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Abstract—The interdependency between different network
layers is commonly observed in Cyber Physical Systems and
communication networks adopting the dissociation of logic and
hardware implementation, such as Software Defined Networking
and Network Function Virtualization. This paper formulates an
optimization problem to improve the survivability of interde-
pendent networks by restructuring the provisioning relations. A
characteristic of the proposed algorithm is that the continuous
availability of the entire system is guaranteed during the restruc-
turing of dependencies by the preservation of certain structures
in the original networks. Our simulation results demonstrate that
the proposed restructuring algorithm can substantially enhance
the survivability of interdependent networks, and provide insights
into the ideal allocation of dependencies.

Keywords—interdependent networks; network survivability;
cascading failure; network function virtualization; cyber physical
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I. INTRODUCTION

MANY network systems encompass layering and integra-
tion of the layers in both explicit and implicit manners.

For example, Software Defined Networking (SDN) decouples
the control logic from forwarding functions to realize the flex-
ibility and agility of communication networks. Also, Network
Function Virtualization (NFV) involves separation of network
function logic from hardware. The concept of separating logic
from hardware implementations is also commonly adopted in
Cyber Physical Systems (CPS), such as smart grids, in which
computing capability manages physical entities.

The dissociation of logic and functions, which is effective
for system flexibility, has accelerated the amount of layering
and obscure dependencies in network systems. The work [1]
on software defined optical networks points out the depen-
dency of logical nodes on physical nodes that provide physical
paths for connections among logical nodes, as well as the
dependency of physical nodes on the logical nodes through
SDN control messages, which define the operations of the
physical nodes. Similarly, it is revealed that NFV embraces the
interdependency between Virtual Network Functions (VNF)
and physical servers hosting the VNFs, when a virtualization

Manuscript submitted March 6, 2019.
Genya Ishigaki, Riti Gour, and Jason P. Jue are with the Department of

Computer Science at The University of Texas at Dallas, Richardson Texas
75080, USA (Email: {gishigaki, rgour, jjue}@utdallas.edu).

An earlier version of this paper has been presented at IEEE International
Conference on Communications (ICC) 2018.

v1 v′1

v′2
G2

G1

Orchestrator

v2

(a) An interdependent network with
two constituent graphs representing
physical and logical network.

v′1

v′2
G2

G1

Orchestrator

v2

(b) Initial failure at a physical server
v1.

v′1

v′2
G2

G1
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(d) Cascading failure affecting a
physical server v′1. The entire net-
work becomes nonfunctional.

Fig. 1. An example of cascading failure in an interdependent network
representing the dependency between physical servers and NFVs.

orchestrator is recognized as one of the VNFs [2]. Further-
more, the integration of a control information network and an
electricity network seen in smart grids is a typical example of
the interdependency of two different layers in CPSs [3]. This
tendency of layering and collaborative functionality of layered
networks is likely to be more evident for next-generation
network systems.

However, it has been revealed that certain types of depen-
dencies between different layers of networks can deteriorate
the robustness of the entire interdependent system [4]. Con-
secutive multiple failure phenomena called cascading failures
exemplify the unique fragility of such network systems. In
networks without interdependencies, a failure would influence
a certain part of a network. Nonetheless, in networks with
interdependencies, some nodes that are not directly connected
to the failed portion can become nonfunctional due to the loss
of service provisioning from nodes in other layers, which are
directly influenced by the initial failure.

Fig. 1 shows an example of such a cascading failure,
which starts as a single node failure of v1 and results in the
entire network failure. Suppose that a network G1 consists
of physical servers v1 and v′1, and G2 represents logical
computing nodes v2 and v′2 hosting VNFs. The orchestrator,
which coordinates the mapping between physical and logical
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layer, is realized as one of the VNFs on v2. The arcs from
G1 to G2 ((v1, v2), (v′1, v

′
2)) illustrate the dependency of NFVs

or computing nodes on the physical servers, while the arcs
from G2 to G1 ((v2, v1), (v2, v

′
1)) indicate the dependency of

physical servers on a logical node in terms of the flow of
coordination messages from the orchestrator to the physical
servers. When the physical server v1 fails, the logical node
hosting the orchestrator v2 loses its dependent physical node
v1, and becomes nonfunctional. This induces another loss of
the dependent node of v′1, and eventually the single node
failure causes a failure of the whole network.

