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Abstract

We develop an analytical framework to derive the meta distribution and moments of the conditional

success probability (CSP), which is defined as success probability for a given realization of the transmit-

ters, in large-scale co-channel uplink and downlink non-orthogonal multiple access (NOMA) networks

with one NOMA cluster per cell. The moments of CSP translate to various network performance metrics

such as the standard success or signal-to-interference ratio (SIR) coverage probability (which is the 1-st

moment), the mean local delay (which is the −1-st moment in a static network setting), and the meta

distribution (which is the complementary cumulative distribution function of the conditional success

probability and can be approximated by using the 1-st and 2-nd moments). For uplink NOMA, to make

the framework tractable, we propose two point process models for the spatial locations of the interferers

by utilizing the base station (BS)/user pair correlation function. We validate the proposed models by

comparing the second moment measure of each model with that of the actual point process for the inter-

cluster (or inter-cell) interferers obtained via simulations. For downlink NOMA, we derive closed-form

solutions for the moments of the CSP, success (or coverage) probability, average local delay, and meta

distribution for the users. As an application of the developed analytical framework, we use the closed-

form expressions to optimize the power allocations for downlink NOMA users in order to maximize the

success probability of a given NOMA user with and without latency constraints. Closed-form optimal

solutions for the transmit powers are obtained for two-user NOMA scenario. We note that maximizing

the success probability with latency constraints can significantly impact the optimal power solutions for

low SIR thresholds and favour orthogonal multiple access (OMA).

Index Terms

Ultra-reliable and low-latency communication (URLLC), uplink NOMA, downlink NOMA, success

(or SIR coverage) probability, stochastic geometry, meta distribution, local delay, moments.
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I. INTRODUCTION

The next generations of wireless networks (such as 5G [1] or beyond 5G [B5G]) are expected

to support billions of devices that are stimulated mainly from the diverse Internet-of-Things (IoT)

applications (ranging from delay-tolerant machine-type communications (MTC) to delay sensitive

mission-critical communications) in addition to the enhanced mobile broadband applications. As

a result, acquiring ultra-reliable and low-latency communication (URLLC) is among one of the

constitutional challenges for emerging massive wireless networks [2]. Recently, NTT DOCOMO

and Huawei jointly conduct a successful field trial focused on the URLLC use-case with a macro

base station on the 4.5 GHz frequency band (C-Band) using a new radio interface of similar

features such as 3GPP 5G New Radio (NR) air-interface. Traditionally, reliability can be achieved

with efficient channel coding and retransmission schemes, e.g., hybrid automatic repeat request

(HARQ). However, at the same time, massive device connectivity with strict latency requirements

need to be achieved in URLLC systems. This fact necessitates efficient user access mechanisms

that can potentially serve multiple devices in a specific time-frequency resource block while

reducing their respective transmission delays [3].

Non-orthogonal multiple access (NOMA) has been recognized as a promising multi-user

channel access technique that enables massive connectivity while reducing the transmission

delay of the devices [3]. Contrary to traditional orthogonal multiple access (OMA), such as

time division multiple access (TDMA), frequency division multiple access (FDMA), and code

division multiple access (CDMA), the key idea of NOMA is to serve multiple users in the same

channel simultaneously. The concurrent transmissions in NOMA shorten the waiting time of

the devices while saving network resources. Of course, this can be achieved at the expense of

additional interference and decoding complexity at the receivers. In particular, to mitigate the

interference, NOMA exploits successive interference cancellation (SIC) at the receivers [4], [5].

A. Background Work

Recently, performance analysis of NOMA-based wireless networks has attracted significant

research interest. The existing studies contribute mainly toward understanding the average per-
formance of users considering a single NOMA cell/cluster [5]–[10]. For instance, the perfor-

mance of a single-cell downlink NOMA system with randomly located users was first studied

in [6]. In particular, the signal-to-interference-plus-noise ratio (SINR) outage probability and the

ergodic capacity were derived for a user at rank m in terms of distance. In [7], the problem of

user pairing was investigated considering fixed NOMA (F-NOMA) and cognitive radio inspired

(CR-NOMA). In F-NOMA, any two users can make a NOMA pair based on their channel gains.
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On the other hand, in CR-NOMA, a weak channel user opportunistically gets paired with the

strong channel user provided that the interference caused by the strong user does not harm the

weak channel user. A comparative performance analysis of uplink and downlink NOMA with

selective two user pairing was conducted in [5]. Closed-form solutions for ergodic sum-rate

and outage probability of a two-user NOMA cluster were presented in [8] considering a power

back-off policy. The power back-off policy was applied to distinguish users in a NOMA cluster

with nearly similar signal strengths (given that traditional uplink power control is in effect).

The problem of user scheduling, subcarrier allocation, and power control in uplink NOMA was

investigated in [9], [10] with perfect SIC at the BS.

The aforementioned research studies ignore the impact of inter-cell interference which can

significantly limit the performance of NOMA in massive wireless networks. Very recently, some

of the research works have considered the performance characterization of large-scale NOMA

systems using tools such as Poisson point process (PPP) and Poisson cluster process (PCP) from

stochastic geometry. The performance of uplink NOMA in terms of the rate coverage and average

achievable rate was characterized first in [11] using PCP considering both perfect and imperfect

SIC. For downlink NOMA, outage probability and average achievable rate of m-th rank user were

derived in [12], [13] assuming that the BS locations follow a homogeneous PPP. The users are

ranked based on their normalized channel gains defined as the channel gain including path loss

and small-scale fading normalized by the inter-cell interference. The analytical expressions are

derived assuming that the normalized channel gains of users located in a given NOMA cluster

are independent and identically distributed (i.i.d.). However, since the inter-cell interferences

received at the different users in the downlink are correlated, the normalized channel gains are

also correlated, and therefore, the derived results are not precise. Another interesting work is

[14] where the performance of two-user downlink NOMA was investigated in a K-tier cellular

network. The macro cell BSs use the massive multiple-input multiple-output (MIMO) technology

and each small cell adopts user pairing to implement two-user NOMA transmission. In [15],

for K-tier heterogeneous networks (HetNets) with biased nearest BS association, performance

of downlink NOMA was investigated in terms of the coverage probability and throughput for

non-cooperative and cooperative schemes. For Poisson cellular networks, [13] also studied the

performance of uplink NOMA. To derive the analytical results, it was assumed that uplink

interferers form a homogeneous PPP which is not correct.
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B. Motivation and Contributions

The current state-of-the-art mainly analyze the standard transmission success probability and

ergodic capacity of users in NOMA-enabled cellular networks. Nevertheless, it is noteworthy that

the standard transmission success probability is itself the mean of a random variable referred to

as conditional success probability (CSP), which is the success probability of a user considering a

given realization of BSs [16]. When the point process describing the receiver locations (referred

to as receivers’ point process) is ergodic, the standard success probability is the average of

the CSPs of all users. Two networks can have the same standard (mean) success probability

but distributions of the CSPs may be completely different. This is similar to the case where

two different random variables have the same mean but different probability density functions

(PDFs). Therefore, comparing two networks simply in terms of their average CSPs (or mean

success probabilities) will not always be accurate since the CSP will not always be precisely

characterized by its average value.

Along this line, [16] characterized the meta distribution which is the complementary cu-

mulative distribution function (CCDF) of the CSP by deriving the moments of the CSP. This

pioneering work was followed by various research studies for Poisson bipolar networks, device-

to-device (D2D) networks, and millimeter-wave (mm-wave) D2D networks [16]–[20]. The meta

distribution provides a more precise characterization of a typical transmission link than the

standard success probability and enables us to answer questions such as “what fraction of users

(y) can be guaranteed with a coverage probability higher than a given target value of x?”. Cellular

operators may be more interested in the performance level that y% of users achieve instead of

the performance of a “typical user”.

