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Abstract—Device-to-device (D2D) communication raises new
transmission secrecy protection challenges, since conventional
physical layer security approaches, such as multiple antennas
and cooperation techniques, are invalid due to its resource/size
constraints. The full-duplex (FD) jamming receiver, which radi-
ates jamming signals to confuse eavesdroppers when receiving the
desired signal simultaneously, is a promising candidate. Unlike
existing endeavors that assume the FD jamming receiver always
improves the secrecy performance compared with the half-duplex
(HD) receiver, we show that this assumption highly depends
on the instantaneous residual self-interference cancellation level
and may be invalid. We propose an adaptive jamming receiver
operating in a switched FD/HD mode for a D2D link in random
networks. Subject to the secrecy outage probability constraint,
we optimize the transceiver parameters, such as signal/jamming
powers, secrecy rates and mode switch criteria, to maximize
the secrecy throughput. Most of the optimization operations
are taken off-line and only very limited on-line calculations are
required to make the scheme with low complexity. Furthermore,
some interesting insights are provided, such as the secrecy
throughput is a quasi-concave function. Numerical results are
demonstrated to verify our theoretical findings, and to show its
superiority compared with the receiver operating in the FD or
HD mode only.

Index Terms—Physical layer security, device-to-device (D2D)
communication, stochastic geometry, full-duplex (FD), secrecy
outage, secrecy throughput.

I. INTRODUCTION

The security of wireless communications has aroused ex-

tensive attention in recent years with the boom of mobile

communication devices use and the flexibility of wireless net-

works interconnection. Physical layer security, which exploits

the randomness of wireless channels to safeguard wireless

communications, has been studied as a complement to con-

ventional cryptography techniques [1]-[4]. The basic principle

for the physical layer security approaches is to ensure that

the equivalent channel of the legitimate receiver is “better”

than that of the eavesdropper, to guarantee a positive secrecy

capacity. Following this idea, two promising approaches, i.e.,

multiple-antenna technologies and cooperation/relay technolo-

gies, have been widely adopted to achieve this goal, such

as multi-antenna beamforming [5], [6], artificial noise as-

sisted methods [7], [8], cooperative beamforming [9], [10],

cooperative jamming [11], [12], and some hybird schemes

[13], [14]. However, in many scenarios, multiple antennas
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are unavailable due to the size and complexity constraints

of the transmitter, and cooperative schemes (related to node

mobility, synchronization and trustworthiness [15]-[17]) are

also overhead-demanding due to their distributed feature.

Device-to-device (D2D) communication in Internet of Things

(IoT) applications is such a typical scenario [18]-[20], where

D2D pairs, such as sensors, are usually equipped with a single

antenna each and could not cooperation. In these scenarios, the

proposed schemes employing multiple antennas or cooperation

no longer apply. Thus, protecting information from leakage

still remains challenging in the physical layer.

Fortunately, the progress of developing full duplex (FD)

radios opens a new window in the aforementioned scenarios

[21]-[23]. The critical challenge in implementing such an FD

node is the presence of self-interference (SI) that leaks from

the FD node’s output to its input. Owing to the evolution of

SI cancelation techniques, SI can be suppressed in the spacial

domain [24], digital circuit domain [25] and analogy circuit

domain [26], respectively1. The receiver of a D2D pair, a

data collector for example, can predominantly improve the

security of the communication link by simultaneously sending

a jamming signal when receiving the confidential signal from

the transmitter. The jamming signal is able to disturb the

eavesdropper from wiretapping while it can be eliminated by

the SI procedure at the FD receiver itself. In such a way,

physical layer secrecy performance is improved. We refer

to this idea as the FD jamming receiver in this paper. As

the FD transceiver becomes implementation practical, the FD

jamming receiver scheme turns to be an alternative physical

layer security approach for D2D applications.

The FD jamming receiver has already been reported and

discussed from secrecy metrics [27], [28], resource allocations

[29]-[31], and transmission designs [32]-[35], etc. Among

these endeavors, only [27] and [31] have focused on the single-

antenna scenario and could be applied in D2D communications

with resource/size constraints. However, the assumption that

the instantaneous channel state information (ICSI) of a wiretap

channel is perfectly known by legitimate nodes in [31] is

difficult to realize, since the eavesdropper is usually passive.

Furthermore, the works mentioned above ignore the scenarios

in the presence of multiple malicious eavesdroppers.

When multiple eavesdroppers exist, the secrecy perfor-

mance strongly relies on the randomly spatial positions of

the eavesdroppers and the propagation large-scale path losses.

1With the analog SI cancellation and digital SI cancellation, an FD design
would provide a total of 110 dB SI cancellation at most [36]. The typical SI
would be −87 dBm at least for relay systems, small cell systems and D2D
communication [36], [37].
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By utilizing the framework of stochastic geometry theory and

Poisson point process (PPP) [38]-[40], studies on physical

layer security with the FD jamming receiver against random

eavesdroppers have been carried out in [41], [42]. The anal-

ysis of network-wide secrecy performance, such as the area

secure link number and the network secrecy throughput, have

been focused on in [41] and [42], where no specific secure

transmission scheme has been proposed.

All of the above investigations made a fundamental as-

sumption by default, that the FD jamming receiver improves

the secrecy performance unconditionally compared with the

conventional HD receiver. However, we point out that this

conclusion actually highly depends on the efficiency of the

SI suppression, i.e., the value of the instantaneous SI channel

gain. We note that the instantaneous SI channel is usually

modeled as a Nakagami-m [23], [43], Rayleigh [24], [44], or

Ricean [26], [45] random variable. With a high SI channel

gain, the residual SI at the receiver is probably larger than

jamming signals received at the eavesdroppers after a large

scale fading of the wiretap channels. In such a situation,

the overall effect of FD jamming is negative to the secrecy

performance, and the receiver in a half-duplex (HD) mode is

better than it in an FD mode. It implies that an adaptive FD

jamming receiver should be utilized according to the SI can-

celation level, i.e., the receiver will adaptively switch between

an FD mode (transmit jamming when receiving signal) and

an HD mode (stop transmitting jamming) . It will obviously

outperform the existing pure FD jamming strategy.

Furthermore, for a D2D transmitter with limited hardware

and power resources, a full adaptive receiver with on-line

transmission parameter optimization ability according to all

ICSIs is very difficult with on board calculation ability, if not

impossible. Therefore, a low complexity adaptive FD jamming

scheme is an interesting and effective approach to improve the

secrecy of a D2D link, which motivates this work. To the best

of our knowledge, no prior work has considered this.

A. Our Work and Contributions

In this paper, we propose a low complexity adaptive jam-

ming receiver operating in a switched FD/HD mode according

to the instantaneous residual SI channel gain for a D2D

link, coexisting with PPP distributed random eavesdroppers.

The novelty and main contributions of this paper can be

summarized as follows:

1) For the first time, we propose an adaptive switched

FD/HD jamming receiver secure strategy according to the

residual SI channel gain. We optimize a threshold as the

mode switch criteria, and design transmission schemes for

each mode with the low complexity constraints of D2D nodes

under consideration.

2) In both modes, the optimal transceiver parameters, such

as the signal power, secrecy rates, and jamming power, to

maximize the secrecy throughput under the secrecy outage

probability (SOP) constraint is optimized off-line. Only very

limited calculation should be taken on-line to keep computa-

tional complexity low. Explicit optimization solutions to the

two cases are provided.

3) We provide new insights into the secure transmission

design in both modes. Numerical results show that the secrecy

throughput of the proposed strategy is superior to those of

schemes with a single receiver mode each.

B. Organization and Notations

The remainder of this paper is organized as follows. In Sec-

tion II, we present the system model and propose an adaptive

switched FD/HD jamming receiver secure strategy. In Section

III, we provide the SOP. In Section IV, we solve optimization

problems of secrecy throughput maximization under the SOP

constraint for each mode. In Section V, we design an adaptive

switched FD/HD jamming receiver transmission scheme with

off-line and on-line parts. Numerical results are presented in

Section VI, and Section VII concludes our work.

