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MDS-Coded Distributed Caching for
Low Delay Wireless Content Delivery

Amina Piemontese, Member, IEEE, and Alexandre Graell i Amat, Senior Member, IEEE

Abstract—We investigate the use of maximum distance separa-
ble (MDS) codes to cache popular content to reduce the download
delay of wireless content delivery. In particular, we consider a
cellular system where popular files are cached in a distributed
fashion in a limited number of the mobile devices using an
MDS code and can be downloaded from them using device-
to-device (D2D) communication. The base station controls the
D2D communication and assists the requests that cannot be fully
satisfied by the distributed caching (DC) network by providing
the missing data. We consider a network model where the cell is
divided into clusters, where D2D links can be activated. We derive
an analytical expression for the delay incurred in downloading
content from the wireless network assuming that devices roam
in and out of clusters according to a Poisson random process.
Our analysis allows to identify the parameters of the wireless
network that mostly affect the performance and to compare
different caching strategies in terms of delay. We show that DC
using MDS codes can dramatically reduce the download delay
with respect to the scenario where content is always downloaded
from the base station and to the case of uncoded DC.

I. INTRODUCTION

The proliferation of mobile devices and the surge of a myr-
iad of multimedia applications has resulted in an exponential
growth of the mobile data traffic. In this context, wireless
caching has emerged as a powerful technique to overcome
the backhaul bottleneck, by reducing the backhaul rate and
the delay in retrieving content from the network. The key idea
is to store popular content closer to the end users. In [1], a
novel system architecture named femtocaching was proposed.
It consists of deploying a number of small base stations (BSs)
with large storage capacity, in which content is stored during
periods of offpeak traffic. The mobile users can download
content from the small BSs, resulting in a higher throughput
per user.

In [2], it was proposed to store content directly in the
mobile devices. Caching in the mobile devices has attracted
a significant interest in the research community in the recent
years [3]–[6]. In this scenario, users can then retrieve content
from neighboring devices using device-to-device (D2D) com-
munication or, alternatively, from the serving BS. Content may
be stored using an erasure correcting code, which brings gains
with respect to uncoded caching [1], [7]–[10]. The use of era-
sure correcting codes establishes an interesting link between
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distributed caching (DC) for content delivery and distributed
storage for reliable data storage. The key difference is that
in the wireless network scenario, data can be downloaded
from the caching nodes (the small BSs or the mobile devices)
but also from a serving macro BS, which has always the
content available. Therefore, the reliability requirements in
distributed storage for reliable data storage can be relaxed. In
[9], the placement of content encoded using maximum distance
separable (MDS) codes to small BSs was investigated and it
was shown that a careful placement allows to significantly
reduce the backhaul rate. In [7], for the scenario where content
is stored directly in the mobile devices, the repairing of the
lost data when a device caching data leaves the network
was considered. Assuming instantaneous repair, the commu-
nication cost of data download and repair was investigated.
In [8], [10], a repair scheduling where repair is performed
periodically was introduced and analytical expressions for the
overall communication cost of content download and data
repair as a function of the repair interval were derived. Using
these expressions, the overall communication cost entailed by
caching content using MDS codes, regenerating codes [11],
and locally repairable codes [12] was evaluated in [10] and it
was shown that caching content using erasure correcting code
can reduce the overall communication cost with respect to the
scenario where content is downloaded solely from the BS.

Most previous works in the literature have focused on
the cache hit probability and/or the communication cost and
assume that the download of content is instantaneous. For the
scenario where content is cached in small BSs, the expected
file download delay is minimized over the cache content
placement in [1], assuming that content is cached using ideal
MDS rateless codes. However, while the mobile devices are
spread randomly over an area, no mobility of the mobile
devices is considered in the analysis. Mobility of the devices,
assuming a random walk, is then considered in Monte Carlo
simulations.

In this paper, we analyze the delay of retrieving content
from the cellular network when content is cached directly
in the mobile devices taking into account the mobility of
the devices during the download process. In particular, we
consider a similar cellular network scenario as the one in
[7], [10], where content is cached in a number of mobile
devices using an erasure correcting code. However, differently
from [7], [10], we study a network model where the cell
is divided into clusters where D2D links can be activated
in order to increase the spatial reuse, and hence to reduce
the latency. We assume that mobile devices roam in and
out of a cluster according to a Poisson random process. We
derive analytical expressions for the average file download
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delay where content is cached in the mobile devices using
MDS codes and show that MDS-coded DC can significantly
reduce the download delay with respect to the case where
content is solely downloaded from the BS and the case where
uncoded caching is used. This work is an extension of our
previous work [13], where the download delay of a single file
was analyzed by considering a simpler cell model. Here, as
opposed to [13], we analyze a cluster-based cell model and
consider that users may request files, of different popularity,
from a library of files.

The remainder of the paper is organized as follows. The
system model is introduced in Section II. The average file
download delay incurred when MDS-coded DC is used is
analyzed in Sections III and Section IV. Section V presents
and discusses numerical results and finally some conclusions
are drawn in Section VI.

Notation. The probability density function (pdf) of a random
variable X is denoted by fX(·) and the expectation with
respect to X is denoted by EX{·}. We denote by N0 =
{0, . . . ,∞} the set of natural numbers. Probability is denoted
by Pr{·} and 1i represents a length-i vector of all ones. We
denote by πm(ρ) the stationary distribution of an M/M/∞
queueing system described by a Poisson birth-death process
with arrival rate α and service rate per node δ; the probability
that the system is in state m is [14]

πm(ρ) =
ρm

m!
e−ρ, m ≥ 0 , (1)

where ρ = α/δ.

II. SYSTEM MODEL

We consider a single cell in a cellular network where M
mobile devices, referred to as nodes, can request files, each of
size B bits, from a library of Z files. The files have different
popularities and accordingly have a given probability to be
requested. Depending on the placement strategy, some files are
encoded and cached into a number of mobile devices, referred
to as caching nodes, as described in detail in Section II-A
below. A copy of each encoded file is also available at the BS
serving the cell. A node requesting a file attempts to retrieve it
from the caching nodes using D2D communication, and, if the
file cannot be completely retrieved from the mobile devices,
the BS assists in providing the missing data.

A. Data placement and Coding Strategy

We adopt a uniform content placement strategy where the
F ≤ Z most popular files are cached in a distributed fashion
in n ≤ M caching nodes in the cell using a single erasure
correcting code. In particular, these files are partitioned into k
packets, called symbols, of B/k bits each and encoded into n
coded symbols using an (n, k) MDS erasure correcting code
of rate r = k/n. Thanks to the MDS property, an encoded
file can be reconstructed by accessing any k of the n encoded
symbols. For each file, the n coded symbols are stored in
n caching nodes chosen uniformly at random among the M
mobile devices. For ease of language, for a given file, the
set of nodes caching the file will be referred to as the DC

network, and the nodes not caching the file will be referred
to as regular nodes. Note that due to the random caching
strategy, the DC network (and thus the set of regular nodes)
may be different for different files. Overall, nF symbols are
stored across the mobile devices and no two caching nodes
store the same symbol. We model the popularity of the files
in the library using the time-invariant Zipf distribution [15].1

Accordingly, the probability that the ith file is requested is

zi =
1/iσ∑Z
j=1 1/jσ

, 1 ≤ i ≤ Z , (2)

where parameter σ regulates the relative popularity of the files.
In the following, the set of F files cached in the cache of the
mobile devices will be referred to as the DC library.