To this end, our main contributions in this paper can be summarized as follows:

• We derive the moments of CSP for uplink and downlink NOMA in Poisson cellular net-

works. This allows us to study the traditional success/coverage probability (which is the

1-st moment), the mean local delay (which is the −1-st moment), and the meta distribution

(which is the CCDF of the success or SIR coverage probability and can be approximated

using the 1-st and 2-nd moments). Note that, mean local delay, which is defined as the

mean number of transmission attempts until the first successful reception [21], is a crucial

performance metric for emerging URLLC systems.

• In uplink NOMA, the point process for the spatial locations of the interferers is a key for

the derivation of the meta distribution and moments of CSP. Since the actual point process

is unknown, we propose two models for this point process based on the pair correlation

between interferers and the typical BS (which is at the origin). We demonstrate the accuracy
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of the proposed point processes by comparing the second moment measure1 of each process

with that of the original process obtained via simulations. We show that the proposed point

processes provide better approximations for low SIR threshold θ, user locations closer to

the BS, and dense BS deployments.

• For downlink NOMA, we derive closed-form expressions for the moments of the CSP,

success probability, average local delay, and the meta distribution. We approximate the

meta distribution by a beta distribution and demonstrate the accuracy of the approximation.

• As an application of the developed analytical framework, we use the closed-form results to

optimize the power allocations for downlink NOMA users with an objective to maximizing

the success probability with and without latency constraints. The optimal solutions for

the transmit powers are obtained in closed-form for the special case of two-user NOMA

(i.e., two user per NOMA cluster). We note that maximizing the success probability with

strict latency constraints can significantly impact the optimal power solutions for low SIR

thresholds and can favour OMA.

C. Paper Organization and Notations

The rest of the paper is structured as follows. Section II briefly discusses the mathematical

preliminaries related to the meta distribution, local delay, and their analytical evaluations. In

Section III, we describe the system model and assumptions for uplink and downlink NOMA.

In Section IV, for uplink NOMA, we propose two point processes to model the locations of the

interferers and derive the moments of the CSP and its meta distribution. In Section V, for down-

link NOMA, we derive closed-form solutions for the CSP and its meta distribution. Based on the

closed-form solutions, in Section VI, we optimize the transmit powers for the downlink NOMA

users in order to maximize their success probabilities under latency constraints. Section VII

discusses numerical and simulation results followed by the conclusion in Section VIII.

II. MATHEMATICAL PRELIMINARIES

Consider a static cellular network where receivers are distributed according to a homogeneous

Poisson Point Process (PPP) Φr. Because of the stationarity of the homogeneous PPP, we can

condition on having a receiver at the origin which is called the typical receiver. We denote

the distribution of transmitters with Φ. For such a set-up, the concepts of CSP and the meta

1The matching of moment measures is different from traditional moment matching of two random variables since it is the

matching in two dimensions.
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distribution along with their evaluation methods are defined in the following to provide a

preliminary mathematical background to readers.

Definition 1 (Conditional Success Probability (CSP) [16]). Given the location of the transmitters

and conditioned on the desired transmitter to be active, CSP is defined as follows:

Ps(θ) , P(SINR > θ | Φ, tx), (1)

where θ is the desired SINR and the b-th moment of Ps(θ) is given by Mb = EΦ

[
P b

s

]
.

Definition 2 (Meta Distribution of CSP). Meta distribution is the CCDF of Ps(θ), i.e.,

F̄Ps(x) , P!0(Ps(θ) > x), x ∈ [0, 1], (2)

in which P!0 is the reduced Palm measure given that the typical receiver is at the origin.

When Φr is ergodic [22], the meta distribution can be interpreted as the fraction of active users

whose success probabilities are more than x in each realization. In [16], an exact expression

along with an approximation and simple bounds for the meta distribution were provided. A

summary of these results is given below.

• Exact meta distribution of CSP: To derive the exact meta distribution, we first need to

derive imaginary moments Mjt = EΦ [P jt
s ], where j =

√
−1 and t ∈ R+. Then using the

Gil-Pelaez theorem [23], the exact meta distribution is given as follows:

F̄Ps(x) =
1

2
+

1

π

∞∫
0

=
(
e−jt log xMjt

)
t

dt, x ∈ [0, 1], (3)

where =(s) gives the imaginary part of s.

• Approximate meta distribution of CSP: A simple approximation of the meta distribution is

provided by using the beta distribution. In this approach, we need to derive the first moment

M1 and the second moment M2 of Ps(θ) and match them with the first and second moments

of the beta distribution, i.e.,

F̄Ps(x) ≈ 1− Ix
(

M1β

1−M1

, β

)
, x ∈ [0, 1], (4)

where β = (M1−M2)(1−M1)

(M2−M2
1)

, Ix(a, b) is the regularized incomplete Beta function, and B(a, b)

is the Beta function. The beta distribution [16]–[19] and the generalized beta distribution [20]

have been shown to match the exact meta distribution.

• Bounds on the meta distribution are also presented in [16, Corollary 4]. For the Markov’s

bound, we can use any moment of (1−Ps) and Ps. For the Chebyshev’s bound, we need the
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mean (M1) and variance (M2−M2
1 ) of CSP. For the Paley-Zygmund (or Cauchy-Schwartz)

bound, we simply need the first moment M1.

For a given realization of transmitters Φ, the transmission success events at a receiver are

obtained by averaging over the fading channels and are thus i.i.d. over time. The local delay

(defined as the number of transmission attempts until a packet is successfully received [21],

[24]), is thus geometrically distributed with parameter Ps.

Definition 3 (Distribution of the Local Delay). For a given realization, local delay, L, follows

a geometric distribution with parameter Ps given in Definition 1, i.e.,

P (L = k | Φ) = (1− Ps)
k−1 Ps, k ∈ N. (5)

Therefore, the mean local delay is given by E [L] = EΦ [E [L | Φ]] = EΦ

[
1
Ps

]
= M−1 and the

variance of the local delay is E [L2]− E [L]2 = EΦ [E [L2 | Φ]]−M2
−1 = 2M−2 −M−1 −M2

−1,

For ergodic point processes, now we are able to answer the question “What fraction of users

successfully receive their desired signals (i.e., SIR constraint satisfied) in at most k time slots

with probabilities larger than x?”. We can answer this question by deriving the following:

P!0 (P (L ≤ k | Φ) > x)
(a)
= P!0

(
1− (1− Ps)

k > x
)

= F̄Ps(1− (1− x)1/k), (6)

where (a) is obtained by CDF of the geometric distribution, and F̄Ps(.) is the meta distribution

defined in (2). Based on (6), the meta distribution also reveals the distribution of the CSP for

any number of retransmissions.

Example: With x = 0.95, F̄Ps(0.95) is the fraction of users that successfully receive their desired

signals (or the SIR is higher than the target threshold) in the first transmission attempt (i.e., k = 1)

with a probability higher than 0.95 (i.e., with reliability 0.95). F̄Ps(0.78) is the fraction of users

that successfully receive their desired signals after the second transmission attempt (i.e., k = 2)

with reliability 0.95. F̄Ps(0.63) is the fraction of users that successfully receive their desired

signals after the third transmission attempt (i.e., k = 3) with reliability 0.95. F̄Ps(0.63) can also

be interpreted as the fraction of users that successfully receive their desired signals in the first

time slot with reliability 0.63, or the fraction of users that successfully receive their desired

signals after the second time slot with reliability 0.86.

