓ. The fact that the Λℓ−1/Λℓ channel is a BMS channel

allows a polar code to achieve its capacity.

Let Y denote the output of the AWGN channel. Given x1:ℓ−1, let Aℓ(x1:ℓ) denote the coset chosen by xℓ, i.e.,

Aℓ(x1:ℓ) = a1 + · · ·+ aℓ + Λℓ. The conditional PDF of this channel with input xℓ and output ȳℓ = y mod Λℓ is

given by [17]

PȲℓ|Xℓ,X1:ℓ−1
(ȳℓ|xℓ, x1:ℓ−1) = fσ,Λℓ

(ȳℓ − a1 − · · · − aℓ)

=
1√
2πσ

∑

a∈Aℓ(x1:ℓ)

exp

(

−‖ȳℓ − a‖2
2σ2

)

. (13)

Definition 1: (Channel degradation [28]): Consider two channels W1 : X → Y1 and W2 : X → Y2. Channel W1

is said to be (stochastically) degraded with respect to W2 if there exists a channel Q : Y2 → Y1 such that

W1(y1|x) =
∑

y2∈Y2

W2(y2|x)Q(y1|y2).

The proof of the following lemma is given in Appendix B.

Lemma 3: Consider a self-similar binary lattice partition chain Λ/Λ1/ · · · /Λr−1/Λ
′, in which we have Λℓ = T ℓΛ

for all ℓ, with T = αV for some scale factor α > 1 and orthogonal matrix V . Then, the Λℓ−1/Λℓ channel is degraded

with respect to the Λℓ/Λℓ+1 channel for 1 ≤ ℓ ≤ r − 1.

Now, we recall some basics of polar codes. Let W (y|x) be a BMS channel with input alphabet X = {0, 1} with

a priori distribution Bernoulli(1/2) and output alphabet Y ⊆ R. Polar codes are block codes of length N = 2m

with input bits u1:N . Let I(W ) be the capacity of W . Given a rate R < I(W ), the information bits are indexed

by a set of RN rows of the generator matrix GN = [ 1 0
1 1 ]

⊗m
, where ⊗ denotes the Kronecker product. This gives

an N -dimensional channel WN (y1:N |u1:N ). The channel seen by each bit [1] is given by

W
(i)
N (y1:N , u1:i−1|ui) =

∑

ui+1:N∈XN−i

1

2N−1
WN (y1:N |u1:N).
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Arıkan proved that as N grows, each channel W
(i)
N approaches either an error-free channel or a completely noisy

channel. The set of almost completely noisy (resp. almost error-free) subchannels is called the frozen set F (resp.

information set I). One sets ui = 0 for i ∈ F and only sends information bits within I.

Given a priori input distribution Bernoulli(1/2), the error probability of channel W with transition probability

PY |X under maximum-likelihood decision is given by

Pe(W ) =
1

2

∑

y

min{PY |X(y|0), PY |X(y|1)}.

The Bhattacharyya parameter serves as an upper bound on Pe(W ).

Definition 2 (Bhattacharyya Parameter for Symmetric Channel [1]): Given a BMS channel W with transition

probability PY |X , the Bhattacharyya parameter Z ∈ [0, 1] is defined as

Z(W ) ,
∑

y

√
PY |X(y|0)PY |X(y|1).

The rule of SC decoding is defined as

ûi =







0 i ∈ F or
W

(i)
N (y1:N , û1:i−1|0)

W
(i)
N (y1:N , û1:i−1|1)

≥ 1 when i ∈ I,

1 otherwise.

Let PB denote the block error probability of a binary polar code under SC decoding. It has been proved in [1]

that PB can be upper-bounded by the sum of the decoding error probability of the genie-aided SC decoder for

each information bit, i.e., PB ≤ Σi∈IZ(W
(i)
N ). It is worth mentioning that there are some other decoding methods

such as belief propagation decoding [29] and list decoding [30], which perform better than SC decoding. However,

in this work, we focus on SC decoding because it is sufficient to show that polar lattices are able to achieve the

capacity of AWGN channels.

It was shown in [27], [31] that for any β < 1
2 ,

lim
m→∞

1

N

∣
∣
∣{i : Z(W

(i)
N ) < 2−Nβ}

∣
∣
∣ = I(W )

lim
m→∞

1

N

∣
∣
∣{i : I(W (i)

N ) > 1− 2−Nβ}
∣
∣
∣ = I(W ).

This means that the fraction of good channels approaches to I(W ) as m→∞. Therefore, constructing polar codes

is equivalent to choosing the good indices.

Let P(N, kℓ) denote the component polar code for the Λℓ−1/Λℓ partition channel (1 ≤ ℓ ≤ r), where kℓ is

the size of its information set and N is the block length. We stack them as in Construction D to build the polar

lattice. The following lemma shows that these component codes are nested, which guarantees that the multilevel

construction creates a lattice [17]. Two rules may be used to determine the component codes. One is the capacity

rule [17], [21], where the channel indices are selected according to a threshold on the mutual information. The

other is the equal-error-probability rule [21], namely, the same error probability for each level, where we select the

channel indices according to a threshold on the error probability or the Bhattacharyya parameter. The advantage

of the equal-error-probability rule is that it gives an estimate of the error probability. For this reason, we use the
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equal-error-probability rule in this paper. It is well known that the polar codes constructed according to these two

rules converge to each other as the block length goes to infinity [1].

Lemma 4: For the equal-error-probability rule based on either the error probability or the Bhattacharyya parameter,

the component polar codes built in the multilevel construction are nested, i.e., P(N, k1) ⊆ P(N, k2) ⊆ · · · ⊆
P(N, kr).

Proof. Firstly, consider the equal-error-probability rule based on the Bhattacharyya parameter. By [31, Lemma 4.7],

if a BMS channel V is a degraded version of W , then the subchannel V
(i)
N is also degraded with respect to W

(i)
N and

Z(V
(i)
N ) ≥ Z(W

(i)
N ). Let the threshold be 2−Nβ

for some β < 1/2. The codewords are generated by x1:N = uIGI ,

where GI is the submatrix of G whose rows are indexed by information set I. The information sets for these two

channels are respectively given by






IW ={i : Z(W
(i)
N ) < 2−Nβ},

IV ={i : Z(V
(i)
N ) < 2−Nβ}.

Due to the fact that Z(V
(i)
N ) ≥ Z(W

(i)
N ), we have IV ⊆ IW . If we construct polar codes P(N, |IW |) over W and

P(N, |IV |) over V , GIV
is a submatrix of GIW

. Therefore P(N, |IV |) ⊆ P(N, |IW |).
From Lemma 3, the channel of the ℓ-th level is always degraded with respect to the channel of the (ℓ + 1)-th

level, and consequently, P(N, kℓ) ⊆ P(N, kℓ+1), for 1 ≤ ℓ < r.

Then, consider the selection based on the error probability itself. The nesting relation still holds. This is because,

by [32, Lemma 3], Pe(V
(i)
N ) ≥ Pe(W

(i)
N ) since V

(i)
N is degraded with respect to W

(i)
N .

Remark 2: Although it will not be used in this paper, it is worth pointing out that the nesting relation also holds

if we select the channel indices according to a threshold on the mutual information. This is because, again by [32,

Lemma 3], I(V
(i)
N ) ≤ I(W

(i)
N ) since V

(i)
N is degraded with respect to W

(i)
N .

However, the complexity of exact code construction for a BMS channel with a continuous output alphabet

appears to be exponential in the block length. A quantization method was proposed in [32] which transforms a

BMS channel with a continuous output alphabet to one with a finite output alphabet. Also, the authors of [33]

proposed an approximation method to construct polar codes efficiently over any BMS channel. We follow these

methods to construct polar codes for the Λℓ−1/Λℓ channel. It was shown in [32], [33] that with a sufficient number

of quantization levels, the approximation error is negligible while the computational complexity is still O(N logN).

We illustrate the construction procedure with the example of the Z/2Z channel. We need a collection of binary

symmetric channels (BSCs) to approximate this Z/2Z channel. The conditional PDF of the output after the mod-2

operation is given by

fσ,2Z(y|x) =
1√
2πσ

+∞∑

j=−∞
exp

(

− (y − x+ 2j)2

2σ2

)

.

Note that the output Y of Z/2Z channel is in the Voronoi region [−1, 1) of 2Z. The channel is symmetric in the

sense that fσ,2Z(y|x = 0) = fσ,2Z(̟(y)|x = 1), where ̟ is a permutation such that ̟(y) = (y+ 1) mod 2Z for

any y ∈ [−1, 1).
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Then, the output can be divided into several intervals Ai and ̟(Ai) for 1 ≤ i ≤ K , where K denotes the

quantization level, Ai ⊂ [−0.5, 0.5) and ̟(Ai) ⊂ [0.5, 1) ∪ [−1,−0.5). The i-th BSC is chosen with probability

pi and let the cross-over probability be xi, which are given by






pi =

∫

Ai

fσ,2Z(y|x = 1) + fσ,2Z(y|x = 0)dy,

xi =

∫

Ai
fσ,2Z(y|x = 0)dy

pi
.

(14)

The partition of the continuous alphabet is based on a function of the likelihood ratio [32]

ζy =
fσ,2Z(y|x = 0)

fσ,2Z(y|x = 1)
.

Note that ζy ≥ 1 for y ∈ [−0.5, 0.5).
The symmetric capacity of W is

I(W ) =

∫ 1

0

(f(y|x = 0) + f(y|x = 1))C[ζy ]dy, (15)

where C[ζ] for ζ ≥ 1 is defined as

C[ζ] = 1− ζ

ζ + 1
log

(

1 +
1

ζ

)

− 1

ζ + 1
log(ζ + 1).

In our case, we let the maximum value of C[ζ] be Cmax = C[ζ0]. For 1 ≤ i ≤ K , each interval is defined as

Ai =

{

y ∈ [−0.5, 0.5) : i− 1

K
Cmax ≤ C[ζy] ≤

i

K
Cmax

}

.