While in the analysis in Sections III and IV we assume
uniform content placement, the analysis applies in a straight-
forward manner to the more general case where files are
cached using erasure correcting codes of different length and
rate. In Section V, we give results for a proportional content
placement, where the length and rate of the caching codes are
selected according to the popularity of the files.

B. Network model

In order to increase the system efficiency, we allow multiple
D2D communications to coexist if they are sufficiently far
apart in space. Therefore, we divide the cell in C virtual
clusters and assume that the size of the cluster and the transmit
power are properly chosen such that every pair of nodes in
the cluster can potentially communicate through a D2D link.
A similar model is considered in [2], [5]. We allow only
one D2D communication at a time in each cluster in order
to avoid intra-cluster interference.2 We assume that the D2D
communication does not interfere with the communication
between the BS and the mobile devices. This can be achieved
by allowing overlay inband D2D links, i.e., part of the cellular
spectrum is dedicated only to D2D communications [16], or
outband D2D links, where D2D communication occurs in
unlicensed spectrum [17]. The reader is referred to [18] for
a tutorial discussion about this topic. Finally, we assume that
multiple BS-to-node links can coexist as in classical cellular
communications. We account for the inter-cluster interference
by considering that one cluster must compete with the adjacent
ones in order to use the resource devoted to D2D communi-
cation. In Fig. 1, we show an example of a cell composed
by hexagonal clusters. In the case of a single frequency band
for D2D communication in all clusters, a requesting user in
the reference cluster (the blue one in the figure) can find the
network idle if there is no active D2D communication in the
reference cluster nor in the six adjacent ones. On the other
hand, the inter-cluster interference can be avoided by using,
for example, separate frequency bands for adjacent clusters. In
the considered example with hexagonal clusters, it is easy to

1The popularity of the files in mobile data traffic does not change very
rapidly, i.e., it can be considered constant during the day.

2Better results could be achieved by allowing multiple D2D communi-
cations to coexist in a cluster, but this would require a more involved
communication scheme to avoid the interference among devices.
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Figure 1. Part of a cell with hexagonal clusters. If we assume that all clusters
employ the same frequency band for D2D communication, seven clusters must
compete for accessing the DC network.

show that only four orthogonal frequency bands are sufficient
to avoid the interference.

C. Arrival-Departure Model

We consider a uniform spatial distribution of the nodes in
the cell, and hence there are Mc = M/C devices per cluster on
average and among them nc = n/C caching nodes for a given
file of the DC library. We focus on a single cluster in isolation.
Mobile devices move inside the cell and thus roam in and out
of the cluster. The arrival, departure and request model of the
nodes are borrowed from [10] and are shown schematically
in Fig. 2. In particular, nodes arrive to the cluster according
to a Poisson random process with independent, identically
distributed (i.i.d.) exponential random inter-arrival times Ta
with pdf

fTa(t) = Mcλe
−Mcλt, t ≥ 0, (3)

where Mcλ is the expected arrival rate of a node. We assume
that the nodes stay in the cluster for an i.i.d exponential
random lifetime Tf with pdf

fTf
(t) = λe−λt, t ≥ 0, (4)

where λ ≥ 0 is the expected departure rate per node and t
is time, measured in time units (t.u.). This implies that the
expected number of nodes in the cluster is Mc. The model
corresponds to an M/M/∞ queuing model and the probability
that there are i nodes in the cluster is πi(Mc), defined in (1).
The arrival of nodes caching a particular file of the DC library
to the cluster can also be described as a Poisson random
process. In particular, the inter-arrival times Ts of the set of
caching nodes has pdf

fTs(t) = ncλe
−ncλt, t ≥ 0 ,

(Mc−nc)λ

ncλ

td

λ

λ

tbs

Figure 2. An example of cluster where nodes roam in and out according to
a Poisson random process: we have on average Mc mobile devices, and nc

caching nodes among them (red circles), caching one different coded symbol
for one of the most popular files. A device requesting the file (pink circle),
must collect k symbols. It attempts to recover them by using the DC network
and uses the BS to collect the symbols that it is not able to download from
the devices. The download of a symbol from a caching node takes td t.u.,
and from the BS tbs t.u..

where ncλ is the expected arrival rate of a caching node. The
related lifetime is described by (4) and the probability that
there are i caching nodes for a file in the cluster is πi(nc).3

D. DC Network Update

We consider a network where the D2D communications
are controlled by the BS. We assume that the nodes caching
content that arrive to the cluster from neighboring clusters are
not immediately available for download, but the BS serving
the cell keeps track of them and periodically updates and
broadcasts to all mobile devices the list of caching nodes in
the cell every ∆ t.u.. In the sequel, parameter ∆ is referred to
as the update interval and the set of caching nodes in the list
broadcasted to the devices in the cluster by the BS as the DC
list.

E. Data Delivery

Nodes request the file at random times with i.i.d. random
inter-request time Tr with pdf

fTr(t) = ωe−ωt, ω ≥ 0, t ≥ 0, (5)

where ω is the expected request rate per node. We focus on the
download process. If the requesting node of a given file is a
caching node of the DC list for that file, it needs to download
k − 1 symbols, otherwise k symbols must be downloaded.

3The Poisson model is largely used in the case of uniform mobility and its
popularity is also due to its tractability. However, we would like to remark
that while it is able to capture the mobility in one cluster, this model does
not guarantee that the total number of caching nodes for a file in the cell is
constant and equal to n. More precisely, the only guarantee is that there are
on average nc caching nodes of a file per cluster, but there are no constraints
on their instantaneous number, which can even exceed n. On the other hand,
the probability of having a high number of caching devices in one cluster is
generally very low. For nc = 9, we have π18(nc) = 3 · 10−3, π27(nc) =
6.6 · 10−7 and π91(nc) = 4 · 10−48. The same consideration holds for the
total number of mobile devices.
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The node that requests a file attempts to retrieve it from
the DC network using D2D communication. If the file cannot
be retrieved from the DC network, the BS assists in provid-
ing the missing content. In particular, we consider that the
download of a coded symbol from a caching node incurs td
t.u.. Furthermore, the download of a symbol of a file of the
DC library from the BS takes tbs t.u.. In this case, only the
cellular link is involved, since a copy of each encoded file is
available at the BS. Finally, files that do not belong to the DC
library are entirely downloaded from the BS in Tbh t.u.. In this
case, the BS obtains the requested file from the core network
through the backhaul link and transmits it to the requesting
user through the cellular link.