Cascading failures can also lead to the malfunctioning of
CPSs. In fact, it has been reported that some major electricity
outages in smart grids, such as the 2003 nation-wide blackout
in Italy [5], and the 2004 blackout over 8 states in US and
2 provinces in Canada [6], were due to cascading failures
induced from poorly designed dependencies between the elec-
tricity network and control information network.

Many contributions have been made since the first theoreti-
cal proposal on the cascading failure model by Buldyrev et al.
in 2010 [7]. The pioneering works [7], [8] focus on analyzing
the behavior of cascading failures rather than proposing design
strategies. In contrast, some following works identify vulnera-
ble topologies in interdependent networks to avoid such fragile
structures in the design phase by investigating the relation
between node degree and failure impacts [9], or evaluating
the importance of nodes exploiting the algebraic expression of
dependencies [10]. Furthermore, other works propose design
strategies in more realistic models to consider the impact of
failures caused by a single component [11], integrated factors
within and between layers [12], or the heterogeneity of nodes
in each layer [13].

This paper discusses a design problem for interdependent
networks to improve their survivability, which is a measure of
the robustness against a whole network failure, by modifying
an existing network topology. The contribution that contrasts
our work with other related works is the consideration of
existing network facilities. Our method is aimed at redesigning
a relatively small part of the existing network to enhance the
survivability so that the entire network remains operational
even during the restructuring process. In order to realize this
continuous availability, a special type of dependency, whose
removal does not influence the functionality of the entire
system, is identified in the first step of our restructuring
method. Our heuristic algorithm increases the survivability of
entire systems by the relocations of these dependencies. While
our previous work [14] allows a node to have dependencies
with any nodes in the other layer, this paper extends the model
by considering geographical, economic, or logical accessibility
of provisioning by nodes. These constraints are represented as
clusters of nodes, and an interdependent network is modeled as
a directed graph consisting of multiple clusters. The member-
ship of a node in a specific cluster imposes restrictions on the
nodes to which the node can provide support, and the nodes
from which the node can receive support. Hence, possible
modifications to the dependencies between nodes would vary,
depending on the cluster to which a node belongs. Finally,
our method is evaluated by simulations in different pseudo

interdependent networks.

II. RELATED WORKS

Most of the preceding works on interdependent networks
attempt to analyze the behavior of cascading failures in well-
known random graphs, which have certain characteristics in
degree distributions and underlying topology [7], [8]. Those
works analyze the propagation of failures based on percolation
theory developed in the field of random networks. Following
the directions shown by a seminal work by Buldyrev et al. in
[7], more general models are discussed in [8].

The works [9]–[13] focus on the design aspect of interde-
pendent networks. The relation between the impact of failures
and interdependencies is empirically demonstrated to decide
appropriate dependency allocations in [9]. A method to eval-
uate the importance of nodes in terms of network robustness
is proposed in [10] by introducing a novel representation of
interdependencies based on boolean algebra. This evaluation
enables network operators to prioritize the protection of the
nodes that contribute more to the robustness of the network.
In [12], the authors consider dependency relations not only
between layers but also within a single-layer. Combining
multiple factors that make a node nonfunctional, their method
adjusts the dependency of a node on the other nodes. The
work in [13] also considers the influence within a single-
layer, supposing the heterogeneity of nodes. In this model, a
network can have different types of nodes such as generating
and relay nodes. Zhao et al. [11] formulate an optimization
problem enhancing the system robustness, defining Shared
Failure Group (SFG), a group of nodes that can simultaneously
fail due to a cascading failure initiated by the same component.