III. SYSTEM MODEL AND ASSUMPTIONS

This section details the network model, channel model, and interference model along with

assumptions for multi-user uplink and downlink NOMA systems.
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A. Uplink NOMA

1) Network and Channel Model: We consider an uplink NOMA system where BSs are

distributed according to a homogeneous PPP2 ΦB of intensity λb. Each user is connected to

its nearest BS and there are at least N users in each Voronoi cell3. We consider random user

selection, i.e., N users are randomly selected for NOMA transmission from users located in the

Voronoi cell. The network is interference-limited. The channel power between a user located at

x and the typical BS located at the origin is given by hx`(x) where hx represents the small-scale

multi-path fading channel powers following i.i.d. exponential distribution with unit mean and

`(x) = ‖x‖−α represents the path-loss with exponent α, where α > 2.

2) SIC: We consider perfect SIC, i.e., the BS perfectly decodes and cancels the first m− 1

strong interference signals before decoding the signal of the m-th rank user. The channel gains

of different users are different4 in the uplink; therefore, each message signal experiences distinct

channel gain. The conventional uplink power control, which is typically intended to equalize the

received signal powers of users, removes the channel distinctness and thus will not be feasible

for uplink NOMA [11]. Therefore, in the uplink, we assume that all users transmit with the

same power P .

3) Interference and SIR Model: To model the intra-cell interference with SIC, first the typical

BS needs to rank the received powers of various users. However, note that the impact of path-

loss factor is more stable and dominant compared to the instantaneous multi-path channel fading

effects. Therefore, the order statistics of the distance outweigh the fading effects, which vary

on a much shorter time scale. As such, the ranking of users in terms of their distances from

the serving BS is generally considered as a reasonable approximation of their respective ranked

received signal powers [11], [27]. This approximation provides tractability in the analysis. The

intra-cell interference for the m-th rank user can therefore be modeled as:

I intra
(m) =

N∑
i=m+1

Phx(i)‖x(i)‖−α, m = 1, 2, ..., N, (7)

2The motivation of modeling BS locations for real-world cellular networks with PPP was justified in [25].
3This can be viewed as the general case of the user point process of type I introduced in [26]. In [26], the user point process

for N = 1 is studied which is the case in OMA. In this paper, we consider N ≥ 1.
4The channel frequency/bandwidth is same for all users in NOMA; however, the channel gain experienced by the users on

that specific frequency will be different due to their path-loss and fading.
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where hx(i) is the fading from the i-th rank user located at x(i) (in the Voronoi cell of the typical

BS) to the typical BS. The inter-cell interference is given as follows:

I inter =
∑
x∈ΦI

Phx‖x‖−α, (8)

where ΦI is the point process describing the locations of the inter-cell interferers, which is

unknown. Using (7) and (8), for the user at rank m, the SIR is given as follows:

SIR(m) =
Phx(m)

‖x(m)‖−α

I intra
(m) + I inter

. (9)

B. Downlink NOMA

1) Network and Channel Model: Similar to uplink, we consider downlink NOMA system

with N users in each Voronoi cell. BSs are distributed according to the homogeneous PPP ΦB

of intensity λb and each BS can transmit with maximum power P . The effect of thermal noise

is neglected. The channel power gain between the BS located at x and the typical user located at

the origin is given by hx`(x), and hx for different BSs are modeled by i.i.d. exponential random

variables with unit mean. `(x) = ‖x‖−α represents the power-law path-loss, in which α > 2 is

the path-loss exponent. The power allocated to the i-th rank user is Pi = βiP , ∀i = 1, 2, · · · , N .

Also, we have βi ≤ βj , ∀i ≤ j such that
∑N

i=1 βi = 1 (or equivalently,
∑N

i=1 Pi = P ).

2) SIC: We consider perfect SIC, i.e., user at rank m successfully removes the intra-cell

interference of all users who are at higher ranks in terms of their distances.

3) Interference and SIR Model: The intra-cell interference at m-th rank user can be given as:

I intra
(m) =

m−1∑
i=1

βiPh0‖x0‖−α, m = 1, 2, · · · , N, (10)

where h0 is the fading from the serving BS located at x0 to the m-th rank user located at the

origin. The inter-cell interference can be modeled as:

I inter
(m) =

∑
x∈ΦB\{x0}

Phx‖x‖−α, m = 1, 2, · · · , N. (11)

Hence, for the user at rank m, the SIR can be given as:

SIR(m) =
βmPh0‖x0‖−α

I intra
(m) + I inter

(m)

. (12)

By Slivnyak’s theorem, the point process for the inter-cell interferers is a PPP with intensity λb

in R2 \ b(o, ‖x0‖) where distribution of ‖x0‖ depends on the rank of the user. This is different

from uplink where the inter-cell interference is received at a typical BS and is therefore same

for all NOMA users in the typical Voronoi cell.
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IV. UPLINK NOMA: MOMENTS AND META DISTRIBUTION OF THE CSP

In this section, we derive the CSP, and the moments and the meta distribution of the CSP for

an uplink NOMA network. For this,

• we first derive the distance distribution of the intra-cell interferers,

• then we derive approximate point process of the inter-cell interferers,

• and then we derive the moments of CSP. The exact and approximate meta distributions can

then be obtained using (3) and (4), respectively, as described in Section II.

For performance analysis of uplink NOMA, modeling the actual point process ΦI for the inter-

cell interferers is critical. In this section, we propose two point processes to approximate ΦI. We

will demonstrate the accuracy of the proposed point processes by comparing the second moment

measure of each point process with the second moment measure of the actual (or original) point

process ΦI obtained by simulations. Since the typical BS is located at the o (origin) and we

model the interferers’ point process from the perspective of the typical BS, we are interested

in the first and second moment measures for b(o, r), where b(o, r) denotes the ball of radius r

centred at o.

A. Distance Distributions of the Intra-cell Interferers

For any uplink user in the typical Voronoi cell, the probability density function (PDF) and

the cumulative density function (CDF) of the desired link distance are given as follows [17]:

fR(r) = (5/2)λbπre
−(5/4)λbπr

2

, FR(r) = 1− e−(5/4)λbπr
2

. (13)

Note that the distance of the user to the typical BS is not Rayleigh distributed with mean

1/(2
√
λb) [26]. Using the above distributions and order statistics, the distribution of the distance

of the user at rank m from its serving BS can be derived as follows [28], [29]:

fRm(r) =
5λbπr

(
1− e−(5/4)λbπr

2
)m−1 (

e−(5/4)λbπr
2
)N−m+1

2B(N −m+ 1,m)
, r ≥ 0, (14)

where B(·, ·) is the Beta function. Conditioned on the distance of the user at rank m (Rm = rm),

it was shown in [11], [30] that the distances of users at lower or higher ranks than the m-th rank

user to the typical BS are i.i.d. and their PDFs can be characterized, respectively, as follows:

fRin
(r | Rm = rm) =

fR(r)

FR(rm)
, r ≤ rm, i = 1, · · · ,m− 1, (15)

fRout (r | Rm = rm) =
fR(r)

1− FR(rm)
, r ≥ rm, i = m+ 1, · · · , N. (16)
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B. BS/user Pair Correlation Function

In this subsection, we obtain the pair correlation function of ΦI with respect to the origin

(the location of the typical BS) through simulations, and then, to model the locations of the

interferers, propose two point processes with the same BS/users pair correlation function.

Definition 4 (BS/user Pair Correlation Function [26]). For the BSs point process ΦB of intensity

λb, the BS/user pair correlation function gλb(r) can be defined as follows:

gλb(r) ,
1

2πr

d

dr
K(r) =

1

2πr

d

dr

(
1

Nλb

E0[ΦI(b(o, r))]

)
, (17)

where E0 is the Palm expectation (given that the typical BS is at the origin). When ΦI is scale-

invariant, gλb(r) = g1(
√
λbr).