We assume that a device cannot download in parallel from
multiple caching nodes, but it serially tries to download the
coded file symbols from the nodes in the DC list.4 When a
node requests the file, if the network is idle and the requested
file belongs to the DC library, it randomly chooses one of the
caching nodes from the list supplied by the BS present in the
cluster (if any). After each downloaded symbol, the requesting
node randomly chooses another caching node from the DC list
and still alive.5

If the network is not idle, or if the download from the
caching nodes can be only partially accomplished, the request-
ing node turns to the BS to collect the missing data. For the
latter, we assume that a requesting node that has collected
fewer than the k symbols necessary to reconstruct the file
turns to the BS when all the reference caching nodes left from
the cluster or when the download of a symbol fails, even if
other caching nodes are available. To simplify the analysis, we
assume that both cases (the failed symbol download and the
absence of caching nodes) incur td t.u., even if the node could
contact the BS earlier. Note that the download of a symbol
through D2D communication fails if one of the two involved
nodes leave the cluster in the middle of the download or due
to link failure. In the case where D2D communication fails
because the requesting node itself leaves the cluster, it could
potentially download symbols from nodes in the new cluster.
However, to make the analysis tractable, we do not consider
this possibility and assume that download is completed from
the BS. This is a negative assumption that reduces the benefits
of DC.

We model the channel for D2D communication as a block-
erasure channel with erasure probability ε, which is a special
case of the block-fading channel, where transmission can be
either totally lost, due to a deep fade, or noiseless. Regarding
the download from the BS, we assume that tbs and Tbh are
average download times that account for the average number
of necessary retransmissions.

4A more involved transmission/detection strategy would be required to
allow a node to download in parallel from multiple devices. If multiple
transmissions in parallel were possible, this would make our scheme even
better, in the sense that the obtained gains would be higher.

5The requesting node uses the caching nodes alive at the moment of its
request even if, during the download process, new caching nodes are included
in the DC list of the cluster after the periodic restoration.

III. AVERAGE FILE DOWNLOAD DELAY

In this section, we investigate the average time that is
required to retrieve one file from the wireless network, referred
to as the average file download delay. If a requested file is
cached in the DC library, the requesting node attempts to
retrieve it from the DC network using D2D communication.
The network can be used only if it is idle, i.e., if there are no
active D2D communications in the concurrent clusters.

In order to compute the average file download delay, it is
useful to define the following binary random variables (RVs).
We introduce the RV H ∈ {0, 1} which describes the hitting
of the DC cache, i.e., H = 1 if a file of the DC library is
requested and H = 0 otherwise. We use the RV I ∈ {0, 1}
to describe the status of the DC network, i.e., I = 1 if the
network is idle and I = 0 otherwise. Finally, we introduce
the RV R ∈ {0, 1}, which represents the type of request, i.e.,
R = 1 for requests originating from a node that is a caching
node of the DC list for the requested file and R = 0 for the
other requests. We define η as the average number of coded
symbols downloaded per request using D2D communication
and T η , referred to as the average D2D download delay, as the
corresponding delay. From the discussion above, the average
file download delay, T dw, may be formalized as follows.

Proposition 1. The average file download for the cellular
network described in Section II where the F most popular
files are cached in the mobile devices using an (n, k) MDS
code is

T dw = Pr{H = 0}Tbh
+ Pr{I = 1}Pr{H = 1}

(
T η + (k − Pr{R = 1} − η)tbs

)
+ Pr{I = 0}Pr{H = 1}(k − Pr{R = 1})tbs . (6)

Proof: When one node requests a file, we can distinguish
the following three cases
• The file does not belong to the DC library. This happens

with probability Pr{H = 0} and the file is entirely
downloaded from the BS, involving the backhaul and
cellular links. The download takes on average Tbh t.u..

• The file belongs to the DC library and the DC
network is idle. This happens with probability
Pr{I = 1}Pr{H = 1}. The requesting node attempts
to retrieve it from the DC network using D2D
communication for an average time T η , and turns to
the BS to collect the missing data. With probability
Pr{R = 1}, the requesting node is a caching node for the
file, and it needs to download k− 1 symbols. Otherwise,
k symbols must be downloaded. Therefore, the average
number of missing symbols is k − Pr{R = 1} − η.
The download of a symbol of a file of the DC library
from the BS takes on average tbs t.u. and involves only
the cellular link since a copy of each encoded file is
available at the BS.

• The requested file belongs to the DC library and the
DC network is not idle. This happens with probability
Pr{I = 0}Pr{H = 1}. In this case, the download is
served by the BS from the cellular link, and takes on
average (k − Pr{R = 1})tbs.
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The computation of η, T η and Pr{R = 1} is addressed in
Section IV. The probability of hitting the cache depends on
the popularity distribution of the files since, according to the
considered placement policy, the DC network caches the F
most popular files. It can be expressed as

Pr{H = 1} =

F∑
i=1

zi ,

where the probabilities zi are given in (2). It follows that
Pr{H = 1} = 1 if F = Z.

The next step is the computation of the probability that the
DC network is idle. As discussed in Section II, the reference
cluster must possibly compete with the adjacent ones that use
the same frequency band for D2D communication in order to
access the DC network. We therefore define κ as the number
of concurrent clusters. For example, for the case of hexagonal
clusters shown in Fig. 1, κ = 1 if we use orthogonal bands
for adjacent clusters and κ = 7 if the neighboring clusters
must compete for the same time-frequency resource. Let I(`)

be the status of the network at the time of the `th request in
the group of κ clusters. It follows that

Pr{I = 1} = lim
L→∞

1

L

L∑
`=1

Pr{I(`) = 1}. (7)

In order to compute Pr{I(`) = 1}, we introduce the RV W (j)

that denotes the time instant of the jth request. Also, let T (j)

be the time during which the DC network is occupied by the
jth request. The DC network is idle at the time of the `th
request if none of the previous requests is still using D2D
communication. Therefore, Pr{I(1) = 1} = 1 and

Pr{I(`) = 1}=
∏
i<`

Pr{W (`)>W (`−i)+ T (`−i)}, ` > 1. (8)

Assuming that if the DC network is not idle at time W (`) is
because of the (`− 1)th request, the product in (8) reduces to
the term involving the (`− 1)th request only, i.e.,

Pr{I(`) = 1} ' Pr{W (`) > W (`−1) + T (`−1)} (9)

=

∫ ∞
0

Pr{W (`) > W (`−1) + t}fT (`−1)(t)dt .

Since the requests are i.i.d. with inter-request time distributed
as in (5) and on average there are Mc nodes in each of the κ
concurrent clusters, we can compute

Pr{W (`) > W (`−1) + t} = e−ωκMct , t > 0, ` > 1 ,

and (9) can be written as

Pr{I(`) = 1} '
∫ ∞

0

e−ωκMctfT (`−1)(t)dt, ` > 1. (10)

As we will see in the next section, in order to avoid network
congestion, we do not allow a requesting node to occupy the
DC network for long time. For example, we assume that the
requesting node turns to the BS if the download of a symbol
fails even if there are other caching nodes in its vicinity. For
this reason, the we can assume that the pdf fT (`−1)(t) is small

for large t. Therefore, we use the approximation ex ' 1 − x
that is valid for small x in equation (10) and we obtain

Pr{I(`) = 1} '
∫ ∞

0

(1− ωκMct)fT (`−1)(t)dt

= 1−
∫ ∞

0

ωκMctfT (`−1)(t)dt

= 1− ωκMcE{T (`−1)}
= 1− ωκMc Pr{I(`−1) = 1}Pr{H = 1}T η.