Another branch of interdependent network research is re-
covery after failures [15]–[20]. The works in [15]–[17] an-
alyze the behaviors of failure propagations when each node
performs local healing, where a functioning node substitutes
for the failed node by establishing new connections with its
neighbors. The speed of further cascades and resulting network
states are revealed by percolation theory [15], [16] or steady
state analysis in the belief propagation algorithm [17]. Also,
resource allocation problems, which consider the different
roles of network nodes are discussed in [18]–[20]. The order
of assigning repairing resources is a critical problem during
the recovery phase when the amount of available resources
is limited. The works in [18], [19] propose node evaluation
measurements to decide the allocation, while an equivalent
problem in the phase diagram is discussed in [20].

Our work proposes a method to improve the survivability of
interdependent networks, following the survivability definition
in [21]. Our work would be classified into the category
of protection design methods before failures. Specifically,
the proposed method is exploited in a redesign process of
an existing network to enhance the survivability, while the
existing works [9]–[13] discuss the initial design of an entire
network. Our protection method, considering the functionality
during the redesign, would reduce the cost of survivability
improvement in contrast to the entire reconstruction of the
systems.
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III. MODELING AND MOTIVATING EXAMPLE

In this section, we present a mathematical model for de-
scribing interdependent networks, and we present a motivating
example of our method. Section III-B summarizes related work
[21] defining the survivability for interdependent networks,
which we adopt to evaluate the networks.

A. Network Model

An interdependent network consists of k constituent graphs
Gi = (Vi, Eii) (1 ≤ i ≤ k) and their interdependency
relationships, which are defined by sets of (directed) arcs
Ai j (1 ≤ i, j ≤ k, i , j) representing the provisioning between
a pair of nodes in different graphs. Edges in Eii ⊆ Vi × Vi

are called intra-edges because they connect pairs of nodes in
the same network. In contrast, arcs in Ai j ⊆ Vi × Vj (i , j)
are called inter- or dependency arcs. If there exists an arc
(vi, vj) ∈ Ai j (vi ∈ Vi, vj ∈ Vj), it means that a node vj
has dependency on a node vi . The node vi is called the
supporting node, and vj is a supported node. A node v is said
to be functional if and only if it has at least one functional
supporting node.

When an interdependent network is logically partitioned,
each constituent graph Gi has a clustering function κi : Vi −→
{1, 2, ..., γi}, where γi ∈ N is the number of clusters in Gi =

(Vi, Eii). Then, a graph Ixi = (W x
i ⊆ Vi, Eii(W x

i )) induced by a
node set W x

i = {v | κi(v) = x (1 ≤ x ≤ γi)} is called a cluster.
Note that this definition insists that a node is in exactly one
cluster.

In order to emphasize the dependency between constituent
graphs, an interdependent network can be represented as a
single-layer directed graph G = (V, A), where V :=

⋃
i Vi ,

and A :=
⋃
{(i, j) |i,j } Ai j by abbreviating intra-edges. With

this notation, a node v is said to be functional if and only
if degin(v) ≥ 1. Note that all the discussions in the rest of this
paper follow this single-layer graph representation.

Additionally, we introduce a different notation of arcs with
respect to their source nodes. Let A(v) ⊆ A represent a set of
arcs whose source node is v ∈ V . To identify each arc during
the restructuring process, where some arc temporarily loses its
destination, each arc is denoted as (v, ·)m (m = 1, ..., degout(v)).
The index m is a given fixed identification number for each arc
in A(v). Hence, every arc in A can be specified by providing
source node v and its identification number m.

A set of constituent graphs is totally ordered by the number
of nodes that are the source of at least one intra-arc: |Vout

i |,
where Vout

i := {v ∈ Vi | A(v) > 0}. A constituent graph that has
the least number of nodes with outgoing arcs is named the min-
imum supporting constituent graph Gi: |Vout

i | ≤ minj |Vout
j |.

