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Abstract—In this paper, we consider a wireless powered multi-
relay network in which a multi-antenna hybrid access point
underlaying a cellular system transmits information to distant
receivers. Multiple relays capable of energy harvesting are
deployed in the network to assist the information transmission.
The hybrid access point can wirelessly supply energy to the relays,
achieving multi-user gains from signal and energy cooperation.
We propose a joint optimization for signal beamforming of the
hybrid access point as well as wireless energy harvesting and
collaborative beamforming strategies of the relays. The objective
is to maximize network throughput subject to probabilistic
interference constraints at the cellular user equipment. We
formulate the throughput maximization with both the time-
switching and power-splitting schemes, which impose very dif-
ferent couplings between the operating parameters for wireless
power and information transfer. Although the optimization prob-
lems are inherently non-convex, they share similar structural
properties that can be leveraged for efficient algorithm design.
In particular, by exploiting monotonicity in the throughput, we
maximize it iteratively via customized polyblock approximation
with reduced complexity. The numerical results show that the
proposed algorithms can achieve close to optimal performance
in terms of the energy efficiency and throughput.

Index Terms—Wireless powered communications, distributed
relay beamforming, channel uncertainty, monotonic optimization

I. INTRODUCTION

The next generation communications systems are antici-
pated to connect billions of devices arising from the popu-
larity of wearable electronics and handhold devices as well
as to provide orders of magnitude increase in capacity [1].
We envision that the traffic proliferation can be categorized
into foreground and background communications, depending
on human involvement in the communication process. The
foreground communication involves human on one end, de-
manding agile responses with specific quality of service pro-
visioning. Furthermore, we embrace a dramatic traffic increase
in device-to-device (D2D) communications in the background
without human intervention. With a number of autonomous
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and independent devices, the background communication will
affect more significantly the overall network performance
and require a strategic shift in the design of future wireless
networks [2]. Without human intervention, the energy supply
firstly becomes a critical issue for network scalability and
sustainability. It becomes impractical and costly to recharge
or replace batteries for billions of D2D user devices. The
increasing number of user devices also leads to a crowded
usage of the spectrum resource. A spectral-efficient solution
is to allow spectrum sharing with the existing licensed/primary
wireless system such as the cellular network in an underlay
manner [3]. This requires the D2D user devices to precisely
control their transmit power such that the interference to the
cellular receiver is kept below pre-defined threshold.

As one of the promising techniques, wireless power transfer
provides a cost-effective way to sustain wireless communica-
tions, e.g., [4] and [5]. Wireless information and power transfer
can be implemented in either a time-switching (TS) or power-
splitting (PS) scheme [6]. The TS scheme divides the whole
time slot into two sub-slots. One sub-slot is designated as
the EH time, reserved for wireless energy transfer, while the
other sub-slot is used for information transmission. The PS
scheme splits a fraction (namely, the PS ratio) of the received
signal power to energy harvester and feeds the other fraction
to information receiver. In either the TS or PS scheme, the EH-
enabled user devices have to alternate between the states of
energy harvester and information receiver, incurring the study
on rate-energy tradeoff [7]. The TS and PS schemes have
been extended to relay networks, in which the source nodes
transfer power to the relays and the relays in return assist the
information transmission, introducing the energy and informa-
tion cooperation at the relays. Single relay models in both the
TS and PS schemes have been proposed in [8], focusing on
an amplify-and-forward (AF) relaying protocol. The authors
in [9] and [10] investigated the relay’s scheduling policies in
a multi-access model, in which multiple transceiver pairs are
assisted by one EH relay with or without energy cooperation,
respectively. Multi-antenna relay has been studied in [11]
and [12]. The authors in [11] focused on the classic three-
node EH relay model, in which a multi-antenna relay operates
in the decode-and-forward (DF) protocol. To maximize the
end-to-end throughput, the PS protocol is implemented by an
antenna clustering scheme that divides multiple antennas of the
relay into two disjoint groups, i.e., one group for information
decoding and the other for energy harvesting. The authors
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in [12] considered the existence of an eavesdropper that may
intercept the information from the source node. The multi-
antenna EH relay has to optimize its signal beamforming
strategy to prevent information leakage to the eavesdropper,
by generating Gaussian artificial noise (AN) signals. Multi-
relay selection for EH-enabled two-way communications is
investigated in [13] to maximize the data rate by jointly
optimizing the set of relays, the relays’ PS ratios and transmit
power levels. An energy-threshold based multi-relay selection
scheme is proposed in [14] for each UE to decide locally
whether to operate in EH or information forwarding mode.

When multiple user devices are within one hop D2D com-
munication range. They can join cooperative transmissions
via short-range wireless communications. This provides the
potential benefits of improved link quality and coverage,
increased spectral and energy efficiency, reduced interference
and power consumptions [15]. This motivates us to employ
EH-enabled relays in end-to-end information delivery lever-
aging the relays’ cooperation in both signal transmission
and energy harvesting [16]. The energy densities at different
relays can be different because of the time-varying channel
conditions and the non-homogeneous distribution of the RF
energy over space. By designing proper beamforming strategy
of the power emitter, we can reshape the energy distribution
over space and thus adjust the power transfer to different
relays according to their power demands. By multi-users’
signal cooperation, multiple relays can form a virtual multiple-
input and multiple-output (MIMO) system and improve the
throughput performance between a distant transceiver pair
significantly while causing insignificant increase in the end-
to-end delay, e.g., [17] and [18].

Multi-relays’ collaborative beamforming has been studied
to make use of the harvested energy at multiple user devices.
The authors in [19] considered two user devices wirelessly
powered by an access point in the downlink. Two cooperation
schemes were proposed to maximize the sum rate in the
uplink, by joint optimization of the time allocation, energy
beamforming, and power allocation strategies. The authors
in [20] optimized the PS ratios of multiple relays to maximize
the data rate between a single-antenna transceiver pair. The
maximization is decomposed into multiple local problems at
individual relays, in which each relay only needs to optimize
its own PS ratio. In our previous work [21], with fixed EH
rates at individual relays, we optimized the power amplifier
coefficient at each relay in the TS scheme. The authors in [22]
considered channel-dependent EH rates at individual relays,
which are controllable by the energy beamforming strategy.
A joint optimization of collaborative relay beamforming and
the energy beamforming strategies are proposed in the TS
scheme to maximize the throughput of a distant transceiver
pair. Considering a total power budget constraint for all the
EH relays, the authors in [23] designed the collaborative
beamforming and power allocation strategies to maximize
the average throughput over consecutive time slots. How-
ever, the aforementioned works mainly focus on parts of the
transmission control problems in wireless powered networks,
considering either the TS or PS protocol, while overlooking
the strong couplings among wireless power transfer, energy

harvesting, and transmit power control strategies. In this paper,
we provide a unified framework for throughput maximization
under both the TS and PS protocols. The optimization builds
a thorough connection between the throughput performance
and different operating parameters, related to wireless power
transfer, energy harvesting, and transmit power control. The
parameters for wireless power transfer and energy harvesting
control the energy supply to different relays. The transmit
power control determines the energy demand at individual
relays. A well balanced energy supply and demand will
maximize the multi-relay assisted transmission performance.

In particular, we consider a wireless powered multi-relay
network composed of a hybrid access point (HAP) transmitting
information to a distant receiver and sharing the same spectrum
with a underlaying cellular system. The transmit performance
is improved by multiple relays wirelessly powered by the
HAP’s energy beamforming. Given the relays’ power de-
mands, the optimal beamforming strategy has been revealed
in [24] to maximize the energy transfer to the relays. It
has been shown that it is generally not optimal for all the
relays to transmit with their peak power, due to the relays’
different channel conditions. The reason is that every relay has
two effects on the performance of information transmission.
On one hand, it helps the transmission by forwarding the
information. On the other hand, it harms the transmission
by also forwarding the noise signal. For some relay with
bad channel conditions, it will experience high noise power
and cause performance degradation at the receiver if the
relay transmits with maximum power. This implies that the
relays’ power demands can differ from each other and depend
on the relays’ channel conditions. Hence, some relays are
energy-starving while the other relays can be energy-abundant.
The energy-starving relays become the bottleneck for the
transmission from the HAP to the targeted receiver. With
multiple EH relays, the relays’ transmission control becomes
more complicated. This motivates a joint optimization of the
HAP’s energy beamforming as well as the relays’ EH and
power control strategies, subject to interference constraints at
cellular receivers. The main contributions of this paper are
summarized as follows.