(11)

In (11), we used the fact that the time spent in downloading
from the DC network by the (` − 1)th request is non zero
only when the DC network is idle and the requesting file
belongs to the DC library. We further assume that we can
ignore boundary effects, i.e., the clusters in the group are not
at the edge of the cell. We have then used the fact that the
probability of hitting the cache is independent of the request
index, as well as the average D2D download delay (if ` is
sufficiently large), as it is proven in Corollary 1, in Section IV.
It can be verified numerically that Pr{I(`) = 1} does not
depend on the request index already for small values of `.
We now define ξ , ωκMc Pr{H = 1}T η . Assuming that the
average D2D download delay is independent of the request
index for any `, it follows

Pr{I(`) = 1} '
`−1∑
j=0

(−1)jξj . (12)

Let I(∞) = lim`→∞ I(`). Recalling that we assume ξ < 1, we
obtain

Pr{I(∞) = 1} ' 1

1 + ξ
. (13)

Using (12) and (13) in (7), we finally obtain the following
approximation for the probability that the DC network is idle,

Pr{I = 1} ' 1

1 + ωκMc Pr{H = 1}T η
. (14)

Equations (14) and (6) reveal an interesting trade-off. If from
one hand an increase of the probability of hitting the cache
increases the probability of avoiding the use of the backhaul
link, on the other hand it causes an increase of the D2D
traffic, that is the decrease of the probability of finding the
DC network idle.

IV. DOWNLOAD FROM CACHING NODES

In this section, we address the computation of the average
D2D download delay T η and the average number of coded
symbols η downloaded per request using D2D communication.
To derive the average D2D download delay, we introduce three
RVs describing the number of nodes of different type that are
present in the cluster at the instant of the request of a file:
with reference to the requested file, we define the number of
caching nodes of the DC list, the total number of caching
nodes (belonging or not to the list, the latter corresponding
to the caching nodes that arrive to the cluster after the DC
list update and that have not left the cluster at the time of the
request), and the number of regular nodes , i.e., not caching
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any symbol of the file. In particular, we denote by X1 ∈ N0

the RV that describes the number of caching nodes in the
cluster for the requested file of the DC list when the request
arrives. We describe by the RVs Q ∈ N0 and V ∈ N0 the
total number of caching nodes for the requested file and the
number of regular nodes present in the cluster at the instant of
a request, respectively. Moreover, we denote by Y ∈ N0 the
RV that represents the number of nodes caching the requested
file present in the cluster at the beginning of the update
interval of length ∆. In the following three lemmas, we give
a probabilistic description of the above RVs.

Lemma 1. The probability that there are x ≥ 0 caching nodes
of the DC list for the requested file at the time of the request
is

Pr{X1 = x} =
∞∑
y=0
πy(nc)

∞∑
m=y

(1− e−mω∆)πm−y(Mc−nc)Pr{X1 = x|Y = y}

∞∑
m=1

(1− e−mω∆)πm(Mc)
,

(15)

where Pr{X1 = x|Y = y} is the probability that X1 is equal
to x, given that y ≥ 0 caching nodes for the file are in the
cluster at the beginning of the update interval of length ∆,
and is

Pr{X1 = x|Y = y} =

1

∆

y∑
i′=x

1− pi′
λi′

y∏
j=x
j 6=i′

j

j − i′
− 1

∆

y∑
i′=x+1

1− pi′
λi′

y∏
j=x+1
j 6=i′

j

j − i′
,

(16)

where λi′ = i′λ and pi′ = e−λi′∆.

Proof. The proof is given in Appendix A.

Lemma 2. The probability that there are q ≥ 0 caching nodes
for the requested file in the cluster at the time of a request is
given by

Pr{Q= q}=

∞∑
m=q

(1− e−mω∆)πm−q(Mc − nc)

∞∑
m=1

(1− e−mω∆)πm(Mc)
πq(nc) .

(17)

Proof. The proof follows the same lines as the proof of
Lemma 1.

Lemma 3. The probability that there are v ≥ 0 regular nodes
in the cluster at the time of a request is given by

Pr{V= v}=

∞∑
m=v

(1− e−mω∆)πm−v(nc)

∞∑
m=1

(1− e−mω∆)πm(Mc)
πv(Mc − nc) .

(18)

Proof. The proof follows the same lines as the proof of
Lemma 1.

Based on the above lemmas, we can compute the proba-
bility that the request originates from a caching node for the
requested file of the DC list and the probability of having a
given number of caching nodes for the requested file in the
DC list at the time of the request conditioned to the type of
request.

Using Bayes’ rule, the probability that there are x ≥ 0
caching node for the requested file of the DC list alive at the
time of the request, conditioned to the type of request, is given
by

Pr{X1 = x|R= i}=Pr{R= i|X1 = x}Pr{X1 =x}
Pr{R= i}

, i = 0, 1 .

(19)
The probability Pr{X1 = x} is given in Lemma 1. We
now compute Pr{R|X1} and Pr{R}. With reference to the
requested file, we compute the probability of having one
request from the DC list conditioned to the number of caching
nodes in the DC list at the time of the request. For x > 0, it
can be written as

Pr{R=1|X1 =x} =
∞∑
v=0

∞∑
q=x

x

q + v
Pr{V= v|Q= q,X1 = x}Pr{Q= q|X1 = x} .

Clearly, the condition X1 = 0 implies that the request
cannot originate from a caching node of the DC list, therefore
Pr{R = 1|X1 = 0} = 0. We approximate the probability that
there are q caching nodes of the requested file at the instant of
the request, given the number of caching nodes for that file of
the DC list, by using the steady state probability of a Poisson
birth-death process with arrival rate λ(EQ(Q)−EX1

(X1)) and
departure rate λ. In particular, we compute

Pr{Q = q|X1 = x} ' πq−x(EQ(Q)− EX1(X1)) , (20)

where the expectations EQ(Q) and EX1
(X1) are obtained

starting from the probabilities (17) and (15), respectively. The
number of regular nodes V is independent of the number of
caching nodes at the instant of the request, therefore we finally
have

Pr{R = 1|X1 = x} =
∞∑
q=x

∞∑
v=0

x

q + v
Pr{V = v}πq−x(EQ(Q)− EX1

(X1)) ,

where Pr{V = v} is given in Lemma 3. Note that in the
expression above, with some abuse of notation, we used equal
sign to avoid carrying all the way the approximation sign due
to the approximation introduced in (20). Starting from this
result, we compute the probability that the request originates
from the DC list as

Pr{R = 1} =
∞∑
x=0

∞∑
q=x

∞∑
v=0

x

q + v
Pr{V=v}πq−x(EQ(Q)−EX1

(X1))Pr{X1=x}

where Pr{X1 = x} is given in Lemma 1. The probability
Pr{R = 0|X1 = x} is easily computed as 1 − Pr{R =
1|X1 = x}. Similarly, we have Pr{R = 0} = 1−Pr{R = 1}.
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Following the same approach for the proof of Lemma 1, it is
easy to show that Pr{X(`)

1 = x|R(`) = i} and Pr{R(`) = i}
are independent of the specific request (when ` grows large),
where R(`) is the binary RV describing the type of the `th
request.

The case ∆ = 0 represents the case of instantaneous
update, where the nodes contact directly the BS when they
request a file and receive the list of the caching nodes through
a dedicated link. For instantaneous update, the number of
caching nodes at the instant of the request and the type of
request is described by the following probabilities,

Pr{X = x} = πx(nc) ,

Pr{R = 1} =
nc
Mc

,

Pr{R = 1|X = x} =

∞∑
m=x

x

m
πm−x(Mc − nc) .