We use the following notations in this paper: P {·}, Fv (·)
and Ev [·] denote probability, the cumulative distribution func-

tion (CDF) of v and the mathematical expectation with respect

to (w.r.t.) v, respectively. CN
(

µ, σ2
)

and exp (λ) denote

the circularly symmetric complex Gaussian distribution with

mean µ and variance σ2, and the exponential distribution with

parameter λ, respectively. |·| and Γ (·) denote Euclidean norm

and gamma function, respectively. log2 (·) and ln (·) denote

base-2 and natural logarithms, respectively. (·)∗,(·)† and (·)⋆
represent the optimal solutions. ∼ stands for “distributed as”.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a D2D communication pair depicted in Fig. 1,

where a single-antenna transmitter (Alice) delivers confidential

information to a single-antenna legitimate receiver (Bob), in

the presence of spatially randomly located passive eavesdrop-

pers (Eves). Each of Eves is also equipped with a single

antenna. Without loss of generality, we locate Alice at (0, 0)
and Bob at (dAB , 0) in polar coordinates as shown in Fig. 1(b).

We model the positions of Eves,
{

ek : (dAk, θk) ∈ R
2
}

, as a

homogeneous PPP Φ of intensity λe. The distance between

Bob and the k-th Eve, dBk, satisfies d2Bk = d2AB + d2Ak −
2dABdAk cos θk.

For FD Bob, it has the ability to transmit a jamming

signal to degrade the quality of the wiretap links while

simultaneously receiving the desired signal. The FD mode

leads to a feedback loop channel from Bob’s output to its

input through the channel
√
ρhBB shown in Fig. 1(a), where

ρ ∈ [0, 1] models the effect of SI suppression in the spacial

domain [22], [32] and hBB represents the SI channel fading.

The value of ρ corresponds to different SI suppression levels,

where ρ = 0 refers to perfect SI suppression and ρ = 1 means

no SI suppression. We will show that the SI suppression level

affects the secrecy performance of the FD jamming receiver

significantly, i.e., FD mode Bob is not always beneficial to the

system security compared with HD mode Bob. To prevent SI

from covering the desired signal, Bob switches to operate in

the HD mode, i.e., to stop transmit jamming, when the residual

SI channel gain is still sufficiently large.

Let hAB denote the channel fading between Alice and Bob.

hAk and hBk denote the channel fading from Alice and Bob
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Fig. 1: System model with switched FD/HD mode Bob against
randomly located Eves.

to the k-th Eve, respectively. All of the wireless channels

undergo quasi-static Rayleigh fading, and hAB, hBB, hAk and

hBk are independent and identically distributed (i.i.d.) with

zero mean and unit variance [24], [25], i.e., obeying CN (0, 1).
The legitimate channel, the wiretap channels and the jamming

channels are assumed to suffer from large scale path losses

governed by an exponent α ≥ 2. In addition, we assume that

the ICSI of Bob is perfectly known by Alice, and the channel

state distribution information (CSDI) of Eves is available 2.

The signal received at Bob and the k-th Eve is expressed by

yB =
√

PAhABd
−α

2

AB sA +
√

PB
√
ρhBBsSI + nB, (1)

yk =
√

PAhAkd
−α

2

Ak sA +
√

PBhBkd
−α

2

Bk sB + nk, (2)

where PA and PB are the transmit power of the confidential

message sA and jamming signal sB with E

[

|sA|2
]

= 1 and

E

[

|sB |2
]

= 1, respectively. sSI with E

[

|sSI |2
]

= 1 is the

residual SI noise after SI mitigation in the circuit domain [46],

[47]. nB ∼ CN
(

0, σ2
B

)

and nk ∼ CN
(

0, σ2
E

)

represent the

noise at Bob and the k-th Eve, respectively.

We consider a wiretap scenario where non-colluding Eves

individually decode messages. Hence, the wiretap channel ca-

pacity depends on the Eve with the strongest wiretap channel.

The capacities of the main channel and of the wiretap channels

are then calculated as

CB = log2 (1 + ϕB) , (3)

CE = log2 (1 + ϕE) , (4)

2These assumptions are generic in literature on physical layer security,
as referred to [41], [42].

where ϕB ,
PAγABd−α

AB

σ2

B
+ρPBγBB

and ϕE , max
PAγAkd

−α
Ak

σ2

E
+PBγBkd

−α
Bk

denote the signal-to-interference-plus-noise ratio (SINR) of the

main channel and of the equivalent wiretap channel, respec-

tively, with γAB , |hAB|2, γBB , |hBB|2, γAk , |hAk|2
and γBk , |hBk|2. We should note that with PB = 0, (1)-(4)

represent the parameters of HD Bob.

B. Secure Transmission Scheme

The well-known Wyner’s wiretap encoding scheme is uti-

lized with the codeword rate RC and the secrecy rate RS .

If the main channel can support RC , i.e., CB ≥ RC , Bob

can recover the secret message, and the connection is reliable.

If the capacity of the wiretap channels, CE , exceeds the

redundant rate RC −RS , perfect secrecy is compromised, and

a secrecy outage event occurs.

To avoid an undesired connection outage, i.e., CB < RC ,

or an intolerable high secrecy outage, i.e., CE ≥ RC −RS ,

we propose the on-off transmission strategy for Alice. Alice

transmits only when γAB is not below a preset threshold µA,

otherwise it keeps silent. Specifically, the transmit power PA

at Alice is adjusted based on γAB and γBB for an FD Bob,

and only varies with γAB for HD Bob. We will see that this

transmit scheme is with very low complexity.

For FD Bob, the introduction of the jamming signal tends

to reduce CE to enhance the secrecy. When the residual

SI channel gain is large, however, the jamming signal leads

to more SI than interference to Eves, and Bob is expected

to operate in the HD mode. Therefore, we adopt a secure

transmission scheme with adaptive switched FD/HD Bob to

further safeguard the security. Bob switches between in the FD

and HD mode according to the residual SI, i.e., ργBB . When

ργBB is sufficiently small, such as ργBB = 0, FD Bob can

efficiently interfere with Eves while suffering little SI. With

the increasing ργBB , however, the SI of the FD Bob rises

while the jamming to Eves stays unchanged for realization of

channels γAB , γAk and γBk. When ργBB is large enough, Bob

is expected to work in the HD mode to protect the confidential

signal against SI. Therefore, a threshold µB of ργBB exists,

where Bob operates in the FD mode when ργBB < µB and

in the HD mode when ργBB ≥ µB .

For a given µB , we thus have two groups of pa-

rameters, i.e.,
{

RFD
C , RFD

S , µFD
A , PFD

A , PB

}

with FD Bob

and
{

RHD
C , RHD

S , µHD
A , PHD

A

}

with HD Bob. Owing to

the hardware and software constraints of the D2D pair,

RFD
C , RFD

S , µFD
A and RHD

C , RHD
S , µHD

A are expected to be

optimized off-line and be fixed when transmission takes place,

respectively. Bob transmits with an unchanged PB in the FD

mode and with PB = 0 in the HD mode. In addition, PFD
A

could be adjusted w.r.t. the ICSIs γAB and γBB , while PHD
A

varies with γAB .

Remark 1: The proposed scheme adopts a fixed PB for

the FD mode rather than adjustable w.r.t. the ICSIs γAB and

γBB . Since in the latter case, the accurate optimum solutions

to the above two groups of parameters are hard to obtain

and they should be solved numerically on-line at any channel

realization of γAB and γBB , which seems impractical for a

D2D communication pair.
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Remark 2:
{

RFD
C , RFD

S , µFD
A

}

,
{

RHD
C , RHD

S , µHD
A

}

and

µB can be optimized and obtained off-line, which will be

shown in the following sections. This greatly reduces the

complexity and enhances the operability of our proposed

switched FD/HD mode receiver secure strategy.

C. Performance Metrics

The SOP 3 for a given γAB is defined as

Pso (γAB) , P {CE > RC −RS |γAB} , ∀γAB ≥ µA. (5)

To evaluate the average secrecy transmission capacity, we

define the secrecy throughput with the fixed RS as

Ωs , RSPtPc, (6)

where Pt , P {γAB ≥ µA} and Pc ,

P {CB ≥ RC |γAB ≥ µA} are the transmission probability

of the On-Off scheme, and the conditional connection

probability, respectively.