• Unified Throughput Optimization with the TS and PS
Schemes: The optimization builds a thorough connection
between the throughput performance and different operat-
ing parameters, related to wireless power transfer, energy
harvesting, and transmit power control. The parameters
for wireless power transfer and energy harvesting control
the energy supply to different relays. The power control
determines the energy demand at individual relays.

• Multi-relay Robust Transmission Strategies via Mono-
tonic Optimization: The coupling of design variables and
the probabilistic interference constraints make the pro-
posed robust optimization problem non-convex. By exam-
ining monotonicity of the objective and verifying normal
feasible regions, we can achieve enhanced throughput
throughput by successive polyblock approximation. To
the best of our knowledge, we are the first to present an
optimization for a wireless powered multi-relay network
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TABLE I: Table of Notations

Notation Description
K The number of antennas at HAP
N Set of N relays, i.e., N = {1, 2, . . . , N}
C Set of M CUEs, i.e., C = {1, 2, . . . ,M}
η RF power conversion efficiency
ζ Limit of interference violation probabilities at CUEs
pn Normalized transmit power of relay-n and denote cn =√

pn for ease of analysis
po, s Normalized transmit power and complex information

symbol with unit power of HAP
w, t EH and information transmission time in the TS scheme
ρn, ρ PS ratio of relay-n, and a vector of the relays’ PS ratios

ρ , [ρ1, ρ2, . . . , ρN ]T

we, w1 HAP’s beamforming vectors for power transfer and in-
formation transmission in the first hop

wp HAP’s beamforming vector for mixed power and infor-
mation transfer in the first hop

fn Complex channel from the HAP to relay-n in vector form
fn = [f1n, f2n, . . . , fKn]

T

g Complex channel from N relays to the receiver in vector
form g = [g1, g2, . . . , gN ]T

zm Complex channel from N relays to CUE-m in vector
form zm = [z1m, . . . , znm, . . . , zNm]T

(um,Sm) The 1st- and 2nd-order moment of channel zm
γ, γd SNR at receiver without or with a direct link from the

HAP to the receiver
yn, y The received information signals at relay-n, and its vector

form y = [y1, . . . , yn, . . . , yN ]T

xn, x Power amplifying coefficient of relay-n, and its vector
form x = [x1, . . . , xn, . . . , xN ]T

σn, vd Noise signals at relay-n, and at the targeted receiver
D(·) Diagonal matrix with the specified diagonal element
∆(·) Diagonal matrix by setting off-diagonal elements to zeros

that is close to optimal and robust to channel uncertain-
ties.

• Energy Efficiency Comparison between the TS and PS
schemes: In the PS scheme, individual relay can adjust
its PS ratio to match power demand and supply as well as
information transfer. On the contrary, the EH time in the
TS scheme is controlled by the HAP and all UEs have the
same EH time. With the robust formulation, we show that
the PS scheme is more flexible in the transmission control
and generally achieves higher energy efficiency. However,
when the HAP’s transmit power is low, such flexibility
becomes trivial and results in degraded performance
compared to that of the TS scheme.

The rest of the paper is organized as follows. We present
the EH-enabled multi-relay network model in Section II. In
Section III and Section IV, we solve the throughput maximiza-
tion problems subject to probabilistic interference constraints,
under the TS and PS schemes, respectively, by developing a
unified optimization framework. Numerical results and con-
clusions are given in section V and VI, respectively.

II. SYSTEM MODEL

We consider a wireless powered multi-relay network con-
sisting of an HAP and multiple relays underlaying a downlink
cellular system, e.g., the HAP and D2D user devices can
be deployed on the edge of the cellular coverage and share
the same spectrum with the cellular receiver. The goal is to
maximize throughput from the HAP to a certain receiver. The
HAP has K antennas and aims to transmit information to a

distance receiver with the help of relays. The HAP serves as
a power and information source for the relays using either
the TS or PS scheme [8]. All the relays are equipped with
a single antenna and capable of harvesting RF energy from
the HAP. Through dedicated energy beamforming, the HAP
can control the rates of information and power transfer to the
relays. The HAP also acts as a central controller governing in-
formation transmission by the relays and coordinating with the
cellular system. With multiple receivers, the HAP schedules
the information transmission for each of them by using time
division multiple access (TDMA). Specifically, each receiver
is registered at the HAP and assigned a fixed time slot with
unit time length. Table I lists the major notations used in the
paper. Fig. 1 shows the network structure.

To improve the transmit performance from the HAP to
a receiver, we adopt cooperative relay beamforming in the
amplify-and-forward (AF) protocol. The set of relays is de-
noted by N = {1, 2, . . . , N}. Due to the reuse of licensed
spectrum in an underlay manner, transmission of the relays
may cause interference to the cellular user equipments (CUEs),
the set of which is denoted by C , {1, 2, . . . ,M}. Neverthe-
less, it is acceptable if the aggregate interference to each of
the CUEs is less than a pre-defined threshold. The downlink
transmissions from the cellular base station to the CUEs can
also cause interference to the underlaid relays. In practice,
through channel estimation, the power level of the noise and
the cellular interference to each relay can be known in advance
and viewed as a constant [25]. For example, each relay can
estimate the power level in a silence period before initiating
information transmissions.

A. Two-hop Wireless Powered Multi-Relay Transmission

The information transmission follows a two-hop half-duplex
relay protocol. In the first hop, the HAP beamforms the
information signals to the relays with a fixed transmit power.
This fixed power is reasonable in that the HAP can coor-
dinate with the cellular base station. Meanwhile, the relays
harvest energy from the information signals by the TS or PS
scheme. Then, in the second hop, the relays use the harvested
energy to amplify and forward the received signals to the
targeted receiver. Let fn , [f1n, . . . , fkn, . . . , fKn]

T ∈ CK
denote the complex channel vector from the HAP to relay-
n. Let g , [g1, . . . , gn, . . . , gN ]T ∈ CN denote the channel
vector from N relays to the receiver. Likewise, let zm ,
[z1m, . . . , znm, . . . , zNm]T ∈ CN denote the channel vector
from N relays to CUE-m, for m ∈ C. All channels exhibit
block fading. We focus on a simple case in which the direct
link from the HAP to the receiver is not available, e.g., due
to blockage or undesirable signal quality. A similar model has
been considered in many existing works, e.g., [21] and [26].

Let mn , yn + σn denote the signal received by the
relay-n, where yn denotes the received information signal
transmitted from the HAP, and σn ∼ CN (0, 1) represents the
complex Gaussian noise with zero mean and unit variance.
Here, by assuming unit noise power, we normalize all the
transmit powers by the noise power to simplify the problem
formulation. Furthermore, we also normalize the amount of
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Fig. 1: Wireless powered multi-relay assisted two-hop transmissions.
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Unit time slot
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(a) Time division in the TS scheme.

Relays → Receiver
Information Forwarding

HAP → Relays:	Power Transfer ( )

1/2 1/2

HAP → Relays:	Information Transfer 
1

(b) Power division in the PS scheme.

Fig. 2: The TS and PS schemes for information and power transfer.

energy harvested from the received signals to the absolute
noise power No. Hence, the normalized power of the received
signal mn is given by 1 + |yn|2. Accordingly, we define the
power amplifying coefficient of relay-n as follows:

xn =

(
pn

|yn|2 + 1

)1/2

, (1)

where pn denotes the transmit power of relay-n, depending
on the HAPs’ beamforming strategy and the relay’s EH
parameters. At the receiver, the received signal is given by
u =

∑
n∈N xnyngn +

∑
n∈N xngnσn + vd, where vd ∼

CN (0, 1) denotes the normalized noise in the receiver. The
first term,

∑
n∈N xnyngn, contains signals from the HAP and

relays. The second term,
∑
n∈N xnyngn, is the forwarded

noise by the relays. Thus, the signal-to-noise ratio (SNR) of
the information at the receiver is given by

γ(x,y) =

∣∣∑
n∈N xnyngn

∣∣2
1 +

∑
n∈N |xngn|2

=
|(x ◦ y)Hg|2

1 + xTD(g ◦ g)x
. (2)

Here fHn represents the Hermitian transpose of vector fn. The
symbol ◦ denotes the Hadamard product. D(g◦g) is a diagonal
matrix with the diagonal elements specified by the vector g◦g.