The probability that there are x ≥ 0 caching nodes at the time
of the request given the type of request can be computed by
replacing the above probabilities in (19).

In order to describe the D2D download, let S1 be the binary
RV that describes the success of the download at the first
attempt. More precisely, S1 = 1 represents the successful
download of the coded symbol from the first contacted caching
node. If the download is not successful from the first contacted
caching node, S1 = 0. Similarly, we denote by Sj the binary
RV describing the download at the jth attempt and we denote
by S[i], i ≥ 1 the random vector (S1, ..., Si). In the following,
in Lemmas 4, 5, and 6, we derive the probability that no sym-
bols can be downloaded from the DC network, Pr{S1 = 0|R},
the probability that the content is fully recovered from the
DC network, Pr{S[k−i] = 1k−i|R}, and the probability that
it is only partially recovered, Pr{S[j] = 1j , Sj+1 = 0|R},
respectively.

Lemma 4. The probability that no symbols are downloaded
through D2D communication, conditioned to the type of re-
quest, is given by

Pr{S1 = 0|R = i}=1 + e−λtd
(
Pr{X1 = i|R = i}

+

∞∑
g=1

g∑
d=0

(
d

g
+ ε

g − d
g

)Pr{X1=g + i|R= i}θ(d, g)−1
)
, i=0, 1

where Pr{X1|R} is given in (19) and

θ(d, g) =

g∑
i′=g−d

e−λi′ td

g∏
j=g−d
j 6=i′

j

j − i′

−
g∑

i′=g−d+1

e−λi′ td

g∏
j=g−d+1
j 6=i′

j

j − i′
, d ≥ 0, g ≥ 0

(21)

with λi′ = i′λ.

Proof. The proof is given in Appendix B.

Lemma 5. The probability that the file can be completely
retrieved from the DC network, i.e., the probability that k

symbols are downloaded through D2D communication when
R = 0, or k − 1 when R = 1, conditioned to the type of
request, is given by

Pr{S[k−i] = 1k−i|R = i} =

e−(k−i)λtd(1− ε)
∞∑
g=1

g∑
d=0

g − d
g

γk−i(g, d, i), i = 0, 1, (22)

where γj(g, d, i) is defined by the recursion

γj(g, d, i)= θ(d, g)(1−ε)
∞∑
g′=1

g′−1∑
d′=0

g′−d′

g′
E(g, g′, d′)γj−1(g

′, d′, i)

(23)
for d, g ≥ 0 and i = 0, 1, with initial condition

γ1(g, d, i) = Pr{X1 = g + i|R = i}θ(d, g) , (24)

and where

E(g, g′, d′) =

{
1 if g = g′ − d′ − 1

0 otherwise .

The function θ(d, g) is given in (21), and Pr{X|R} is given
in (19).

Proof. The proof is given in Appendix C.

Lemma 6. The probability of consecutively download j ≥ 1
symbols and to fail the download of the j + 1th one is

Pr{S[j] = 1j , Sj+1 = 0|R = i} = γj+1(0, 0, i)aj+1

+

∞∑
g=1

g∑
d=0

(d
g

+ ε
g − d
g

)
γj+1(g, d, i)aj+1

+ (1− ε)
∞∑
g=1

g∑
d=0

g − d
g

γj(g, d, i)bj+1 ,

where aj = e−jλtd , bj = e−(j−1)λtd(1−e−λtd), and γj(g, d, i)
is given in (23).

Proof. The proof follows the same lines as the proof of
Lemma 5.

Finally, the average D2D download delay and the average
number of downloaded symbols from the DC network are
given in the following theorem.

Theorem 1. Consider the network described in Section II,
where an (n, k) MDS erasure correcting code is employed and
where in the cluster there are on average nc caching nodes
for each cached file. Let td be the time to download a symbol
through D2D communication. The average D2D download
delay and the corresponding average number of downloaded
symbols are given by

T η =T 1ps + T 0(1− ps)
η =η1ps + η0(1− ps)
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where ps = Pr{R = 1} is the probability that the request
comes from a caching node of the DC list, and

ηi =(k − i) Pr{S[k−i] = 1k−i|R = i}

+

k−1−i∑
j=1

j Pr{S[j] = 1j , Sj+1 = 0|R = i} ,

T i =td

(
ηi + ck,i Pr{ S1 = 0|R = i}

+

k−1−i∑
j=0

Pr{S[j] = 1j , Sj+1 = 0|R = i}
)
, i = 0, 1

where ck,i = 1 for k − i > 0 and ck,i = 0 otherwise.

Proof. The average D2D download delay is obtained as the
sum of the average D2D delays in the case of requests
originated from nodes of the DC list caching symbols of
the requested file and of requests originating from the other
nodes, weighted by the probabilities ps and 1−ps, respectively.
The same approach is used for the corresponding average
number of downloaded symbols. According to our model, the
requesting node completes the download of k−i symbols from
the DC network in (k− i)td t.u. with probability Pr{S[k−i] =
1k−i|R = i}, while the partial download of j < k−i symbols
happens with probability Pr{S[j] = 1j , Sj+1 = 0|R = i} and
incurs (j + 1)td t.u.. For k − i > 0, in the computation of
the average D2D download delay, we also consider the case
where download from the DC network completely fails. The
corresponding probability is Pr{S1 = 0|R = i} and the delay
is td. When the request originates from the nodes of the DC
list caching the requested file and k = 1, i.e., k = i, no
symbols need to be downloaded, therefore T 1 and η1 are equal
to zero.

Corollary 1. The average D2D download time for the `th
request, T

(`)

η , is independent of the specific request if the index
` is sufficiently large.

Proof. Similarly to the average D2D download delay, T
(`)

η is

T
(`)

η = T
(`)

1 Pr{R(`) = 1}+ T
(`)

0 Pr{R(`) = 0} ,

where

T
(`)

i =td

(
(k − i) Pr{S(`)

[k−i] = 1k−i|R(`) = i}

+ ck,i Pr{ S(`)
1 = 0|R(`) = i}

+

k−1−i∑
j=0

(j + 1)Pr{S(`)
[j] =1j , S

(`)
j+1= 0|R(`) = i}

)
, i = 0,1

The Lemma follows from the fact that the probabilities in
the expressions above are independent of `, when ` grows
large.

V. NUMERICAL RESULTS

In this section, we evaluate the average file download delay
when content is cached using MDS codes for a cluster with
Mc = 30 nodes on average, departure rate λ = 1, and
request rate ω = 0.02. According to the chosen parameters,
the average lifetime of a node in the cluster is 1 t.u. and the

Table I
SYSTEM PARAMETERS COMMON TO FIGS 3–9

Mc λ ω Tbh/Tbs

30 1 0.02 2

Table II
FIXED SYSTEM PARAMETERS USED IN FIGS 3–8.

Fig. Z/F ε κ tbs/td ∆ σ

3 1 0 1 10
4 1 0 1 100
5 1 0 1 1000
6 1 0 1 100
7 10 0 1 100 0.5
8 10 1,3,7 100 0.5 1.2

probability that one node places more than one request in this
time is low and equals the probability that the inter-request
time Tr, distributed as in (5), is smaller that 1 t.u., that is

Pr{Tr < 1} = 1− e−ω ' 0.02 .