In the following, we optimize the switched FD/HD Bob to

maximize the secrecy throughput under the SOP constraint.

We start with the analysis of the SOP.

III. SECRECY OUTAGE PERFORMANCE ANALYSIS

We evaluate the SOP and derive a closed-form approximated

expression for the SOP in this section. We first give the

CDF of the SINR ϕE of the equivalent wiretap channel in

the following lemma, which would be extensively used in

subsequent discussions.

Lemma 1: The CDF of ϕE is given by

FϕE
(x) = exp

(

− λe

2

∫ 2π

0

∫ +∞

0

(

PB

PA

dαAk

dαBk

x+ 1

)−1

× exp

(

−σ2
E

PA

dαAkx

)

dd2Akdθk

)

. (7)

Proof: Please see Appendix A.

Owing to the double integrals where dBk is a function

of dAk and θk in (7), it is not easy to obtain compact

expressions for FϕE
and the SOP Pso related to FϕE

. Note

that, to guarantee a reliable communication and to prevent

Alice from being overheard, the distance between a D2D pair,

dAB , is usually small in most applications, such as 0− 0.2m

in Near Field Communications (NFC) systems, 0 − 10m in

Ultra-wideband (UWB) systems, and 0 − 30m in ZigBee

and Bluetooth systems [20], [48]. Therefore, we resort to an

asymptotic analysis by considering a small dAB regime as

referred to [41] and provide a concise approximation for FϕE
,

which facilitates the analysis of Pso as follows.

Lemma 2: Let β , 2π
α
Γ
(

2
α

)

. In the small dAB regime, FϕE

in (7) is approximated by

FϕE
(x) ≈ exp

(

−βλe

(

PB

PA

x+ 1

)−1(
σ2
E

PA

x

)− 2

α

)

. (8)

3It describes the secrecy outage performance under specific channel
realization, γAB , instead of the average performance.

Proof: Denoting ν (x) , d2Ak

(

σ2

E

PA
x
)

2

α

and substituting

dAB → 0 into (7) yield

FϕE
(x)

≈ exp

(

− πλe

(

PB

PA

x+ 1

)−1(
σ2
E

PA

x

)− 2

α

×
∫ +∞

0

exp
(

−ν
α
2 (x)

)

dν (x)

)

(a)
= exp

(

− 2

α
Γ

(

2

α

)

πλe

(

PB

PA

x+ 1

)−1(
σ2
E

PA

x

)− 2

α

)

,

where (a) is obtained by calculating the integral w.r.t. ν (x)
using formula [49, 3.326.1]. Replacing 2π

α
Γ
(

2
α

)

by β com-

pletes the proof.

Based on results in Lemma 1 and Lemma 2, we can obtain

both theoretical and approximate expressions for the SOP

considering a small regime of dAB in the following theorem.

Theorem 1: The theoretical expression for the SOP is written

as

Pso (γAB) =

1− exp

(

−λe

2

∫ 2π

0

∫ +∞

0

(

(

2RC−RS − 1
) PBd

α
Ak

PA (γAB) dαBk

+ 1

)−1

× exp

(

−
(

2RC−RS − 1
) σ2

Ed
α
Ak

PA (γAB)

)

dd2Akdθk

)

,

(9)

and its approximation in a small dAB regime with a closed

form is expressed by

Pso (γAB) ≈

1− exp

(

− βλe

(

(

2RC−RS − 1
) PB

PA (γAB)
+ 1

)−1

×
(

(

2RC−RS − 1
) σ2

E

PA (γAB)

)− 2

α

)

. (10)

Proof: The results can be easily obtained by plugging the

CDF FϕE
in (7) and the approximation of the CDF in (8) into

(5), respectively.

We can analyze the relationship between Pso and λe, RC ,

RS , PA, PB through either (9) or (10). We find that secrecy

outage events less likely occur when enhancing RC −RS and

PB , or reducing λe and PA.

To illustrate the validity of the given approximation method

and further to show that the approximation stays accurate even

for quite a wide range of dAB , we compare the theoretical SOP

in (9) and the approximate SOP in (10) as shown in Fig. 2.

The figure shows that in a wide range of λe with different

orders of magnitude, the theoretical SOP calculated by dAB

almost the same as the approximate SOP.

IV. THROUGHPUT-OPTIMAL PARAMETER DESIGN

In previous sections, we have analyzed the secrecy outage.

Next, we aim to maximize the overall secrecy throughput

subject to the SOP constraint with switched FD/HD Bob. The
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overall secrecy throughput is the sum of both modes. When

Bob operates in the FD mode, we adopt a group of fixed
{

RFD
C , RFD

S , µFD
A , PB

}

, and adjust PFD
A adaptively w.r.t. the

ICSIs of the main channel γAB and the equivalent wiretap

channel γBB to maximize the secrecy throughput ΩFD. When

Bob works in the HD mode, we adopt another group of

invariant
{

RHD
C , RHD

S , µHD
A

}

and the optimum expression for

PHD
A w.r.t. the ICSI of the main channel γAB to maximize the

secrecy throughput ΩHD . Whether Bob operates in the FD or

HD mode depends on ργBB lower or higher than the operation

mode switch threshold µB . The overall secrecy throughput is

ΩFD +ΩHD .

We define ǫ ∈ (0, 1) as the upper bound of the SOP, and

PFD
so and PHD

so as the approximations of the SOPs for FD and

HD mode Bob, respectively. PFD
so is a function w.r.t. γAB and

γBB due to PFD
A (γAB, γBB), while PHD

so is a function w.r.t.

γAB due to PHD
A (γAB). PAmax and PBmax are denoted as

the maximum transmit power of Alice and Bob, respectively.

The optimization problem is formulated as

max ΩFD +ΩHD, (11a)

s.t. PFD
so (γAB, γBB) ≤ ǫ,PHD

so (γAB) ≤ ǫ, (11b)

0 < RFD
S < RFD

C ≤ log2

(

1 +
PFD
A (γAB, γBB) γABd

−α
AB

σ2
B + ρPBγBB

)

,

0 < RHD
S < RHD

C ≤ log2

(

1 +
PHD
A (γAB) γABd

−α
AB

σ2
B

)

,

(11c)

0 < PFD
A (γAB , γBB) ≤ PAmax, 0 < PHD

A (γAB) ≤ PAmax,

0 < PB ≤ PBmax, (11d)

µFD
A > 0, µHD

A > 0, µB ≥ 0, (11e)

where (11b), (11c), and (11d) represent the constraints for

secrecy outage, reliable connection, power budgets of Alice

and Bob, respectively.

Owing to the reliable connection constraints, i.e., (11c),

the secrecy throughput in (6) is transformed into Ωs =
RSP {γAB ≥ µA}. Considering the switched FD/HD mode

receiver secure strategy, we thus have the concise forms of

ΩFD and ΩHD as

ΩFD , RFD
S P

{

γAB ≥ µFD
A , ργBB ≤ µB

}

(b)
= RFD

S exp
(

−µFD
A

)

(

1− exp

(

−µB

ρ

))

, (12)

ΩHD , RHD
S P

{

γAB ≥ µHD
A , ργBB > µB

}

(c)
= RHD

S exp
(

−µHD
A

)

exp

(

−µB

ρ

)

, (13)

where (b) and (c) follow from γAB ∼ exp (1) and γBB ∼

exp (1), respectively.

We notice that Ωs is a function w.r.t. µHD
A , RHD

S , RFD
S ,

µFD
A and µB , which are coupled with RHD

C , PHD
A , RFD

C ,

PFD
A and PB due to the SOP and reliable connection con-

straints. Therefore, the objective function (11a) of the opti-

mization problem is provided as

max
µB






max

RFD
C ,RFD

S ,PB

µFD
A ,PFD

A

ΩFD + max
RHD

C ,RHD
S

µHD
A ,PHD

A

ΩHD






. (14)

For a given operation mode switch threshold µB , the opti-

mization problem in the HD mode can be treated as a special

case of that in the FD mode with PB = 0. Therefore, we only

need to solve the optimization problem in the latter situation,

and the optimal solutions of the former situation can be

obtained directly. In this section, we perform the optimization

procedure step by step for a given µB . The optimum µB is

solved in the next section.