B. Wireless Power and Information Transfer

We consider two different schemes for the relays to harvest
RF energy. In the TS scheme, a time slot is divided into two
phases, as shown in Fig. 2(a). The first phase with length w,
i.e., the EH time, is used for the HAP to beamform wireless

energy to the relays. The second phase is used for relay-
assisted information transmission. It is divided further into two
equal sub-phases for information receiving and forwarding by
the relays to the receiver. Note that the lengths of the two
sub-phases can also be optimized by guided one-dimension
search [27]. Nonetheless, for ease of derivation and presenta-
tion, we assume the time length t ∈ (0, 1/2) to be identical in
two sub-phases and the relays’ EH time in the first phase is
w , 1−2t. A similar model has been studied in [22] and [28].
To achieve optimal throughput, the HAP can schedule the
EH time w as well as the channel time t for information
transmission/forwarding, given channel conditions and energy
demands of the relays. Notice that all the relays have the same
EH time controlled by the HAP.

Alternatively, in the PS scheme, the signal transmitted by
the HAP is used for both EH and information receiving by
the relays. Therefore, the entire time slot is divided into
two phases, as shown in Fig. 2(b). The first phase is for
the HAP to transmit information and energy to the relays
simultaneously, and the second phase is for the relays to
forward the information to the receiver. Again, the lengths of
these two phases can be optimized. Nonetheless, we assume
that they are identical [29]. At the relay, the ratio for extracting
energy from the received signals is denoted by ρ, and thus the
ratio of signal power for information reception is 1−ρ. Unlike
the TS scheme, each relay in the PS scheme can set different
PS ratio ρ, to best match a beamforming strategy of the HAP
and its energy demand.

C. Channel Uncertainty and Interference Constraint

We aim to maximize the throughput at the receiver, con-
strained by the interference limit to the CUEs and the amount
of energy harvested by the relays. Note that the channels fn
and g in the first and second hops can be perfectly known
by the HAP and relays, respectively. This is possible as
they are all in the same system and channel estimation can
be performed in a timely fashion. However, exact channel
information may not be available to evaluate the interference
to CUEs. As the CUEs operate on a different system, timely
response from the CUEs may not be possible in practice.
Therefore, we assume that the channel zm from the relays
to CUE-m is uncertain, for m ∈ C. Note that the moments of
zm are relatively easier to estimate with higher accuracy [22].
Hence, we characterize the probability density function (pdf)
of zm by its first- and second-order moments as follows:

Pm ∈ P (um,Sm) , (3)

where P(um,Sm), or Pm for short, denotes the set of pdfs
with the moments (um,Sm). As such, we define the CUEs’
interference constraints in a probabilistic form as follows:

max
P∈Pm

P(φm(p) ≥ φ̄m) ≤ ζ, ∀m ∈ C, (4)

where p , [p1, . . . , pn, . . . , pN ]T denotes a vector of the re-
lays’ transmit power, and φ̄m represents the tolerance of CUE-
m to the aggregate interference φm(p) ,

∑
n∈N |znm|2pn.

We denote P(φm(p) ≥ φ̄m) as the “interference violation
probability” at the CUE-m. Hence, the constraint in (4)



5

requires that the worst-case interference violation probabilities
have to be upper bounded by a probability limit ζ. The worst
case is with respect to all distributions in set Pm with the
given moments (um,Sm). Note that the chance constraints
in (4) only define the CUEs’ interference requirements in the
second hop when the relays transmit simultaneously. We omit
the interference introduced by the HAP to the CUEs in the
first hop, as the HAP is assumed to be deployed at the edge
of cellular coverage and the direct link from HAP to each
CUE is weak. Moreover, due to a shorter distance between
D2D user devices and CUEs, the EH relays introduce much
higher interference to CUEs than that introduced by the HAP.
Hence, we consider that the interference constraint also holds
in the first hop if (4) holds in the second hop.

III. ROBUST THROUGHPUT MAXIMIZATION WITH THE TS
SCHEME

In the TS scheme, the HAP can control its beamforming
strategies in two phases, i.e., energy transfer and information
transmission. Let po denote transmit power of the HAP
normalized to the noise power and s ∈ C be the complex
information symbol with unit power delivered from the HAP
to the receiver. The transmit power po can be optimized by
one-dimension search as discussed in [21]. Without loss of
generality, we assume that po is fixed in this paper, e.g., we
can set po as the maximum transmit power of the HAP.

Define we as normalized beamforming vector of the HAP
during the EH phase. Then, the energy signal transmitted
by the HAP is xs =

√
powes. By varying the beamformer

we, we can control the HAP’s transmit power and adjust the
power transfer to different relays according to their channel
conditions and EH capabilities. Then, the relays’ power budget
constraints are given as follows:

pn ≤ p̄n(t,we) , ηpof
H
n Wefn(1− 2t)/t, ∀n ∈ N . (5)

We denote η as the energy conversion efficiency, which can
also account for the energy consumption in the circuit and
information reception. The matrix variable We , wew

H
e

denotes the transmit covariance of the HAP. Note that we
can relax the equality by We � wew

H
e and adopt We

to be the design variable. Then, once we determine the
optimal W∗

e , we can retrieve the energy beamformer we by
eigen-decomposition if W∗

e is rank-one. Otherwise, we can
construct a stochastic beamformer we(t) such that We =
E[we(t)wH

e (t)] [30]. In the power budget constraint (5), we
actually have assumed a linear EH model with a constant
power conversion efficiency η, i.e., the total harvested energy
takes up a fixed portion of RF power at the receiving antenna.
A more practical nonlinear EH model has been presented
in [31], in which η is measured to be a function of the
RF power at the receiving antenna. Our subsequent analysis
will show that our problem formulation and solution can be
extended to the non-linear EH model.

Let w1 be the HAP’s beamforming strategy for information
transmission in the first hop. Then, the signal received at relay-
n and its power amplifying coefficient are given by

mn =
√
pof

H
n w1s+ σn and xn =

(
pn

1 + pofHn W1fn

)1/2

,

respectively, where W1 = w1w
H
1 denote the transmit covari-

ance of the HAP in the first hop.

A. Throughput Maximization Problem

We aim to maximize the throughput in the TS scheme (6a),
given the chance constraint (6b) that the interference to CUEs
is higher than a threshold is maintained below a certain
probability and the power budget constraint (6c). The decision
variables are the channel time t for information transmission,
the relays’ transmit power vector p, and the HAP’s beam-
forming strategies (We,W1) in two phases. The throughput
maximization problem is given as follows:

max
t,c,We,W1

t log

(
1 +

cTHGc

1 + cTBc

)
(6a)

s.t. max
P∈Pm

P
(
φm(c) ≥ φ̄m

)
≤ ζ, ∀m ∈ C, (6b)

pnt ≤ (1− 2t)ηpof
H
n Wefn, ∀n ∈ N , (6c)

t ∈ [0, 1/2]. (6d)

Here we denote c = [c1, . . . , cn, . . . , cN ]T where cn ,
√
pn is

an alias for the transmit power of relay-n for ease of analysis.
We also define the following notations for convenience:

H = D
([

|h1|2

1 + po|h1|2
,
|h2|2

1 + po|h2|2
, . . . ,

|hN |2

1 + po|hN |2

])
,

B = D
([

|g1|2

1 + po|h1|2
,
|g2|2

1 + po|h2|2
, . . . ,

|gN |2

1 + po|hN |2

])
,

G = ggH and hn = fHn w1 for n ∈ {1, 2, . . . , N},

Problem (6) maximizes the per-time-slot throughput perfor-
mance, without considering the energy accumulation over
different time slots. Typically, the harvested energy at each
relay can be stored in a super-capacitor, which is suitable
for energy harvesting from RF signals as it has much larger
recharge cycles (theoretically infinite and more than one
million practically), high charge and discharge efficiency at
small energy levels [5]. However, due to the super-capacitors’
higher self-discharge rate, the stored energy is leaking out at a
faster rate than the conventional rechargeable batteries. Hence,
from a practical viewpoint, we assume that all the leftover
energy will be depleted or leaking out before wireless power
transfer in next time slot. Such harvest-use model without
energy accumulation has also been studied in [21].