Thus, the number of discrete output symbols is 2K . Notice that the above quantization process results in a degraded

channel with respect to the original one [32]. According to [32, Lemma 15], the difference in symmetric capacities

of the discrete-output BMS channel and the original continuous-output channel can be bounded by 1
K . In numerical

experiments, K = 64 is sufficient to guarantee a capacity loss around 10−4 for a binary-input AWGN channel with

capacity 0.5.

With the discrete BMS channel, we use the merging algorithm in [33] to construct polar codes. The main idea

is to perform the calculations approximately by restricting the number of output symbols in each level. Then the

construction complexity is O(NK2 logK). The details are given in Algorithm 1 and Algorithm 2, where the function

b(x) = 2
√

x(1 − x) denotes the Bhattacharyya parameter2 of a BSC with cross-over probability x. Algorithm 1

starts with the list PQ = {(p1, x1), · · · , (pK , xK)}, obtained from (14) by quantizing the channel transition PDF

fσ,2Z(y|x). It generates a tree from a BMS channel W as the root node according to the polarization rules [1,

eq. (19)]. and [1, eq. (20)]. Suppose an intermediate BSC channel W from the polar transform is represented by

PW = {(p1, x1), · · · , (pM , xM )}, where M is its size. Then it applies toW the mass merging Algorithm 2 on each

level of the tree to reduce the size of the output alphabet for the next level. After each merging step of Algorithm

2, the size of W is decreased by 1. Finally, Algorithm 1 returns upper bounds P e(W
(i)
N ,K) on the probability of

error under SC decoding for the degraded bit channel W
(i)
N ; the transmitting subchannels are chosen according to

P e(W
(i)
N ,K).

2Using the binary entropy function g(x) = −x log(x)− (1− x) log(1− x) would give an algorithm for the capacity rule.
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We note that both the error probability Pe(Q) and the Bhattacharyya parameter Z(W) can be calculated from

their lists of the BSC pairs instead of their channel transition probability mass functions. In fact, we have Pe(Q) =
∑K

i=1 pixi and Z(W) = 2
∑M

i=1 pi
√

xi(1 − xi).

Algorithm 1 Construction of Polar Codes

Input: BMS channel W (the Z/2Z channel) represented by channel transition PDF fσ,2Z(y|x), block length N =

2m, size of information set k ≤ N , quantization level K

Output: A set of upper bounds on the error probabilities of N subchannels and an index subset of {1, ..., N} of

size k.

1: Calculate the Bhattacharyya parameter Z of W .

2: Quantize W to Q, represented by the root list PQ = {(p1, x1), · · · , (pK , xK)}, where x1 < · · · < xK , using

(14).

3: for i = 1, 2, ..., N do

4: Express i− 1 in binary representation 〈b1, b2, ...bm〉.
5: for j = 1, 2, ...,m do

6: if bj = 0 then

7: Calculate the probability mass function of the worse polarized channel:

8: W ← Q⊠Q [1, eq. (19)]. Obtain the BSC pairs PW of W .

9: Z← min{Z(W), 2Z− Z
2}.

10: else

11: Calculate the probability mass function of the better polarized channel:

12: W ← Q⊗Q [1, eq. (20)]. Obtain the BSC pairs PW of W .

13: Z← Z2.

14: end if

15: Q ← degrading-merging(W ,K).

16: end for

17: Compute upper-bound P e(W
(i)
N ,K) = min{Pe(Q),Z}.

18: end for

19: Return the set {P e(W
(1)
N ,K), ..., P e(W

(N)
N ,K)} and the subset of those k indices with smallest

{P e(W
(i)
N ,K)}.

Although the above merging algorithm results in an approximation error, it can be bounded properly by increasing

the size of the finite output alphabet. To this end, we introduce the capacity loss ǫloss under the quantization-merging

algorithm and finite length. More precisely, it means that we can construct a polar code of length N over a channel

with the symmetric capacity C such that this polar code is assured to have a block error probability PSC
B ≤ N2−Nβ

(β < 1/2) at the rate C − ǫloss. We give the following lemma on the capacity loss, which is essentially an adaption

of in [32, Theorem 1] to the Z/2Z channel. This lemma shows that we can get arbitrarily close to the optimal
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Algorithm 2 Degrading-merging function

Input: A list of BSC pairs PW , a quantization level K

Output: A list of BSC pairs PQ with size K .

1: while PW has size > K do

2: Find the index j = argmin
i
{pi(b(x̄i)− b(xi))− pi+1(b(xi+1)− b(x̄i))}, where x̄i =

pixi+pi+1xi+1

pi+pi+1
.

3: Merge (pj , xj) and (pj+1, xj+1) into (pj + pj+1, x̄j).

4: end while

5: Return PW .

construction of a polar code as K increases.

Lemma 5: Given any constant 0 < β < 1/2, define the capacity loss ǫloss

1

N

∣
∣
∣{i : P e(W

(i)
N ,K) < 2−Nβ}

∣
∣
∣ = I(W )− ǫloss.

For arbitrary real constant ǫ > 0, there exists a quantization level K0 = K0(W, ǫ, β), determined by the underlying

channel W , the constants ǫ and β, such that for all integers K ≥ K0 and all sufficiently large code lengths N , the

polar code constructed from Algorithm 1 within running time O(N ·K2 logK) achieves a rate loss ǫloss ≤ ǫ+ 1
K

and a block error probability PSC
B ≤ N2−Nβ

under SC decoding.

Proof. Since [32, Theorem 1] addresses binary-input discrete symmetric channels, we need apply [32, (57)] to the

quantized channel Q. However, it was only proved that for any ǫ > 0 and a sufficiently large K ≥ K0(Q, ǫ, β),

the following lim inf exists for the quantized channel Q.

lim inf
N→∞

1

N

∣
∣
∣{i : P e(W

(i)
N ,K) < 2−Nβ}

∣
∣
∣ ≥ I(Q)− ǫ. (16)

Note that P e(W
(i)
N ,K) denotes an upper bound on the error probability of the original subchannel W

(i)
N , which is

returned by Algorithm 1. By a more recent work [34, Lemma 1], the above lim inf can be safely replace by lim

because the Bhatacharyya parameters of the subchannels from Algorithm 1 eventually meet the form of [34, Eq.

(1)]. This can be checked from the two-staged polarization process introduce in the proof of [32, Theorem 1].

As a result, for any ǫ > 0, there exists a sufficiently large K ≥ K0(Q, ǫ, β) and a sufficiently large block length

N , such that the resulted polar code from Algorithm 1 has a rate

R =
1

N

∣
∣
∣{i : P e(W

(i)
N ,K) < 2−Nβ}

∣
∣
∣ ≥ I(Q)− ǫ, (17)

and its block error probability under successive cancellation decoding satisfies PSC
B ≤ N2−Nβ

.

Note that Q is a quantized version of W by the degradation merging process (14). By [32, Lemma 16], we have

0 ≤ I(W )− I(Q) ≤ 1

K
. (18)

Then, combining (17) and (18) gives us

ǫloss ≤ ǫ+
1

K
, (19)
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which can be made arbitrarily small when K is sufficiently large. Since Q is quantized from W , we may also write

K0 as K0(W, ǫ, β). The proof is completed.

Remark 3: To remove the dependency of the rate loss in Lemma 5 on the quantization level K , we may follow

[32, Corollary 2] to set K = ⌊logN⌋ in Lemma 5. Then, Algorithm 1 will produce a polar code with rate loss

ǫloss ≤ ǫ+ 1
⌊logN⌋ and block error probability ≤ N2−Nβ

, with complexity O(N log2 N log logN). Clearly, ǫloss → 0

as N →∞. For a more detailed analysis on ǫloss, see [35].

C. AWGN Goodness

By combining the previous lemmas, we arrive at the main result of this section:

Theorem 2: Construct polar lattice L with the n-dimensional binary lattice partition chain Λ/Λ1/ · · · /Λr−1/Λ
′

and r nested polar codes of block length N , where r = O(logN) such that ǫΛ(σ) = O(e−N ) and Pe(Λ
′, σ2) =

O(e−N ). For any 0 < β < 1/2, the error probability of L under multistage decoding is bounded by

Pe(L, σ
2) ≤ rN2−Nβ

+N

(

1−
∫

V(Λ′)

fσ2(x)dx

)

, (20)

with the logarithmic VNR bounded by (11). Then, L is AWGN-good, i.e., Pe(L, σ
2)→ 0 as N →∞ for arbitrary

VNR greater than 2πe.

Proof. The fact that the component polar codes are nested is due to Lemma 4, while the condition r = O(logN)

is due to Lemma 2. The error probability bound (20) comes from (8). For a threshold 2−Nβ

of the Bhattacharyya

parameter, the block error probability of a polar code with SC decoding is upper-bounded by N2−Nβ

, which gives

the first term on the right-hand side of (20). The second term of (20) is due to the union bound. Since both terms

of (20) vanish as block length N grows, Pe(L, σ
2)→ 0.

Then we analyze the VNR. By Lemma 1, we have ǫ1 = C(Λ, σ2) ≤ log(e) ·ǫΛ(σ) = O(e−N ). Also, the capacity

loss ǫ3 can be arbitrarily small as N →∞. Plugging these into (11), we can make log
(

γL(σ)
2πe

)

arbitrarily close to

0 as N →∞.

Remark 4: In practice, if the target error probability is fixed (e.g., 10−5), r can be a small integer, namely, r

does not have to scale as logN . Thus, the essential condition is N →∞. Particularly, our example in Section IV

shows that r = 2 is sufficient for a target error probability around 10−5 when σ = 0.3380.

For finite N , however, the capacity loss ǫ3 is not negligible. We investigate the finite-length performance of polar

lattices in the following.

