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Abstract

The majority of modern communication systems adopts quadrature amplitude modulation (QAM)

constellations as transmission schemes. Due to their square structure, however, QAM do not provide

satisfying protection to phase noise effects as the number of constellation points grows, increasing at the

same time their peak to average power ratio (PAPR). This requires an expensive power amplifier and

oscillator at the transmitter to guarantee low distortion, complicating the adoption of dense transmission

schemes in practical high-data rate systems. In this paper, we construct a coded modulation scheme

based on regular amplitude and phase shift keying (RAPSK) modulations. We propose a novel multilevel

coding (MLC) labeling for the constellation points separating amplitude and phase domains. We provide

a novel multistage decoding (MSD) scheme allowing for a low-complexity log-likelihood ratio (LLR)

calculation for soft-input decoding of component codes, along with a suitable rate design. Finally, we

compare the proposed scheme with state-of-the-art QAM constellations and optimized constellations in

the presence of phase noise.
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I. INTRODUCTION

The adoption of high data rate communication systems has become a necessity at many levels

of modern networks, in order to be able to cope with the growing data and traffic demands of

both end-users and operators. In particular, researchers focused on the development of effective

solutions to deploy high rate point-to-point solutions for both wireless fixed microwave wireless

backhaul links and wired optical fiber links scenarios [1]. One approach is to increase the number

of bits per symbol sent on a fixed bandwidth, since the signal-to-noise ratio (SNR) achieved on

short distances potentially enables very high density constellations [2]. However, increasing the

density of classical quadrature amplitude modulation (QAM) comes with several drawbacks in

practical applications. One major problem is that the peak to average power ratio (PAPR) of

QAM constellations greatly increases with the number of constellation points. The wide range of

amplitude values of such constellations can result in saturation of the amplifier or alternatively

encourage the use of large back-offs that impact power efficiency and subsequently SNR at the

receiver [3]. No satisfying solutions exist for single carrier systems, and most manufacturers use

more expensive power amplifiers with the required dynamic range [4] or increase the backoff in

their systems to compensate.

Furthermore, dense QAM constellations are very sensitive to phase noise, which rotates

the received signal so that points farther away from the center are more affected than points

closer to the center [5]. Unfortunately, classic QAM constellations do not permit to change

the density of the constellation depending on the distance of the point from the origin. In

practical communication systems, the limited robustness to phase noise of QAM constellations

can be compensated in part by using better oscillators or protecting the outer points through set

partitioning [6].

On the other hand, circular constellations naturally adapt to this scenario; circularly symmetric

64-point constellation proposed in [7] yields higher robustness to phase noise than QAM, while
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guaranteeing a high energy efficiency, however without targeting PAPR reduction. Irregular

Amplitude and Phase Shift Keying (APSK) constellations have been used in standards [8] and

applications [9], typically employing Gray labeling to support bit-interleaved coded modulation

(BICM) with a limited number of points. While it is possible to design a coded modulation

scheme for phase noise channels assuming that the phase noise is a general form of fading [10],

using the specific structure of phase noise provides interesting guidelines into the design process.

Similar to the results of [11], recent works showed that optimized constellation designs based

on mutual information in phase noise channels converges toward irregular APSK solutions [12],

[13], [14]. However, since such solutions do not exhibit a predefined structure, their decoding

complexity is still rather high, and they usually require careful and costly black-box optimization

with respect to the system parameters. A low density APSK constellation supporting Gray

labeling has also been proposed in [15], which is suitable for BICM approaches [16] and called a

product-APSK constellation. The authors further show in [17] that product-APSK constellations

can provide substantial gains over QAMs under white noise Gaussian channels in some SNR

regimes. However, the labeling of [16] does not target high data rate applications for which

the support for multilevel coding (MLC) approaches [18] would be preferred. Some specific

irregular APSK with set partitioning have been developed in [19], however not allowing for

straightforward generalizations to high density constellations.