It is clear that obtaining an optimal solution to problem (6)
is not straightforward due to non-convex couplings of the de-
cision variables at different relays. A close inspection reveals
that the energy beamformer We relates to the power budget
and interference constraints in (6b) and (6c), respectively.
Likewise, the information beamformer W1 only relates to
the SNR performance in (6a). This observation motivates
us to update We and W1 iteratively toward the solution.
Specifically, given a solution (t, c,We) to problem (6), the
power budget p̄n(t,we) at each relay is fixed and known. As
such, the information beamformer W1 can be updated in a
conventional beamforming problem similar to [32]. The update
of W1 leads to a new round optimization on (t, c,We). Note
that either the update of We or W1 improves the throughput
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performance. Such iterative update will terminate when no
further improvement can be achieved. However, the main
difficulty lies in that the problem in (6) is non-convex and
challenging to solve even with fixed W1.

B. Problem Reformulation and Structural Properties

In the sequel, we explore the structural property of the
problem in (6) with fixed information beamforming W1. By
a change of variable, we can view SNR γ in (2) as the
decision variable and represent the objective function in (6a)
in a simpler form r(t, γ) = t log(1 + γ). Note that the new
objective is monotonically increasing in both t and γ. This
implies that its optimum will be achieved on the boundary
of its feasible region. This observation motivates us to apply
the monotonic optimization algorithm by further exploring the
structural properties of the feasible region of (t, γ), which can
be represented as follows:

Ω =

{
z , (t, γ)

∣∣∣∣0 ≤ γ ≤ cTAc

1 + cTBc
, (6b)− (6d)

}
, (7)

where A , HG and B depend on the beamforming strategy
of the HAP and channel conditions of the relays. Hence, we
can reformulate the problem (6) in a compact form as follows:

max{t log(1 + γ) : (t, γ) ∈ Ω}. (8)

The theory of monotonic optimization was developed in [33]
and has been applied to wireless communications [34]. By
leveraging the monotonicity in the objective function, the
monotonic optimization algorithm can achieve convergence to
the global optimum for a set of non-convex problems if the
feasible region is a normal set, which is defined as follows:

Definition 1 (Normal set): Let Ω be a compact set. For any
z ∈ Ω, if z′ ∈ Ω for all z′ � z, we say that Ω is normal.1

Definition 2 (Upper boundary): Let z ∈ Ω and Ω is normal.
For any z′ � z and z′ 6= z, if z′ /∈ Ω then z is an upper
boundary point. The set of all upper boundary points is the
upper boundary of Ω, denoted by Ω̄.

Note that a normal set Ω can be non-convex and difficult to
characterize. For ease of analysis, we can approximate it by
well-defined sets. Let P be an approximation of the normal
set Ω, and we require P ⊃ Ω without loss of optimality. If
we have some z ∈ P but z /∈ Ω, it follows that z′ /∈ Ω for
any z′ � z by the definition of a normal set. This implies that
we can construct a better approximation P ′ by cutting off a
subset from P , i.e., P ′ = P \ {z′ ∈ P : z′ � z}. This ensures
that P ⊃ P ′ ⊃ Ω. Hence, the structural property of a normal
set allows us to improve the approximation successively.

Proposition 1: The feasible set Ω defined in (7) is normal.

The proof of Proposition 1 follows exactly the definition of
a normal set and is similar to that in our previous work [22]. A
simple way to approximate the normal set Ω is by generating
regularly shaped polyblocks, which is defined as follows:

1z′ � z (or z′ � z) denotes that z − z′ is piecewise non-negative (or
non-positive).

Definition 3 (Polyblock): A polyblock P is a union of finite
box sets, i.e., P =

⋃
v∈V [0,v], where v is the vertex of P .

It is clear that the optimum of an increasing function over a
polyblock will be obtained on one of the vertex points. As the
number of box sets increases, the polyblock will be a close
approximation of Ω. Hence, we have the following proposition.

Proposition 2: The optimum of throughput maximization
problem in (8) is attained on the upper boundary Ω̄.

Proposition 2 is rather intuitive and a formal proof easily
follows from the results in [33]. The basic idea of the mono-
tonic optimization algorithm is to approximate the feasible
set Ω by iteratively generating regularly-shaped polyblocks.
In one iteration of this process, e.g., the k-th iteration, the
algorithm determines an upper bound rU

k of the objective
on one vertex of the polyblock Pk. It also updates a lower
bound rL

k by evaluating the objective r(t, γ) = t log(1+γ) on
one upper boundary point (t, γ) ∈ Ω̄. Then, by trimming the
polyblock Pk and generating “smaller” polyblock Pk+1,2 the
iterative algorithm ensures that the gap between the upper and
lower bounds is within the error distance ε after finite number
of iterations. When the monotonic optimization algorithm
converges to the optimal solution (t, γ), we can retrieve the
optimal solution (t, c,we) to the problem in (6).

C. Evaluate Upper and Lower Bounds on Problem (6)

Given the polyblock approximation Pk in the k-th iteration,
an upper bound rU

k on the global optimum r∗ , maxz∈Ω r(z)
is given by rU

k = maxz∈Pk
r(z). Let

zk , (tk, γk) = arg max
v∈Vk

r(v),

where Vk denotes the vertex set of Pk. Then, rU
k = r(zk) is

the upper bound on r∗. If zk ∈ Ω, the upper bound r(zk)
also serves a lower bound and thus the algorithm terminates
with the objective r(zk). In the case of zk /∈ Ω, a feasible
lower bound on r∗ can be found by projection, i.e., we scale
the vertex zk by a factor λ ∈ (0, 1) such that the projection
point, denoted by ok(λ) , λzk, is on the upper boundary Ω̄.
This suggests a bisection method to find the optimal scaling
factor λk = arg max{λ : ok(λ) ∈ Ω̄}, i.e., we first check
the feasibility ok(λ) ∈ Ω with a fixed λ, then increase λ if
ok(λ) ∈ Ω or decrease it otherwise. The feasibility check
is essential for the convergence of the bisection method. It
is problem-dependent and our main challenge in solving the
throughput optimization problem.

Given the scaling factor λ and vertex zk = (tk, γk) in the
k-th iteration, checking feasibility of ok(λ) ∈ Ω is equivalent
to finding a feasible solution (c,We) such that

cT (A− λγkB)c ≥ λγk, (9a)

max
P∈Pm

P
(
φm(c) ≥ φ̄m

)
≤ ζ, ∀m ∈ C, (9b)

(1− 2λtk)ηpof
H
n Wefn ≥ pnλtk, ∀n ∈ N . (9c)

2Without causing confusions and for ease of presentation, we call that Pk+1

is “smaller” than Pk if Pk+1 ⊂ Pk .
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To proceed, we can firstly evaluate the maximum of a quadratic
optimization as follows:

q(λ, zk) , max
c,We

{cT (A− λγkB)c : (9b)− (9c)}, (10)

and then compare the maximum q(λ, zk) to the target λγk.
If q(λ, zk) ≥ λγk, we have λzk ∈ Ω and then increase the
scaling factor λ in the next iteration. The difficulty of problem
(10) lies in the indefinite matrix coefficient (A−λγkB) in the
objective and the non-convex probabilistic constraint in (9b).

Proposition 3: The maximum objective q(λ, zk) in (10) can
be evaluated by the following equivalence3:

max
c,We

cT (A− λγkB)c (11a)

s.t. λtkc
2
n ≤ (1− 2λtk)ηpof

H
n Wefn, ∀n ∈ N , (11b)

Mm �
[

D(c ◦ c) 0
0 νm − φ̄m

]
, ∀m ∈ C, (11c)

Tr(ΣmMm) ≤ νmζ, Mm � 0, ∀m ∈ C, (11d)
c � 0 and We � 0. (11e)

The equivalence relies on the convex reformulation of
chance constraints in (9b). The detailed proof of Proposition 3
is relegated to Appendix A. We can further introduce a rank-
one matrix C = ccT to linearize the objective function in
(11a). Note that cT (A − λγkB)c = Tr(C(A − sγkB)) and
D(c ◦ c) = ∆(C), where ∆(C) is the diagonal matrix by
setting all off-diagonal elements to zeros. By this convention,
we can transform (11c) into a linear matrix inequality. As
an approximation, we drop the rank-one constraint on C
and obtain the SDR representation of (11), which now can
be solved efficiently by the interior-point algorithms. If the
optimal C? happens to be rank one, a feasible solution c?

to (10) can be extracted by eigen-decomposition. Otherwise,
we can extract an approximate rank-one solution by Gaussian
randomization [35]. What worth mentioning is that the non-
linear EH model developed in [31] can be also applied to the
power budget constraint in (11b) without changing the problem
structure. Let En(we) denote the energy harvested by relay-n
from the HAP. Its nonlinear dependency on we can be modeled
as a logistic function. That is, En(we) = (1−Ωn)−1(`n(we)−
νnΩn) where `n(we) , νn

(
1 + e−an(po|fHn we|2−bn)

)−1

is
the logistic function representing the nonlinearity in EH. The
constants νn and (an, bn) can be estimated via measurement
data. The constant Ωn ensures that En(we) = 0 when po = 0.
With this nonlinear EH model, we can replace ηpo|fHn we|2
in (11b) by the nonlinear function En(we) and thus revise the
power budget constraint as follows:

λtkc
2
n ≤ (1− 2λtk)En(we), ∀n ∈ N . (12)

We can verify that the above substitution will not alter the so-
lution method to problem (11). Specifically, after substitution

3For notational convenience and conciseness, the auxiliary or intermediate
variables are not listed as the design variables of the optimization problem.
The same convention applies to the following optimization problems, e.g.,
(15) and (20).