The finite-length analysis of polar codes was given in [36]–[38]. It was proved that for a fixed error probability,

polar codes need a polynomial block length with respect to the gap to capacity ǫloss = I(W ) − R = O(N− 1
µ )

[36], [37], where µ is known as the scaling exponent. The lower bound of the gap is ǫloss ≥ βN
− 1

µ , where β is a

constant that depends only on I(W ) and µ = 3.55 [36]. The upper bound of the gap is ǫloss ≤ β̄N− 1
µ̄ , where β̄

is a constant that depends only on the block error probability PB and µ̄ = 7 was given in [36]. Later this scaling

factor µ̄ was improved to 5.77 [38].
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Thus, the gap to the Poltyrev capacity of finite-dimensional polar lattices is

log

(
γL(σ)

2πe

)

≤ 2

n

(

ǫ1 + rβ̄N− 1
µ̄

)

with the corresponding block error probability

Pe(L, σ
2) ≤ rPB + Pe(Λ

′N , σ2),

where the constant β̄ depends only on PB (assuming equal error probabilities for the component polar codes).

Since n≪ N is fixed, the gap to the Poltyrev capacity of polar lattices also scales polynomially in the dimension

nL = nN .

In comparison, the optimal bound for finite-dimensional lattices is given by [39]

log

(
γL(σ)

2πe

)

opt

=

√
2

nL
Q−1(Pe(L, σ

2))− 1

nL
lognL +O

(
1

nL

)

. (21)

At finite dimensions, this is more precise than the exponential error bound for lattices constructed from random

linear codes given in [17]. Thus, given Pe(L, σ
2), the scaling exponent of optimum random lattices is 2 which

is smaller than that of polar lattices µ̄. The result is consistent with the fact that polar codes require larger block

length than random codes to achieve the same rate and error probability.

IV. POLARIZATION-BASED GAUSSIAN SHAPING

To achieve the capacity of the power-constrained Gaussian channel, we can apply Gaussian shaping over the

polar lattice L. However, it appears difficult to do so directly. In this section, we will apply Gaussian shaping to

the top lattice Λ instead, which is more friendly for implementation. This is motivated by [6, Theorem 2], which

implies that one may construct a capacity-achieving lattice code from a good constellation. More precisely, one

may choose a low-dimensional top lattice such as Z and Z
2 whose mutual information has a negligible gap to the

channel capacity as bounded in [6, Theorem 2], and then construct a multilevel code to achieve the capacity. We

will show that this strategy is equivalent to implementing Gaussian shaping over the AWGN-good polar lattice.

A. Asymmetric Channels in Multilevel Lattice Coding

By [6, Theorem 2], we choose a constellation DΛ,σs
such that the flatness factor ǫΛ (σ̃) is negligible, where

σ̃ = σsσ√
σ2
s+σ2

. Let the binary partition chain Λ/Λ1/ · · · /Λr−1/Λ
′/ · · · be labelled by bits X1, · · · , Xr, · · · . Then,

DΛ,σs
induces a distribution PX1:r

whose limit corresponds to DΛ,σs
as r →∞. An example for DZ,σs

for σs = 3

is shown in Figure 2. In this case, a shaping constellation with M = 32 (r = 5) points are actually sufficient, since

the total probability of these points is rather close to 1.

By the chain rule of mutual information

I(Y ;X1:r) =

r∑

ℓ=1

I(Y ;Xℓ|X1:ℓ−1), (22)

we obtain r binary-input channels Wℓ for 1 ≤ ℓ ≤ r. Given x1:ℓ−1, denote again by Aℓ(x1:ℓ) the coset of Λℓ

indexed by x1:ℓ−1 and xℓ. According to [21], the channel transition PDF of the ℓ-th channel Wℓ is given by
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Fig. 2. Lattice Gaussian distribution DZ,σs and the associated labelling. A probability P (X1,X2, ...,Xi) in (b) is given by that of the coset

indexed by bits X1,X2, ...,Xi; for example, P (X1 = 1,X2 = 0) =
∑

λ∈4Z+1 Pr(λ), where Pr(·) denotes the probability mass function of

DZ,σs .

PY |Xℓ,X1:ℓ−1
(y|xℓ, x1:ℓ−1)

=
1

P{Aℓ(x1:ℓ)}
∑

a∈Aℓ(x1:ℓ)

P (a)PY |A(y|a)

=
1

fσs
(Aℓ(x1:ℓ))

∑

a∈Aℓ(x1:ℓ)

1

2πσσs
exp

(

−‖y − a‖2
2σ2

− ‖a‖
2

2σ2
s

)

(23)

= exp

(

− ‖y‖2
2(σ2

s + σ2)

)
1

fσs
(Aℓ(x1:ℓ))

1

2πσσs

∑

a∈Aℓ(x1:ℓ)

exp

(

−σ2
s + σ2

2σ2
sσ

2

∥
∥
∥
∥

σ2
s

σ2
s + σ2

y − a

∥
∥
∥
∥

2
)

= exp

(

− ‖y‖2
2(σ2

s + σ2)

)
1

fσs
(Aℓ(x1:ℓ))

1

2πσσs

∑

a∈Aℓ(x1:ℓ)

exp

(

−‖αy − a‖2
2σ̃2

)

.

where α =
σ2
s

σ2
s+σ2 is the MMSE coefficient. In general, Wℓ is asymmetric with the input distribution PXℓ|X1:ℓ−1

unless fσs
(Aℓ(x1:ℓ))/fσs

(Aℓ−1(x1:ℓ−1)) ≈ 1
2 , which means that ǫΛℓ

(σs) is negligible.

For a finite power, the number of levels does not need to be large. The following lemma shows in a quantitative

manner how large r should be in order to achieve the channel capacity. The proof can be found in Appendix C.

Lemma 6: There exists r = O(log logN) such that using the first r levels only incurs a capacity loss
∑

ℓ>r I(Y ;Xℓ|X1:ℓ−1) =

O( 1
N ).

Remark 5: The condition r = O(log logN) is of theoretical interest, similarly to the condition r = O(logN) in

the AWGN-good setting (Lemma 2). In practice, r can be a small constant so that the different between I(Y ;X1:r)

and capacity is negligible, as we will see from the example in the next section. Note that the relaxed condition

on r is thankfully due to the power constraint. Unlike the AWGN-good setting, here we no longer have the term

Pe(Λ
′N , σ2) in the upper bound of the error probability, since the bottom lattice Λ′ does not carry any message.
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B. Polar Codes for Asymmetric Channels

Since the component channels are asymmetric, we need polar codes for asymmetric channels to achieve their

capacity. Fortunately, polar codes for the binary memoryless asymmetric (BMA) channels have been introduced in

[40], [41] recently.

Definition 3 (Bhattacharyya Parameter for BMA Channel [40], [42]): Let W be a BMA channel with input

X ∈ X = {0, 1} and output Y ∈ Y , and let PX and PY |X denote the input distribution and channel transition

probability, respectively. The Bhattacharyya parameter Z for channel W is the defined as

Z(X |Y ) = 2
∑

y

PY (y)
√

PX|Y (0|y)PX|Y (1|y)

= 2
∑

y

√

PX,Y (0, y)PX,Y (1, y).

Note that this definition reduces to that for the BMS channel when PX is uniform.

The next lemma shows that adding an observable at the output of W will not increase Z .

Lemma 7 (Conditioning reduces Bhattacharyya parameter Z): Let (X,Y, Y ′) ∼ PX,Y,Y ′ , X ∈ X = {0, 1}, Y ∈
Y, Y ′ ∈ Y ′, we have

Z(X |Y, Y ′) ≤ Z(X |Y ).

Proof.

Z(X |Y, Y ′) = 2
∑

y,y′

√

PX,Y,Y ′(0, y, y′)PX,Y,Y ′(1, y, y′)

= 2
∑

y

∑

y′

√

PX,Y,Y ′(0, y, y′)
√

PX,Y,Y ′(1, y, y′)

(a)

≤ 2
∑

y

√
∑

y′

PX,Y,Y ′(0, y, y′)

√
∑

y′

PX,Y,Y ′(1, y, y′)

= 2
∑

y

√

PX,Y (0, y)PX,Y (0, y)

where (a) follows from Cauchy-Schwarz inequality.

Let X1:N and Y 1:N be the input and output vector after N independent uses of W . For simplicity, denote the

distribution of (X i, Y i) by PXY = PXPY |X for i ∈ [N ]. The following property of the polarized random variables

U1:N = X1:NGN is well known.

Theorem 3 (Polarization of Random Variables [40]): For any β ∈ (0, 1/2),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1) ≥ 1− 2−Nβ
}
∣
∣
∣
∣
= H(X),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1) ≤ 2−Nβ
}
∣
∣
∣
∣
= 1−H(X),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N ) ≥ 1− 2−Nβ
}
∣
∣
∣
∣
= H(X |Y ),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ
}
∣
∣
∣
∣
= 1−H(X |Y ),

(24)
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and

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ

and Z(U i|U1:i−1) ≥ 1− 2−Nβ
}
∣
∣
∣
∣
= I(X ;Y ),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N ) ≥ 2−Nβ

or Z(U i|U1:i−1) ≤ 1− 2−Nβ
}
∣
∣
∣
∣
= 1− I(X ;Y ).

(25)

The Bhattacharyya parameter for asymmetric models was originally defined for distributed source coding in [42].

By the duality between channel coding and source coding, it can be also used to construct capacity-achieving

polar codes for BMA channels [40]. Actually, Z(U i|U1:i−1) is the Bhattacharyya parameter for a single source X

(without side information).

The Bhattacharyya parameter of a BMA channel can be related to that of a symmetric channel. To this aim, we

use a symmetrization technique which creates a BMS channel W̃ from the BMA channel W [31], [40].

Lemma 8 (Symmetrization): Let W̃ be a binary-input channel with input X̃ ∈ X = {0, 1} and output Ỹ ∈ Y×X ,

built from the asymmetric channel W by treating X̃ as the new input and X̃⊕X as an additional output, as shown in

Figure 3. Then W̃ is a binary-input symmetric channel in the sense that PỸ |X̃(y, x⊕ x̃|x̃) = PY,X(y, x). Therefore,

the optimal input distribution of W̃ is the uniform distribution.