In this paper, we design a dense Regular Amplitude and Phase Shift Keying (RAPSK)

constellation for which the constellation points are arranged in concentric rings. Similarly to [15],

[16], [17], each ring carries the same number of points, and points on different rings are

aligned on semi-lines starting from the center; however, we further require adjacent rings to

be equidistant. This construction provides an inherent robustness to phase shifts effect and

can be parametrized for low PAPR. The additional constraints with respect to product-APSK

constellations leads us away from optimality with respect to channels affected only by white

Gaussian noise [17]. However, the main benefit of our proposal is that it allows for a labeling
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Fig. 1. RAPSK constellation with N = 4 rings of K = 64 points.

based on the MLC approach suitable for a soft demodulator whose complexity does not depend

on the constellation size. We describe the labeling and coding process, as well as a noise analysis

under both white and phase noises. We also provide a fast log-likelihood ratio (LLR) computation

which has a fixed complexity and does not depend on the constellation size. As a necessary

component to maximize the performance of MLC approaches, we also describe a rate design for

the bit channels in the MLC scheme. The merit of this constellation and code design is finally

assessed by means of Monte Carlo simulations, for which extended irregular repeat-accumulate

low density parity check codes (eIRA LDPC) [20] are used as component codes for the MLC

scheme.

II. PROPOSED CONSTELLATION DESIGN

We construct the proposed RAPSK constellation as follows, and refer the reader to Fig. 1. We

initially take a segment lying on the abscissa of a two-dimensional Cartesian coordinates system

having the two extremities located at distances r0 an rN−1. Next, we consider N equidistant

points over this segment, i.e., the first one at coordinates (r0, 0), the last one at (rN−1, 0) and

N − 2 points in between, each one at distance D = (rN−1 − r0)/(N − 1) from its two closest
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neighbors. The other constellation points are obtained by rotating this original segment K − 1

times. By construction, the radius rn of the (n+ 1)-th ring and the angle θk of the k-th rotated

version of the original segment are thus given by

rn = r0 + nD θk =
2πk

K
. (1)

This design results in a constellation composed of N concentric rings, each containing K points

which share a constant phase in groups of N , for a total of M = NK constellation points. In

the following, the number of constellation points M is limited to powers of two to allow for

MLC demodulation.

The constellation is thus formed by N concentric circles. Given that there is an even number

of points per ring, the power of the constellation, denoted as P , is equal to

P =
1

N

N−1∑
n=0

r2n = r20 +
2Dr0
N

N−1∑
n=0

n+
D2

N

N−1∑
n=0

n2

= r20 + (N − 1)r0D +
(N − 1)(2N − 1)

6
D2. (2)

This controls the relationship between the parameters N , D, r0 and the desired power, as a

polynomial of degree 2 over either r0 or D. It is therefore possible to normalize the power

through either of these parameters; we chose in the sequel to parametrize the constellation

through the innermost radius r0 and choose D so that P = 1 in (2). This results in an inter-ring

distance that is a function of both r0 and N and may be written as

D =
3r0

(2N − 1)

(√
1 +

2(1− r20)(2N − 1)

3r20(N − 1)
− 1

)
. (3)

A. Design rationale

With Gaussian noise channels, the product-APSK constellation design is shown to be com-

petitive in [17] in some SNR regimes. However, the radii of the rings has to be chosen to

mimic a Gaussian input distribution [15]. Each channel of the product-APSK constellation can

be decoded independently without incurring high performance loss in theory [17], but building
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an efficient high-rate coding scheme is not straightforward. Considering phase noise in addition

to Gaussian noise, our constellation design aims at striking a good tradeoff between optimality

and engineering flexibility. Since all rings contain the same number of points, it is less sensitive

to phase noise effects than QAM constellations. Choosing N and K as powers of 2 along with

an equidistant ring radius distribution enables advanced multilevel coding schemes, as detailed

in the remainder of the article. Finally, it is very well suited to high-gain power amplifiers, while

packing rings away from the center reduces the PAPR without modifying the decoding process.

Furthermore, this constellation is easier to pre-equalize than equivalent QAMs [21] by designing

the circle radii to be equidistant after equalization, and assigning a single phase rotation to each

circle to compensate for the amplitude-dependent phase shifts. All the equalization can thus

be handled through only N complex coefficients. This engineering benefit is also shared by

product-APSK constellations in general [17].