B. Survivability of Interdependent Networks

Parandehgheibi et al. [21] propose an index that quantifies
the survivability of interdependent networks against cascading
failures exploiting the cycle hitting set, and they prove that the
computation of the survivability is NP-complete. They show
that a graph needs to have at least one directed cycle in order to
maintain some functional nodes; in other words, the existence
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Fig. 2. Graph G with (v1, v9).
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Fig. 3. Graph G′ with (v1, v6).

of one cycle prevents an interdependent network from its entire
failure. Thus, the survivability of interdependent networks is
defined as the cardinality of the minimum cycle hitting set
whose removal brings non-functionality for the entire network.
Note that a cycle hitting set S is a set of nodes such that any
cycle C = (V(C), E(C)) in a given graph G = (V, A) has at least
one node in the hitting set: S ∩ V(C) , ∅, ∀C ∈ C(G), where
C(G) is the set of all cycles in the given graph. This definition
implies that the entire failure of an interdependent network
occurs when the corresponding graph becomes acyclic. Let
H(G) denote a cycle hitting set with the minimum cardinality:
|H(G)| := minS∈S |S |, where S is the set of all the cycle hitting
sets in G. Formally, the survivability of an interdependent
network G is the cardinality of the minimum cycle hitting
set, |H(G)|.

C. Motivating Example

Adopting the survivability definition shown above, improv-
ing survivability would be equivalent to increasing the number
of disjoint cycles in a graph. Figs. 2 and 3 show an example
comparing two similar interdependent networks.

In graph G in Fig. 2, there exists two cycles: C1 and C2. If
v2, which is in both V(C1) and V(C2), becomes nonfunctional
because of a failure, all the nodes in G eventually lose their
supporting nodes and become nonfunctional: H(G) = {v2}.
On the other hand, no single node failure can destroy all the
three cycles in G′ in Fig. 3, while a two-node failure can
make it acyclic (e.g. H(G′) = {v2, v7}). Therefore, the graph
G′ is more survivable than G, since 1 = |H(G)| < |H(G′)| =
2, although they differ only in the destination node of one
dependency arc ((v1, v9) in G or (v1, v6) in G′). Supposing
that G is an existing topology of a network, a method that
relocates (v1, v9) to (v1, v6) can achieve an enhancement of the
survivability.

IV. PROBLEM FORMULATION

A. Assumptions

This paper deals with the case in which interdependent
networks have two types of homogeneous constituent networks
with identical dependencies (k = 2). However, our discussion
with the restriction on k can be easily extended to more general
cases. In more advanced network models, each constituent
network can have different types of nodes, such as indepen-
dently functional generating nodes and relay nodes, which
need provisioning from a generating node via paths of intra-
edges [13]. Nevertheless, for simplicity, this work follows the
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assumption in [21] that each node in a constituent network is
directly connected to a reliable conceptual generating node by
a reliable edge (homogeneous constituent graphs). Moreover,
it is assumed that each supporting node provides a unit amount
of support that is enough for a supported node to be operational
(identical dependencies), following the same model in [21].

Additionally, this paper presumes that each cluster x re-
ceives some support from at least one of the clusters that
are supported by cluster x. In other words, this presumption
excludes the case that a cluster does not receive provisions
from any of the clusters that the cluster is supporting.

B. Requirement Specification

One aspect contrasting our scheme to other works is the
consideration to improve the survivability of existing inter-
dependent networks by changing some topological structures.
Because all the nodes need to remain functional even during
the relocations of dependency relations, it is necessary to
avoid the loss of all supporting nodes for any node at any
stage of the restructuring. In other words, each node needs
to be survivable from a cascading failure, which requires the
direct or indirect support by the nodes in directed cycles. This
constraint is formally represented as the following rule for the
live restructuring.

1) Every node remains reachable from a node in a directed
cycle via at least one directed path at any stage of the
restructuring.

In addition to guaranteeing the continuous availability, the
amount of provisioning provided by each supporting node
should remain the same after the restructuring in order to
consider the capability of each node. The capability could be,
for example, the limit on electricity generation, computation
performance, or the number of ports available.

2) The number of supports that a node provides must
remain less than or equal to its original provisioning
capability.