Algorithm 1 Joint Optimization of Beamforming and Relay-
ing Strategies with the TS Scheme

1: Initialize vertex point v0 = (1/2,B−1A)
2: Set P0 = [0,v0], V0 = {v0}, and ε = 10−5

3: Set rU
k = 1 and rL

k = 0 for k = 0
4: while |rU

k − rL
k | ≥ ε

5: k ← k + 1, zk ← arg maxv∈Vk−1
r(v), rU

k ← r(zk)
6: if zk ∈ Ω then rL

k ← r(zk), z∗ ← zk
7: else
8: λmin ← 0, λmax ← 1, λ← (λmin + λmax)/2
9: while |λmax − λmin| ≥ ε

10: Update q(λ, zk) by the optimum to SDP (11)
11: if q(λ, zk) ≥ λγk, then λmin ← λ else λmax ←

λ end if
12: end while
13: if r(ok) ≥ rL

k then rL
k ← r(ok), z∗ ← ok end if

14: Update vertex set: Vk ← (Vk−1 \ V k−1) ∪ V k
15: Construct new polyblock: Pk ←

⋃
v∈Vk

[0,v]
16: end if
17: end while

and some manipulations, we can reformulate (12) as follows:

po|fHn we|2 ≥ bn + a−1
n log

(
(1− Ωn)p′n + νnΩn
(1− Ωn)(νn − p′n)

)
, (13)

where p′n = λtk
1−2λtk

c2n. Till this point, we can easily verify that
(13) defines a convex feasible set and therefore the revised
maximization problem in (11) can still be solved efficiently
by the interior-point algorithms.

D. Update a Smaller Polyblock

The projection point ok(λ) allows us to trim the polyblock
Pk and generate a “smaller” polyblock. Specifically, when
zk 6= ok, we define ∆k = {z ∈ Pk | z � ok}, and then we can
generate a new polyblock Pk+1 by cutting off ∆k from the
polyblock Pk, i.e., Pk+1 , Pk \∆k. It is easy to verify that
the new polyblock Pk+1 will lead to a tighter upper bound on
r∗. That is, Pk ⊃ Pk+1 ⊃ Ω. Moreover, the cutting off ∆k

from Pk will erase some vertices in Vk but also generate new
ones. Let V k denote the set of vertices that are erased from
Vk. Then, the vertex set Vk+1 can be updated by

Vk+1 = (Vk \ V k) ∪ V k+1,

where V k+1 denotes the set of newly generated vertices. A
discussion on the new vertex set Vk+1 is detailed in our
previous work [22]. Till this point, the new polyblock can
be constructed easily by Pk+1 =

⋃
v∈Vk+1

[0,v].
We present the customized monotonic optimization algo-

rithm in Algorithm 1 to solve the throughput optimization (6)
with the TS scheme. The stop criterion ε is an error tolerance
that ensures that the algorithm returns a close to optimal
solution when it terminates. The initial polyblock P0 can be
large enough by evaluating the maximum of t and γ. It is
obvious that t ≤ 1/2 and γ ≤ B−1A. Hence, we can set
the initial vertext point as v0 = (1/2,B−1A). Algorithm 1
can be implemented at the HAP after information exchange



8

0 5 10 15 20 25 30 35
Number of Iterations

0

50

100

150

200

250

300

350

400

450

500
T

hr
ou

gh
pu

t (
K

bp
s)

4 6 8 10 12 14
16

18

20

22

24

Upper Bound

Lower Bound

Fig. 3: Convergence of the upper and lower bounds in Algorithm 1.

with the relays and the receiver. The information required for
the algorithm is the matrix coefficients A and B, relating to
the relays’ channel conditions and EH capabilities, which can
be acquired through information exchange at the beginning of
each time slot. In particular, the HAP can broadcast a known
pilot to all relays, who can estimate the channel coefficients
locally and simultaneously. Thus, we can reduce the signaling
overhead by such parallelized channel estimations at individual
relays. After channel estimation, the relays can feedback the
channel information to the HAP in a time-slotted manner.
Meanwhile, the receiver can sequentially estimate the channel
from each relay to the receiver.

Fig. 3 gives a numerical illustration of the convergence of
Algorithm 1. We set po = 50 mW and ζ = 0.3. The upper
and lower bounds converge quickly within few iterations.
The gap between the upper and lower bounds decreases to
ε = 10−3, 10−4, 10−5 within 13, 25, and 35 iterations,
respectively. In particular, the gap decreases quickly to 10−3

and the throughput has no significant improvement afterwards.
This implies that good performance can be obtained from
Algorithm 1, by setting a relatively larger ε (e.g., ε = 10−3)
to ensure fast convergence. The computational complexity of
Algorithm 1 mainly lies in two parts. One part relates to the
outer-loop iterations of monotonic optimization and the other
part lies in the solution to SDP problems. The complexity of
monotonic optimization is generally increasing exponentially
in the dimension of decision variable z. However, by a change
of variables and a reformulation of (6), we ensure that the
dimension of z is fixed at 2. By minimizing the search
space, Algorithm 1 improves the efficiency of monotonic
optimization algorithm even with a larger number of relays and
CUEs. It is observed from Fig. 3 that the outer-loop requires
few iterations to achieve a desired accuracy. Therefore, the
overall complexity of Algorithm 1 depends on the solution
to SDPs. By the analytical work in [36], the computational
complexity of SDPs can be evaluated by O(N1.5M4 +N6.5),
where N and M denote the number of relays and the number
of the HAP’s antennas, respectively.

IV. ROBUST THROUGHPUT MAXIMIZATION WITH THE PS
SCHEME

Alternative to the TS scheme, the HAP and relays can adopt
the PS scheme which leads to a different problem formulation.
In the sequel, we show that the throughput maximization with
the PS scheme can be approximated by a monotonic optimiza-
tion problem and solved similarly as that of problem (6).

With the PS scheme, each relay n ∈ N can adjust its PS
ratio, denoted by ρn. The vector of all relays’ PS ratios is given
by ρ = [ρ1, . . . , ρn, . . . , ρN ]T . Let wp denote the normalized
beamforming vector of the HAP for mixed information and
power transfer in the first hop. Given the beamforming signal
xs =

√
powps, the received information bearing signal at the

relay-n is given by yn =
√

(1− ρn)pof
H
n wps, and its power

amplifying coefficient can be rewritten as

xn =

(
pn

(1− ρn)pofHn Wpfn + 1

)1/2

, (14)

where Wp = wpwH
p denotes transmit covariance of the the

HAP and pn is normalized transmit power of relay-n. Again,
our objective is to maximize the throughput in a time slot r =
log(1 + γ(ρ,p,Wp)) by optimizing the HAP’s beamforming
strategy Wp, the relays’ PS ratio ρ and transmit power p:

max
ρ,p,Wp

log

(
1 +

|(x ◦ y)Hg|2

1 + xTD(g ◦ g)x

)
(15a)

s.t. max
P∈Pm

P
(
φm(p) ≥ φ̄m

)
≤ ζ, ∀m ∈ C, (15b)

pn ≤ ηpoρnfHn Wpfn, ∀n ∈ N , (15c)
0 � ρ � 1,p � 0, and Tr(Wp) ≤ 1. (15d)

where (15b) and (15c) define the interference constraints at
CUEs and the power budget constraints at the relays, respec-
tively. Note that the channel time for information transmission
in the PS scheme is constant and thus omitted in (15a).