B. Constellation parameters analysis

Overall, the proposed RAPSK constellations have more degrees of freedom in their design than

QAM constellations. The constellation parameters N , K and r0 can be freely chosen depending

on the target performance and environmental parameters such as the average level of phase or

white noise. One could also use feedback on the detection performance to adapt the parameters,

e.g. reducing the number of points per ring if the angular error rate is too high or decreasing

the distance between the circles to reduce the PAPR if the radial error rate allows for it. If we

define the normalized ring distance as D̃ = D/r0, the PAPR of a RAPSK constellation can be

calculated as

PAPR =
r2N
P

=
N
[
1 + (N − 1)D̃

]2
∑N−1

n=0

[
1 + nD̃

]2 . (4)

This relationship allows one to choose D̃ to reach a target PAPR: when the inter-ring distance D̃

is reduced towards 0, the PAPR tends to 1. As D̃ increases towards infinity however, the terms
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Fig. 2. Example of multilevel set partitioning and labeling for RAPSK constellations.

in D̃2 will dominate both the numerator and denonimator in (4) and thus

lim
D̃→∞

PAPR =
N(N − 1)2∑N−1

n=0 n
2

=
6(N − 1)

2N − 1
(5)

Finally, the choice of parameters is also linked to the desired code rate, as described in sec-

tion IV-D. It is possible to code at a lower rate to reduce the PAPR, or to accomodate for worse

oscillators.

C. Labeling method

The M = 2m constellation points are mapped into strings—or vectors—of m bits. Even

though classical Gray labeling can be extended to the presented RAPSK constellation [15], [16],

we propose a different constellation labeling enabling a multilevel code (MLC) approach [22].

Multilevel coded modulation permits to jointly optimize coding and modulation by protecting

each of the m bits with a different code Ci at level i. The receiver performs multistage decoding

(MSD), namely decoding each code individually starting from the first, while taking into account

decisions of previously decoded levels.

The proposed RAPSK constellation permits to further improve this framework by splitting

the multilevel approach along the two different domains of the constellation. Labeling is hence
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decomposed in radial and angular domain such that the first n bits identify the radius of the

constellation point, while the last k = m−n bits identify its angle. Labeling inside each domain

is designed on the basis of the multi-level paradigm. In practice, using the definition in (1), a

point x = rie
θ` is represented by the string of bits b1 . . . bm, where b1 . . . bn is straightforwardly

given by the binary representation of the integer i in n digits and bn+1 . . . bm is given by the

binary representation of the integer ` in k digits. Fig. 2 shows an example for 2 rings and 8 points

on each ring, for which the constellation point given by x = r1e
θ2 corresponds to the string

1010. We can readily see on Fig. 2 that unlike Gray coding, adjacent points in the constellation

do not differ by only a single bit; this is however of no consequence for MSD [22].

III. NOISE MODELING

In this section, we study the effect of both phase and white noise on the points of the proposed

RAPSK constellation. Noise will be decomposed in noise affecting the signal phase and noise

affecting the signal magnitude. This will be used to perform MSD at the receiver, as described

in section IV-C.

Let C ⊂ C be the finite set of the M constellation points composing the RAPSK. Assume

that x = ρxe
θx ∈ C is transmitted through a channel affected by both white noise and phase

noise. Given a phase noise φ and the white noise z, the received signal y ∈ C is given by

y = eφx+ z. (6)

The white noise component is distributed according to a circular complex Gaussian distribution

z ∼ CN (0, σ2
z). The phase noise is i.i.d. with a centered Von Mises distribution [23] φ ∼

VM(κφ) whose p.d.f. is

fVM(φ) =
eκφ cosφ

2πI0(κφ)
(7)

where In(κ) is the modified Bessel function of first kind of order n [24]. The Von Mises

distribution has bounded support in the angular domain, hence φ ∈ [0, 2π).
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The combined effect of both phase and white noises on the received signal can be decomposed

along the two polar components as

y = ρye
θy = (ρx + ρt)e

(θx+θt), (8)

where ρt is the radial component of the composed noise and θt is the angular component of the

composed noise. The radial noise ρt mainly depends on the white noise z; the phase noise φ has

a negligible effect on it compared to the white noise and will be not considered. On the other

hand, the angular noise θt is impacted by both phase and white noises in different proportions. In

particular, the relative weight of the white noise also changes with the distance from the center,

i.e. depends on the ring of the transmitted point x. In this section, we show how to approximate

ρt and θt with equivalent Gaussian noise in order to simplify MSD at the receiver.