Furthermore, depending on which cluster a node in graph
Gi belongs to, the node has a constraint on clusters in G j

that it can support. The constraint is given by a supportability
function σi j : Vi −→ 2γj , where 2γj is the power set of
the cluster indices in a constituent network G j . This means
that a node v (∈ Vi) can provide its support to the nodes
in the clusters of G j given by the supportability function.
This specification corresponds the geographical, economic, or
logical constraints on the accessibility of supports from a node
to specific groups of nodes. For example, it is impossible for
information control node v to have electricity supply from
node u if v and u are geographically far apart or managed
by different administrative institutions. The geographical or
administrative domain is shown as a cluster in each constituent
graph, and dependency relations of the nodes should be closed
within a set of permitted nodes, which are geographically
close, or managed by the same company or allied companies,
since each cluster should be independent from the outsiders.
This constraint relating to network clustering is simply ex-
pressed as follows.

3) All the provisionings from a node u are directed towards
the nodes in the clusters that u can support, as designated
by the supportability function σi j .

C. Clustered ∆H Problem

This section formulates the clustered ∆H problem, which
is aimed at enhancing the survivability of a given interdepen-
dent network with clusters by restructuring dependency rela-
tionships, considering the continuous availability, supporting
capability, and clustering constraint of each node.

Considering the continuous availability of an existing net-
work during restructuring leads to the formulation of a gradual
reconstruction problem, where no relocation of two or more
different arcs is conducted at a time. Each phase relocating
one arc is named a step. Let Gs = (V, As) denote the
graph representing the interdependent network topology at step
s. The improved interdependent network Gs+1 after step s
consists of a node set V , which is the same node set as in
graph Gs , and an arc set As+1 amended by the relocation of
an arc (u, v) ∈ As to (u, v′), where v′ ∈ V is a new destination
for the arc (u, v).

The clustered ∆H problem is to maximize the difference in
survivability between a given interdependent network, which
is recognized as G0, and the resulting network after a sequence
of consecutive improvements. The resulting network is repre-
sented as G f , where f denotes the step at which the last arc
relocation is completed. Formally, the objective is to maximize
the difference between |H(G0)| and |H(G f )|, which is defined
as ∆H.

Problem (Clustered ∆H Problem). For a given G0 = (V =⋃
i Vi, A0), the number of clusters γi ∈ N in each constituent

graph Gi , a clustering function κi : Vi −→ {1, 2, ..., γi} for
each constituent graph Gi , and supportability functions σi j :
Vi −→ 2γj , maximize ∆H := |H(G f )|− |H(G0)|, where Gs+1 =
(V, As+1) (0 ≤ s ≤ f − 1) is obtained by the relocation of the
destination of a single arc in As: As+1 = As \ (u, v) ∪ (u, v′),
satisfying

1) degin(v)Gs ≥ 1 ∀v ∈ V ,
2) degout(v)Gs+1 = degout(v)Gs ∀v ∈ V ,
3) κj(v ∈ Vj) ∈ σi j(u ∈ Vi) ∀(u, v) ∈ As .

These three conditions correspond to the three rules de-
scribed in Section IV-B. The second and third conditions are
easily derived from the corresponding rules. Lemma 1 shows
the equivalence of the condition 1 and Rule 1.

Lemma 1. When degin(v)G ≥ 1 (∀v ∈ V) in a connected
directed graph G = (V, A), (a) G has at least one directed
cycle, and (b) any node v ∈ V is reachable from a node u ∈ V
that is contained in a directed cycle.

Proof. degin(v)G ≥ 1 (∀v ∈ V) insists that any node v has
at least one parent v′. The path v ← v′ ← ... composed by
repeating the trace of parents can be acyclic until the length
of the path is |V − 1|. However, the |V |th node must have at
least one parent from the assumption. Thus, the pigeonhole
principle indicates that it is necessary that the path forms a
directed cycle. �
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Gi

Gj

v′

u′ u′′ u′′′

Fig. 4. Original Dependencies, where
(v′, u′) is missing. Note that this fig-
ure only shows A j i . The symmetric
discussion can be done for Ai j .

(1)

Gi

Gj

v′

u′ u′′ u′′′

(2)

Fig. 5. Relocation Steps (1) to main-
tain the functionality of u′′′, and (2)
to form a length-2 cycle with v′ and
u′.