 

  

 

 

 

 

Fig. 3. The relationship between the asymmetric channel W and the symmetrized channel W̃ .

Proof.

PỸ |X̃(y, x⊕ x̃|x̃) =
PỸ ,X̃(y, x⊕ x̃, x̃)

PX̃(x̃)
=

∑

x′∈X PỸ ,X,X̃(y, x⊕ x̃, x′, x̃)

PX̃(x̃)

(a)
=

∑

x′∈X PY |X(y|x′)PX⊕X̃,X,X̃(x⊕ x̃, x′, x̃)

PX̃(x̃)

(b)
=

∑

x′∈X PY |X(y|x′)PX⊕X̃|X,X̃(x⊕ x̃|x′, x̃)PX(x′)PX̃(x̃)

PX̃(x̃)

(c)
= PY,X(y, x).

The equalities (a)-(c) follow from (a) Y is only dependent of X , (b) X and X̃ are independent of each other and

(c) PX⊕X̃|X,X̃(x⊕ x̃|x′, x̃) = 1(x′ = x).

The following theorem connects the Bhattacharyya Parameter of a BMA channel W and that of the symmetrized

channel W̃ . Denote by WN and W̃N the combining channels of N uses of W and W̃ , respectively.
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Fig. 4. Polarization for symmetric and asymmetric channels.

Theorem 4 (Connection Between Bhattacharyya Parameters [40]): Let X̃1:N and Ỹ 1:N =
(

Y 1:N , X1:N ⊕ X̃1:N
)

be the input and output vectors of W̃ , respectively, and let U1:N=X1:NGN and Ũ1:N=X̃1:NGN . The Bhattacharyya

parameter of each subchannel of WN is equal to that of each subchannel of W̃N , i.e.,

Z(U i|U1:i−1, Y 1:N ) = Z̃(W̃
(i)
N ) = Z(Ũ i|Ũ1:i−1, Y 1:N , X1:N ⊕ X̃1:N).

Now, we are in a position to construct polar codes for the BMA channel. Define the frozen set F̃ and information

set Ĩ of the symmetric polar codes as follows:






frozen set: F̃ = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N) > 2−Nβ}

information set: Ĩ = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ}.
(26)

By Theorem 4, the Bhattacharyya parameters of the symmetrized channel W̃ and the asymmetric channel W are

the same. However, the channel capacity of W̃ is I(X̃;X ⊕ X̃) + I(X̃;Y |X ⊕ X̃) = 1−H(X)+ I(X ;Y ), which

is 1 − H(X) more than the capacity of W . To obtain the real capacity I(X ;Y ) of W , the input distribution of

W needs to be adjusted to PX . By polar lossless source coding, the indices with very small Z(U i|U1:i−1) should

be removed from the information set Ĩ of the symmetrized channel, and the proportion of this part is 1 −H(X)

as N →∞. We name the remaining set as the information set I of the asymmetric channel W . Further, there are

some bits which are uniformly distributed and can be made independent from the information bits; we name this

set as the frozen set F . In order to generate the desired input distribution PX , the remaining bits are determined

by the bits in F ∪ I; we call it the shaping set S. This process is depicted in Figure 4. We formally define the

three sets as follows:






frozen set: F = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N) ≥ 1− 2−Nβ}

information set: I = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ

and Z(U i|U1:i−1) ≥ 1− 2−Nβ}

shaping set: S = (F ∪ I)c .

(27)

To find these sets, one can use Theorem 4 to calculate Z(U i|U1:i−1, Y 1:N ) with the known technique for

symmetric polar codes [32]. We note that Z(U i|U1:i−1) can be computed in a similar way: one constructs a
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symmetric channel between X̃ and X ⊕ X̃ , which is actually a binary-input symmetric channel with cross-over

probability PX(x = 1). The above construction is equivalent to implementing shaping over the polar code for the

symmetrized channel W̃ .

Besides the construction, the decoding can also be converted to that of the symmetric polar code. If X1:N ⊕
X̃1:N = 0, we have U1:N = Ũ1:N , which means the decoding result of U1:N equals to that of Ũ1:N . Thus, decoding

of the polar code for W can be treated as decoding of the polar code for W̃ given that X⊕ X̃ = 0. Clearly, the SC

decoding complexity for asymmetric channel is also O(N logN). We summarize this observation as the following

lemma.

Lemma 9 (Decoding for Asymmetric Channel [40]): Let y1:N be a realization of Y 1:N and û1:i−1 be the previous

i− 1 estimates of u1:N . The likelihood ratio of ui is given by

PUi|U1:i−1,Y 1:N (0|û1:i−1, y1:N)

PUi|U1:i−1,Y 1:N (1|û1:i−1, y1:N)
=

W̃
(i)
N ((y1:N , 01:N), û1:i−1|0)

W̃
(i)
N ((y1:N , 01:N), û1:i−1|1)

, (28)

where W̃
(i)
N denotes the transition probability of the i-th subchannel of W̃N .

In [40], the bits in F ∪ S are all chosen according to PUi|U1:i−1(ui|u1:i−1), which can also be calculated using

(28) (treating Y as an independent variable and remove it). However, in order to be compatible with polar lattices,

we modify the scheme such that the bits in F are uniformly distributed over {0, 1} while the bits in S are still

chosen according to PUi|U1:i−1(ui|u1:i−1). The expectation of the decoding error probability still vanishes with N .

The following theorem is an extension of the result in [40, Theorem 3], and its proof is given in Appendix D.

Theorem 5: Consider a polar code with the following encoding and decoding strategies for a BMA channel.

• Encoding: Before sending the codeword x1:N = u1:NGN , the index set [N ] are divided into three parts:

the frozen set F , the information set I and the shaping set S which are defined in (27). The encoder places

uniformly distributed information bits in I, and fills F with a uniform random {0, 1} sequence which is shared

between the encoder and the decoder. The bits in S are generated by a mapping φS , {φi}i∈S in the family

of randomized mappings ΦS , which yields the following distribution:

ui = φi(u
1:i−1) =







0 with probability PUi|U1:i−1(0|u1:i−1),

1 with probability PUi|U1:i−1(1|u1:i−1).

• Decoding: The decoder receives y1:N and estimates û1:N of u1:N according to the rule

ûi =







ui, if i ∈ F

φi(û
1:i−1), if i ∈ S

argmax
u

PUi|U1:i−1,Y 1:N (u|û1:i−1, y1:N ), if i ∈ I.

.

With the above encoding and decoding, the message rate can be arbitrarily close to I(X ;Y ) and the expectation of the

decoding error probability over the randomized mappings satisfies EΦS [P
SC
e (φS)] = O(2−Nβ′

) for β′ < β < 0.5,

where β is used to choose the frozen set, the information set, and the shaping set as in (27).

By an averaging argument, there exists a deterministic mapping φS such that Pe(φS) = O(2−Nβ′

). However, it

is difficult to actually find such a deterministic mapping. In practice, we may share a random mapping φS between
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Fig. 5. The first step of polarization in the construction for the second level.

the encoder and decoder, i.e., let them have access to the same source of randomness (e.g., using the same seed

for the pseudorandom number generators).

C. Multilevel Polar Codes

Next, our task is to construct polar codes to achieve the mutual information I(Y ;Xℓ|X1:ℓ−1) for all levels.

The construction of the preceding subsection is readily applicable to the construction for the first level W1. To

demonstrate the construction for other levels, we take the channel of the second level W2 as an example. This is

also a BMA channel with input X2 ∈ X = {0, 1}, output Y ∈ Y and side information X1. Its channel transition

probability is shown in (23). To construct a polar code for the second level, we propose the following two-step

procedure.

Step 1: Construct a polar code for the BMS channel with input vector X̃1:N
2 = [X̃1

2 , X̃
2
2 , · · ·, X̃N

2 ] and output

vector Ỹ 1:N =
(

X1:N
2 ⊕ X̃1:N

2 , Y 1:N , X1:N
1

)

where X̃ i
2 ∈ X = {0, 1} is uniformly distributed. At this

step X1 is regarded as a part of the outputs. Then the distribution of X2 becomes the marginal distribution
∑

x1,x3:r
PX1:r

(x1:r). Consider polarized random variables U1:N
2 = X1:N

2 GN and Ũ1:N
2 = X̃1:N

2 GN .

According to Theorem 3, the polarization gives us the three sets F2, I ′2 and S ′2 as shown in Figure 5.

Similarly, we can prove that
|I′

2|
N → I(Y,X1;X2) and

|F2∪S′
2|

N → 1 − I(Y,X1;X2) as N → ∞. These

three sets are defined as follows:






frozen set: F2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≥ 1− 2−Nβ}

information set: I ′2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≤ 2−Nβ

and

Z(U i
2|U1:i−1

2 ) ≥ 1− 2−Nβ}

shaping set: S ′2 = (F2 ∪ I ′2)
c
.

(29)

Step 2: Treat X1:N
1 as the side information for the encoder. Given X1:N

1 , the choices of X1:N
2 are further restricted

since X1 and X2 are generally correlated, i.e., PX1,X2
(x1, x2) = fσs

(A(x1, x2))/fσs
(Λ) (cf. Figure 2). By

removing from I ′2 the bits which are almost deterministic given U1:i−1
2 and X1:N

1 , we obtain the information
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Fig. 6. The second step of polarization in the construction for the second level.

set I2 for W2. Then the distribution of the input X2 becomes the conditional distribution PX2|X1
(x2|x1).