A. Radial component

Let y = yR + yI and x = xR + xI . The joint distribution of the received signal (yR, yI) is a

non-central circular Gaussian with p.d.f.

f(yR, yI |xR, xI) =
1

2πσ2
z

e
− (yR−xR)2

2σ2z e
− (yI−xI )2

2σ2z (9)

We drop the explicit dependence on x for compactness in the following. From the Jacobian of

the polar components transformation we can derive the p.d.f. of the joint distribution of (ρy, θy)

as

f(ρy, θy) =
ρy

2πσ2
z

e
− (ρy cos θy−xR)2

2σ2z e
− (ρy sin θy−xI )2

2σ2z

=
ρy

2πσ2
z

e
−
ρ2y+x

2
R+x2I

2σ2z e
ρyxR cos θy+ρyxI sin θy

σ2z . (10)

From [25, Eq 3.937.3, p.496] we know that∫ 2π

0

e
ρyxR cos θy+ρyxI sin θy

σ2z dθy = 2πI0

(
ρxρy
σ2
z

)
(11)
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The marginal distribution of ρy is then obtained integrating (10) over θy using (11) and

f(ρy) =
ρy
σ2
z

I0

(
ρxρy
σ2
z

)
e
−
ρ2y+ρ

2
x

2σ2z (12)

At high SNR, we would have ρx ≈ ρy and ρxρy/σ
2
z would also be large. Using asymptotic

results of Bessel functions [24, Ch.10.30] we have that

f(ρy) ≈
ρye

ρxρy

σ2z e
−
ρ2y+ρ

2
x

2σ2z

σ2
z

√
2πσ−2z ρxρy

=

√
ρy

2σ2
zπρx

e
− (ρy−ρx)2

2σ2z

and the p.d.f. can thus be approximated with a Gaussian distribution N (ρx, σ
2
z); consequently

we have that

ρy − ρx = ρt ∼ N (0, σ2
z). (13)

B. Angular component

The effect of the white noise on the angular component of the composed noise depends on the

magnitude of the transmitted symbol x. Assuming ρx to be known e.g. through decoding, we can

compute the conditional p.d.f. of the phase of y using the relationship f(θy|ρy)f(ρy) = f(θy, ρy).

We assume from here on that w.l.o.g. xR = −ρx and xI = 0 and we let κρ = ρxρy/σ
2
z . From

(10) and (12), we thus have

f(θy|ρy) =
eκρ cos θy

2πI0(κρ)
. (14)

which is exactly a Von Mises distribution as defined in (7). We know that in the limit of infinite

κρ, the Von Mises distribution tends to a Gaussian distribution of variance κ−1ρ . However, we

can obtain a finer asymptotic by applying a saddle-point approximation to the p.d.f. (14) [26] to

obtain a Gaussian p.d.f. with the same mean and a matching curvature rather than a matching

variance. This approximation is reasonable in the high SNR regime. We know that the mean of

θy|ρy is π, while the second derivative of its p.d.f. is

d2

dθ2y
f(θy|ρy) =

e−κρ cos θy

2πI0(κρ)

(
κ2ρ sin

2(θy)− κρ cos θy
)
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Evaluating this derivative at the mean θy = π gives

d2

dθ2y
f(θy|ρy)

∣∣∣∣
θy=π

=
κρe

κρ

2πI0(κρ)
(15)

On the other hand, we know that the second derivative of a Gaussian distribution N (µ, σ2)

evaluated at the mean assumes the value
(
σ
√
2π
)−1

, from which we can obtain the variance of

the approximate Gaussian distribution as

σ2
w =

(
κρe

κρ

2πI0(κρ)

)− 2
3

. (16)

We can hence approximate the distribution of the phase offset due to the white noise as θt ∼

N (0, σ2
w). Note that for increasing SNR, σ2

w →
σ2
z

ρ2x
.

Let’s focus now on the effect of the phase noise φ on the angular component of the composed

noise. At this stage, we can see that the distribution of φ has a close relationship with the

distribution of the white noise in the angular domain in (14). Using the previous approach,

we can obtain a smoother saddle-point approximation where the variance of the approximate

Gaussian is equal to

σ2
p =

(
κφe

κφ

√
2πI0(κφ)

)− 2
3

. (17)

Overall, since both noise contributions are independent, we can approximate the global noise of

the phase component as a Gaussian noise θt ∼ N (0, σ2
a), with equivalent variance

σ2
a = σ2

w + σ2
p. (18)

IV. DEMODULATION AND CODE DESIGN

The MLC labeling proposed in Section II-C permits to separate the decoding of the radial and

angular domains. In fact, the received symbol can be decomposed into the radial and the angular

domains as (8), where ρt ∼ N (0, σ2
z) and θt ∼ N (0, σ2

a) according to Section III. However, we

showed in (17) that σ2
a depends on the radius of the ring of the transmitted point: the radial

domain has to be decoded first, in order to find the ring of the transmitted point. This information

will be used to decode the angular domain.
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A. MLC construction

In the proposed scheme, T transmitted symbols are encoded and decoded in one step. This

corresponds to the transmission of TM bits. A multilevel code is designed across the symbols

to improve the transmission capability. More in detail, M error correcting codes Ci(T,Hi) are

designed, i.e. each code outputs a bit sequence of length T given an input sequence of Hi bits.