Note that the BS/user pair correlation function gλb(r) is useful in approximating the interfering

users’ point process by a PPP of intensity function λbgλb(r) [26]. Specifically, [26] studied the

point process of uplink interferers for N = 1 (i.e., for orthogonal multiple access [OMA]), and

through numerical fitting, the best exponential fit for N = 1 was obtained as follows:

g1(r) = 1− e−(12/5)πr2 . (18)

Note that any other point process with the same intensity function (λbgλb(r)) can also be used

to approximate the interfering users’ point process.

Along the same lines, we also obtain g1(r) through simulations. In Fig. 1, g1(r) is illustrated

for N = 2 and N = 5, and we observe that it does not vary for different values of N . The

reason is that the average number of inter-cell interferers within the distance r from the typical

BS, E0[ΦI(b(o, r))], for clusters of N users in NOMA is N times higher than that in OMA.

Therefore, (17) does not change with respect to N . We also compare the simulation results with

the best exponential fit for N = 1. Using the invariance property of g1(r) with respect to N

along with the the scale-invariance property of the model and the results in [26], we approximate

the inter-cell interferers’ point process ΦI by a PPP ¯̄ΦI with intensity Nλbgλb(r). In each NOMA

cluster, users are located close to each other in the same Voronoi cell; however, the points of

the PPP are independent from each other [22]. Therefore, approximating the inter-cell interferers

with ¯̄ΦI may not capture the dependence of the inter-cell interferers’ locations in each NOMA

cluster precisely. To address this issue, we also propose a cluster process Φ̄I to approximate ΦI.

In the following, first we define the intensity measure and then we describe the two proposed

models along with their validation and comparative analysis.
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Fig. 1. BS/user pair correlation function g1(r) for different N and validation with the best exponential fit in (18) for N=1.

Definition 5 (Intensity Measure [22]). For any point process Φ, the intensity measure (first

moment measure) Λ(B) is the mean number of points in B, i.e., Λ(B) = EΦ(B), ∀B ⊂ R2.

If Φ has an intensity function λ(x), then Λ(B) =
∫
B

λ(x)dx.

C. Interferers’ Point Process Models

1) Model 1: To model the interferers, we consider a PCP Φ̄I
5, where the parents form an

inhomogeneous PPP Φ̄P with intensity function λ̄p(x) = λb

(
1− e−(12/5)λbπ‖x‖2

)
. In each cluster,

N offspring points are located in the same location as the parent, i.e., for a parent at x, N

offsprings are i.i.d. with PDF f(y) = δ(y−x), where x, y ∈ R2. This model can also be viewed

as a non-simple PPP [22]. As mentioned earlier, other cluster processes that have the same

BS/user pair correlation function can also be used to model inter-cell interferers, but Φ̄I is more

tractable.

Using Model 1, the mean number of inter-cell interferers within the distance r from the typical

BS (first moment of Φ̄I(b(o, r))) can be derived as follows:

Λ̄(b(o, r)) = E
[
Φ̄I(b(o, r))

] (a)
= NE

[
Φ̄P(b(o, r))

]
= N Λ̄p(b(o, r))

= N

∫
b(o,r)

λ̄p(x)dx = Nλb

[
πr2 − 5

12λb

(
1− e−(12/5)λbπr

2
)]

, (19)

5If the parents of a cluster process are the points of a Poisson process, the resulting process is a Poisson cluster process (PCP)

[22].
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where Λ̄ and Λ̄p are the intensity measures of Φ̄I and Φ̄P, respectively, and step (a) follows from

Φ̄I(b(o, r)) = NΦ̄P(b(o, r)). The second moment measure of Φ̄I(b(o, r)) is derived as follows:

E
[
Φ̄2

I (b(o, r))
]

= N2E
[
Φ̄2

P(b(o, r))
] (a)

= N2

∞∑
k=0

k2 Λ̄p(b(o, r))k

k!
e−Λ̄p(b(o,r))

(b)
= N2

[
Λ̄p(b(o, r)) + Λ̄p(b(o, r))2

] (c)
= Λ̄(b(o, r))

[
N + Λ̄(b(o, r))

]
, (20)

where (a) follows since Φ̄P(b(o, r)) is a Poisson random variable with mean Λ̄p(b(o, r)), (b) is

obtained from mean and variance of the Poisson distribution, and (c) follows by Λ̄(b(o, r)) =

N Λ̄p(b(o, r)), where Λ̄(b(o, r)) is given in (19). (20) can also be derived using the second

factorial moment measure of PPPs.

2) Model 2: In this model, we approximate ΦI with an inhomogeneous PPP ¯̄ΦI with intensity

function ¯̄λ(x) = Nλb

(
1− e−(12/5)λbπ‖x‖2

)
. The mean number of inter-cell interferers within the

distance r from the typical BS (first moment of ¯̄ΦI(b(o, r))) is as follows:

¯̄Λ(b(o, r)) = E
[

¯̄ΦI(b(o, r))
]

=

∫
b(o,r)

¯̄λ(x)d(x) = Λ̄(b(o, r)),

where ¯̄Λ denotes the intensity measure of ¯̄ΦI. The second moment of ¯̄ΦI(b(o, r)) is given by

E
[

¯̄Φ
2

I (b(o, r))
]

(a)
= ¯̄Λ(b(o, r))

[
¯̄Λ(b(o, r)) + 1

]
, (21)

where (a) follows since ¯̄ΦI(b(o, r) is Poisson variable with mean ¯̄Λ(b(o, r)). Note that the point

process introduced in [26] is a special case of the proposed models 1 and 2 when N = 1.

D. Model Validation

To compare the second moment of ΦI(b(o, r)) with the proposed models, we define ρ(r) ,
1

Nλb

√
E [Φ2

I (b(o, r))]. We consider the square root of the normalized second moment since it

illustrates the difference between the models better. In Fig. 2, ρ(r) for the original interferers

point process ΦI is obtained via simulations and a comparison is performed with the proposed

models. We observe that, ρ(r) for the proposed models are close to the ρ(r) of ΦI. Moreover,

based on Fig. 2, Model 1 provides a better approximation for larger values of r.

E. Moments and Meta Distribution of the CSP (Ps(θ))

The moments of the CSP for uplink NOMA users can be derived as follows.
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Fig. 2. Comparison of the second moment measure of ΦI with those of the proposed models (derived in (20) and (21)) for

λb = 1.

Theorem 1 (Moments of the CSP for Uplink NOMA). In uplink NOMA, b-th moment of the

CSP, b ∈ C, for the m-th rank user can be derived as follows:

Mb,(m) =

∫ ∞
0

[
(5/2)λbπr

2e(5/4)λbπr
2

µb
(
(5/4)λbπr

2, θ
)]N−m

E

[∏
x∈ΦI

(
1

1 + θrα‖x‖−α

)b]
fRm(r)dr,

(22)

where fRm(r) is given in (14) and µb(x, z) =
∫ 1

0
t−3e−xt

−2

(1+ztα)b
dt. The expectation in (22), which is

conditioned on the serving distance r can be approximated, using the proposed Model 1 and

Model 2 for inter-cell interferers’ point process, respectively, as follows:

E

[ ∏
x∈ΦI

(
1

1+θrα‖x‖−α

)b]
≈ exp

{
−2πλb

∞∫
0

[
1−

(
1

1+θrαx−α

)Nb] (
1− e−(12/5)λbπx

2
)
xdx

}
, (23)

E

[ ∏
x∈ΦI

(
1

1+θrα‖x‖−α

)b]
≈ exp

{
−2πNλb

∞∫
0

[
1−

(
1

1+θrαx−α

)b] (
1− e−(12/5)λbπx

2
)
xdx

}
.(24)

Proof: See Appendix A.