D. Problem Analysis

This section provides the analysis on the trivial optimal
case of the clustered ∆H problem with a special setting,
where each of constituent graph consists only of one clus-
ter. Let ρ((u, ·)m) denote the number of relocations that arc
(u, ·)m ∈ A experienced during the restructuring process. Note
that

∑
u∈V

∑degout(u)
m=1 ρ((u, ·)m) = f .

From the definition, the optimum survivability cannot ex-
ceed the number of supporting nodes, which each have at
least one outgoing arc, in the minimum supporting constituent
graph Gi . This is because a set of such nodes covers all
the directed cycles in an interdependent network G. This
observation implies that the optimum survivability is achieved
when every node vi ∈ Vi of Gi has an injective mapping to a
node in Vj ( j , i). In other words, for each node vi in Gi , there
exists at least one unique disjoint cycle whose length is 2 with
vj in G j . The following lemma gives a sufficient condition to
reach the ideal state by repeated relocations while preserving
the problem constraints.

Lemma 2. When the number of relocations for each arc
ρ((u, ·)m) is not upper bounded, in order to have the opti-
mum restructuring, it is sufficient that the minimum support-
ing constituent graph Gi satisfies |Vj | <

∑
u∈Vi
|A(u)| and∑

v∈Vj
|A(v)| > |Vi | ( j , i). Then, the optimum survivability

becomes |Vout
i |.

Proof. The maximum survivability achievable by restructuring
is equal to the number of nodes that have at least one outgo-
ing arc |Vout

i | in the minimum supporting constituent graph
Gi = (Vi, Eii), because the removal of such nodes from Gi

must destroy all the cycles between Gi and another constituent
graph. In order to achieve the maximum survivability via the
restructuring process, it is necessary that each node u ∈ Vout

i
belongs to a cycle whose length is 2. Otherwise, the cycle
contains another node w ∈ Vout

i , and the removals of such w’s
make u lose all incoming arcs. Note that a node in Vi \Vout

i is
never a part of directed cycles, since it has no outgoing arc.

Suppose that we have the minimum supporting constituent
graph Gi and another constituent graph G j that satisfy the two
conditions in the lemma. From the definition of the minimum
supporting constituent graph, we can make |Vout

i | pairs of
nodes 〈u ∈ Vout

i , v ∈ Vout
j 〉, which are expected to form a

length-2 cycle together after restructuring, so that no two nodes
in Vi are paired with the same node in Vout

j .
Figs. 4 and 5 illustrate a general example of a restructuring

process to form such a length-2 cycle by dependency arc relo-
cations. Note that the figures only show Aji , but the symmetric

argument can be done for Ai j . Let 〈u′ ∈ Vout
i , v′ ∈ Vout

j 〉 be
a pair such that (v′, u′) < Aji . In order to make a length-2
cycle between v′ and u′, the arc (v′, u′′′) should be relocated
to (v′, u′). However, the relocation makes u′′′ lose all of its
incoming arc. The loss of incoming arc of u′′′ is always
avoided by relocating one of the arcs incoming to u′′ to u′′′

(See Figs. 4 and 5 (1)). The supposition in the lemma and
the pigeonhole principle suggest the existence of at least one
node u′′ ∈ Vi that has two incoming arcs. After the adjustment
of the provisioning for u′′′ by this relocation, the arc (v′, u′′′)
can be relocated to (v′, u′) (See 4 and 5 (2)).

For a pair 〈u′ ∈ Vout
i , v′ ∈ Vout

j 〉 such that (u′, v′) ∈
Ai j , similar relocations are always possible, because |Vj | <∑

u∈Vi
|A(u)|. Thus, these relocations eventually achieve the

maximum survivability by forming |Vout
i | length-2 cycles that

each consist of a pair 〈u ∈ Vout
i , v ∈ Vout

j 〉. �

Some propositions similar to Lemma 2 appear in related lit-
erature [11], [22]. The sufficient condition provided in Lemma
2 allows the entire restructuring of inter-arcs by repeated
relocations of each arc. Therefore, the ∆H problem is recog-
nized as a design problem of an entire interdependent network
discussed in [11] under these assumptions. Also, the work [22]
claims that such a one-to-one provisioning relation realizes the
robustness, while assuming certain structural characteristics of
random graphs.