The rate design of those codes, i.e. how to choose their dimensions Hi, will be discussed in the

Section IV-D. Put together, these codes can transmit H =
∑M−1

i=0 Hi information bits using TM

bits; the overall rate of the transmission is therefore H/TM .

Every time a string U composed of H information bits has to be transmitted, these bits are

divided into M bit strings u0, . . . , uM−1 composed by H0, . . . , HM−1 bits respectively. Each bit

string ui is then encoded using the error correcting code Ci(T,Hi), obtaining M codewords

x0, . . . , xM−1 of length T bits each. The codewords are re-arranged as rows of a M × T binary

matrix X . Finally, every column of X is modulated according to the RAPSK as described in

Section II-C and transmitted.

B. Computing LLRs along a domain

According to the MLC framework [22], the error correcting codes {Ci} are used sequentially

to perform a hard demodulation of each level i which is then used as a basis to decode the next

level. All of the codes {Ci} need soft-input LLRs in order to perform decoding. According to the

MSD framework, the LLRs for decoding of code Ci are calculated on the basis of the received

signal and on the hard-output decisions on previously decoded codes. This LLRs calculation

process is in general a complex task, whose computational complexity depends on the number of

constellation points [27]. In the following, we show that the proposed RAPSK heavily simplifies

this task by permitting to calculate LLRs independently on the number of constellation points.

In the following, we describe the LLR calculation along a single domain for the proposed

constellation. We consider a general 2Q-ASK scheme transmitting a symbol x, that is received
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as y = x+ z where z ∼ N (0, σ2) is white noise. According to (8), this model is valid for both

the radial and the angular domain, and the proposed scheme can be used for soft demodulation

of both components using different noise variances. We suppose that the transmitted symbol is

in the form x =
∑Q−1

k=0 bk2
k, where bi = {0, 1} and b = b0b2 . . . bQ−1 is the binary expansion of

x—so that there is a one-to-one mapping between the constellation set C and {0, 1, 2, . . . , 2Q−1}.

The LLRs are calculated bit-by-bit in a sequential order. In practice, the LLR of a bit bi is

calculated on the basis of the received signal y and the previously decoded bits b0, . . . , bi−1. If

we call xi =
∑i

k=0 bk2
k, we have that the LLR of bit bi can be calculated as

LLRi = log

(
P(yi|xi−1, bi = 0)

P(yi|xi−1, bi = 1)

)
. (19)

Due to the system model, the a posteriori probability (APP) for bit bi can be calculated as

P(yi|xi−1, bi) =
1√
2πσ

2Q−i∑
k=0

e
− (y−xi−1−bi2i−1+2ik)2

2σ2
i

=
1

2i−1
√
2πσi

2Q−i∑
k=0

e
− (yi−bi+2k)2

2σ2
i

≈ 1

2i−1
√
2πσi

+∞∑
k=−∞

e
− (yi−bi+2k)2

2σ2
i (20)

where

σi =
σ

2i−1
yi =

y − xi−1
2i−1

. (21)

The straightforward calculation of the LLRs depends on the number of points of the constellation.

However, through the last step of (20) we can approximate the LLR computation using wrapped

distributions to make it independent on the number of constellation points. A wrapped probability

distribution is a continuous probability distribution defined on points on a unit circle. This will

allow us to approximate (19) with a compact expression.

The wrapped normal distribution p.d.f can be described through the mean and the standard
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deviation of the unwrapped normal distribution N (0, σ2) as

fWN(θ|µ, σ) =
1√
2πσ

+∞∑
k=−∞

e−
(θ−µ+2kπ)2

2σ2 (22)

for θ ∈ [−π, π]. As a consequence, we can rewrite (20) as

P(yi|bi) =
1

2i−1
√
2πσi

+∞∑
k=−∞

e
− (yi−bi+2k)2

2σ2
i

=
π

2i−1
√
2πσiπ

+∞∑
k=−∞

e
− (yiπ−biπ+2kπ)2

2σ2
i
π2

=
π

2i−1
fWN(yiπ|biπ, σiπ). (23)