The proposed point processes provide better approximations for standard transmission success

probability (b = 1) when the SIR threshold is low as shown below.

Corollary 1. For b = 1 (standard success probability), the proposed point process models provide

better approximations when θ → 0.
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Proof: For b = 1, we have E
[∏

x∈ΦI

1
1+θrα‖x‖−α

]
= LIinter(θr

α/P ), where I inter is given

in (8) and LIinter(s) = E
[
e−sI

inter
]

is the Laplace transform of the inter-cell interference. When

s→ 0, we have

LIinter(s) = E
[
e−sI

inter
]
∼ 1− E

[
sI inter

] (a)
= 1− E

[
s
∑
x∈ΦI

Phx‖x‖−α
]

(b)
= 1− sPE

[∑
x∈ΦI

‖x‖−α
]
,

where (a) follows from (8), and (b) follows since fading coefficients hx are i.i.d. with unit mean.

According to the Campbell’s theorem, approximating ΦI with point processes that have the

same BS/user pair correlation function (which can also be interpreted as the same intensity

measure with respect to the origin) for any f : R2 7→ R+ yields

E

[∑
x∈ΦI

f(x)

]
≡ E

∑
x∈Φ̄I

f(x)

 ≡ E

∑
x∈ ¯̄ΦI

f(x)

 .
Therefore, the proposed models provide better approximations for the first moment M1 when

θ → 0.

Similarly, we can prove that for m = 1 or larger values of λb, the approximations are better,

because the probabilities of small values of r are higher for m = 1 or larger values of λb.

Corollary 2. For b ∈ R, Mb,(m) of Model 2 is a lower bound for Mb,(m) of Model 1.

Proof: Using the identity 1− yN ≡ (1− y)
(
1 + y + y2 + ...+ yN−1

)
, for 0 ≤ y, we have,

1− yN ≤ N(1− y). Then Corollary 2 is obtained by setting y =
(

1
1+θrαx−α

)b in (23) and (24).

The exact and approximate meta distributions of CSP can be obtained by using (3) and (4),

respectively, as described in Section II.

V. DOWNLINK NOMA: MOMENTS AND META DISTRIBUTION OF THE CSP

In this section, we derive the CSP, and the moments and meta distribution of the CSP in a

downlink NOMA network. For this, we first derive the distance distribution of the desired link

and then derive the moments of CSP as well as the meta distribution.

A. Distribution of the Desired Link Distance

Since each user connects to its nearest BS, the serving link distance distribution can be given

by the Rayleigh distribution as follows [31]:

fR(r) = 2λbπre
−λbπr2 , FR(r) = 1− e−λbπr2 . (25)
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Using the above equations and order statistics, the distribution of the distance of a user at rank

m from its serving BS can be given as follows [28], [29]:

fRm(r) =
2λbπr

(
1− e−λbπr2

)m−1 (
e−λbπr

2
)N−m+1

B(N −m+ 1,m)
, r ≥ 0. (26)

B. Moments and Meta Distribution of the CSP (Ps(θ))

The b-th moment of the conditional success probability Mb,(m), b ∈ C, for an m-th rank

downlink NOMA user is derived in the following. Based on these moments, we can derive the

mean success probability, the meta distribution, and the mean local delay.

Theorem 2 (Moments of the CSP for Downlink NOMA). For a user at rank m, the b-th moment

of the conditional success probability Mb,(m) is

Mb,(m) =



B(Ab,m+N−m+1,m)

B(N−m+1,m)
, θ < βm/

m−1∑
i−1

βi

0, θ ≥ βm/
m−1∑
i−1

βi & <(b) > 0

∞, θ ≥ βm/
m−1∑
i−1

βi & <(b) < 0

(27)

where Ab,m =
∑∞

k=1

(
b
k

)
(−1)k+1ckm

δ
k−δ 2F1(k, k − δ; k − δ + 1;−cm), cm = (βm

θ
−

m−1∑
i−1

βi)
−1,

δ = 2/α, 2F1 is the Gauss Hypergeometric function, and <(b) gives the real part of b.

Proof: See Appendix B.

Note that the condition θ < βm/
m−1∑
i−1

βi (or equivalently, 0 < cm < ∞) implies that the

received SIR at the m-th rank user is greater than the required SIR θ in the absence of inter-cell

interference. Moreover, when N = 1, which is the case in orthogonal multiple access, Theorem
2 reverts back to the known results for downlink Poisson cellular networks [16].

In the following, a simplified closed-form expression for negative moments M−w,(m), w ∈ R+,

is provided. The expression is useful in evaluating the mean local delay of an m-th rank user

in closed-form by setting w = 1.

Corollary 3. When b = −w, w ∈ R+, and cm > 0

M−w,(m) =


B(N−m−Dw,m+1,m)

B(N−m+1,m)
, Dw,m < N −m+ 1

∞, otherwise
(28)

where Dw,m =
∞∑
k=1

(
w
k

)
ckm

δ
k−δ . When cm < 0, from Theorem 2, we have M−w,(m) =∞.
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Proof: From the proof of the Theorem 2, we have

M−w,(m) = ERm

exp

−2πλb

∞∫
Rm

[
1−

(
1

1 + cmRα
mr
−α

)−w]
rdr




(a)
=

∞∫
0

exp

{
πλbr

2

∞∑
k=1

(
w

k

)
ckm

δ

k − δ

}
fRm(r)dr. (29)

Finally, Corollary 3 is obtained by substituting (26) in (29) and setting Dw,m =
∑∞

k=1

(
w
k

)
ckm

δ
k−δ .

Note that setting b = jt, j =
√
−1 and t ∈ R+, the exact meta distribution of the m-th rank

user is derived by substituting Mjt,(m) from Theorem 2 in (3).

Since the exact meta distribution is complicated and does not provide any direct insights,

the corresponding beta approximation is defined. To derive the beta approximation, we need

the first and second moments of Ps,(m). The standard (mean) success probability, which is the

first moment of Ps,(m), can be easily obtained by setting b = 1 in Theorem 2, i.e., M1,(m) =

B(A1,m +N −m+ 1,m)/B(N −m+ 1,m), where A1,m = cm
δ

1−δ 2F1(1, 1 − δ; 2 − δ;−cm).

Similarly, we can derive the second moment M2,(m) by setting b = 2. The beta approximation

is obtained by substituting M1,(m) and M2,(m) in (4) as described in Section II.

Corollary 4 (Local Delay of User at Rank m). For the m-th rank user, when cm > 0 and

D1,m = cm
δ

1−δ < N −m+ 1, the mean local delay is finite and is given by

M−1,(m) =
B(N −m−D1,m + 1,m)

B(N −m+ 1,m)
. (30)

When cm < 0 or D1,m = cm
δ

1−δ ≥ N −m+ 1 , the mean local delay is infinite.

VI. APPLICATION OF THE ANALYTICAL FRAMEWORK

In this section, we demonstrate one application of the developed analytical framework for

optimal transmit power allocation in a large-scale downlink NOMA network with an objective

to maximizing the standard success probability of a given user. We first consider a two-user

NOMA system for which closed-form solutions are obtained and then we consider an N -user

NOMA system for which the solutions can be obtained numerically.

A. Transmit Power Optimization in Two-User Downlink NOMA

For a two-user NOMA system, we maximize the success probability of user at 2-nd rank M1,(2)

with constraints on the minimum success probability achieved by the 1-st rank user M1,(1) in
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order to optimize the power allocation coefficients of users β1, β2. This optimization problem is

referred to as P1. We further extend the optimization problem P1 by incorporating the constraints

on mean local delays for each user and refer to the extended optimization problem as P2. For

the two-user NOMA system, we use the closed-form solutions obtained in the previous section.