A. Approximation and Monotonicity

The power splitting makes the coupling between SNR γ and
the HAP’s beamforming strategy Wp more complicated. We
are unable to transform the problem in (15) into an equivalent
monotonic optimization problem. To this end, we consider a
relaxation to simplify the objective function in (15a).

Proposition 4: Define X = xTD(g ◦ g)x and Y = yTy.
Let θ denote a non-zero scalar. The problem in (15) is lower
bounded by the solution to the following problem.

max
X,Y

XY (1 +X)−1 (16a)

s.t. y = θx ◦ g, and (15b)− (15d). (16b)

The proof of Proposition 4 is straightforward by applying

Cauchy inequality: γ(x,y) ≤ [xT D(g◦g)x]yTy

1+xT D(g◦g)x
= XY (1 +

X)−1. The equality holds if and only if y = θx ◦ g for some
θ 6= 0. By imposing the equality condition to the original
problem, it is equivalent to maximize XY (1+X)−1 in (16a).
It is clear that (16) imposes more stringent requirements on
the feasible set of (ρ,p,Wp). For any solution feasible to
(16), it is also feasible to (15) and thus gives a lower bound
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Fig. 4: The non-convex and normal feasible set Ωp.

on (15). The new objective γ(X,Y ) is increasing in both X
and Y ,4 implying that the optimum will be achieved on the
boundary of the feasible region, which is defined as follows:

Ωp =

{
(X,Y )

∣∣∣∣∣X ≤ xTD(g ◦ g)x and Y ≤ yTy

∀(x,y) feasible to (16b)

}
. (17)

To proceed with the monotonic optimization algorithm, we
further verify that Ωp is also a normal set.

Proposition 5: The feasible set Ωp defined in (17) is normal.

The proof of Proposition 5 is given in Appendix B. In
Fig. 4, through a numerical example, we show the feasible
region Ωp and evaluate how the probability limit ζ affects
the shape of Ωp. We fix po = 30mW and vary ζ from 0.1
to 0.3. The channel model and network configuration are the
same as those used in the simulation presented in Section V.
We observe that the size of Ωp shrinks when ζ decreases,
which implies a more stringent interference requirement at
the CUEs. Moreover, with different ζ, the shape of Ωp always
demonstrates a non-convex structure. To revise Algorithm 1
applicable for the PS scheme, the initial polyblock can be
set by finding the upper bounds on X and Y , respectively.
Let ḡmax , maxn∈N |gn|2 and f̄ ,

∑
n∈N ||fn||2. By the

construction of X = xTD(g ◦ g)x and the relations in (14)
and (15c), we have X ≤ ḡmax||x||2 = ḡmax

∑
n∈N

pn
1+|yn|2 ≤

ηḡmaxf̄po. Similarly, we have Y ≤ f̄po. Hence, the initial
vertex can be set as (ηḡmaxf̄po, f̄po).

B. Update Lower Bound on (16)

In the k-th iteration of the monotonic optimization algo-
rithm, assuming that zk = (Xk, Yk) /∈ Ωp is the upper-
bounding vertex of the polyblock Pk, we need to find the
maximum scaling factor λk such that the scaled vertex λkzk is
feasible to Ωp, i.e., (λkXk, λkYk) ∈ Ω̄p. This is equivalent to
find a solution (ρ,p,Wp) satisfying the following conditions:

4We use γ(X,Y ) and γ(ρ,p,Wp) interchangeably to denote the SNR
performance with the PS scheme.

||y||2 ≥ λkYk, (18a)

xTD(g ◦ g)x ≥ λkXk, (18b)
θkx ◦ g = y, (18c)

ηρnpof
H
n Wpfn ≥ pn, ∀n ∈ N , (18d)

max
P∈Pm

P
(
φm(p) ≥ φ̄m

)
≤ ζ, ∀m ∈ C. (18e)

Additionally, we can show that θk can be set as follows.

Proposition 6: Given zk = (Xk, Yk) � 0 and Xk 6= 0, the
coefficient θk in (18) can be set to θk =

√
Yk/Xk.

The proof of proposition 6 is relegated to Appendix C.
Substituting (18c) into (18a), the inequality in (18a) is exactly
the same as (18b). Hence, the feasibility of (18) can be
evaluated by maximizing ||y||2 as follows:

q̃(zk) , max
ρ,p,Wp

{||y||2 : (18c)− (18e)}. (19)

Once (19) is solved, we can simply set the scaling factor by
λk = q̃(zk)/Yk. Otherwise, we have λYk > q̃(zk), and thus
λzk /∈ Ωp for any λ > λk. Though it is still difficult to solve
(19) due to its non-convex structure, we can present a convex
reformulation as follows by introducing auxiliary variables:

max
p,Wp,W̄p

||κ||1 (20a)

s.t. pn ≤ ηpof
H
n W̄pfn, ∀n ∈ N , (20b)[

pnθ
2
kg

2
n − κn κn
κn 1

]
� 0, ∀n ∈ N , (20c)

κn ≤ pof
H
n (Wp − W̄p)fn, ∀n ∈ N , (20d)

Mm �
[

D(p) 0
0 vm − φ̄m

]
, ∀m ∈ C, (20e)

Tr(ΣmMm) ≤ vmζ, ∀m ∈ C, (20f)
Mm � 0, and vm ≥ 0, ∀m ∈ C, (20g)
Tr(Wp) ≤ 1, and Tr(W̄p) ≤ 1, (20h)
p � 0,Wp � 0,W̄p � 0, and κ � 0. (20i)

The equivalence between (19) and (20) relies on the convex
reformulations of the constraints in (18c)-(18e). If W∗

p and
W̄∗

p are optimal to (20), we can simply set the optimal
PS ratio as ρ∗n = fHn W̄∗

pfn/f
H
n W∗

pfn for any n ∈ N .
The detailed analysis is presented in Appendix D. Given the
solution to (20), we can determine the maximum scaling factor
λk and correspondingly the projection point λkzk in the k-th
iteration. Then, we can construct a smaller polyblock Pk+1

following similar procedures as that in Algorithm 1. The
revised procedures for the PS scheme are listed in Algorithm 2.

V. PERFORMANCE EVALUATION

We firstly compare the TS and PS schemes in terms of
throughput performance and energy efficiency. The results
reveal that the PS scheme performs generally better than the
TS scheme. Then, focusing on the PS scheme, we investigate
how different control parameters have impacts on different
performance measures. In particular, we show the joint control
of the HAP’s beamforming, the relays’ PS ratios and transmit
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Algorithm 2 Joint Optimization of Beamforming and Relay-
ing Strategies with the PS Scheme

1: Collect channel information (fn, zn) and g
2: Initialize vertex point v0 = (ηḡmaxf̄po, f̄po)
3: Set P0 = [0,v0], V0 = {v0}, and ε = 10−5

4: Set γU
k = po

∑N
n=1 fHn fn and γL

k = 0 for k = 0
5: while |γU

k − γL
k | ≥ ε do

6: k ← k + 1, zk ← arg maxv∈Vk−1
γ(v), γUk ← γ(zk)

7: θk ←
√
Yk/Xk

8: if zk ∈ Ω then γL
k ← γ(zk), z∗ ← zk

9: else
10: Find projection ok = λkzk by solving SDP (20)
11: if γ(ok) ≥ γL

k then γL
k ← γ(ok), z∗ ← ok end if

12: Update vertex set Vk and polyblock Pk
13: end if
14: end while
15: Retrieve (ρ∗, p∗, W∗) from the solution to (20)

power to improve energy efficiency. We further vary the range
of channel uncertainty and examine its effects on the joint
control at the relays. Specifically, without loss of generality,
we set K = 3 antennas at the HAP and N = 3 relays for each
DUE. We only consider one CUE in the simulations, but the
results can be easily extended to the case with multiple CUEs,
ensuring the protection for the most vulnerable CUE. The
noise power density is set to -90 dBm and the bandwidth is 100
kHz. The energy conversion efficiency is set to η = 0.5. The
HAP’s transmit power po in milliwatts is limited by 50 mW.
The pass loss L is modeled by the log-distance propagation
model: L = L0 +10α log10(d/d0), where we set the path loss
exponent as α = 2 and the path loss at unit distance d0 = 1
as L0 = 25 dB. To differentiate different relays, we set the
distances in meters from HAP to the relays as df = [2, 3, 4],
which implies that relay-1 generally has the most preferable
channel condition. For a fair comparison, we set the same
distances from individual relays to the DRx and the CUE,
given by dg = [2, 2, 2]T and dz = [3, 3, 3]T , respectively.