Expressing the probability (20) in terms of wrapped normal distribution permits to approximate

it using the Von Mises distribution, which has a more tractable expression (7), knowing that

fWN(θ|µ, σ) ≈ fVM(θ|µ, κ) where κ = A−1
(
e
σ2

2

)
and A(κ) = I1(κ)/I0(κ). We can thus

approximate (20) further as

P(yi|xi−1, bi) ≈
π

2i−1
fVM(yiπ|biπ, κi) (24)

with κi = A−1
(
e
σ2i π

2

2

)
. Finally, we can now rewrite (19) as

LLRi = log

(
πeκi cos(yiπ)

2iπI0(κi)

πeκi cos(yiπ−π)
2iπI0(κi)

)

= κi(cos(yiπ)− cos(yiπ − π))

= 2κi cos(yiπ)

= 2a(σi) cos(yiπ) (25)

where a(t) = A−1
(
e
t2π2

2

)
is an auxiliary function that can be computed offline and tabulated to

speed up the calculation. Some results also exist to compute ratios of Bessel functions online [24].

This result can be used to simplify the LLRs calculation in a MSD decoder as follows.

According to MSD framework, calculation of LLRi, namely the LLR of bit bi, is performed
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using (25). Parameters yi and σi of this equation are calculated on the basis of received symbol

y and channel noise σ as described in (21); xi−1 is estimated on the basis of the previously

decoded levels b0, . . . , bi−1 as xi−1 =
∑i−1

k=0 bk2
k. Since the auxiliary function a(·) is tabulated

offline and does not depend on the constellation size, the proposed method to calculate LLRs

is independent of the number of points in the constellation. The same number of operation are

required to demodulate each bit, which implies that the demodulation latency is constant in each

level and the overall complexity is only dependent on the number of levels in the constellation.

C. Demapper under MLC Design

Equipped with (25), now we can describe the retrieval of the M ×T matrix X in detail. Once

the T symbols are received, demapping begins. The first n rows of X , belonging to the radial

domain, are initially decoded. For every received symbol y = ρye
jθy , the LLR of the first bit

LLR0 is calculated using (25) with y0 = ρy−r0
D

and σ = σz
D

as input: these correspond to the

LLRs of the first row of X . These T LLRs are used by the soft-input/hard-output decoder of

code C0 to calculate the H0 bits string û0, which represent the estimation of the input string

u0. This string is then re-encoded through C0 to obtain the codeword x̂0, which will be used to

calculate y1 and σ1 as in (21). This procedure of calculating the LLRs using previously decoded

bit, decoding of a row and cancellation of the decoded bit for next level is repeated until all the

bits of the radial domain are decoded, namely until the n-th row of X .

The decoding of the angular domain proceeds in a similar way, however using a different noise

value σ for every symbol, calculated on the basis of the radius r of the ring calculated in the first

part of the demapping. More in detail, after the radial demodulation it is possible to estimate

the magnitude ρx of every received symbol, representing the ring radius of the transmitted

constellation point. Angular demapping thus uses a different initial variance σ required in (21)
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for symbols belonging to different rings; this variance is calculated from (16), (17) and (18) as

σ2 =
K2

4π2
σ2
a. (26)

Recall in particular that σa is a function of ρx, ρy, the white noise variance σ2
z and the phase

noise parameter κφ. At the end of the process, U is retrieved as U = [û0û2 . . . ûM−1].

In this procedure, we use the approximations of section III as input to the LLR computation

algorithms. We expect these approximations to hold overall when the SNR is high enough to

enable a small inter-ring distance D, and the innermost ring radius r0 is large with respect to the

inter ring distance. For applications where high-density constellations are preferred, we expect

the SNR to be large [2], and targeting lower PAPR values will ensure that both conditions will

be met.

D. MLC Rate Design

An essential point in the design of a coded modulation scheme is the assignment of code

rates to the component codes. Different approaches have been proposed in the literature [22],

however in the following we design code rates according the capacity rule. According to this

code construction method, code rate Hi is chosen to be equal to the capacity of the equivalent

binary symmetric channel (BSC) at level i. In order to design the rates of the codes C0, . . . , CM−1

for the MLC, the capacity of the equivalent BSC is calculated as follows.