For ease of notation, we omit FD from ΩFD, RFD
C , RFD

S ,

µFD
A PFD

A and PFD
so , the optimum solutions or expressions for

which are treated as the ones for FD mode Bob by default. We

transform Ω in (12) into Ω̃ , RS exp (−µA) for a given µB .

To maximize Ω̃, we carry on the equivalent transformation:

max
RC ,RS ,µA,PA,PB

Ω̃ ⇐⇒ max
PB

(

max
RC ,RS ,µA,PA

Ω̃

)

. (15)

Therefore, the entire optimization procedure can be decom-

posed into two steps: We maximize Ω̃ by first optimizing

over RC , RS , µA and PA for a given PB , and then further

maximizing the result over the remaining variable PB .

A. Step 1 of the FD Case : Optimum Solutions of

{RC , RS , µA, PA} with a Given PB

Given a PB , we maximize Ω̃ over RC , RS , µA and PA.

Due to (11), a sub-optimization problem is formulated as

max
RC ,RS,µA,PA

Ω̃ = RS exp (−µA) , (16a)

s.t. Pso (γAB, γBB, RC , RS) ≤ ǫ, (16b)

0 < RS < RC ≤ log2

(

1 +
PA (γAB, γBB) γABd

−α
AB

σ2
B + ρPBγBB

)

,

(16c)

0 < PA (γAB, γBB) ≤ PAmax, (16d)

µA ≥ 0. (16e)

Since Ω̃ in (16a) is a function w.r.t. RS and µA, which

are further coupled with RC and PA due to the constraints
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(16b) and (16c), the problem seems difficult to solve. Treating

µA as a function w.r.t. RC and RS , i.e., µA (RC , RS),
we first consider (16c), (16d) and obtain the expression

for PA (γAB, γBB). Then, we analyze (16b) according to

PA (γAB, γBB). We will show that the constraints in prob-

lem (16) will be transformed into an explicit constraint of

µA (RC , RS).

Owing to (16c), we know that to achieve a large RS ,

RC is accordingly adjusted to its maximum value, i.e.,

RC = log2

(

1 +
PA(γAB ,γBB)γABd−α

AB

σ2

B
+ρPBγBB

)

. Therefore, we obtain

an expression for PA under γAB , γBB , RC and RS :

PA (γAB, γBB, RC , RS) =
{

2RC−1
γABd−α

AB

(

σ2
B + ρPBγBB

)

, γAB ≥ µA (RC , RS)

0. γAB < µA (RC , RS)
(17)

Moreover, with (17) and (16d), the feasible range of

PA (γAB, γBB, RC , RS) can be expressed by

PA (γAB, γBB, RC , RS)

≤ 2RC − 1

µA (RC , RS) d
−α
AB

(

σ2
B + PBµB

)

≤ PAmax. (18)

Hence, the transmission is valid only when

µA (RC , RS) ≥ µA1 (RC) ,
2RC − 1

PAmaxd
−α
AB

(

σ2
B + PBµB

)

.

(19)

On the other hand, by plugging PA (γAB, γBB, RC , RS) in

(17) into (16b), the SOP is

Pso (γAB, γBB, RC , RS) =

1− exp (−βλeG (γAB, γBB, RC , RS)) , (20)

where

G (γAB , γBB, RC , RS) =
(

(

2RC−RS − 1
)

PBγABd
−α
AB

(2RC − 1) (σ2
B + ρPBγBB)

+ 1

)−1

×
(

(

2RC−RS − 1
)

σ2
EγABd

−α
AB

(2RC − 1) (σ2
B + ρPBγBB)

)− 2

α

. (21)

Obviously, Pso (γAB, γBB, RC , RS) monotonically decreases

w.r.t. γAB while increasing w.r.t. γBB under given RC and

RS . Since γAB ≥ µA (RC , RS) and ργBB ≤ µB , we have

max
γAB ,γBB

Pso (γAB, γBB, RC , RS)

= 1− exp

(

−βλeG
(

µA (RC , RS) ,
µB

ρ
,RC , RS

))

≤ ǫ,

i.e.,G
(

µA (RC , RS) ,
µB

ρ
,RC , RS

)

≤ τ, (22)

where τ ,
− ln(1−ǫ)

βλe
and G

(

µA (RC , RS) ,
µB

ρ
, RC , RS

)

is a

monotonic decreasing function w.r.t. µA (RC , RS) under given

RC and RS . Define G−1
1

(

x, µB

ρ
, RC , RS

)

as the inverse func-

tion of G
(

µA (RC , RS) ,
µB

ρ
, RC , RS

)

w.r.t. µA (RC , RS),

and we obtain

µA (RC , RS) ≥ µA2 (RC , RS) , G−1
1

(

τ,
µB

ρ
,RC , RS

)

.

(23)

So far, we have obtained two threshold constraints of µA,

i.e., (19) and (23). Recalling the objective function (16a), to

achieve a large Ω̃, we expect a small enough µA (RC , RS),
which is µA (RC , RS) = max {µA1 (RC) , µA2 (RC , RS)}
from (19) and (23). We discuss the two different values,

µA1 (RC) and µA2 (RC , RS), and obtain a result in the

following proposition.

Proposition 1: The on-off threshold µA (RC , RS) satisfies

µA (RC , RS) = µA1 (RC) = µA2 (RC , RS) . (24)

Proof: Please see Appendix B.

With this conclusion, the constraints (16b)-(16e) are equiv-

alent to (24). From (24), we have

(

(

2RC−RS − 1
)

PB

PAmax

+ 1

)−1((
2RC−RS − 1

)

σ2
E

PAmax

)− 2

α

= τ.

(25)

By plugging the threshold in (19) or (23) into (16a)

and defining Y , 2RC − 1, Z , 2RC−RS−1
2RC−1

, U ,
dα
AB

PAmax

(

σ2
B + PBµB

)

, the sub-optimization problem (16) is

transformed into

max
Y,Z

Ω̃ = log2

(

1 + Y

1 + Y Z

)

exp (−UY ) , (26a)

s.t.

(

Y Z
PB

PAmax

+ 1

)−1(

Y Z
σ2
E

PAmax

)− 2

α

= τ. (26b)

According to (26b), Z can be treated as a function w.r.t. Y ,

i.e., Z (Y ). Thus, the problem (26) is simplified as a single

variable sub-optimization problem:

max
Y

Ω̃ = log2

(

1 + Y

1 + Y Z (Y )

)

exp (−UY ) . (27)

Although Ω̃ appears in an implicit function of Y , we can still

prove that it is quasi-concave on Y , and provide the solution

to the problem (27) in the following theorem.

Theorem 2: Given a PB , the secrecy throughput Ω̃ in (27)

is a quasi-concave function [50] of Y , and the optimum Y ∗

that maximizes Ω̃ is the unique root of the following equation:

(

V (Y )
PB

PAmax

+ 1

)−1(

V (Y )
σ2
E

PAmax

)− 2

α

= τ, (28)

where

V (Y ) ,
1 + Y

2((1+Y )U ln 2)−1
− 1. (29)

Proof: Please see Appendix C.

For a given PB , we can efficiently calculate Y ∗ satisfying

(28) by the bisection method, since Ω̃ is quasi-concave on

Y . Z∗ is then obtained by substituting Y ∗ into (26b) and the

maximum secrecy throughput Ω̃∗ is also obtained. We thus

have the optimum solutions R∗
C = log2 (1 + Y ∗) and R∗

S =
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log2

(

1+Y ∗

1+Y ∗Z∗

)

. Moreover, we obtain µ∗
A from (19) or (23)

and P ∗
A from (17).

In the following corollary, we further develop some insights

into the behavior of R∗
C and Ω̃∗.

Corollary 1: The optimum code rate R∗
C decreases with

increasing ǫ or decreasing PAmax and λe. The maximum

secrecy throughput Ω̃∗ increases with increasing PAmax and

ǫ or decreasing λe.

Proof: Please see Appendix D.