A. Comparison between the TS and PS Schemes

The performance of both EH schemes is heavily affected
by two conflicting parameters, i.e., the HAP’s transmit power
po and the probability limit ζ of interference violation at
the CUE. Hence, in the comparison between the TS and
PS schemes, we vary these two parameters and examine the
throughput performance and energy efficiency. Besides, we
compare our algorithm with the best relay selection (BRS)
algorithm [9], which selects a single relay with the best
channel condition to amplify and forward the information
signals. The authors in [20] considered a similar collaborative
beamforming problem and optimized the PS ratios of multiple
relays for a single-antenna transceiver pair. It also requires full
CSI and centralized optimization at the transmitter. For a fair
comparison, we extend the work in [20] to account for multi-
antenna signal beamforming at the transmitter, and then apply
the optimized PS ratios to our formulation in (15). Note that
all these algorithms have comparable overhead for information
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Fig. 5: Comparison of the TS and PS schemes in terms of throughput
performance and energy efficiency.

exchange. When there are N relays, the total number of time
slots required for channel estimation is N + 2. In each time
slot, either complex channel coefficients or scalar CSI metrics
as in [9] are encoded and transmitted to the transmitter. In
general, our proposed algorithms can be implemented with
a comparable signaling overhead, but a higher throughput
performance compared to that in [9] and [20].

Let BRS-TS and BRS-PS denote the BRS algorithm under
the TS and PS schemes, respectively. Let CRB-PS denote the
collaborative relay beamforming algorithm maximizing the PS
ratios in [20]. Fig. 5(a) shows the throughput performance with
different algorithms. The optimal throughputs with the TS and
PS schemes, denoted by OPT-TS and OPT-PS, respectively,
initially increases and then stabilizes when the HAP further
increases its transmit power. It is clear that the stabilized
throughput becomes smaller with a larger probability limit
ζ. When po ≤ 6, the CUE’s interference constraint trivially
holds due to low transmit power at the HAP and the relays.
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The energy available at the relays becomes the throughput
bottleneck. Hence, we observe that the optimal throughput
with the OPT-PS scheme shows no significant difference with
different probability limit ζ. When po > 12, the throughput
of the OPT-PS scheme increases slowly, which means that the
CUE’s interference requirement comes into effect and restricts
the DUE’s throughput improvement. Besides, both OPT-TS
and OPT-PS scheme show significant throughput improvement
compared to the BRS-TS and BRS-PS schemes, respectively.
This implies that our algorithm can better exploit the multi-
relay cooperation gain. Focusing on the multi-relay schemes,
we find that the OPT-PS scheme achieves nearly the same
throughput with the CRB-PS scheme when the HAP’s transmit
power is relatively low, i.e., po < 15, and it outperforms the
CRB-PS scheme when po becomes large. This result shows
the flexibility of the OPT-PS scheme for its energy-efficient
response to the increase of power supply, via a joint control
of the HAP’s beamforming strategy and the relays’ PS ratios.

It is interesting to observe a crossover in Fig. 5(a) between
the curves corresponding to the OPT-PS and OPT-TS schemes.
In particular, the OPT-TS scheme outperforms the OPT-PS
scheme when po < 10, while the OPT-PS scheme achieves
better throughput when po > 10. When po is relatively small,
the relays’ power transfer and signal reception both suffer
from severe power shortage. In this case, the optimization
of the PS ratios hence has limited effect on improving the
throughput. For the OPT-TS scheme, we can set a larger
EH time to increase the energy accumulated at the relays,
and hence potentially improve the throughput in information
transmission. When po becomes large, both the OPT-TS and
OPT-PS schemes can provide high data rates by the control
of EH time and PS ratios, respectively. As such, the effective
transmission time will dominate the throughput performance.
Hence, we observe that the OPT-PS scheme performs better
than the OPT-TS scheme due to its longer transmission time.

In Fig. 5(b), we compare the energy efficiency of two
schemes, which is defined as the throughput gained per unit
power consumption at all relays. We set ζ = 0.3 and vary the
transmit power po from 1 to 50. When po > 20, the energy
efficiencies of both the OPT-TS and OPT-PS schemes decrease
in po. The reason is that when the relays accumulate sufficient
energy, the throughput does not increase proportionally when
we continue increasing the transmit power po. Hence, the
energy efficiency will correspondingly decrease as shown in
Fig. 5(b). When the HAP’s transmit power is relatively low,
i.e., po < 10, the energy efficiency with the OPT-PS scheme
grows up with the increase in po and reaches its maximum
when po = 10. That is because, the throughput initially grows
much faster than the HAP’s power consumption. By contrast,
for the OPT-TS scheme, the throughput grows slower than the
HAP’s power consumption, and thus we observe a decreasing
energy efficiency in Fig. 5(b). This result implies that the OPT-
PS scheme responds in a more energy efficient way to the
increase of the HAP’s transmit power.

B. Joint Power Transfer, Power Splitting, and Power Control
The higher energy efficiency of the PS scheme can be

viewed as a result from a more flexible control over the HAP’s
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(b) Biased power transfer to meet power demands

Fig. 6: Joint control of the power transfer to different relays and the
relays’ PS ratios.

beamforming, the relays’ PS ratios and transmit power. In this
part, we investigate how these control variables interplay with
each other. With the varying transit power po, we show the
joint control of the power transfer to the relays and the relays’
PS ratios in Fig. 6. Fig. 6(a) shows the dynamics of the relays’
optimal PS ratios with a fixed probability limit ζ = 0.3 at the
CUE. We firstly find that the ordering ρ∗1 > ρ∗2 > ρ∗3 generally
holds and is consistent with the relays’ channel conditions,
i.e., ||f1||2 > ||f2||2 > ||f3||2. That is, more signal power will
be allocated to energy harvester when channel condition is
better. We further observe that the PS ratios will be reduced
significantly when po > 16. This is due to the fact that the
relays become sufficient in energy when po further increases.

Let Hn = pof
H
n Wfn denote the power transfer to each

relay n ∈ N . In Fig. 6(b), we observe that the dynamics of Hn

show very different traces with respect to the increase of the
HAP’s transmit power. Specifically, we observe two turning
points on each of the curves. When po < 16, the power Hn
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Fig. 7: The relays’ joint power control.

increases proportionally in po. This is reasonable when power
shortage is the bottleneck of throughput improvement. The
HAP will keep the same beamformer to transfer more energy
to the relay with better channel condition. When 16≤ po ≤ 25,
we observe a biased power transfer to different relays, due to
the relays’ different channel conditions and power demands.
Note that relay-1 has the best channel condition. When po

increases, relay-1 becomes energy-abundant while relay-2 and
relay-3 are the energy-starving nodes that limit the throughput
improvement. By updating energy beamforming strategy, the
HAP can reshape the spatial distribution of RF energy, and
thus adjust the energy transfer to different relays. In particular,
the HAP will steer the energy beamformer towards relay-2 and
relay-3 as a compensation for their worse channel conditions.
As a result, we observe that the power received by relay-1
increases much slower than that of relay-2 and relay-3. When
po > 25, the power Hn again increases proportionally in
po. This is because the relays can harvest sufficient energy
from the HAP. In this case, the HAP does not change its
beamforming strategy, and the relays’ transmit power control
is dominated by the CUE’s interference constraint.

Fig. 7 shows the relays’ power control with different po.
When po ≤ 16, the CUE’s interference constraint holds and
thus the relays’ transmit power is linearly increasing in po.
When po ≥ 16, the CUE’s interference constraint becomes
active and restricts the relays’ transmit power. Note that relay-
1 has the highest transmit power. It introduces the highest
interference to the CUE, and thus its transmit power will be
significantly reduced as po further increases. When po ≥ 40,
all relays’ transmit powers stabilize at the same level, as we
have assumed the same channel conditions in the second hop.