If Q→∞, the probability to commit an error in the decoding of a bit ci is given by

pi =
+∞∑

k=−∞

∫ 2i−1(2k+ 3
2)

2i−1(2k+ 1
2)

fN (x|0, σ2)dx

=
+∞∑

k=−∞

FN (2
ik + 3 · 2i−2|0, σ2)

−
+∞∑

k=−∞

FN (2
ik + 2i−2|0, σ2) (27)
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We can express this probability using the wrapped normal distribution as

pi =
+∞∑

k=−∞

∫ 2ik+3·2i−2

2ik+2i−2

fN (t|0, σ2)dt

=
+∞∑

k=−∞

∫ 2ik+3·2i−2

2ik+2i−2

1√
2πσ

e−
t2

2σ2 dt

=

∫ 3
2

1
2

+∞∑
k=−∞

1√
2πσi

e
− (x+2k)2

2σ2
i dx (28)

We obtain that the error probability of the equivalent BSC seen by the i-th bit is given by

pi = 2

∫ π

π
2

fWN(ψ|0, σiπ)dψ

≈ 2

∫ π

π
2

fVM(ψ|0, κi)dψ (29)

with κi = A−1
(
e
σ2i π

2

2

)
, where σi is calculated as explained in Section IV-C. For the radial domain,

i.e. for 1 ≤ i ≤ n, each code Ci is designed with a rate 1 − pi, hence with Hi = (1 − pi)T .

For the angular domain, i.e. for n + 1 ≤ i ≤ m, the rate of the code Ci can be calculated as

the average of the rates of all the rings of the level. As a consequence, (29) is used to calculate

p
(rj)
i for all the rings r0, . . . , rN−1, and the code rate is given by

Hi =
1

N

N−1∑
j=0

1− p(rj)i . (30)

Even though this procedure is asymptotically correct, it turns out to be too optimistic for finite

block lengths. However, Hi can be used as an upper bound on the achievable rate: fine tuning can

be executed by simulations to optimize this parameter on the basis of the described theoretical

results.

V. PERFORMANCE ANALYSIS

In this section, we present proof of concepts results and comparison of the proposed RAPSK

constellation with respect to QAM constellations and constellation optimized for their robustness

to phase noise [12]. All the presented results have been obtained by means of Monte Carlo
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Fig. 3. Comparison of a 256-RAPSK constellation with a 256-QAM constellation in presence of phase noise generated according

to (7) with different parameters κp. The RAPSK parameters are set as N = 8, K = 32 and r0 = 0.6, which leads to a PAPR

reduction of 32% with respect to the QAM constellation.

simulations and additive white Gaussian noise (AWGN) channel with the additional phase noise

as in (6), except for Fig. 5 where the phase noise is generated as in [12] and thus not a memoryless

process.

In general, we see in simulations that QAM constellations, designed to be robust against

white noise, are clearly better than RAPSK when phase noise is not the dominant source of

errors. On the other hand, correctly tuned regular APSK constellations will outperform QAM

constellations when the phase noise induces a floor on the symbol error rate (SER) of the

QAM-based transmission. We analyze such a case in Fig. 3, where we compare a 256-QAM

constellation with a 256-RAPSK constellations of the same size. We focus on the symbol error

rate (SER) without channel coding. We apply two memoryless phase noise processes with

parameters κφ = 2500 and κφ = 10000—a higher value for κφ means a lower variance for

the phase noise process. In all cases the QAM constellations perform better at lower SNR in

terms of SER. When the phase noise variance is low, the QAM constellation outperforms the

RAPSK constellation over the whole SNR range; the reduction in PAPR comes at the expense of
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performance in this case. However, when phase noise becomes significant, the QAM constellation

exhibits an error floor while the RAPSK constellation maintains a similar behavior to the one

without phase noise.

Next, we tested the proposed MSD demapper for the RAPSK constellation and the associated

rate design, to validate the approach and the flexibility of the RAPSK constellations. The channel

coding scheme used in our simulation is based on the eIRA LDPC [20]. The design of the

component codes is built using T = 16200 symbols per codeword, and a parameter M that

depends on the constellation size; for 256 points we have M = 8 and for 1024 points we have

M = 10. This scheme allows for rather efficient and fast simulations, however without offering

a good flexibility in terms of code rates since the eIRA LDPC component codes only offer 10

rate levels with the highest one being limited to 8/9. As a consequence, the actual values of

the adopted code rates are an approximation of the optimal ones provided by the rate design

procedure of Sec. IV-D, which is used as a guideline to select the rate of each component code.