Corollary 1 suggests that to enlarge Ω̃∗, a larger power

budget, a looser SOP constraint or a less denser distribution

of eavesdroppers should be met.

B. Step 2 of the FD Case : Optimum Solution of PB

We maximize Ω̃∗ over PB . Owing to (28), Y ∗ can be

treated as a function w.r.t. PB , i.e., Y ∗ (PB). Combining

with (26b), log2

(

1+Y ∗(PB)
1+Y ∗(PB)Z(Y ∗(PB))

)

in (27) can be replaced

by 1
(1+Y ∗(PB))U(PB) ln 2 . The corresponding sub-optimization

problem is thus formulated as

max
PB

Ω̃∗ =
exp (−U (PB)Y

∗ (PB))

(1 + Y ∗ (PB))U (PB) ln 2
, (30a)

s.t. 0 < PB ≤ PBmax. (30b)

The following theorem provides the optimum P
†
B that

maximizes Ω̃∗.

Theorem 3: The secrecy throughput Ω̃∗ in (30a) is a quasi-

concave function of PB , and the optimum P
†
B that maximizes

Ω̃∗ is

P
†
B =

{

P ∗
B , PBmax ≥ P ∗

B

PBmax, PBmax < P ∗
B

(31)

where P ∗
B is the unique root of the following equation:

̟Y ∗ (PB)W (Y ∗ (PB) , PB) (1 + V (Y ∗ (PB) , PB))

= U (PB) V
2 (Y ∗ (PB) , PB) (1 + Y ∗ (PB)) , (32)

and ̟ ,
dα
AB

PAmax
µB , W (Y ∗ (PB) , PB) , ηPAmax +

(1 + η)PBV (Y ∗ (PB) , PB) with η , 2
α

.

Proof: For ease of presentation, we omit PB from

Y ∗ (PB), W (Y ∗ (PB) , PB), V (Y ∗ (PB) , PB) and U (PB),
and treat Y ∗, W (Y ∗), V (Y ∗) and U as functions of PB by

default. We first verify that Ω̃∗ is a quasi-concave function

of PB and solve P ∗
B . Then, we compare P ∗

B with PBmax to

obtain the optimum P
†
B .

To verify that Ω̃∗ is a quasi-concave function of PB , we

are expected to derive that the second-order derivative of Ω̃∗

w.r.t. PB at the point P ∗
B , where the first-order derivative of

Ω̃∗ w.r.t. PB equals 0, is less than 0. Before giving the first-

/second-order derivative of Ω̃∗ w.r.t. PB , from (28) and (29),

we calculate dY ∗

dPB
using the implicit function derivative rule

and
dV (Y ∗)
dPB

as

dY ∗

dPB

= − 1 + Y ∗

U (1 + U (1 + Y ∗))

(

̟ +
U2V 2 (Y ∗) (1 + Y ∗)

W (Y ∗) (1 + V (Y ∗))

)

,

(33)

and

dV (Y ∗)

dPB

=

((

1 +
1

U (1 + Y ∗)

)

dY ∗

dPB

+
̟

U2

)

1 + V (Y ∗)

1 + Y ∗
.

(34)

Considering (33), the first-order derivative of Ω̃∗ w.r.t. PB

from (30a) is provided as

dΩ̃∗

dPB

=

((

̟

U
+

UV 2 (Y ∗) (1 + Y ∗)

W (Y ∗) (1 + V (Y ∗))

)

−
(

Y ∗ +
1

U

)

̟

)

Ω̃∗.

(35)

We assume there is a variable P ∗
B satisfying dΩ∗

dPB
|PB=P∗

B
= 0.

Thus, we obtain an equality expressed as (32). To verify that

P ∗
B is the unique root of (32) and Ω̃∗ achieves its maximum

value at P ∗
B , we should consider the sign of second-order

derivative of Ω̃∗ w.r.t. PB at P ∗
B .

Considering (33), (34) and (35), we have the second-order

derivative of Ω̃∗ w.r.t. PB at P ∗
B (PB = P ∗

B has been

substituted into the following Y ∗, W (Y ∗), V (Y ∗) and U

in this proof.)

d2Ω̃∗

dPB
2 |PB=P∗

B
= − Ω̃∗ (P ∗

B)

W (Y ∗) (1 + V (Y ∗))

×
(

̟ (1 + η)Y ∗ (1 + V (Y ∗))H1 (Y
∗, P ∗

B)

+
̟V (Y ∗)

Y ∗ (1 + (1 + Y ∗)U)
H2 (Y

∗, P ∗
B)

)

, (36)

where

H1 (Y
∗, P ∗

B) , V (Y ∗)− ̟Y ∗P ∗
B

(1 + Y ∗)U
(1 + V (Y ∗)) ,

H2 (Y
∗, P ∗

B) , 2Y ∗2 + 2Y ∗ (1 + Y ∗)U (Y ∗ − V (Y ∗))

− 2 (1 + Y ∗)V (Y ∗) + V (Y ∗) .

Clearly, the sign of d2Ω̃∗

dPB
2 |PB=P∗

B
is determined by the values

of H1 (Y
∗, P ∗

B) and H2 (Y
∗, P ∗

B).
The equality in (32) can be transformed into V (Y ∗) =
̟Y ∗W (Y ∗)

(1+Y ∗)UV (Y ∗) (1 + V (Y ∗)). With η ∈ (0, 1), we have

W (Y ∗) ≥ P ∗
BV (Y ∗) from the expression for W (Y ∗). Thus,

H1 (Y
∗, P ∗

B) satisfies

H1 (Y
∗, P ∗

B) ≥
̟Y ∗P ∗

BV (Y ∗)

(1 + Y ∗)UV (Y ∗)
(1 + V (Y ∗))

− ̟Y ∗P ∗
B

(1 + Y ∗)U
(1 + V (Y ∗))

= 0. (37)

Considering the expression for V (Y ∗) in (29), we have Y ∗ >

V (Y ∗) and 1+Y ∗

1+V (Y ∗) = 2((1+Y ∗)U ln 2)−1

. Due to lnx ≤ x−1
with x ≥ 1, the following equivalent transformation holds:

1

(1 + Y ∗)U
≤ 1 + Y ∗

1 + V (Y ∗)
− 1

⇐⇒ (1 + Y ∗)U (Y ∗ − V (Y ∗)) ≥ 1 + V (Y ∗) . (38)

Thus, H2 (Y
∗, P ∗

B) satisfies

H2 (Y
∗, P ∗

B) ≥ 2Y ∗ (1 + Y ∗)− V (Y ∗)

≥ V (Y ∗) (2 (1 + Y ∗)− 1) > 0. (39)

Combining (36) and (37), (39), we have d2Ω̃∗

dPB
2 |PB=P∗

B
< 0.

Ω̃∗ in (30a) is a quasi-concave function of PB and achieves

its maximum value at the point P ∗
B . Referring to (30b), we

compare P ∗
B with PBmax. Since Ω̃∗ first increases and then
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Algorithm 1 Off-line Part of the Switched FD/HD Receiver

Scheme

1: Input: Set dAB , λe, ρ, α, σ2
B , σ2

E , ǫ, PAmax, PBstep,

PBmax and µ
step
B , µmax

B ;

2: Initialize: Niter = 1,Ωs (Niter) = 0, Nnum = 0;

3: Solve RHD∗
C in (41) (bisection method), and then we

obtain Ω∗
HD from (40a);

4: for µB = 0 : µstep
B : µmax

B do

5: for PB = 0 : PBstep : PBmax do

6: Solve RFD∗
C in (28) (bisection method);

7: if RFD∗
C and PB satisfy (32) then

8: Break;

9: end if

10: end for

11: Plug R
FD†
C = RFD∗

C and P
†
B = PB into (30a) to obtain

Ω†
FD;

12: Niter = Niter + 1,Ωs (Niter) = Ω†
FD +Ω∗

HD;

13: if Ωs (Niter) ≤ Ωs (Niter − 1) then

14: Ωs (Niter) = Ωs (Niter − 1);
15: else

16: µ⋆
B = µB , P ⋆

B = P
†
B , RHD⋆

C = RHD∗
C , RFD⋆

C =

R
FD†
C ;

17: end if

18: end for

19: Ω⋆
s = Ωs (Niter);

20: Substitute
{

µ⋆
B , R

HD⋆
C

}

and
{

µ⋆
B , R

FD⋆
C , P ⋆

B

}

into the

HD and FD case, respectively.