The process is shown in Figure 6. More precisely, the indices are divided into three portions as follows:

1 = 1− I(X̃2; X̃2 ⊕X2, X1, Y )
︸ ︷︷ ︸

|F2|/N

+I(X̃2; X̃2 ⊕X2, X1, Y )

Step1
= 1− I(X̃2; X̃2 ⊕X2, X1, Y )

︸ ︷︷ ︸

|F2|/N

+ I(X̃2; X̃2 ⊕X2)
︸ ︷︷ ︸

|S′
2|/N

+ I(X̃2;X1, Y |X̃2 ⊕X2)
︸ ︷︷ ︸

|I′
2|/N

Step2
= 1− I(X̃2; X̃2 ⊕X2, X1, Y )

︸ ︷︷ ︸

|F2|/N

+1−H(X2)
︸ ︷︷ ︸

|S′
2|/N

+ I(X2;X1)
︸ ︷︷ ︸

|SX1
|/N

+ I(X2;Y |X1)
︸ ︷︷ ︸

|I2|/N

= 1− I(X̃2; X̃2 ⊕X2, X1, Y )
︸ ︷︷ ︸

|F2|/N

+1−H(X2|X1)
︸ ︷︷ ︸

|S2|/N

+ I(X2;Y |X1)
︸ ︷︷ ︸

|I2|/N

We give the formal statement of this procedure in the following lemma.

Lemma 10: After the first step of polarization, we obtain the three sets F2, I ′2 and S ′2 in (29). Let SX1
denote the

set of indices whose Bhattacharyya parameters satisfy Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≤ 2−Nβ

, Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤

1 − 2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥ 1 − 2−Nβ

. The proportion of SX1
is asymptotically given by limN→∞

|SX1
|

N =

I(X2;X1). Then by removing SX1
from I ′2, we obtain the desired information set I2 corresponding to the mutual

information I(X2;Y |X1) associated with W2. Formally, the three sets are obtained as follows:






frozen set: F2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≥ 1− 2−Nβ}

information set: I2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≤ 2−Nβ

and

Z(U i
2|U1:i−1

2 , X1:N
1 ) ≥ 1− 2−Nβ}

shaping set: S2 = (F2 ∪ I2)c .

(30)

Proof. Firstly, we show the proportion of set SX1
goes to I(X1;X2) as N → ∞. Here we define a slightly

different set S ′X1
= {i ∈ [N ] : Z(U i

2|U1:i−1
2 , X1:N

1 ) ≤ 2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥ 1 − 2−Nβ}. Suppose we are

constructing an asymmetric polar code for the channel from X1 to X2; it is not difficult to find that limN→∞
|S′

X1
|

N =
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I(X2;X1) by Theorem 5. Furthermore, by Lemma 7, if Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤ 2−Nβ

, we can immediately have

Z(U i
2|U1:i−1

2 , X1:N
1 , Y 1:N ) ≤ 2−Nβ

. Therefore, the difference between the definitions of SX1
and S ′X1

only lies

on Z(U i
2|U1:i−1

2 , X1:N
1 ). Denoting by P̄X1

the unpolarized set with 2−Nβ ≤ Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤ 1− 2−Nβ

, we

have

lim
N→∞

( |SX1
|

N
− |S

′
X1
|

N

)

≤ lim
N→∞

|P̄X1
|

N
= 0. (31)

As a result, limN→∞
|SX1

|
N = limN→∞

|S′
X1

|
N = I(X2;X1).

Secondly, we show that SX1
∪I2 = I ′2. According to the definitions of SX1

and I2, we note that SX1
∩I2 = ∅.

By Lemma 7, if Z(U i
2|U1:i−1

2 , X1:N
1 ) ≥ 1− 2−Nβ

, we get Z(U i
2|U1:i−1

2 ) ≥ 1− 2−Nβ

and the difference between

the definitions of SX1
and I ′2 only lies on Z(U i

2|U1:i−1
2 , X1:N

1 ). Observe that the union SX1
∪I2 would remove the

condition on Z(U i
2|U1:i−1

2 , X1:N
1 ), and accordingly we have SX1

∪I2 = I ′2. It can be also found that the proportion

of I2 goes to I(X2;Y |X1) as N →∞.

We summarize our main results in the following theorem (see Appendix E for the proof):

Theorem 6 (Coding Theorem for Multilevel Polar Codes): Consider a polar code with the following encoding and

decoding strategies for the channel of the second level W2 with the channel transition probability PY |X2,X1
(y|x2, x1)

shown in (23).

• Encoding: Before sending the codeword x1:N
2 = u1:N

2 GN , the index set [N ] are divided into three parts: the

frozen set F2, information set I2, and shaping set S2 according to (30). The encoder first places uniformly

distributed information bits in I2. Then the frozen set F2 is filled with a uniform random sequence which are

shared between the encoder and the decoder. The bits in S2 are generated by a mapping φS2
, {φi}i∈S2

form

a family of randomized mappings ΦS2
, which yields the following distribution:

ui
2 =







0 with probability PUi
2|U

1:i−1
2 ,X1:N

1
(0|u1:i−1

2 , x1:N
1 ),

1 with probability PUi
2|U

1:i−1
2 ,X1:N

1
(1|u1:i−1

2 , x1:N
1 ).

(32)

• Decoding: The decoder receives y1:N and estimates û1:N
2 based on the previously recovered x1:N

1 according

to the rule

ûi
2 =







ui
2, if i ∈ F2

φi(û
1:i−1
2 ), if i ∈ S2

argmax
u

PUi
2|U

1:i−1
2 ,X1:N

1 ,Y 1:N (u|û1:i−1
2 , x1:N

1 , y1:N), if i ∈ I2

.

With the above encoding and decoding, the message rate can be arbitrarily close to I(Y ;X2|X1) and the expectation

of the decoding error probability over the randomized mappings satisfies EΦS2
[PSC

e (φS2
)] = O(2−Nβ′

) for any

0 < β′ < β < 0.5, where β is used to choose the frozen set, the information set, and the shaping set as in (30).

Note that probability PUi
2|U

1:i−1
2 ,X1:N

1 ,Y 1:N can be calculated by (28) efficiently, treating Y and X1 (already

decoded by the SC decoder at level 1) as the outputs of the asymmetric channel. Again, there exists a deterministic

mapping φS2
such that PSC

e (φS2
) = O(2−Nβ′

).
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Obviously, Theorem 6 can be generalized to the construction of a polar code for the channel of the ℓ-th level

Wℓ. The only difference is that the side information changes from X1:N
1 to X1:N

1:ℓ−1. As a result, we can construct

a polar code which achieves a rate arbitrarily close to I(Y ;Xℓ|X1:ℓ) with vanishing error probability.

D. Achieving Channel Capacity

So far, we have constructed polar codes to achieve the capacity of the induced asymmetric channels for all levels.

Since the sum capacity of the component channels nearly equals the mutual information I(Y ;X), and since we

choose a good constellation such that I(Y ;X) ≈ 1
2 log(1 + SNR), we have constructed a lattice code to achieve

the capacity of the Gaussian channel. We summarize the construction in the following theorem:

Theorem 7: Choose a good constellation with negligible flatness factor ǫΛ(σ̃) as in [6, Theorem 2], and construct

a multilevel polar code with r = O(log logN) as above. Then, for any SNR, the message rate approaches 1
2 log(1+

SNR), while the error probability under multistage SC decoding is bounded by

PSC
e = O(2−Nβ′

), 0 < β′ < 0.5 (33)

as N →∞.

Remark 6: It is simple to generate a transmitted codeword of the proposed scheme. For n = 1, let

χ =

r∑

ℓ=1

2ℓ−1

[
∑

i∈Iℓ

ui
ℓgi +

∑

i∈Sℓ

ui
ℓgi +

∑

i∈Fℓ

ui
ℓgi

]

. (34)

The transmitted codeword x is drawn from D2rZN+χ, σs. From the proof of Lemma 6, we know that the probability

of choosing a point outside of the interval [−2r−1, 2r−1] is negligible if r is sufficiently large, which implies there

exists only one point in this interval with probability close to 1. Therefore, one may simply transmit x = χ mod 2r,

where the modulo operation is applied component-wise with range (−2r−1, 2r−1].

Next, we show that such a multilevel polar coding scheme is equivalent to Gaussian shaping over a coset L+ c′

of a polar lattice L for some translate c′. In fact, the polar lattice L is exactly constructed from the corresponding

symmetrized channels W̃ℓ. Recall that the ℓ-th channel Wℓ is a BMA channel with the input distribution PXℓ|X1:ℓ−1

(1 ≤ ℓ ≤ r). It is clear that PX1:ℓ
(x1:ℓ) = fσs

(Aℓ(x1:ℓ))/fσs
(Λ). By Lemma 8 and (23), the transition probability

of the symmetrized channel W̃ℓ is

PW̃ℓ
((y, x1:ℓ−1, xℓ ⊕ x̃ℓ)|x̃ℓ)

= PY,X1:ℓ
(y, x1:ℓ)

= PX1:ℓ
(x1:ℓ)PY |Xℓ,X1:ℓ−1

(y|xℓ, x1:ℓ−1) (35)

= exp

(

− ‖y‖2
2(σ2

s + σ2)

)
1

fσs
(Λ)

1

2πσσs

∑

a∈Aℓ(x1:ℓ)

exp

(

−‖αy − a‖2
2σ̃2

)

.

Note that the difference between the asymmetric channel (23) and symmetrized channel (35) is the a priori

probability PX1:ℓ
(x1:ℓ) = fσs

(Aℓ(x1:ℓ))/fσs
(Λ). Comparing with the Λℓ−1/Λℓ channel (13), we see that the

symmetrized channel (35) is equivalent to a Λℓ−1/Λℓ channel, since the common terms in front of the sum will
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be completely cancelled out in the calculation of the likelihood ratio3. We summarize the foregoing analysis in the

following lemma:

Lemma 11 (Equivalence lemma): Consider a multilevel lattice code constructed from constellation DΛ,σs
for a

Gaussian channel with noise variance σ2. The ℓ-th symmetric channel W̃ℓ (1 ≤ ℓ ≤ r) which is derived from the

asymmetric channel Wℓ is equivalent to the MMSE-scaled Λℓ−1/Λℓ channel with noise variance σ̃2.