28 30 32 34 36 38
10−5

10−4

10−3

10−2

10−1

SNR (dB)

B
it

E
rr

or
R

at
e

N = 8, K = 32, r0 = 0.6, rate 0.97, 32% PAPR reduction
N = 8, K = 32, r0 = 0.8, rate 0.85, 47% PAPR reduction
N = 16, K = 64, r0 = 0.6, rate 0.92, 36% PAPR reduction
N = 16, K = 64, r0 = 0.8, rate 0.85, 50% PAPR reduction

Fig. 4. Comparison of RAPSK constellations with 256 and 1024 points using the parameters set in the legend and the MLC

code described in section IV.
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Fig. 5. Performance of RAPSK and the optimized Kayhan-Montorsi constellation from [12]. The constellation with rates 0.93

and 0.9 have parameters K = 32, M = 8 with r0 = 0.45 and r0 = 0.55 respectively. The constellation with rate 0.88 has

parameters K = 64, M = 4 and r0 = 0.78.

Future channel code optimizations could certainly bring non-negligible gains in this regard. We

consider two constellation sizes with 256 and 1024 points respectively, under a strong phase

noise profile with κφ = 1600. Under such a phase noise, QAM constellations will be severely

distorted, and a custom set partitioning will be needed to single out the problematic points in the

constellation. On the other hand, the constellation and code design for RAPSK is straightforward.

Microwave links are usually held to stringent standards in terms of BER with target values as low

as 10−10 [28], which usually requires the channel code to have a sharp waterfall threshold [29].

Applying the procedure of Sec. IV-D leads to plunging BER curves, as can be seen in Fig. 4,

which validates the proposed rate design and overall coding scheme. In order to test the flexibility

of the RAPSK design, we vary the innermost ring distance r0 and the average code rate to trade

off performance with the PAPR reduction, understood here with respect to a QAM constellation

of the same size. Using this approach, it is thus possible to tweak the constellation parameters

to match target PAPR constraints and average oscillator phase noise, possibly at the expense of

code rate and BER performance.
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Fig. 5 shows the performance of different RAPSK constellations versus the optimized Kayhan-

Montorsi constellation of [12]. The reference curve is taken from the original paper. To match

the reference simulation settings, we consider a realistic phase noise profile which corresponds

to the one given in [12] with an inflexion point set at -83 dBc. The design of Kayhan and

Montorsi optimizes both the constellation and the labeling of the constellation. They then apply

a state-of-the-art error correcting code with rate of 15/16 ≈ 0.94 on the optimized constellation.

Matching the code rate approximately—on the crossed curve of Fig. 5—we see that the RAPSK

constellation design has a steeper BER curve; it shows relatively worse performance at lower

SNR but is competitive in the regime of interest, and decreases rapidly as the SNR increases, as

required for high-rate applications [28]. This constellation design also provides a reduced PAPR

of 25%. We can further lower the PAPR and still remain competitive at this regime as evidence

by the squared curve of Fig. 5 using a lower code rate of about 7/8 for a reduction in PAPR of

around 50%. This reduction stems from a change from K = 32 to a denser K = 64 points per

ring, which is sustainable with an appropriate coding rate in the angular domain. Finally we can

also aim for a lower waterfall SNR by trading off some of the code rate down to about 9/10,

as shown on the circled curve of Fig. 5.

VI. CONCLUSION

In this paper, we proposed a coded modulation scheme based on regular APSK constellations.

By adding a limited set of constraints on the constellation and an appropriate labeling, we

designed a multi-level channel code that is both low complexity and has competitive performance

with respect to other state-of-the-art coded modulations. The RAPSK constellations are flexible

in their design and have several desirable characteristics from an engineering point of view,

most notably with respect to PAPR, robustness to phase noise, and pre-equalization. Moreover,

they can be constructed in fully scalable way up to an arbitrarily high number of points, and

set-partitionings of the points are naturally yielded by the structure itself. This allows to obtain
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constellations whose number of points is any power of 2 without substantial changes in the

set-partitioning, coding and decoding procedure, contrary to QAM constellations for which the

number of points is typically chosen as an even power of 2 to simplify detection and equalization

procedures.

In followup works, we plan to analyze further the optimal choice of parameters for RAPSK

constellations with respect to key environmental parameters like the target PAPR and phase noise

profile, using the theoretical analysis of the component BSC described in section IV-D. More

exhaustive tests with more advanced channel coding is also warranted in order to understand the

benefits and limits of this coded modulation scheme. Finally, we plan to assess the robustness

of the proposed design to fading effects in the channel, and thus evaluate the potential of this

approach in a different scenario.
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