21: Solve RFD⋆
S (bisection method), RHD⋆

S from (25),

µHD⋆
A , µFD⋆

A from (19), and PHD⋆
A , PFD⋆

A from (17).

22: Output: The maximum secrecy throughput Ω⋆
s

and the corresponding optimum solutions µ⋆
B, P

⋆
B ,

RHD⋆
C , RHD⋆

S , µHD⋆
A , PHD⋆

A , RFD⋆
C , RFD⋆

S , µFD⋆
A , PFD⋆

A .

decreases w.r.t. PB , the optimum P
†
B is P ∗

B if PBmax ≥ P ∗
B ,

or otherwise P
†
B = PBmax. The proof is completed.

With the above two-step procedure, we have solved the opti-

mization problem for FD Bob. The optimum P
†
B is obtained by

solving (32), and the maximum Ω̃† is achieved by substituting

P
†
B into Ω̃∗. Since Y ∗ is a function of PB , we know that R∗

C ,

R∗
S , µ∗

A and P ∗
A are functions of PB . With P

†
B , we have the

optimum solutions R
†
C , R

†
S , µ

†
A and P

†
A.

We develop some insights into Ω̃† and P
†
B = P ∗

B in the

following corollary.

Corollary 2: As ǫ → 1 or λe → 0, R∗
C is close to zero for

a given PB , and Ω̃∗ decreases w.r.t. PB . Thus, the maximum

secrecy throughput Ω̃† is obtained at P
†
B = 0. When ǫ → 0

or λe → ∞, P
†
B decreases with increasing ǫ or decreasing λe,

while Ω̃† is totally opposite.

Proof: Please see Appendix E.

Corollary 2 shows that when the upper bound of the SOP is

very small or the eavesdroppers are densely distributed, Ω̃† is

enhanced. In contrast, Ω̃† is obtained at PB = 0.

C. HD case

For HD Bob, considering the secrecy throughput in (13),

the optimization problem (11) is transformed into

max
RHD

C ,RHD
S ,µHD

A ,PHD
A

ΩHD = RHD
S exp

(

−µHD
A

)

exp

(

−µB

ρ

)

,

(40a)

s.t. PHD
so

(

γAB, R
HD
C , RHD

S

)

≤ ǫ, (40b)

0 < RHD
S < RHD

C ≤ log2

(

1 +
PHD
A (γAB) γABd

−α
AB

σ2
B

)

,

(40c)

0 < PHD
A (γAB) ≤ PAmax, (40d)

µHD
A ≥ 0. (40e)

Through a similar process as Step 1, we obtain the optimum

RHD∗
C as follows.

Corollary 3: The optimum RHD∗
C for HD Bob is the unique

root of equation:

2R
HD
C

(

RHD
C − log2

(

1 +
PAmax

σ2
E

τ−
α
2

))

=
PAmax

σ2
Bd

α
AB ln 2

.

(41)

Proof: Substituting PB = 0 into (28) of Theorem 2 and

replacing Y with 2R
HD
C − 1, we obtain the equation (41).

We can solve (41) to get the optimum RHD∗
C by the

bisection method. RHD∗
S is then obtained by substituting

RC = RHD∗
C and PB = 0 into (26b) and replacing RS with

RHD∗
S . Moreover, we have the optimum solutions µHD∗

A from

(19) or (23) and PHD∗
A from (17), and the maximum secrecy

throughput ΩHD∗ is also obtained.

V. ADAPTIVE SWITCHED FD/HD RECEIVER SCHEME

So far we have obtained the optimum solutions when Bob

works in the FD or HD mode for a given µB , and the rest work

of (14) is to calculate the optimum mode switch threshold µB .

The optimization problem to maximize Ωs becomes a single

variable optimization problem, which is formulated as

max
µB

Ωs = Ω†
FD +Ω∗

HD, (42a)

s.t. µB ≥ 0. (42b)

Considering that both (28) and (32) are implicit equations,

the roots Y † (µB) and P
†
B (µB) are thus implicit and Ω†

FD =

Ω̃†
FD

(

1− exp
(

−µB

ρ

))

solved from (30a) has no explicit

formulation. Moreover, the expression for Ω∗
HD resulted from

(40a) is not explicit due to the implicit root RHD∗
C (µB) of

(41). The problem to maximize Ωs in (42a) should be solved

numerically by a line search over µB .

Detailed algorithms to get
{

RHD⋆
C , RHD⋆

S , µHD⋆
A , PHD⋆

A

}

,
{

RFD⋆
C , RFD⋆

S , µFD⋆
A , PFD⋆

A , P ⋆
B

}

and µ⋆
B are summarized in

Algorithm 1, in which µ
step
B and µmax

B denote the step size

and the maximum value of µB and PBstep determines the step

size of PB . We have to emphasize that all these parameters can

be optimized off-line, and are fixed on-line except PFD⋆
A and

PHD⋆
A . In Algorithm 2, we provide all the on-line operations

of the proposed scheme, which consists of selecting the duplex

modes and calculating the powers PFD⋆
A or PHD⋆

A .
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Algorithm 2 On-line Part of the Switched FD/HD Receiver

Scheme

1: Input: Evaluate γAB and γBB;

2: Initialize: The transmitter and the receiver stay silent at

the beginning;

3: if γBB ≤ µ⋆
B

ρ
then

4: if γAB ≥ µFD⋆
A then

5: Substitute γAB and γBB into PFD⋆
A . The transmitter

transmits confidential signal with power PFD⋆
A , and

the receiver transmits jamming signal with power P ⋆
B;

6: end if

7: else

8: if γAB ≥ µHD⋆
A then

9: Substitute γAB into PHD⋆
A . The transmitter transmits

confidential signal with power PHD⋆
A , and the re-

ceiver works in the HD mode;

10: end if

11: end if

12: Loop through On-line Part until the inputs of Off-line

Part change or this scheme stops. In the former case, the

communication pair restarts executing Off-line Part.

A. Complexity Analysis

The computational consumption of the off-line optimization

mainly depends on the processes of the bisection method

and the number of loop iterations. We first analyze the

computational complexity of the three processes of the

bisection method. Denote bci (resp. bsi ) and bcp (resp. bsp) as

the required interval and precision to search RHD∗
C /RFD∗

C

(resp. RFD⋆
S ) with the bisection method, respectively. We

need to calculate (41) at most log2
bci
bcp

times to search the null

point of it. Since the cost of calculating the value of (41)

is O (2), the cost of solving RHD∗
C is o1 = O

(

2 log2
bci
bcp

)

.

Similarly, the computational complexities of solving RFD∗
C

from (28) and RFD⋆
S from (25) are o2 = O

(

13 log2
bci
bcp

)

and

o3 = O
(

5 log2
bsi
bsp

)

, respectively. Then, we count the number

of loop iterations, i.e., N =
(

µmax
B

µ
step

B

+ 1
)(

PBmax

PBstep
+ 1
)

.

Therefore, the computational complexity of the off-

line optimization equals about o1 + No2 + o3, i.e.,

O
(

2 log2
bci
bcp

+ 13
(

µmax
B

µ
step

B

+ 1
)(

PBmax

PBstep
+ 1
)

log2
bci
bcp

+ 5 log2
bsi
bsp

)

.

The computational consumption of the on-line operation

with specific channel realizations equals about O (1), which is

ignorable compared with the one of the off-line optimization.

B. Metrics for Comparison

To verify that the secrecy transmission scheme with a

switched FD/HD receiver is superior to which only using an

HD or FD receiver, we consider the following metrics.