Given N = 2, c1 = (β1/θ)
−1 > 0, and c2 = (β2/θ − β1)−1 > 0, we obtain the average CSP

of the 1-st and 2-nd rank users, respectively, as follows:

M1,(1) =
2

2 + A1,1

, M1,(2) =
2

2 + 3A1,2 + A2
1,2

,

where A1,1 = c1
δ

1−δ 2F1(1, 1 − δ, 2 − δ,−c1) and A1,2 = c2
δ

1−δ 2F1(1, 1 − δ, 2 − δ,−c2). As

mentioned in Theorem 2, cm, ∀m ∈ {1, 2}, must be positive, otherwise M1,(m) will be zero.

1) Optimization Without Latency Constraints: The first optimization problem can then be

formulated as follows:

P1 : max
β1,β2

M1,(2)

subject to C1 : M1,(1) > M target
1,(1) ,

C2 : 0 < β1 <
1

2
, C3 : β1 + β2 = 1.

C2 ensures that the user with poor channel can decode its signal without any SIC 0 < β1 <

β2 < 1 and C3 denotes the maximum BS power constraint β1 + β2 = 1. Note that M1,(1) and

M1,(2) are decreasing functions of A1,1 and A1,2, respectively. M1,(1) > M target
1,(1) imposes an upper

bound on A1,1 and maximizing M1,(2) is equivalent to minimizing A1,2. Moreover, since A1,1

and A1,2 are increasing functions of c1 and c2
6, we can transform P1 as follows:

P1 : min
β1,β2

c2

subject to 0 < c1 < ctarget
1 ,

0 < β1 <
1

2
, c2 > 0, β1 + β2 = 1,

where 0 < c2 and 0 < β1 guarantee positive M1,(2) and M1,(1), respectively, and ctarget
1 can be

obtained by solving the following equality:

ctarget
1

δ

1− δ 2F1(1, 1− δ; 2− δ;−ctarget
1 ) = 2

(
1

M target
1,(1)

− 1

)
. (31)

6Note that c1 and c2 must be positive; otherwise, the first moments will be zero according to Theorem 2.
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Note that ctarget
1 is unique and positive and can be obtained numerically. Moreover, since c1 = θ/β1

and c2 = θ/(1− β1(1 + θ)), c2 > 0 can be written as β1 < 1/(1 + θ) and 0 < c1 < ctarget
1 can be

written as β1 > θ/ctarget
1 . P1 can then be rewritten as follows:

P1 : min
β1

β1 (32)

subject to
θ

ctarget
1

< β1 < min

{
1

2
,

1

1 + θ

}
.

The aforementioned optimization problem can be solved in closed-form as follows.

Corollary 5. When the problem is feasible, i.e., θ < ctarget
1 min

{
1
2
, 1

1+θ

}
, the optimal powers for

users can be obtained as β∗1 = θ/ctarget
1 and β∗2 = 1− β∗1 , where ctarget

1 is given in (31).

2) Optimization with Latency Constraints: In URLLC systems, the local delay of a user is a

crucial performance metric; therefore, in the following, we also consider the mean local delay

constraints for each user.

P2 : max
β1,β2

M1,(2)

subject to C1 : M1,(1) > M target
1,(1) ,

C2 : c1
δ

1− δ
< 2, c2

δ

1− δ
< 1,

C3 : 0 < β1 <
1

2
, β1 + β2 = 1.

The constraints in C2 are the constraints for finite mean local delays for downlink NOMA users.

Using the constraints in C2 and C3, similar to P1, we can transform P2 as follows:

P2 : min
β1,β2

c2

subject to C1 : 0 < c1 < min

{
2

1− δ
δ

, ctarget
1

}
,

C2 : 0 < c2 <
1− δ
δ

,

C3 : 0 < β1 <
1

2
, β1 + β2 = 1,

and, finally, we can rewrite P2 as follows:

P2 : min
β1

β1

subject to
θ

min
{

21−δ
δ
, ctarget

1

} < β1 < min

{
1

2
,
1− θδ/(1− δ)

1 + θ

}
.

The aforementioned optimization problem can be solved in closed-form as follows.
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Corollary 6. When the problem is feasible, the optimal powers are β∗1 = θ/min
{

21−δ
δ
, ctarget

1

}
and β∗2 = 1− β∗1 , where ctarget

1 is obtained by (31).

Specifically, considering the constraints of finite mean local delays decreases the feasible

regions and changes the optimal power solutions.

B. Transmit Power Optimization in N -User NOMA

We extend P2 for an N -user downlink NOMA network as follows:

P3 : max
β1,β2,··· ,βN

M1,(m)

subject to C1 : M1,(k) > M target
1,(k) , k = 1, 2, · · · , N,

C2 : D1,k = ck
δ

1− δ
< N − k + 1, k = 1, 2, · · · , N,

C3 : ck =

(
βk
θ
−

k−1∑
i=1

βi

)−1

> 0 k = 1, 2, · · · , N,

C4 : βi ≤ βj ∀i, j ∈ {1, · · · , N}, i ≤ j,

C5 :
N∑
i=1

βi = 1, 0 ≤ βk k = 1, 2, · · · , N,

where C1 denotes the minimum success probability constraint for each user7, C2 represents the

finite mean local delay constraints for all users, C3 guarantees positive success probability M1,(k)

for each user, C4 and C5 are power constraints of the downlink NOMA system. According

to Theorem 1, M1,(k) = N !
(N−k)!

∏k
i=1

1
A1,k+N−i+1

, where A1,k = ck
δ

1−δ 2F1(1, 1 − δ; 2 − δ;−ck).

M1,(k) is a decreasing function of A1,k, and A1,k is an increasing function of ck where ck =(
βk/θ −

∑k−1
i=1 βi

)−1

. Therefore, M1,(k) is a decreasing function of ck and maximizing M1,(k)

is equivalent to maximizing c−1
k . Moreover, M1,(k) > M target

1,(k) can also be written as ck < ctarget
k ,

where ctarget
k is obtained by solving the following equation:

M target
1,(k) =

N !

(N − k)!

k∏
i=1

1

ctarget
k

δ
1−δ 2F1(1, 1− δ; 2− δ;−ctarget

k ) +N − i+ 1
. (33)

7When there is no minimum success probability constraint for users at rank m, we can set M target
1,(m) = 0.
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The above equation has a positive unique solution which can be obtained numerically. Combining

ck < ctarget
k and C2 yields ck < min

{
1−δ
δ

(N − k + 1), ctarget
k

}
and P3 can be reformulated as:

P3 : max
β1,β2,··· ,βN

βm
θ
−

m−1∑
i=1

βi

subject to 1/min

{
1− δ
δ

(N − k + 1), ctarget
k

}
<
βk
θ
−

k−1∑
i=1

βi ∀k = 1, 2, · · · , N,

N∑
i=1

βi = 1, β1 ≥ 0, 0 ≤ βk − βk−1, ∀k = 2, · · · , N.

The optimal power allocation for P3 can be obtained by using the linear programming tech-

niques. Note that the formulated optimization problems P1, P2, and P3 and their respective

solution approaches are general to optimize the success probability of any user at m-th rank.

VII. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical and simulation results to validate the accuracy of the

derived expressions. We also analyze the optimal power solutions obtained from P1, P2, and P3.