Thus, the resultant polar codes for the symmetrized channels are nested, and the polar lattice is AWGN-good

for noise variance σ̃2; also, the multistage decoding is performed on the MMSE-scaled signal αy (cf. Lemma 9).

Since the frozen sets of the polar codes are filled with random bits (rather than all zeros), we actually obtain a

coset L+ c′ of the polar lattice, where the shift c′ accounts for the effects of all random frozen bits. Finally, since

we start from DΛ,σs
, we would obtain DΛN ,σs

without coding; since L + c′ ⊂ ΛN by construction, we obtain a

discrete Gaussian distribution DL+c′,σs
over L+ c′.

Remark 7: This analysis shows that our proposed scheme is an explicit construction of lattice Gaussian coding

introduced in [6], which applies Gaussian shaping to an AWGN-good lattice (or its coset). Note that the condition

of negligible ǫΛ(σ̃) in Theorem 7 implies negligible capacity C(Λ, σ̃2) of the top lattice in the construction of the

AWGN-good lattice in Section III. Again, it is always possible to scale down the top lattice Λ such that ǫΛ(σ̃)

becomes negligible. Thus, Theorem 7 holds for any SNR, meaning that we have removed the condition SNR > e

required by [6, Theorem 3]4. Moreover, if a good constellation of the form DΛ−c,σs
for some shift c is used in

practice (e.g., a constellation taking values in {±1,±3, . . .}), the proposed construction holds verbatim.

V. DESIGN EXAMPLES

In this section, we give design examples of polar lattices with and without the power constraint. The design

follows the equal-error-probability rule. Multistage SC decoding is applied. Since the complexity of SC decoding

is O(N logN), the overall decoding complexity is O(rN logN).

A. Design Examples Without Power Constraint

Consider the one-dimensional lattice partition Z/2Z/ · · · /2rZ. To construct a multilevel lattice, one needs to

determine the number of levels of lattice partitions and the actual rates according to the the target error probability

for a given noise variance. By the guidelines given in Section III, the effective levels are those which can achieve

the target error probability with an actual rate not too close to either 0 or 1. Therefore, one can determine the

number of effective levels with the help of capacity curves in Fig. 7. For example, for the given noise variance

3Even if y ∈ R
n in (35), the sum over Aℓ(x1:ℓ) is Λℓ-periodic. Hence, the likelihood ratio will be the same if one takes ȳ = y mod Λℓ

and uses (13)

4The reason of the condition SNR > e in [6] is that a more stringent condition is imposed on the flatness factor of L, i.e., ǫL

(

σ2
s√

σ2
s+σ2

)

is

negligible. Intuitively, for a given lattice Λ, the flatness factor ǫΛ(σ) decreases as σ grows. Namely, the larger σs is, the smaller ǫL

(

σ2
s√

σ2
s+σ2

)

is. To make ǫL

(

σ2
s√

σ2
s+σ2

)

negligible, σs can not be arbitrarily small, which then causes an additional condition on the SNR.
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Fig. 7. Channel capacity for partition chain Z/2Z/ · · · /2rZ. The discrete BMS approximation uses the quantization-merging algorithm with

64 quantization levels.

Fig. 8. A polar lattice with two levels, where σ1 = σ.

indicated by the straight line in Fig. 7, one may choose partition Z/2Z/4Z, i.e., r = 2, which was indeed suggested

in [17].

The multilevel construction and the multistage decoding are shown in Fig. 8. For the ℓ-th level, g1,g2, · · · ,gkℓ

are a set of code generators chosen from the matrix GN , and σℓ is the standard deviation of the noise.

Now, we give an example for length N = 1024 and target error probability Pe(L, σ
2) = 10−5. We note

that the calculation of C(Λ/Λ′, σ2) and Pe(Λ, σ
2) can be simplified by the scaling property of the partition

channels as shown in the proof of Lemma 3. For the one-dimensional partition chain, we have C(4Z/8Z, σ2) =

C(2Z/4Z, (σ2 )
2) = C(Z/2Z, (σ4 )

2), and Pe(4Z, σ
2) = Pe(2Z, (

σ
2 )

2) = Pe(Z, (
σ
4 )

2). Let σ1 = σ, σ2 = σ/2 and

σ3 = σ/4 be the equivalent Gaussian noise deviation at the ℓ’s level with respect to the 1st one.

Since the bottom level is a Z
N lattice decoder, σ3 ≈ 0.0845 for target error probability 1

3 · 10−5. For the
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Fig. 9. Block error probabilities of polar lattices of length N = 1024 with multistage decoding.

middle level, σ2 = 2 · σ3 = 0.1690. From Fig. 7, the channel capacity of the middle level is C(Z/2Z, σ2
2) =

C(2Z/4Z, σ2
1) = 0.9874. For the top level, σ = σ1 = 0.3380 and the capacity is 0.5145. Our goal is to find two

polar codes approaching the respective capacities at block error probabilities ≤ 1
3 · 10−5 over these binary-input

mod-2 channels.

For N = 1024, we found the first polar code with rate k1

N = 0.23 for Pe(C1, σ2
1) ≈ 1

3 · 10−5, and the second

polar code with rate k2

N = 0.9 for Pe(C2, σ2
2) ≈ 1

3 · 10−5. Recall that the channel in the first level is degraded with

respect to the one at the second level according to Lemma 3, and the two polar codes in this construction turn out

to be nested. Thus, the sum rate of component polar codes RC = 0.23+0.9, implying a capacity loss ǫ3 = 0.3719.

Meanwhile, the factor ǫ1 = C(Z, 0.33802) = 0.0160. Therefore, the rate losses at each level are 0.016, 0.285, and

0.087. From (11), the logarithmic VNR is given by

log

(
γL(σ)

2πe

)

≤ 2 (ǫ1 + ǫ3) = 0.7758, (36)

which is 2.34 dB. It is seen from Fig. 10 that the estimate 2.34 dB is very close to the actual gap at Pe(L, σ
2
1) ≈ 10−5.

This simulation indicates that the gap to the Poltyrev capacity is largely due to the capacity losses of component

codes.

A comparison between the polar lattice and Barnes-Wall lattice is also presented in Fig. 9. The Barnes-Wall

lattices are constructed from Reed-Muller codes at each partition level. By changing the Barnes-Wall rule (base

on the hamming weight) to the capacity rule after channel polarization, it can be seen that the performance of the

polar lattice is significantly improved. Thanks to density evolution [43], the upper bound
∑

i∈A
(
Z(W

(i)
N )
)

on the

block error probability of a polar code with finite length can be calculated numerically. According to (20), we plot

the upper bound on the block error probability Pe(L, σ
2) of the polar lattice in Fig. 9, which is quite tight.

We summarize the numerical simulations of polar lattices for infinite constellations as follows. For a given

Gaussian noise variance σ2 and a target error probability Pe(L, σ
2), the first step is to find the smallest r such that
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Fig. 10. Performance comparison of lattices at dimension around 1000.

Pe(2
r
Z, σ2) ≤ 1

r+1Pe(L, σ
2). Then, we need to design r component polar codes with error probability smaller than

1
r+1Pe(L, σ

2) for the r partition levels, respectively. The proper rate ki

N of the polar code at the i-th level can be

estimated by separate numerical simulations or the density evolution technique used in [43]. By the union bound,

the constructed polar lattice is guaranteed to be capable of achieving an error probability lower than Pe(L, σ
2).

Performance comparison of competing lattices approaching the Poltyrev capacity is presented in Fig. 10, at

dimension around 1000. The polar lattice used here is constructed from the aforementioned one-dimensional lattice

partition (N = 1024, n = 1). The simulation curves of other lattices are taken from their corresponding papers.

Among the three types of lattices compared, the LDPC lattice [12] has the weakest performance. The LDA lattice

[13] has better performance than the polar lattice, at the expense of higher decoding complexity O(p2N logN)

if p-ary LDPC codes are employed. Assuming p ≈ 2r, it would require complexity O(22rN logN), compared to

O(rN logN) of the polar lattice. The LDLC lattice is not included in this comparison because of lack of block

error probabilities in [14]. In contrast to the polar lattice and LDA lattice, analytic results of the LDLC are not

available; therefore, they are less understood in theory. It is worth pointing out that the plain polar codes used

in polar lattice can be optimized in several aspects: for example, to use a better kernel, list decoding, or even a

soft-output decoding algorithm. We leave such improvements of polar lattices to future work.

B. Design Examples With Power Constraint

To satisfy the power constraint, we use discrete lattice distribution DZ,σs
for shaping. The mutual information

I(Y ;Xℓ|X1:ℓ−1) at each level for different SNRs is shown in Figure 11. We can see that for partition Z/2Z/...,

five levels are enough to achieve the AWGN channel capacity for SNR ranging from −5 dB to 20 dB. Note that

the actual number of required levels depends on the SNR: a smaller number of levels are enough for low SNRs,

while a larger number of levels is required for high SNRs (to support higher rates).
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Fig. 11. Channel capacity for each level as a function of SNR.
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Fig. 12. The proportions of the shaping set, information set, and frozen set on each level when N = 216 and SNR = 15 dB.

For each level, we estimate a lower bound on the code rate for block error probability 1 × 10−5. This is done

by calculating an upper bound on the block error probability of the polar code, using the Bhattacharyya parameter.

With this target error probability, the assignments of bits to the information, shaping and frozen sets on different

levels are shown in Figure 12 for SNR = 15 dB and N = 216. In fact, X1 and X2 are nearly uniform such that

there is no need for shaping on the first two levels (these levels actually correspond to the AWGN-good lattice).

The third level channel is very clean, and most bits are information bits. In contrast, the fifth level is mostly for

shaping; since its message rate is already small, adding another level clearly would not contribute to the overall

rate of the lattice code. Finally, lower bounds on the rates achieved by polar lattices with various block lengths are

shown in Figure 13. We note that the gap to the channel capacity diminishes as N increases, and it is only about

0.1 bits/dimension when N = 220.
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Fig. 13. Lower bounds on the rates achieved by polar lattices with block error probability 5× 10−5 for block lengths 210, ...,220.