However, it is unrealistic to relocate a dependency arc
many times, when considering the overhead of the changes
of provisioning relations in network systems. Therefore, the
following part of our paper discusses the case where the
number of relocations are strictly restricted: ρ((u, ·)m) ≤ 1 (1 ≤
m ≤ degout(u), ∀u ∈ V). Under this condition, it cannot be
guaranteed to obtain the optimum survivability even when the
sufficient condition above holds.

V. HEURISTIC ALGORITHM FOR ∆H PROBLEM

This section proposes a heuristic algorithm for the clustered
∆H problem. Before providing the details of our heuristic
algorithm, we first define special types of arcs named Marginal
Arcs (MAs), which are candidates for the relocations in
Section V-A. Then, the heuristic algorithm, which consists of
two algorithms: Find-MAs and ∆H, is described. The Find-
MAs algorithm enumerates all the arcs that match the defini-
tion of MAs. With the set of MAs found by the Find-MAs
algorithm, the ∆H algorithm decides appropriate relocations
of the dependency arcs in the set, considering disjointness of
newly formed cycles, so that it can improve the survivability
of a given network.

After the discussion for a simple case with only one cluster
in each constituent graph in Sections V-B to V-C, Section V-D
explains how the other cases with multiple clusters are broken
down into the simple case.

A. Restructuring of Dependencies

In order to guarantee continuous availability, it is necessary
to classify the dependency arcs into either changeable or fixed
arcs. However, it is computationally difficult to know the
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Fig. 6. Original graph G with Marginal Arcs
(v2, v3) and (v5, v3).
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Fig. 7. Modified graph G′ with a new arc
(v5, v1).
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C ′

3

Fig. 8. Modified graph G′′ with a new arc
(v2, v4).

classification beforehand under the condition of ρ((u, ·)m) ≤
1 (∀u ∈ V), because this process involves enumeration of all
the permutations of arc relocations and their combinations of
destinations. Thus, in this paper, the classification is simplified
by using a sufficient condition, while this enumeration is
likely to become another optimization problem for a further
investigation.

As observed in Section III-C, increasing disjoint cycles in a
given network could be an important factor to enhance overall
survivability. Hence, our method maintains all existing cycles,
which is sufficient to avoid cascading failures, and tries to
reallocate the destinations of the arcs that do not belong to
directed cycles and that do not make their descendant nodes
nonfunctional. Let the arcs that are not in any cycles in a given
directed graph G = (V, A) be called Marginal Arcs (MAs).
Formally, the set M ( A of MAs is defined as

M := {(u, v) | (u, v) < A(C) ∀C ∈ C(G)}. (1)

Lemma 3. A removal of any marginal arc never decreases the
survivability of an interdependent network: |H(G)| ≤ |H(G)|,
where G is a given graph, and G is the graph obtained by the
removal.

Proof. Let M be a set of marginal arcs. From the definition
of MAs (Eq. (1)), the removal of MAs does not destroy or
connect any existing cycles in G = (V, A). Therefore, |H(G)| =
|H(G)|, where G = (V, A \ M). �

Moreover, appropriate relocations of the removed MAs
could improve the survivability of interdependent networks,
assuring operability during the relocation process and main-
taining the provisioning capability of each node. Let us
analyze the effect of dependency relocations using simple
examples in Figs. 6-8. The given graph G in Fig. 6 has two
marginal arcs: M = {(v2, v3), (v5, v3)}. In order to maintain
at least one supporting node for v3, one of the MAs has
to remain the same, and the other can be relocated. Fig. 7
shows the case of relocating (v5, v3) to (v5, v1); on the other
hand, Fig. 8 indicates the case of relocation of (v2, v3) to
(v2, v4). Even though one new cycle (C3 and C ′3 respectively)
is formed by each relocation, the modified graphs G′ and
G′′ have different survivability: |H(G′)| = 1 (= H(G)), and
|H(G′′)| = 2. This is because the cycles in G′ are not disjoint
with each other: V(C1) ∩ V(C2) ∩ V(C ′3) , ∅; in contrast,
V(C1) ∩V(C2) ∩V(C ′′3 ) = ∅ in G′′. Therefore, it could be said
that the appropriate relocation for improving survivability is
to form disjoint cycles.