Specifically, for uplink NOMA, we validate and compare the analytical results of Theorem 1
considering the two proposed models for the interferers’ point process. A comparison is also

provided with the traditional OMA scheme. For both uplink and downlink NOMA, we validate

the accuracy of the beta approximation for the meta distribution using the results in Theorem
1 and Theorem 2 and show the distribution of the CSP for different users in a NOMA cluster.

Finally, we show the impact of including user latency constraints in downlink transmission

success probability maximization problems. The optimal power solutions are illustrated for

various scenarios.

A. Uplink NOMA

1) Validation of Model 1 and Model 2 and Meta Distribution of CSP: To demonstrate the

accuracy of the proposed interferers’ point process models, in Fig. 3(a), we plot the first moment

of the CSP, which is the standard success probability, of a user at rank m. Simulation results

and the analytical results derived in Theorem 1 are compared for λb = 0.001, N = 3, and

α = 4. According to Fig. 3, Model 2 provides a better approximation for m = 1 while Model 1
provides a better approximation for m = N . In general, Model 1 outperforms in a wide range

of scenarios. Also, the closest user has the highest success probability compared to any other

user in the typical Voronoi cell.
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For the same network parameters, the exact meta distribution of the CSP (obtained via

simulations) and its beta approximation (with two approximate interferers’ point processes) are

shown in Fig. 3(b). Using the proposed point process models, beta distribution provides a good

approximation for the exact meta distribution; therefore, our expressions can be used to study

the distribution of the CSPs in uplink NOMA.
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Fig. 3. First moment of the CSP and its meta distribution for three-users uplink NOMA for λb = 0.001, and α = 4.

2) NOMA vs. OMA: To compare N -user NOMA with OMA, we define the gain G as

G(θ) ,

∑N
m=1M1,(m)(θ)

MOMA
1 (θ)

, (34)

where MOMA
1 considers no channel inversion power control and is obtained by setting N = m = 1

in Theorem 1. For a given amount of radio bandwidth, when the user point process is ergodic,

G(θ) can be interpreted as the ratio of the density of users served in NOMA to the density of

users served in OMA. For instance, according to Fig. 4(a), when N = 3, G(−10 dB) ≈ 2.3,

which means, with NOMA, the number of users served in a unit area is 2.3 times that with

OMA. In Fig. 4(a), the gain of uplink NOMA G(θ) decays rapidly with increasing θ and the

rate of decay is much higher for large number of users N .

B. Downlink NOMA

1) NOMA vs OMA: In Fig. 4(b), G(θ) is evaluated for downlink. Similar to the uplink, the

gain of downlink NOMA G(θ) decays rapidly with increasing θ and the rate of decay is much

higher for large number of users N . However, for large values of θ, G(θ) increases since the
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Fig. 4. G(θ) for uplink and downlink NOMA. (a) Uplink NOMA with λb = 0.0005 and α = 4. (b) Downlink NOMA with

λb = 0.001 and α = 4. For N = 2, β1 = 0.15 and β2 = 0.85. For N = 3, β1 = 0.17, β2 = 0.33, and β3 = 0.5.

effect of link distance is dominant and the average link distance of a typical user in OMA is

1/(2
√
λb), while in NOMA, the average link distance of the 1-st rank user is 1/(2

√
Nλb).

2) Validation of Meta Distribution of CSP: In Fig. 5, we show that the meta distribution for

the CSP can be approximated by the beta distribution with shape parameters M1β/(1−M1)

and β. We consider three users in each NOMA cell. In this scenario, the meta distribution of

the m-th rank user, m = 1, 2, 3, and its beta approximation are shown in Fig. 5 for two different

power allocations. It can be seen that the beta distribution provides a good approximation for the

meta distribution. In Fig. 5(a), we note that about 58% of the 1-st rank users, 30% of 2-nd rank

users, and 7% of 3-rd rank users have success probabilities greater than 0.6. Therefore, success

probabilities of (58 + 30 + 7)/3 ≈ 32% of users are greater than 0.6. With OMA, for 68% of

users, success probabilities are greater than 0.6. This means that, with NOMA, the density of

users served with the same amount of radio spectrum is 32× 3/68 ≈ 1.4 times that with OMA,

when the success probability is higher than 0.6 (i.e., with reliability 0.6).

Moreover, using (6), we can also study the distribution of the local delay from Fig. 5. We

note that 58% of the 1-st rank users successfully receive their desired signals with probability

more than 0.6 in the first time slot, while, after the second time slot, 74% of the 1-st rank users

successfully receive their desired signals with probability more than 0.6 (this is obtained by

setting k = 2 and x = 0.6 in (6) which yields F̄Ps,m(0.37)). This value for the 2-nd rank users is

50% and for the 3-rd rank users is 17%. Hence, after the second time slot, (74+50+17)/3 ≈ 47%

of users receive their desired signals with reliability 0.6.
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Fig. 5. Beta approximation and the exact meta distribution for m-th rank user when λ = 0.001, N = 3, α = 4, and θ = −3 dB.

3) Finite and Infinite Mean Local Delay: Using the beta approximation, the distribution of

the CSP of 1-st and 2-nd rank users are shown in Fig. 6. To understand the relations between the

CSP of users, the standard success probability (1-st moment), and the mean local delay (−1-st

moment) consider the following examples.

When λb = 0.001, N = 2, α = 4, θ = −5 dB, β1 = 0.35, and β2 = 1 − 0.35 = 0.65, the

standard success probability for the 1-st rank users is 0.73 and for the 2-nd rank users is 0.53.

For the 1-st and 2-nd rank users, the mean local delays are finite, i.e., cm δ
1−δ < N −m + 1 is

satisfied for m = 1 and m = 2. When β1 = 0.15 and β2 = 0.85, the standard success probability

for the 1-st rank users is 0.59 and for the 2-nd rank users is 0.63. Although the standard success

probabilities are close, for the 1-st rank users the mean local delay is infinite while for the 2-nd

rank users the mean local delay is finite. When the mean local delay is infinite, it means that

there is a significant number of users with small conditional success probabilities in the network

[21]. This can also be seen in Fig. 6(b) where the PDF of small values of CSP for the 1-st rank

users is not zero. Therefore, we can conclude that for the 1-st rank users CSPs are close to 0

and 1 with high probability while for the 2-nd rank users they are close to mean 0.63 with high

probability.

4) Optimal Power Solutions: Fig. 7 shows the optimal powers of users as well as the maximum

success probability achieved at the 2-nd rank user (M1,(2)) as a function of target SIR θ for the

first optimization problem (P1) and the second optimization problem (P2). For M target
1,(1) = 0.7,

when both problems are feasible (in Fig. 7, zero values correspond to infeasible problems), the

optimal powers are the same. However, for M target
1,(1) = 0.5, when both problems are feasible,
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Fig. 6. PDF of the CSP of 1-st and 2-nd rank downlink NOMA users for λb = 0.001, N = 2, α = 4, θ = −5 dB. (a)

M1,(1) = 0.73 and M1,(2) = 0.53. (b) M1,(1) = 0.59 and M1,(2) = 0.63.

the optimal powers are different. For instance, when θ = −3 dB, for P1 we have β∗1 ≈ 0.15,

M1,(1) ≈ 0.50, and M1,(2) ≈ 0.51 while P2 yields β∗1 ≈ 0.25, M1,(1) ≈ 0.60, and M1,(2) ≈ 0.46.

As we discussed in the previous section, although there is a small difference between the

achieved mean success probabilities for the 2-nd rank users (maximum M1,(2)), as shown in

Fig. 7(b), there is a significant difference between the distributions of the CSP and hence the

optimal power solutions, as shown in Fig. 7(a). Moreover, for the first optimization problem

(P1), a large number of the 1-st rank users have success probabilities close to 0 (and also close

to 1). However, with the delay constraints in the second optimization problem (P2), the success

probabilities of the 1-st rank users become close to the mean value.