The infinite series involved in the computation of T dw

are truncated to a given value t, chosen according to
argmint>nc{πt(nc) < 10−5} when involving the number of
caching nodes and to argmint>Mc

{πt(Mc) < 10−5} when
involving the number of nodes in general. We remark that
the results depend on the parameter C through Mc and nc.

Unless otherwise stated, we consider a uniform content
placement (see Section II-A). The code parameters are chosen
such that k ≤ nc. In this way, the average storage overhead
in a cluster, nc−k, is positive, which increases the probability
that the content is downloaded through D2D communication
only. Alternatively, we can use the same (nc, k) MDS code for
each cluster, but in this case the BS must continuously restore
the initial state of reliability of the DC network when caching
nodes leave the clusters [10]. In the following, we consider
several MDS codes and an uncoded scenario where one
caching node on average in the cluster stores the uncoded files.
The system parameters used in the figures are summarized in
Tables I and II.

We first consider the special case where F = Z, therefore
the probability of hitting the cache Pr{H = 1} is 1. This
means that when the content is not downloaded through D2D
communication, the BS satisfies the request by using the
cellular link, without involving the backhaul channel, since the
BS has a copy of each of the Z most popular files. We fix the
ratio k/nc to be 1/3. Moreover, we assume that the channel
does not introduce errors, i.e., ε = 0, and that nonoverlapping
bands are used for adjacent clusters, i.e., κ = 1. We compare
the average file download delay T dw of the considered network
with MDS-coded DC with the delay of the scenario where
the content is solely downloaded from the BS, denoted by
Tbs = ktbs and with uncoded caching. In the following, with
no loss of generality, we set Tbs = 1 t.u.. In Figs. 3–5, we
show the gain that can be achieved using MDS-coded DC,
by reporting the ratio between Tbs and T dw as a function of
the update interval ∆. In Figs. 3, 4, and 5, td is 10, 100, and
1000 times, respectively, smaller than tbs. The solid lines in
the plots correspond to the analytical closed-form expressions
derived in the previous sections and markers correspond to
simulation results. It is observed that the analytical expressions



9

0 0.5 1 1.5 2
0

2

4

6

∆

T
b
s
/
T

d
w

nc=15,k=5

nc=12,k=4

nc=9,k=3

nc=6,k=2

nc=3,k=1

uncoded

ref

Figure 3. Ratio between the average file download delay without D2D
communication and that of the scenario using MDS-coded DC when Z = F .
Tbs = ktbs, tbs = 10td. Solid lines show analytical results and markers
simulation results.
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Figure 4. Ratio between the average file download delay without D2D
communication and that of the scenario using MDS-coded DC when Z = F .
Tbs = ktbs, tbs = 100td. Solid lines show analytical results and markers
simulation results.

predict very well the actual performance, which shows the
goodness of the approximations introduced in (14) and (20).
The results clearly show that MDS-coded DC can greatly
improve the performance in terms of content download delay
with respect to the case where content is downloaded from
the BS, provided that the update interval, ∆, is sufficiently
small. For example, for tbs = 100td and ∆ = 1, a speed-up
factor of around 19 in the download is achieved with respect
to the case of downloading from the BS using a the MDS code
with parameters nc = 15 and k = 5. Interestingly, the results
also show that the performance improves when k increases. In
particular, simple replication (repetition coding with k = 1)
is very inefficient and much better performance are achieved
using larger MDS codes (of the same rate).

In Fig. 6, we show the gain as a function of the update
interval for different average storage overhead. In particular,
we fix k = 2, while the parameter nc rages from 3 to 8. For
comparison, we also report the uncoded case. The figure shows
the advantage of MDS-coded DC for all considered cases.
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Figure 5. Ratio between the average file download delay without D2D
communication and that of the scenario using MDS-coded DC when Z = F .
Tbs = ktbs, tbs = 1000td. Solid lines show analytical results and markers
simulation results.

0 0.5 1 1.5 2
0

10

20

30

40

∆

T
b
s
/
T

d
w

nc=8,k=2

nc=7,k=2

nc=6,k=2

nc=5,k=2

nc=4,k=2

nc=3,k=2

uncoded

ref

Figure 6. Ratio between the average file download delay without D2D
communication and that of the scenario using MDS-coded DC when Z = F ,
for k = 2 and different nc. Tbs = ktbs, tbs = 100td.

We now consider the more general case where only part
of the library of files is cached in the devices. We consider
a library of size of Z = 1000 files and F = 100 files are
cached in the DC network. This case takes into account the
requests of files that are not cached in the DC library, that
are satisfied by the BS through the backhaul and cellular link
and that take on average Tbh t.u.. Due to the traffic congestion
in the backhaul link, without loss of generality, we choose
Tbh = 2Tbs. As explained in Section II, the n caching nodes
are chosen uniformly at random and can be possibly different
for each cached file. We compare the average file download
delay T dw of a network with MDS-coded DC with the delay
of the classical scenario, where all the requests are satisfied
by the BS through the backhaul link in Tbh t.u..

In Fig. 7, we show the download speedup factor Tbh/T dw

as a function of the parameter σ, which regulates the relative
popularity of the files. For example, a large value of σ
represents the case where few popular files are responsible
for the majority of the download traffic. The figure refers to
the case where tbs = 100td, ∆ = 0.5, ε = 0 and κ = 1. The
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Figure 7. Ratio between the average file download delay of the classical
scenario and that of the network using MDS-coded DC for F < Z. Tbh =
2Tbs, tbs = 100td and ∆ = 0.5.
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Figure 8. Ratio between the average file download delay of the classical
scenario and that of the network using MDS-coded DC for σ = 1.2, Tbh =
2Tbs, tbs = 100td and ∆ = 0.5.

results confirm the gain that can be achieved by MDS-coded
DC.

We now consider the effect of the D2D channel and of the
number of competing clusters. In Fig. 8, we plot the download
speedup factor Tbh/T dw as a function of the channel erasure
probability when we transmit the whole file, denoted as εf .
The relationship between εf and the erasure probability of one
symbol ε is

εf = 1− (1− ε)k .

We consider three MDS codes with k/nc = 1/3, and for
each code we plot three curves, corresponding to different
number of competing clusters. Interestingly, the performance
of the considered network is not very sensitive to the number
of concurrent clusters. This observation suggests that the
proposed network model, besides reducing the latency, has also
a good spectral efficiency, since there is no need to allocate
orthogonal frequency bands for adjacent clusters.