VI. CONCLUSIONS

In this paper, we have constructed polar lattices to approach the capacity of the power-constrained Gaussian

channel. The construction is based on a combination of channel polarization and source polarization. Without

shaping, the constructed polar lattices are AWGN-good. The Gaussian shaping on a polar lattice deals with the

power constraint but is technically more involved. Our shaping approach is different from the standard Voronoi

shaping which involves a quantization-good lattice [5]. The proposed Gaussian shaping does not require such a

quantization-good lattice any more. The overall scheme is explicit and efficient, featuring quasi-linear complexity.

APPENDIX A

PROOF OF LEMMA 2

Proof. For this purpose, we assume Λ = aZn and Λ′ = bZn where a, b are scaling parameters to be estimated.

We note that for all partition chains in [17], this is always possible: if the bottom lattice does not take the form of

bZn, one may simply further extend the partition chain (which will lead to an upper bound on r).

We firstly note that the flatness factor ǫΛ(σ) can be made arbitrarily small by scaling down the top lattice Λ. To

see this, we recall that ǫΛ(σe) ≤ [1+ ǫΛ0
(σe)]

n− 1 [6, Lemma 3] where Λ0 = aZ for the afore-mentioned scaling

factor a.

Let Λ∗
0 = 1

aZ be the dual lattice of Λ0. By [25, Corollary 1], we have

ǫΛ0
(σ) = ΘΛ∗

0
(2πσ2)− 1

=
∑

λ∈Λ∗
0

exp(−2π2σ2|λ|2)− 1

= 2
∑

λ∈ 1
a
N

exp(−2π2σ2|λ|2)

≤ 2 exp(−2π2σ2 1
a2 )

1− exp(−2π2σ2 3
a2 )

≤ 4 exp(−2π2σ2 1

a2
) for sufficiently small a.

(37)
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Therefore, letting 1
a =

√
N

2π2σ2 , we have ǫΛ0
(σ) = O(e−N ) and hence ǫΛ(σ) = O(e−N ) for fixed n.

Secondly, by the union bound, the error probability of the bottom lattice Λ′ is upper-bounded by

Pe(Λ
′, σ2) ≤ nQ

(
b

2σ

)

≤ ne−
b2

8σ2

where we apply the Chernoff bound on the Q-function. We can obtain

Pe(Λ
′, σ2) = O(e−N )

by choosing b =
√
8σ2N for fixed n.

For a binary lattice partition, we have (b/a)n = 2r. Thus, we conclude that

r = n log

(
b

a

)

= n log

(
2

π
N

)

≤ n logN = O(logN).

APPENDIX B

PROOF OF LEMMA 3

Proof. By the self-similarity of the lattice partition chain, we can scale a Λℓ−1/Λℓ channel to a Λℓ/Λℓ+1 channel by

multiplying the output of a Λℓ−1/Λℓ channel with T . Since T = αV for some scale factor α > 0 and orthogonal

matrix V , the Gaussian noise for each dimension is still independent of each other and the noise variance per

dimension is increased after the scaling. Therefore, a Λℓ−1/Λℓ channel is stochastically equivalent to a Λℓ/Λℓ+1

channel with a larger Gaussian noise variance per dimension. For our design examples, a Z/2Z channel with

Gaussian noise variance σ2 is equivalent to a 2Z/4Z channel with Gaussian noise variance 4σ2, and a Z
2/RZ

2

channel with noise variance σ2 per dimension is equivalent to a RZ
2/2Z2 channel with noise variance 2σ2 per

dimension. Then our task is to prove that a Λℓ/Λℓ+1 channel with noise variance σ2
2 is degraded with respect to a

Λℓ/Λℓ+1 channel with noise variance σ2
1 if σ2

1 ≤ σ2
2 .

To see the channel degradation, we construct an intermediate channel with input in R(Λℓ+1) and a mod-Λℓ+1

operation at the receiver’s front end. The noise variance of this mod-Λℓ+1 channel is given by σ2
2−σ2

1 per dimension.

By the property [X+Y ] mod Λℓ+1 =
[

X mod Λℓ+1+Y
]

mod Λℓ+1, we can find that the concatenated channel

that consists of a Λℓ/Λℓ+1 channel with noise variance σ2
1 followed by the mentioned intermediate channel is

stochastically equivalent to a Λℓ/Λℓ+1 channel with noise variance σ2
2 , in the sense that the channel transition

probability density functions of the two channels for any given input and output are equivalent. This relationship

is depicted in Fig. 14. According to Definition 1, the proof is completed.
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Fig. 14. Let X ∈ R(Λℓ+1) denote the channel input. Let N1 and N2 denote two independent additive Gaussian noise with variances σ2
1 and

σ2
2 −σ2

1 , respectively. Clearly, the two Λℓ/Λℓ+1 channels with noise variances σ2
1 and σ2

2 can be described by channel (a) and (b), respectively.

By the property of modulo operation, channel (b) is equivalent to channel (c), which is a concatenated channel made by concatenating channel

(a) with an intermediate mod-Λℓ+1 channel.

APPENDIX C

PROOF OF LEMMA 6

Proof. For convenience we consider a one-dimensional partition chain Z/2Z/ · · · . The proof can be extended to

the multi-dimensional case by sandwiching the partition in Z
n/2Zn/ · · · , which reduces to the one-dimensional

case.

For level r, the selected coset Ar can be written as x1 + · · ·2r−1xr + 2rZ. Clearly, Ar is a subset of Ar−1.

Let λ1 and λ2 denote the two lattice points with smallest norm in set Ar−1. Without loss of generality, we assume

λ1 ≤ 0 ≤ λ2 and |λ1| ≤ |λ2|. Observe that λ2 − λ1 = 2r−1. Assume 2r−1 = 3Tσs, and T = δ logN for some

positive constant δ, then λ1 and λ2 cannot be in the interval [−Tσs, T σs] simultaneously. We consider two cases.

Case I: If the two points are both outside of [−Tσs, T σs], then we have

P (Ar−1) =
fσs

(Ar−1(x1:r−1))

fσs
(Z)

<

1√
2πσs

∑

x∈2r−1Z

exp(− (x+λ1)
2

2σ2
s

)

1√
2πσs

≤ 2
∑

x∈2r−1Z−

exp

(

− (x+ λ1)
2

2σ2
s

)

≤ 2
∑

x∈2r−1Z−

exp

(

−x2 + λ2
1

2σ2
s

)

(a)

≤ 2 exp

(

− λ2
1

2σ2
s

)
∑

n∈Z−

exp

(

n
(2r−1)2

2σ2
s

)

≤ 2
exp(− λ2

1

2σ2
s
)

1− exp(− (2r−1)2

2σ2
s

)
≤ 2

exp(−T 2

2 )

1− exp(− 9T 2

2 )
,
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where Z− represents all non-positive integers and trivial bound n ≤ n2 for n ∈ Z is applied in step (a). This means

P (Ar−1) roughly scales as 1
N log N , so P (Ar−1) = O( 1

Nc ) for any constant c > 0.

Case II: The point λ1 is in the interval [−Tσs, T σs] while λ2 lies outside. Without loss of generality, we assume

that the two cosets corresponding to xr = 0 and xr = 1 are λ1 + 2rZ and λ2 + 2rZ, respectively. Then we have

P (xr = 0|x1:r−1)

P (xr = 1|x1:r−1)
=

∑

x∈2rZ

exp(− (x+λ1)
2

2σ2
s

)

∑

x∈2rZ

exp(− (x+λ2)2

2σ2
s

)

≥
exp(− λ2

1

2σ2
s
)

2
∑

x∈2rZ+

exp(− (x+λ2)2

2σ2
s

)

≥
exp(− λ2

1

2σ2
s
)

2 · exp(− λ2
2

2σ2
s
)

(

1− exp

(

− 22r

2σ2
s

))

,

where Z+ represents all non-negative integers. Since λ2 − λ1 = 2r−1 = 3Tσs and λ2 + λ1 ≥ Tσs, for any T > 1,

we can obtain

P (xr = 0|x1:r−1)

P (xr = 1|x1:r−1)
≥ 1

2
exp

(
3

2
T 2

)

(1 − exp(−18T 2))

≥ 1

4
exp

(
3

2
T 2

)

=
1

4
exp

(
3

2
δ2 log2 N

)

.

Assuming that 1
4 exp(

3
2δ

2 log2 N) = M , we can get P (xr = 0|x1:r−1) ≥ M
M+1 and P (xr = 1|x1:r−1) ≤ 1

M+1 .

Then we have,

I(Y ;Xr|X1:r−1) ≤ H(Xr|X1:r−1) ≤ h2

(
1

M + 1

)

,

where h2(p) = plog( 1p ) + (1 − p)log( 1
1−p ) denotes the binary entropy function. By the relationship ln(x) ≤ x−1√

x

when x ≥ 1, we finally have

I(Y ;Xr|X1:r−1) ≤ log(e)

(
1√
M

+
1

M

)

= log(e)

(
2

exp(δ122r)
+

4

exp(δ222r)

)

,

where δ1 and δ2 are two positive constants. Therefore, there exists r = O(log logN) such that I(Y ;Xr|X1:r−1)→ 0

as N increases, and
∑

ℓ≥r I(Y ;Xℓ|X1:ℓ−1) = O( 1
N ).

To see this, let 2
exp(δ122r)

= 1
Nc for any constant c > 2. From this we derive r = 1

2 log
log(2Nc)

δ1
= O(log logN).