We denote the secrecy throughputs for FD and HD modes
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Fig. 3: Maximum secrecy throughput Ω
∗
HD vs. PAmax (dBm) for

different λ′
es and ǫ′s, with ρ = µB = −70dBm.

when ργBB ≤ µB as

Ωcomp
FD , RFD

S exp
(

−µFD
A

)

(

1− exp

(

−µB

ρ

))

, (43)

Ωcomp
HD , RHD

S exp
(

−µHD
A

)

(

1− exp

(

−µB

ρ

))

, (44)

for fair comparisons. We further compare the probability of

Bob operating in the FD case and in the HD case for our

proposed scheme, which are defined as

PFD , exp
(

−µFD
A

)

(

1− exp

(

−µB

ρ

))

, (45)

PHD , exp
(

−µHD
A

)

exp

(

−µB

ρ

)

. (46)

In the next section, {Ωcomp
FD ,Ωcomp

HD } and {PFD,PHD} are

analyzed numerically.

VI. NUMERICAL RESULTS

In this section, we present several numerical examples to

validate our theoretical analysis. In all simulation experiments,

we preset the path loss exponent α = 4, the distance between

Alice and Bob dAB = 10m, and the noise variances at Bob

and Eves σ2
B = σ2

E = −90dBm.

A. Secrecy Throughput Optimization with HD Receiver

Fig. 3 depicts the maximum secrecy throughput Ω∗
HD solved

from (40a) versus the transmit power budget of Alice PAmax

for different values of λe and ǫ when Bob operates in the

HD mode for a given µB . The relationship between Ω∗
HD and

PAmax, λe, ǫ in Corollary 1 is validated here. Ω∗
HD increases

with the growth of small PAmax, for a reliable link is more

likely to developed between Alice and Bob. With increasing

PAmax, a secrecy outage event is more likely to occur. When

PAmax is sufficiently large, Ω∗
HD reaches a plateau since there

is a balance between the reliable connection probability and

the secrecy outage probability.
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Fig. 4: Maximum secrecy throughput Ω
†
FD vs. PAmax (dBm) with

PBmax = 0 or 20dBm (left) and PBmax (dBm) with PAmax = −10

or 10 dBm (right), for different values of ǫ with λe = 10
−4 and

ρ = µB = −70dBm.

B. Secrecy Throughput Optimization with FD Receiver

Fig. 4 illustrates how the maximum secrecy throughput

Ω†
FD solved from (30a) varies w.r.t. the transmit power budgets

PAmax and PBmax for different ǫ. Ω†
FD increases w.r.t.

ǫ as Corollary 2 shows. Similarly to the performance of

Ω∗
HD , Ω†

FD first increases and then almost stays static with

increasing PAmax as shown in Fig. 4(a). Fig. 4(b) shows that

the maximum secrecy throughput first increases w.r.t. PBmax

since the jamming signal confuses Eves effectively. When SI

is gradually dominant, a certain PBmax exists to balance the

impact of SI and jamming to Eves and Ω†
FD stays unchanged.

C. Maximum Secrecy Throughput with Switched FD/HD Re-

ceiver

Fig. 5 plots the maximum secrecy throughputs Ωcomp
FD and

Ωcomp
HD solved from (43) and (44), respectively, versus PAmax

for different values of µB . Ωcomp
FD is larger than Ωcomp

HD when

µB is small, since the jamming signal transmitted by Bob

interferes with Eves. With increasing µB , the superiority to

Bob in the FD mode first increases and then decreases as the

figure shows. Ωcomp
FD is smaller than Ωcomp

HD when µB is large

enough, which confirms Bob stopping jamming when SI is

dominant. For two curves of µB = −40dBm, whether Ωcomp
FD
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Fig. 5: Maximum secrecy throughput Ω
comp
FD and Ω

comp
HD vs. PAmax

(dBm) for different µ′
Bs with λe = 10

−5, ǫ = 0.05, PBmax =

10dBm and ρ = −70dBm.

-20 -15 -10 -5 0 5 10

Budget of Transmit Power of Alice, P
Amax

1

2

3

4

5

6

7

8

9

10

M
ax

im
um

 S
ec

re
cy

 T
hr

ou
gh

pu
t

ǫ=0.05 ǫ=0.01

Almost HD Mode,µB=-100dBm

Almost FD Mode,µB=-40dBm

Switched FD/HD Mode

Fig. 6: Maximum secrecy throughput of three transmission schemes
vs. PAmax (dBm) for different ǫ′s with λe = 10

−5, PBmax =

10dBm and ρ = −70dBm.

is superior to Ωcomp
HD depends on PAmax. We should note that

the least PB is predefined as −10dBm above, or otherwise the

optimum PB is zero for sufficiently large µB or small PAmax

and thus the FD mode degenerates into the HD mode.

Fig. 6 plots the maximum secrecy throughputs for the almost

FD Bob, almost HD Bob, and switched FD/HD Bob all solved

from our proposed scheme versus PAmax for different values

of ǫ. Obviously, the secrecy throughput with switched FD/HD

Bob is always larger than the ones for FD and HD Bob. We

should note that with µB = −40dBm and ρ = −70dBm,

i.e., γBB ≤ 103, Bob almost only operates in the FD mode

considering γBB distributed as exp (1). On the other hand,

with µB = −100dBm and ρ = −70dBm, Bob almost

operates in the HD mode only.

Fig. 7 illustrates the probability of Bob operating in the

FD mode PFD solved from (45) and in the HD mode PHD

solved from (46) of our proposed transmission scheme change

with ρ for different values of ǫ. In accordance with the former

analysis, PFD decreases with a worse suppression level of SI,

while PHD is totally opposite. Moreover, PFD decreases and

PHD increases w.r.t. ǫ.

Fig. 8 interprets how the maximum secrecy throughput



11

-80 -70 -60 -50 -40 -30

Level of SI Suppression, ρ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

ba
bi

lit
y

ǫ=0.05

ǫ=0.01

FD Mode

HD Mode

Fig. 7: Probability of Bob operating in the FD mode PFD or the
HD mode PHD vs. ρ (dBm) for different ǫ′s with λe = 10

−5,
PAmax = 10dBm and PBmax = 30dBm.

Ω⋆
s changes with PAmax and PBmax for different values of

ǫ and ρ. Ω⋆
s decreases with increasing ρ since the secrecy

performance is damaged by badly suppressed SI. As shown in

Fig. 8(a), when PAmax grows, Ω⋆
s increases until it approaches

a static value. Furthermore, the minimum PAmax at which

Ω⋆
s stays unchanged (turning point) depends on the larger

one between the two turning points’ PAmax of the secrecy

throughput for FD and HD Bob, respectively, since the ones

of Ω†
FD and Ω∗

HD are irrelevant to µB seen from Fig. 5. As

shown in Fig. 8(b), Ω⋆
s increases until it approaches a static

value with the growth of PBmax. Moreover, PBmax of Ω⋆
s’s

turning point is practically the same as the one of Ω†
FD, since

PBmax is irrelevant to µB and PBmax has no impact on the

secrecy performance for HD Bob. Therefore, to enhance the

secrecy throughput, we are inspired to rationally relax upper

bound of SOP or to expand power budgets of Alice and Bob.

VII. CONCLUSION

In this paper, we have provided a low complexity adaptive

D2D secure transmission scheme with a switched FD/HD

mode jamming receiver, according to the ICSIs of the main

link and residual SI link, against PPP randomly distributed

eavesdroppers. Two groups of optimized transceiver parame-

ters for the FD and HD receiver, respectively, and the optimum

adaptive mode switch threshold to maximize the secrecy

throughput under the SOP constraint, have been obtained. The

algorithm is consisted of the off-line and on-line parts, and

the computational complexity of the on-line operations is low.

Simulation results show that the secrecy throughput increases

with the growth of budgets of transmit power and jamming

power respectively, until it monotonically reaches a plateau.

This indicates an existing balance between the reliable con-

nection probability and the SOP. Numerical comparisons on

the secrecy throughput verify the superiority of the proposed

switched FD/HD mode receiver over an FD or HD mode

receiver. Moreover, the secrecy throughput would be enhanced

with a larger suppression level of SI, sparser eavesdroppers or

a less rigorous SOP constraint.
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Fig. 8: Maximum secrecy throughput Ω
⋆
s vs. PAmax (dBm) with

PBmax = 10dBm (left) and PBmax (dBm) with PAmax = 10dBm
(right) for different values of ǫ and ρ with λe = 10

−5.