Finally, in Fig. 9 the proposed delay analysis is used
to compare different caching placement strategies under an
average cache size constraint per device of β files and different
values of ∆. Besides the uniform content placement, we
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popular

Figure 9. Ratio between the average file download delay of the classical
scenario and that of the network using DC. Comparison of different caching
placement schemes. For D2D communication, we assume Tbh = 2Tbs, tbs =
100td.

consider three different caching strategies: i) The conventional
popular content placement where all devices cache a copy
of the β most popular files; ii) A content placement where
a file is cached at any given node with a probability equal
to its popularity probability, which we refer to as Zipf-based
caching; iii) A proportional content placement where files
are cached using MDS codes according to their popularity.
In particular, we use the same k for each file and vary
the code length nc ∈ {0, k, . . . , nmax} (and thus code rate)
proportionally to the file popularity. For Zipf-based caching
and proportional content placement, the average file download
can be computed using (6), where the quantities that depend
on the code length are computed by averaging over the
used codes. In the figure, we assume κ=1, β = 10, and
ε=0. Furthermore, we choose k=5, nc=15, and F=100 for
the uniform placement, and k=3, nmax=15 and ∆=0.5 t.u.
for the proportional content placement. Moreover, we set
Tbh = 2Tbs and tbs = 100td. Note that the popular content
placement does not foresee D2D communication, therefore
the results are independent of ∆. As seen in the figure, for
the considered scenario the proportional content placement
yields the best performance (this is the case also for other
values of ∆). The popular content placement has the worst
performance, except for the case where both the parameter σ
and the update interval are large, in which case popular content
placement slightly outperforms the uniform content placement.
Zipf-based caching performs as good as proportional content
placement and better than uniform placement for small values
of σ. However, for σ > 1, performs worse than uniform
content placement and the loss is significant for larger values
of σ.

For comparison purposes, we also plot in the figure the
average file download delay for the case of no device mobility
and uniform content placement (note that for popular content
placement the curve for mobility and no mobility is the same).
As expected, the device mobility reduces the performance
gains with respect to the case of no mobility, and the loss
is significant for large values of the update period. However,
for ∆ = 0.5 and lower (the curve for ∆ = 0.1 is barely
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better than that of ∆ = 0.5) the loss in performance gain with
respect to the no mobility case is small. The same behavior is
observed for the case of proportional allocation.

VI. CONCLUSIONS

We considered the cache of popular content in the mo-
bile devices of a cellular network using maximum distance
separable codes to speed-up content delivery. We considered
a cluster-based network model that includes several practical
aspects, such device mobility, inter and intra-cluster interfer-
ence, and channel uncertainty. Moreover, we assumed that the
network information is not instantaneosly available, but peri-
odically broadcasted to the devices by the base station. For this
scenario, we derived an analytical expression for the average
file download delay as a function of the network parameters.
The analysis shows that MDS-coded distributed caching can
significantly reduce the download delay with respect to the
traditional case where content is solely downloaded from the
BS and the case where uncoded caching is used.

Interestingly, our analysis reveals that the gain with respect
to uncoded and popular caching is bigger for longer codes.
However, to realize the gains, the network update information
must be broadcasted frequently enough. For small enough
update period, the performance gains due to MDS-coded
caching are close to those in the case of no mobility. We
have also shown that the considered network has potentially a
high spectral efficiency, since the performance only slightly
degrades if we use the same frequency band for adjacent
clusters with respect to the case where orthogonal bands are
allocated.

The derived analytical expression for the download delay
can be used to optimize the content placement through the
optimization of the length and rate of the caching codes.
Finally, an interesting research topic consists in extending
our analysis by considering a more involved network model
where the location of the devices is also accounted for, e.g.,
by considering different channel gains between the mobile
devices depending on their relative positions.

APPENDIX A
PROOF OF LEMMA 1

We denote by X(`)
1 the number of caching nodes available

for download at the time of the `th download request in the
cluster, i.e., the number of caching nodes of the DC list that
have not left the cluster at the time of the request. We compute
Pr{X1 = x} by averaging over an infinite number of requests,

Pr{X1 = x} = lim
L→∞

1

L

L∑
`=1

Pr{X(`)
1 = x} . (25)

Similarly, let Y (`) be the number of caching nodes at the
beginning of the update interval wherein the `th request
arrives, denoted by ∆(`). We have

Pr{X(`)
1 = x} =

∞∑
y=0

Pr{X(`)
1 = x|Y (`) = y}Pr{Y (`) = y} .

(26)

In [10], it was shown that the probability Pr{X(`)
1 = x|Y (`) =

y} does not depend on ` (when ` grows large), and is
given by (16). Its derivation is based on the observation that
the number of caching nodes available for download in the
update interval is described by a Poisson death process. The
probability Pr{Y (`) = y} can be written as

Pr{Y (`) = y} = Pr{Ỹ (`) = y|req. in ∆(`)}

=
Pr{req. in ∆(`)|Ỹ (`) = y}Pr{Ỹ (`) = y}

Pr{req. in ∆(`)}
,

(27)

where in the second equality we used Bayes’ rule. In (27),
Ỹ (`) is the number of caching nodes at the beginning of the
update interval, which is described by a birth-death Poisson
process, thus Pr{Ỹ (`) = y} = πy(nc). The probability
Pr{req. in ∆(`)} is the probability that there is at least one
request in ∆(`). It depends on the inter-request time, which in
turn depends on the number of nodes in the cluster. Therefore,
we compute

Pr{req. in ∆(`)} =

∞∑
m=1

(1− e−mω∆)πm(Mc) ,

where 1−e−mω∆ is the probability that the inter-request time
is shorter than ∆ when m nodes are present in the cluster.
Similarly, we compute Pr{req. in ∆(`)|Ỹ (`) = y} as

Pr{req. in ∆(`)|Ỹ (`) = y} =

∞∑
m=y

(1−e−mω∆)πm−y(Mc−nc),

where πm−y(Mc−nc) is the probability that there are m nodes
in the cluster, given that there are y caching nodes. Since
these probabilities are independent of the specific request,
we conclude that Pr{Y (`) = y} is also independent of `.
Substituting (27) into (26), we observe that Pr{X(`)

1 = x} is
also independent of ` and using (25) we prove the lemma.

APPENDIX B
PROOF OF LEMMA 4

We compute the conditional probability that no symbols are
downloaded by averaging over an infinite number of requests,

Pr{S1 = 0|R = i} = lim
L→∞

1

L

L∑
`=1

Pr{S(`)
1 = 0|R(`) = i} ,

where S
(`)
1 ∈ {0, 1} is the RV describing the download of

the first symbol for the `th request. We now consider the
computation of Pr{S(`)

1 = 0|R(`) = i}. The recovery of the
first symbol fails with probability 1 if the requesting node
leaves the cell before completing the download. It also fails if
the requesting node stays in the cluster but no caching nodes
are available, if it chooses to download from a caching node
which departs before td t.u. from the start of the download,
or if it chooses a node that does not leave the cluster but the
channel causes the loss of the data.

Let O(`) be the departure time of the node which places the
`th request and W (`) the time instant of the `th request in the
cluster. We define A(`)

1 = {O(`) −W (`) > td} as the event
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that the node which places the `th request stays in the network
for more than td t.u. from the start of the download. The
corresponding probability does not depend on ` and is easily
computed as Pr{A(`)

1 } = e−λtd . Similarly, the probability that
the requesting node departs before td t.u. from the start of the
download is (1−e−λtd). Therefore, the conditional probability
that the `th request fails the first symbol download is

Pr{S(`)
1 = 0|R(`) = i} = (1− e−λtd)

+ e−λtd Pr{S(`)
1 = 0|A(`)

1 , R(`) = i} .