Then for sufficiently large N , I(Y ;Xr|X1:r−1) ≤ log(e) 2
Nc and

∑

ℓ≥r

I(Y ;Xℓ|X1:ℓ−1) ≤
∑

n≥N

log(e)
2

nc

≤ log(e)
2

N

∑

n≥N

1

nc−1

≤ log(e)
2

N

∑

n≥1

1

nc−1

≤ log(e)
2

N
ζ(c− 1)

where ζ(x) denotes the Riemann zeta function, which converges for any real x > 1.
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Finally, applying the total probability theorem to both cases and noting that Case I also happens with probability

O( 1
Nc ) for any c > 2, we conclude that I(Y ;Xr|X1:r−1) = O( 1

Nc ) for c > 2, hence
∑

ℓ≥r I(Y ;Xℓ|X1:ℓ−1) =

O( 1
N ).

APPENDIX D

PROOF OF THEOREM 5

Proof. Let Ei denote the set of pairs of u1:N and y1:N such that decoding error occurs at the i-th bit, then the block

decoding error event is given by E ≡ ⋃i∈I Ei. According to our encoding scheme, each codeword u1:N appears

with probability

2−(|I|+|F|)
∏

i∈S
PUi|U1:i−1(ui|u1:i−1).

Then the expectation of decoding error probability over all random mapping is expressed as

E[Pe] =
∑

u1:N ,y1:N

2−(|I|+|F|)(
∏

i∈S
PUi|U1:i−1(ui|u1:i−1))

· PY 1:N |U1:N (y1:N |u1:N)1[(u1:N , y1:N) ∈ E ].
Now we define the probability distribution QU1:N ,Y 1:N as

QU1:N ,Y 1:N (u1:N , y1:N ) = 2−(|I|+|F|)(
∏

i∈S
PUi|U1:i−1(ui|u1:i−1))PY 1:N |U1:N (y1:N |u1:N ).

Then the variational distance between QU1:N ,Y 1:N and PU1:N ,Y 1:N can be bounded as

2‖QU1:N ,Y 1:N − PU1:N ,Y 1:N‖ =
∑

u1:N ,y1:N

|Q(u1:N , y1:N )− P (u1:N , y1:N)|

(a)
=

∑

u1:N ,y1:N

|
∑

i

(Q(ui|u1:i−1)− P (ui|u1:i−1))(
i−1∏

j=1

P (ui|u1:i−1))(
N∏

j=i+1

Q(ui|u1:i−1))Q(y1:N |u1:N )|

≤
∑

i∈I∪F

∑

u1:N ,y1:N

|Q(ui|u1:i−1)− P (ui|u1:i−1)|(
i−1∏

j=1

P (ui|u1:i−1))(

N∏

j=i+1

Q(ui|u1:i−1))Q(y1:N |u1:N )

=
∑

i∈I∪F

∑

u1:i−1

2P (u1:i−1)‖QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1‖

(b)

≤
∑

i∈I∪F

∑

u1:i−1

P (u1:i−1)
√

2ln2D(PUi|U1:i−1=u1:i−1‖QUi|U1:i−1=u1:i−1)

≤
∑

i∈I∪F

√

2ln2
∑

u1;i−1

P (u1:i−1)D(PUi|U1:i−1=u1:i−1‖QUi|U1:i−1=u1:i−1)

≤
∑

i∈I∪F

√

2ln2D(PUi|U1:i−1 ||QUi|U1:i−1)

≤
∑

i∈I

√

2ln2(1−H(U i|U1:i−1)) +
∑

i∈F

√

2ln2(1−H(U i|U1:i−1))

≤
∑

i∈I

√

2ln2(1− Z(U i|U1:i−1)2) +
∑

i∈F

√

2ln2(1− Z(U i|U1:i−1, Y 1:N )2)

≤ 2N
√

4ln2 · 2−Nβ ,

(38)
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where equality (a) follows from [40, Equation (56)] and Q(y1:N |u1:N) = P (y1:N |u1:N). D(·||·) in the inequality

(b) is the relative entropy, and this inequality holds because of the Pinsker’s inequality. Then we have

E[Pe] = QU1:N ,Y 1N (E)

≤ ‖QU1:N ,Y 1:N − PU1:N ,Y 1:N ‖+ PU1:N ,Y 1:N (E)

≤ ‖QU1:N ,Y 1:N − PU1:N ,Y 1:N ‖+
∑

i∈I
PU1:N ,Y 1:N (Ei),

(39)

where

PU1:N ,Y 1:N (Ei) ≤
∑

u1:N ,y1:N

P (u1;i−1, y1:N )P (ui|u1:i−1, y1:N) · 1[P (ui|u1:i−1, y1:N ) ≤ P (ui ⊕ 1|u1:i−1, y1:N )]

≤
∑

u1:N ,y1:N

P (u1;i−1, y1:N )P (ui|u1:i−1, y1:N)

√

P (ui ⊕ 1|u1:i−1, y1:N)

P (ui|u1:i−1, y1:N )

= Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ

.

From (38) and (39), we have E[Pe] ≤ 2N
√
4ln2 · 2−Nβ +N2−Nβ

= N2−Nβ′

for any β′ < β < 0.5.

APPENDIX E

PROOF OF THEOREM 6

Proof. Let Ei denote the set of triples of u1:N
2 , x1:N

1 and y1:N such that decoding error occurs at the i-th bit, then

the block decoding error event is given by E ≡ ⋃i∈I Ei. According to our encoding scheme, each codeword u1:N
2

appears with probability

2−(|I2|+|F2|)
∏

i∈S2

PUi
2|U

1:i−1
2 ,X1:N

1
(ui

2|u1:i−1
2 , x1:N

1 ).

Then the expectation of decoding error probability over all random mapping is expressed as

E[Pe] =
∑

u1:N
2 ,x1:N

1 ,y1:N

2−(|I2|+|F2|)(
∏

i∈S2

PUi
2|U

1:i−1
2 ,X1:N

1
(ui

2|u1:i−1
2 , x1:N

1 ))

·PY 1:N ,X1:N
1 |U1:N

2
(y1:N , x1:N

1 |u1:N
2 )1[(u1:N

2 , x1:N
1 , y1:N) ∈ E ].

Now we define the probability distribution QU1:N
2 ,X1:N

1 ,Y 1:N as

QU1:N
2 ,X1:N

1 ,Y 1:N (u1:N
2 , x1:N

1 , y1:N) =2−(|I2|+|F2|) ·QX1:N
1

(x1:N
1 )

(
∏

i∈S2

PUi
2|U

1:i−1
2 ,X1:N

1
(ui

2|u1:i−1
2 , x1:N

1 )) · PY 1:N |X1:N
1 ,U1:N

2
(y1:N |u1:N

2 , x1:N
1 ).

Then the variational distance between QU1:N
2 ,X1:N

1 ,Y 1:N and PU1:N
2 ,X1:N

1 ,Y 1:N can be bounded as

2‖QU1:N
2 ,X1:N

1 ,Y 1:N − PU1:N
2 ,X1:N

1 ,Y 1:N‖ =
∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(u1:N
2 , x1:N

1 , y1:N)− P (u1:N
2 , x1:N

1 , y1:N)|

=
∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(u1:N
2 |x1:N

1 )Q(x1:N
1 )Q(y1:N |u1:N

2 , x1:N
1 )− P (u1:N

2 |x1:N
1 )P (x1:N

1 )P (y1:N |u1:N
2 , x1:N

1 )|

(a)

≤
∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(u1:N
2 |x1:N

1 )− P (u1:N
2 |x1:N

1 )|P (x1:N
1 )P (y1:N |u1:N

2 , x1:N
1 )

+
∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(x1:N
1 )− P (x1:N

1 )|Q(u1:N
2 |x1:N

1 )P (y1:N |u1:N
2 , x1:N

1 )
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where inequation (a) follows from [40, Equation (56)], Q(y1:N |u1:N
2 , x1:N

1 ) = P (y1:N |u1:N
2 , x1:N

1 ). For the first

summation, following the same fashion as the proof of Theorem 5, we can prove

∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(u1:N
2 |x1:N

1 )− P (u1:N
2 |x1:N

1 )|P (x1:N
1 )P (y1:N |u1:N

2 , x1:N
1 ) ≤ 2N

√

4ln2 · 2−Nβ .

According to the result of the coding scheme for level 1, we already have

2‖QU1:N
1 ,Y 1:N − PU1:N

1 ,Y 1:N ‖ ≤ 2N
√

4ln2 · 2−Nβ . (40)

Since we have PY 1:N |U1:N
1

= QY 1:N |U1:N
1

, we can write

2‖QU1:N
1
− PU1:N

1
‖ ≤ 2N

√

4ln2 · 2−Nβ . (41)

Clearly, there is a one to one mapping between U1:N
1 and X1:N

1 , then we immediately have 2‖QX1:N
1
−PX1:N

1
‖ ≤

2N
√
4ln2 · 2−Nβ . Therefore, for the second summation,

∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(x1:N
1 )− P (x1:N

1 )|Q(u1:N
2 |x1:N

1 )P (y1:N |u1:N
2 , x1:N

1 )

=
∑

x1:N
1

|Q(x1:N
1 )− P (x1:N

1 )| ≤ 2N
√

4ln2 · 2−Nβ .
(42)

Then we have ||QU1:N
2 ,X1:N

1 ,Y 1N − PU1:N
2 ,X1:N

1 ,Y 1N || ≤ 4N
√
4ln2 · 2−Nβ

, and

E[Pe] = QU1:N
2 ,X1:N

1 ,Y 1N (E)

≤ ‖QU1:N
2 ,X1:N

1 ,Y 1N − PU1:N
2 ,X1:N

1 ,Y 1N ‖+ PU1:N
2 ,X1:N

1 ,Y 1N (E)

≤ ‖QU1:N
2 ,X1:N

1 ,Y 1N − PU1:N
2 ,X1:N

1 ,Y 1N ‖+
∑

i∈I
PU1:N

2 ,X1:N
1 ,Y 1N (Ei),

(43)

The rest part of the proof follows the same fashion of the proof of Theorem 5. Finally we have E[Pe] ≤ N2−Nβ′

for any β′ < β < 0.5.
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