APPENDIX A

PROOF OF LEMMA 1

Considering the SINR ϕE of (4), we have

FϕE
(x)

= P

{

max
PAγAkd

−α
Ak

σ2
E + PBγBkd

−α
Bk

< x

}

= EΦ

[

∏

ek∈Φ

EγBk

[

P

{

γAk < x
σ2
E + PBγBkd

−α
Bk

PAd
−α
Ak

|γBk

}]

]

(d)
= EΦ

[

∏

ek∈Φ

EγBk

[

1− exp

(

−x
σ2
E + PBγBkd

−α
Bk

PAd
−α
Ak

)]

]

(e)
= EΦ

[

∏

ek∈Φ

∫ +∞

0

exp (−γBk)

×
(

1− exp

(

−x
σ2
E + PBγBkd

−α
Bk

PAd
−α
Ak

))

dγBk

]

(f)
= exp

(

− λe

∫ 2π

0

∫ +∞

0

(

1 + x
PB

PA

dαAk

dαBk

)−1

× exp

(

−x
σ2
E

PA

dαAk

)

dAkddAkdθk

)

, (47)
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where (d) and (e) follow from γAk ∼ exp (1) and γBk ∼

exp (1), respectively, and (f) holds for the probability gener-

ating functional lemma (PGFL) over PPP [51].

APPENDIX B

PROOF OF PROPOSITION 1

Case 1: If µA1 (RC) ≥ µA2 (RC , RS), we can obtain

G
(

µA1 (RC) ,
µB

ρ
, RC , RS

)

≤ τ according to µA2 (RC , RS)

in (23). Combining with µA1 (RC) in (19), we then obtain the

following inequality

(

(

2RC−RS − 1
)

PB

PAmax

+ 1

)−1((
2RC−RS − 1

)

σ2
E

PAmax

)− 2

α

≤ τ,

(48)

and the objective function in (16a) is transformed into

Ω̃ = RS exp

(

−
(

2RC − 1
) (

σ2
B + PBµB

)

PAmaxd
−α
AB

)

. (49)

Obviously, Ω̃ in (49) is a decreasing function of RC . To have

a small RC , the left-hand side of (48) is set to its maximum

value τ , which refers to G
(

µA1 (RC) ,
µB

ρ
, RC , RS

)

= τ , i.e.,

µA1 (RC) = µA2 (RC , RS) from (23).

Case 2: If µA1 (RC) ≤ µA2 (RC , RS), we can obtain

G
(

µA1 (RC) ,
µB

ρ
, RC , RS

)

≥ τ from (23). Combining with

µA1 (RC) in (19), we then obtain the inequality

(

(

2RC−RS − 1
)

PB

PAmax

+ 1

)−1((
2RC−RS − 1

)

σ2
E

PAmax

)− 2

α

≥ τ.

(50)

The objective function (16a) combining with µA2 (RC , RS) in

(23) is expressed by

Ω̃ = RS exp

(

−G−1
1

(

τ,
µB

ρ
,RC , RS

))

. (51)

We thus develop the relationship between Ω̃ and RC . The

partial derivative of Ω̃ w.r.t. RC is

∂Ω̃

∂RC

= −RS exp (−µA2 (RC , RS))
∂µA2 (RC , RS)

∂RC

= RSµA2 (RC , RS) exp (−µA2 (RC , RS))

×
(

1

2RC−RS − 1
− 1

2RC − 1

)

ln 2. (52)

Clearly, ∂Ω̃
∂RC

> 0 and Ω̃ increases w.r.t. RC . As a

result, RC is expected to be large enough. The left-

hand side of (50) is set to its minimum value τ , which

means G
(

µA1 (RC) ,
µB

ρ
, RC , RS

)

= τ , i.e., µA1 (RC) =

µA2 (RC , RS) from (23).

Through discussions of the two cases, we obtain equations

in (24). The proof is completed.

APPENDIX C

PROOF OF THEOREM 2

From (26b), we have
dZ(Y )
dY

= −Z(Y )
Y

using the derivative

rule for implicit functions. The first-order derivative of Ω̃ w.r.t.

Y in (27) is then

∂Ω̃

∂Y
= exp (−UY )

(

1

(1 + Y ) ln 2
− U log2

(

1 + Y

1 + Y Z (Y )

))

.

(53)

Assume there is a variable Y ∗ allowing ∂Ω̃
∂Y

|Y=Y ∗ = 0. That

is, Y ∗ satisfies the equality given by

1

(1 + Y ) ln 2
= U log2

(

1 + Y

1 + Y Z (Y )

)

. (54)

The second-order derivative of Ω̃ w.r.t. Y at Y ∗ is

∂2Ω̃

∂Y 2
|Y=Y ∗ = −U (1 + Y ∗) + 1

(1 + Y ∗)
2
ln 2

exp (−UY ∗) . (55)

Clearly, ∂2Ω̃
∂Y 2 |Y=Y ∗ < 0, and Ω̃ is a quasi-concave function of

Y . Plugging (54) into (26b) finishes the proof.

APPENDIX D

PROOF OF COROLLARY 1

1) Relationships between R∗
C , Ω̃∗ and ǫ, λe:

Considering
dV (Y ∗)
dY ∗

= (1+V (Y ∗))(1+U(1+Y ∗))

U(1+Y ∗)2
> 0, the

left side of (28) decreases with R∗
C with the other variables

unchanged. When ǫ decreases or λe increases, the left side of

(28) needs reducing, i.e., enhancing R∗
C , to ensure the equality.

We thus obtain the relationships between R∗
C and ǫ, λe.

From (30a), we find that the maximum Ω̃∗ for a given PB

decreases with increasing R∗
C . Therefore, Ω̃∗ increases with

increasing ǫ or decreasing λe.

2) Relationship between R∗
C , Ω̃∗ and PAmax:

Since τ is independent of PAmax, PAmax increases to

ensure the equation (28) if V (Y ∗) increases. Therefore, R∗
C

increases with increasing PAmax.

According to Y ∗ > V (Y ∗) from (29), the first-order

derivative of Ω̃∗ w.r.t. PAmax satisfies

dΩ̃∗

dPAmax

=
(Y ∗ − V (Y ∗)) exp (−UY ∗)

(1 + V (Y ∗)) (1 + Y ∗)PAmax ln 2
> 0. (56)

We verify that Ω̃∗ increases w.r.t. PAmax.

APPENDIX E

PROOF OF COROLLARY 2

1)When ǫ → 1 or λe → 0: Referring to 1) in Appendix

D, the optimum Y ∗ is close to zero, and thus the secrecy

throughput Ω̃∗ → 1
U ln 2 from (30a) decreases w.r.t. PB .

2)When ǫ → 0 or λe → ∞: We find V (Y ∗)PB ≫ 1 from

(28), where V (Y ∗) increases with Y ∗ and PB according to

(29) and 1) in Appendix D. If PB ≫ 1, V (Y ∗) → Y ∗ and the

equality in (32) is transformed into ̟W (Y ∗) = UV (Y ∗).
If V (Y ∗) ≫ 1, Y ∗ ≫ 0 and we also have ̟W (Y ∗) =
UV (Y ∗) from (32). Therefore, in such a limiting case, we

have
V (Y ∗)

PAmax

=
1

σ2

B

ηµB
− PB

. (57)
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Substituting (57) into (28), we obtain





PB

σ2

B

ηµB
− PB

+ 1





−1



σ2
E

σ2

B

ηµB
− PB





− 2

α

= τ. (58)

P ∗
B is the unique root of above equality and decreases with ǫ

while increasing with λe. Hence, the the first-order derivative

of Ω̃† w.r.t. P
†
B is written as

dΩ̃†

dP
†
B

= −
(

− ̟

U †
+

U †V 2
(

Y †
) (

1 + Y †
)

PAmax (1 + V (1 + Y †))
+

̟

U †
+̟Y †

)

× exp
(

−U †Y †
)

U † (1 + Y †) ln 2

< 0. (59)

The limiting secrecy throughput Ω† decreases with P
†
B here

and we complete the proof.
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