Let G(`)
1 ∈ {0, . . . ,∞} be the number of caching nodes useful

for download for the `th request, i.e., the number of caching
nodes in the DC list that have not left the cluster at the time
of the `th request, excluding the requesting node itself if it
belongs to the DC list. Let D(`)

1 ∈ {0, . . . ,∞} the number
of departures in td t.u. among the G

(`)
1 caching nodes. The

probability Pr{S(`)
1 = 0|A(`)

1 , R(`) = i} can be written as

Pr{S(`)
1 = 0|A(`)

1 , R(`) = i} =

=
∑
g

∑
d

Pr{S(`)
1 = 0|A(`)

1 , R(`) = i, G
(`)
1 = g,D

(`)
1 = d}

· Pr{G(`)
1 = g,D

(`)
1 = d|A(`)

1 , R(`) = i} =

=
∑
g

∑
d

Pr{S(`)
1 = 0|A(`)

1 , G
(`)
1 = g,D

(`)
1 = d}

· Pr{G(`)
1 = g,D

(`)
1 = d|R(`) = i} . (28)

(28) is obtained by observing that i) the probability that the
download of the first symbol fails conditioned to G(`)

1 and D(`)
1

is independent of the type of request, and that ii) the number
of useful caching nodes and the number of departures in td t.u.
among them is independent of the departure of the requesting
node. The probability Pr{S(`)

1 = 0|A(`)
1 , G

(`)
1 = g,D

(`)
1 = d}

is equal to 1 if
• there are no useful caching nodes, i.e., g = 0,
• the requesting node chooses one of the d caching nodes

that leaves the cluster in td t.u.,
• or the requesting node chooses one of the caching nodes

that does not leave the cluster but the channel conditions
prevent the download.

Otherwise, we have Pr{S(`)
1 = 0|A(`)

1 , G
(`)
1 = g,D

(`)
1 = d} =

0 . We observe that the number of departures of useful caching
nodes conditioned to their number is independent of the type
of request and that the number of caching nodes useful for
download G(`)

1 is related to X(`)
1 by

Pr{G(`)
1 = g|R(`) = i} = Pr{X(`)

1 = g + i|R(`) = i} ,

since when the request originates from a caching node of the
DC list, the requesting node itself is not counted among the
useful caching nodes. Therefore, the probability Pr{G(`)

1 =

g,D
(`)
1 = d|R(`) = i} can be written as

Pr{G(`)
1 = g,D

(`)
1 = d|R(`) = i} =

Pr{D(`)
1 = d|G(`)

1 = g}Pr{X(`)
1 = g + i|R(`) = i} .

We denote by θ(d, g) the probability Pr{D(`)
1 = d|G(`)

1 =
g}, given in (21). Its derivation is similar to that of

Pr{X1|Y } [10]. The probability Pr{X(`)
1 = g + i|R(`) = i}

is independent of the specific request and is given by (19).
After simple manipulations, we finally obtain

Pr{S(`)
1 = 0|R(`) = i} = 1 + e−λtd

(
Pr{X1 = i|R = i}

+

∞∑
g=1

g∑
d=0

(
d

g
+ ε

g − d
g

) Pr{X1 = g + i|R = i}θ(d, g)−1
)
.

(29)

Since the probabilities involved in (29) are all independent of
`, the lemma is proved.

APPENDIX C
PROOF OF LEMMA 5

To evaluate the probability of complete download from the
DC network, we start with the following limit,

Pr{S[k−i]=1k−i|R= i}= lim
L→∞

1

L

L∑
`=1

Pr{S(`)
[k−i]=1k−i|R(`) = i}

where S
(`)
[j] = (S

(`)
1 , . . . , S

(`)
j ) and S(`)

i describes the success-
ful symbol download at the ith attempt of the `th request.
We consider the `th request in the cluster and, similarly to the
proof of Lemma 4, we will find that this probability is indepen-
dent of `. We denote by the RV G

(`)
j ∈ {0, . . . ,∞} the number

of caching nodes useful for download at the time of the jth
attempt of the `th request, i.e., the caching nodes of the DC list
not yet contacted, excluding the requesting node if it belongs
to the DC list. We denote by the RV D

(`)
j ∈ {0, . . . ,∞}

the number of departures in td t.u. among the G
(`)
j nodes.

We also denote by A(`)
j = {O(`) − W (`) > jtd} the event

that the node which places the `th request stays in the cluster
for more than jtd t.u. from the start of the download. The
corresponding probability does not depend on ` and is given
by Pr{A(`)

j } = e−jλtd . The probability of complete download
is zero if the requesting node departs before (k−i)td t.u. from
the start of the download, therefore we can write

Pr{S(`)
[k−i] = 1k−i|R(`) = i} =

e−(k−i)λtd Pr{S(`)
[k−i] = 1k−i|A(`)

k−i, R
(`) = i} .

The probability Pr{S(`)
[k−i] = 1k−i|A(`)

k−i, R
(`) = i} can be

written as

Pr{S(`)
[k−i] = 1k−i|A(`)

k−i, R
(`) = i} =

=
∑
g

∑
d

Pr{S(`)
k−i = 1|A(`)

k−i, G
(`)
k−i = g,D

(`)
k−i = d}

· Pr{G(`)
k−i = g,D

(`)
k−i = d,S

(`)
[k−i−1] = 1k−i−1|A(`)

k−i, R
(`) = i}

= (1− ε)
∞∑
g=1

g∑
d=0

g − d
g

γ
(`)
k−i(g, d, i) . (30)

The last equality is obtained by observing that the probability
Pr{S(`)

k−i = 1|A(`)
k−i, G

(`)
k−i = g,D

(`)
k−i = d} is nonzero

and equal to 1 if the requesting node chooses one of the
caching nodes of the DC list that remains in the cluster and
the channel does not cause data erasure. Moreover, we have
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defined γ
(`)
j (g, d, i) , Pr{G(`)

j = g,D
(`)
j = d,S

(`)
[j−1] =

1j−1|A(`)
j , R(`) = i}, that can be computed as

γ
(`)
j (g, d, i) = Pr{D(`)

j = d|G(`)
j = g}

·
∑
g′

∑
d′

Pr{G(`)
j = g|G(`)

j−1 = g′, D
(`)
j−1 = d′, S

(`)
j−1 = 1}

· Pr{S(`)
j−1 = 1|A(`)

j , G
(`)
j−1 = g′, D

(`)
j−1 = d′}

· Pr{G(`)
j−1 = g′, D

(`)
j−1 = d′,S

(`)
[j−2] = 1j−2|A(`)

j−1, R
(`) = i},

for j > 1. We also define E(g, g′, d′) , Pr{G(`)
j =

g|G(`)
j−1 = g′, D

(`)
j−1 = d′, S

(`)
j−1 = 1}, which is equal to

one if g = g′ − d′ − 1 and g′ > d′, and zero otherwise. The
condition g = g′−d′−1 follows from the fact that the number
of useful caching nodes after a successful symbol download is
equal to the number of useful caching nodes still alive, g′ − d′,
minus the caching node just used. The condition g′ > d′ comes
from the fact that the (j − 1)th symbol download is assumed
to be successful, i.e., S(`)

j−1 = 1.
It is easy to prove by induction that the probability in (30)

does not depend on `. By defining γj(g, d, i) , γ
(`)
j (g, d, i),

we obtain the recursion (23), with initial condition (24). The
probabilities γj(g, d, i), j ≥ 1, are equal to zero for d > g.
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