For N = 3, the optimal powers and maximum M1,(3) are illustrated in Fig. 8 when M target
1,(1) = 0.6

and M target
1,(2) = 0.5. The optimal powers and maximum M1,(3), when the finite mean local delay

constraints are not considered, are also illustrated for comparison. When both problems are

feasible, the maximum M1,(3) are the same for both the problems. However, considering the

finite mean local delay constraints avoids small (zero and close to zero) CSPs for the 1-st rank

users.

VIII. CONCLUSION

We have developed a stochastic geometry framework to derive the moments of the conditional

success probability (CSP) and its meta distribution in uplink and downlink NOMA networks.

The CSP and its meta distribution are useful in the evaluation of the network performance
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Fig. 8. Optimal powers and maximum M1,(3) for 3-UE downlink NOMA with and without considering the finite mean local

delay constraints for M target
1,(1) = 0.6, M target

1,(2) = 0.5, and α = 4.

metrics such as the standard success probability and average local delay. For uplink NOMA, we

have proposed two point process models for the spatial locations of the interferers by using the

definition of BS/user pair correlation function and demonstrated the accuracy of the models by

using Monte-Carlo simulations. For downlink NOMA, we have derived closed-form solutions
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for the success probability, its meta distribution, and the average local delay. As an application of

the developed analytical framework, we have used the closed-form results to optimize downlink

transmit powers in order to maximize the success probability with and without latency constraints.

The optimal solutions have been obtained in closed-form for two-user downlink NOMA networks

and these solutions reveal the significance of including the latency constraints in the traditional

optimization problems. The framework can be extended for more advanced network models

with Matern and Thomas cluster processes. Also, network performance can be optimized under

constraints such as variance and kurtosis/skewness of the local delay and success probability.

Moreover, the impact of imperfect SIC in uplink and downlink NOMA can be studied. Analysis

of the imperfect SIC is challenging since we need to consider the interference correlation.

APPENDIX A: PROOF OF THEOREM 1

We first derive the CSP Ps,(m) for the m-th rank uplink NOMA user as follows:

Ps,(m)(θ) = P
(
SIR(m) > θ | ΦU, tx

)
= P

(
hx(m)

> θ‖x(m)‖α
(∑
x∈ΦI

hx‖x‖−α +
N∑

i=m+1

hx(i)‖x(i)‖−α
)
| ΦU, tx

)

(a)
=
∏
x∈ΦI

1

1 + θ‖x(m)‖α‖x‖−α
N∏

i=m+1

1

1 + θ‖x(m)‖α‖x(i)‖−α
, (A.1)

where (a) follows from applying the CCDF of the unit mean exponential distribution of hx(m)

and then the Laplace transform of the unit mean exponential distribution of hx and hx(i) . Note

that ΦU represents the superposition of two independent point processes, namely, the inter-cell

interferers’ point process ΦI and the point process of users located in the typical Voronoi cell

(intra-cell users).

Next, we derive the b-th moment of CSP Mb,(m) = EΦU

[
P b

s,(m)

]
as follows:

Mb,(m)
(a)
= Ex(m)

EΦI

[∏
x∈ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b]
︸ ︷︷ ︸

Part A

Er

[(
1

1 + θ‖x(m)‖αr−α

)b]N−m
︸ ︷︷ ︸

Part B

 ,
(A.2)

where (a) is obtained by noting that (i) ΦU is the superposition of the inter-cell and intra-cell

point processes, (ii) the inter-cell interferers’ point process and the intra-cell interferers’ point

process are independent, and (iii) conditioned on the user at rank m, the distribution of the

distances of the intra-cell interfering users from the typical BS are i.i.d, so we can replace
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||x(i)|| with r [11]. Now using the Model 1 for inter-cell interferers point process in Section IV,

we can approximate Part A as follows:

EΦI

[∏
x∈ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b]
≈ E

∏
x∈Φ̄P

(
1

1 + θ‖x(m)‖α‖x‖−α

)Nb
| x(m)


(a)
= exp

−2πλb

∞∫
0

[
1−

(
1

1 + θ‖x(m)‖αr−α

)Nb](
1− e−(12/5)λbπr

2
)
rdr

 , (A.3)

where we approximate ΦI with Φ̄I and Φ̄I is same as the parent process (which is PPP) with

collocated N daughters. The last equality is obtained from the probability generating functional

(PGFL) of PPP. Similarly, using the proposed model 2, where we approximate ΦI with ¯̄ΦI, Part
A can be derived as follows:

EΦI

[∏
x∈ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b]
≈ E

∏
x∈ ¯̄ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b
| x(m)


= exp

−2πNλb

∞∫
0

[
1−

(
1

1 + θ‖x(m)‖αr−α

)b](
1− e−(12/5)λbπr

2
)
rdr

 . (A.4)

Now, Part B in (A.2) is derived as follows:

E

[(
1

1 + θ‖x(m)‖αr−α

)b
| x(m)

]
=

∞∫
‖x(m)‖

(
1

1 + θ‖x(m)‖αr−α

)b
fRout

(
r | ‖x(m)‖

)
dr

= (5/2)λbπ‖x(m)‖2e(5/4)λbπ‖x(m)‖2
∫ 1

0

t−3e−(5/4)λbπ‖x(m)‖2t−2

(1 + θtα)b
dt. (A.5)

Finally, Theorem 1 is obtained by averaging over the desired link distance using (14).

APPENDIX B: PROOF OF THEOREM 2

Substituting (12) in (1), the CSP for the m-th rank user yields

Ps,(m)(θ) = P

(
I intra

(m) + I inter
(m)

βmPh0‖x0‖−α
<

1

θ
| ΦB, tx

)
(a)
= P

(
I inter

(m)

βmPh0‖x0‖−α
<

1

θ
−
∑m−1

i=1 βi
βm

| ΦB, tx

)

(b)
= Ehx

exp

−cm‖x0‖α
 ∑
x∈ΦB\{x0}

hx‖x‖−α



=

∏
x∈ΦB\{x0}

1

1 + cm‖x0‖α‖x‖−α
,
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where (a) is obtained by using (10). When βm/θ −
∑m−1

i=1 βi is not positive, Ps,(m)(θ) = 0.

Therefore, in the following, we consider βm/θ−
∑m−1

i=1 βi > 0. (b) follows from the exponential

distribution of h0, applying (11), and setting cm =

(
βm
θ
−

m−1∑
i−1

βi

)−1

. Using Ps,(m), now we can

derive Mb,(m) as follows:

Mb,(m)
(a)
=E

 ∏
x∈ΦB\{x0}

(
1

1 + cm‖x0‖α‖x‖−α

)b
(b)
=ERm

exp

−
∫

R2\b(o,Rm)

[
1−

(
1

1 + cmRα
m‖x‖−α

)b]
λbdx




(c)
=ERm

exp

−2πλb

∞∫
Rm

∞∑
k=1

(
b

k

)
(−1)k+1ckmR

αk
m

r−αk+1

(1 + cmRα
mr
−α)k

dr




(d)
=

∞∫
0

exp

{
−πλbr

2

∞∑
k=1

(
b

k

)
(−1)k+1ckm

δ

k − δ 2F1(k, k − δ; k − δ + 1;−cm)

}
fRm(r)dr,

where the expectation in (a) is over the point process ΦB, (b) follows from probability generating

functional (PGFL) of PPP [22] outside b(o,Rm), (c) is obtained by using the polar domain

representation and by applying the binomial expansion, and finally, Mb,(m) in (27) is obtained

by calculating the integral in (d) where fRm(r) is given in (26).
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