C. Robustness Against Channel Uncertainty

We evaluate the robustness of the PS scheme against distri-
butional channel uncertainty. By multiplying a scaling factor
u to Sz, we emulate different levels of channel dynamics. A
larger value of u implies that the channel becomes fluctuating
with a wider range and thus there will be interference violation
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Fig. 8: Relays’ power and PS ratios with channel dynamics.

with higher probability. Hence, we consider u as the level of
uncertainty in our experiments. Fig. 8(a) shows the relays’
transmit power against different uncertainty levels. By increas-
ing uncertainty level, we observe a decreasing transmit power
at each relay as shown in Fig. 8(a). This result is intuitive as
we have to suppress the relays’ transmit power to ensure the
same level of protection for CUEs when the channel becomes
fluctuating with a wider range. We further demonstrate how
the relays tune their PS ratios under different probability limit
ζ as shown in Fig. 8(b). A larger ζ implies that the CUEs
are more tolerant (or less sensitive) to the relays’ interference.
Generally, the relays’ PS ratios are monotonically increasing
with the increase of ζ, which means that the relays need to
split more signal power for information transmission when the
CUEs become less sensitive to interference. Note that the PS
ratios follows ρ1 ≥ ρ2 ≥ ρ3. This implies that the relays
with worse channel conditions need to split more power for
information transmission. With wider range of the channel
fluctuating, the difference between ρ1 and ρ3 becomes larger.
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VI. CONCLUSION

In this paper, to achieve cooperation gain in a dense Device-
to-Device network, multiple EH-enabled relays have been
employed to improve the throughput from a multi-antenna
HAP to a distant DUE receiver underlaying a cellular sys-
tem. We have reviewed the typical TS and TS schemes, for
the relays’ power and information transfer from the HAP.
A generalized optimization has been proposed to maximize
the DUE’s throughput subject to probabilistic interference
constraints at the CUEs, by the joint design of the HAP’s
beamforming, the relays’ energy harvesting and power control
strategies. We have verified that the probabilistic interference
constraint can define a normal feasible region. By further
exploiting the monotonicity in the objective, we can determine
a sub-optimal solution to the non-convex robust throughput
maximization via successive polyblock approximation. The
extensive performance evaluation has clearly shown that our
algorithm design can still achieve much higher throughput than
those of the existing works. This well justifies our proposed
relaying scheme. We have also made thorough numerical
comparison between the TS and PS schemes in terms of
throughput performance and energy efficiency, and revealed
that the PS scheme generally outperforms the TS scheme, due
to its flexibility in the relays’ local control. Such flexibility
becomes trivial and lead to worse performance compared to
that of the TS scheme, when the HAP’s transmit power is low.

APPENDIX

A. Proof of Proposition 3

We focus on the reformulation of (9b). Let e(zm) =
1(zTmD(c ◦ c)zm ≥ φ̄m) and 1(·) be the indicator function.
For m ∈ C, the worst-case interference violation probability
can be rewritten as B(c|Σm) = maxP∈Pm

EP
[
e(zm)

]
, where

Σm represents the known second-order moment matrix of
the channel zm. By a similar approach to that in [22], the
equivalence of B(c|Σm) is given by

min
Mm�0,νm≥0

Tr(ΣmMm) (21a)

s.t. Mm �
[
νmD(c ◦ c) 0

0 1− νmφ̄m

]
, (21b)

where Mm and νm are the dual variables. To this point, the
objective function in (21a) is linear and the constraint in (21b)
defines a linear matrix inequality. Hence, the problem in (21)
provides a convex equivalence for B(c|Σm). Substituting (9b)
by (21), we have the equivalence in problem (11).

B. Proof of Proposition 5

Assuming (X(1), Y (1)) ∈ Ω, for any (X(2), Y (2)) �
(X(1), Y (1)), we need to prove that (X(2), Y (2)) ∈ Ω. That
is, we need to find a feasible solution (ρ(2),p(2),W

(2)
p ) satis-

fying the constraints listed in (17). Without loss of generality,
we set po = 1 for simplicity and let α2 , X(2)/X(1)

and β2 , Y (2)/Y (1), respectively, where 0 ≤ α, β ≤ 1.
Now we construct a feasible solution (ρ(2),p(2),W

(2)
p ) based

on (ρ(1),p(1),W
(1)
p ). By choosing W

(2)
p = W

(1)
p and ρ

(2)
n

such that 1 − ρ
(2)
n = β2(1 − ρ

(1)
n ), for all n ∈ N , we

have 1 − ρ
(2)
n = β2

(
1− ρ(1)

n

)
≤ 1 − ρ

(1)
n , which implies

ρ
(2)
n ≥ ρ(1)

n . On the other hand, by choosing x(2)
n = αx

(1)
n for

n ∈ N , we need to prove that the above construction satisfies
the constraints listed in (17). By the construction, the equality
is hold. Noting that x(2)

n = αx
(1)
n and y(2)

n = βy
(1)
n , we have

p(2)n

(1−ρ(2)n )fHn W
(2)
p fn+1

= α2 p(1)n

(1−ρ(1)n )fHn W
(1)
p fn+1

, which implies

p(2)
n = α2p(1)

n

(1− ρ(2)
n )fHn W

(2)
p fn + 1

(1− ρ(1)
n )fHn W

(1)
p fn + 1

≤ α2ηρ(1)
n fHn W(1)

p fn ≤ ηρ(2)
n fHn W(2)

p fn.

Therefore, p(2)
n satisfies the power constraint. A smaller trans-

mit power also ensures the satisfaction of the interference
constraint, which completes the proof that Ω is a normal set.

C. Proof for Proposition 6

Let θ∗k ,
√
Yk/Xk. We will prove that given any solution

to (18) under two cases: (1) θ(1)
k > θ∗k and (2) θ(2)

k < θ∗k, there
always exists a solution to (18) by setting θk = θ∗k. By the
equality constraint in (18c), we can simplify (18b) and (18a)
into a new constraint: ‖y‖2 ≥ max{θ2

kλkXk, λkYk}. Suppose
that

(
ρ(i),p(i),W

(i)
p

)
is a solution to (18) when θk = θ

(i)
k

for i = {1, 2}. For θ(1)
k > θ∗k, let α , θ∗k/θ

(1)
k and we can

choose W∗
p = W

(1)
p , x∗ = x(1) and y∗ = αy(1). Therefore,

we have

||y∗||2 = α2||y(1)||2 ≥ α2
(
θ

(1)
k

)2
λkXk = λkXk(θ∗k)2 = λkYk.

Besides, by the construction x∗n = x
(1)
n , we have

p∗n
(1−ρ∗n)fHn W∗

pfn+1
=

p(1)n

(1−ρ(1)n )fHn W
(1)
p fn+1

, which implies that

p∗n = p(1)
n

(1− ρ∗n)fHn W∗
pfn + 1

(1− ρ(1)
n )fHn W

(1)
p fn + 1

≤ ηρ∗nfHn W∗
pfn.

Therefore, p∗n satisfies the power constraint. A smaller transmit
power also ensures the satisfaction of the interference con-
straint. Thus,

(
ρ∗,p∗,W∗

p

)
is a solution to (18) when θk = θ∗k.

For θ
(2)
k < θ∗k, let β , θ

(2)
k /θ∗k and we can choose

W∗
p = W

(2)
p , y∗ = y(2) and x∗ = βx(2). Therefore

||y∗||2 = ||y(2)||2 ≥ λkYk = λkXk(θ∗k)2. Besides, by the
construction x∗n = βx

(2)
n and y∗n = y

(2)
n , we have

p∗n = β2p(2)
n < ηρ(2)

n pof
H
n W(2)

p fn = ηρ∗npof
H
n W∗

pfn.

Till this point, we can conclude that the optimal θk to (18) is
given by θk =

√
Yk/Xk.

D. Equivalence between problems (19) and (20)

By the change of variable κn = y2
n ≥ 0 and let

κ = [κ1, . . . , κn, . . . , κN ]T , the quadratic objective ||y||2 is
transformed into a linear form ||κ||1. To simplify the equality
constraint (18c), we can substitute (18c) into (14) and rewrite
it into an inequality constraint as follows:

pnθ
2
kg

2
n ≥

[
(1− ρn)pof

H
n Wpfn + 1

]
y2
n ≥ (κn + 1)κn,
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which can be further rewritten into the linear matrix inequality
(20c). To decouple the PS ratio ρn and the beamformer Wp

in (18d), we introduce a new matrix variable W̄p such that

κn ≤ (1−ρn)pof
H
n Wpfn = pof

H
n Wpfn−pof

H
n W̄pfn. (22)

The first inequality in (22) is the convex relaxation of κn =
y2
n and the second equality is by construction. Note that (22)

defines a linear matrix inequality. The convex reformulation
of (18e) is given by (20e)-(20g), following a similar approach
as that in [22]. Combining all convex equivalences into one
formulation, we can obtain the equivalence in (20) which can
be solved efficiently by well-known optimization toolboxes.
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