Algorithm 1 ∆H-algorithm(G, l)
Input: subgraph (directed graph) G = (V, A), maximum hop

l ∈ N (odd)
1: M ← find-MAs(G) # M ⊂ A
2: for each (v,w) ∈ M do
3: if degin(w) ≥ 1 after A \ {(v,w)} then
4: while True do
5: pick C ∈ C(v) (randomly)
6: for i ← l; i > 0; i ← i − 2 do
7: pick u ∈ V(C) : dC(v, u) = i
8: if u < U then
9: A← A \ (v,w) ∪ (v, u)

10: U ← U ∪ {n | dC(v, n) ≤ i}
11: break to next arc in M (line 2)
12: end if
13: end for
14: end while
15: pick (u, v) ∈ Ain(v) (randomly) # Minimal-add pro-

cess (line 15,16)
16: A← A \ (v,w) ∪ (v, u)
17: end if
18: end for

B. Find-MAs Algorithm

The Find-MAs algorithm first distinguishes MAs M , which
are candidate arcs for relocations, from the arcs in directed
cycles in a given graph G = (V, A), by employing Johnson’s
algorithm [23]. Johnson’s algorithm enumerates all elementary
cycles in a directed graph within O((|V |+ |E |)(|C(G)|+1)). It is
enough for distinguishing MAs to obtain elementary directed
cycles because any non-elementary cycle can be divided
into multiple elementary cycles within which dependency
relationship are closed. After the enumeration of cycles in
G by Johnson’s algorithm, the set of MAs is obtained by
M ← A \⋃C∈C(G) A(C).

C. ∆H Algorithm

With the set of MAs obtained by Johnson’s algorithm,
the ∆H algorithm (shown as pseudo code in Algorithm 1)
relocates the destinations of MAs, considering disjointness of
newly created cycles. (See the discussion in Section V-A.)
For each MA (v,w), our algorithm first checks whether or not
the relocation of this MA causes the loss of supports for the
current destination w: degin(w)G=(V,A\{(v,w)}) ≥ 1 (line 3).
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C1

v1

v3v4 v5 v6 v7

v2

Fig. 9. A given graph G with M = {(v1, v5), (v2, v6), (v3, v7), (v6, v7),
(v1, v7), (v3, v5), (v5, v6)}.
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v2
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C5

Minimal-add

Regular 
relocation

Fig. 10. A modified graph G′ with new arcs: (v1, v4), (v3, v2), (v2, v1),
(v6, v5).

If w still has some supporting node after the removal of
(v,w), the next step is determining a new destination for (v, · ).
Our algorithm randomly selects one of the cycles that contains
the source v denoted by C ∈ C(v) (line 5). There may be
multiple possible candidate nodes for a new destination in the
cycle C. Thus, the new destination is decided by the size of the
newly formed cycle, which is a result of the relocation (line
6, 7). To represent the size of the newly formed cycle, the
distance from a node v to a node u in an (existing) cycle C in
the counter direction is denoted as dC(v, u) in our pseudo code.
When the maximum hop is designated by l, the algorithm tries
to make a new cycle with size l + 1 using a node u, such that
dC(v, u) = l, as the destination of the MA. If it fails to form
the cycle, it attempts to compose a smaller cycle using a node
u′ such that dC(v, u′) = l − 2. Because of the definition of the
dependency, an arc must span between two different layers or
constituent networks. Since the node at dC(v, u) = l − 1 in C
is in the same constituent network as the source node v, it
cannot be a new destination.

Consider an example using a given graph G shown in Fig.
2 and the restructured graph in Fig. 3. Since the removal of
(v1, v9) does not make v9 lose all its incoming dependency arcs,
our algorithm tries to relocate the destination of this arc to one
of the nodes in the cycle C1, which are v2, v6, v8. For instance,
in the case l = 3, a new cycle C3 is formed as depicted in Fig.
3 by choosing v6, that satisfies dC1 (v1, v6) = l (= 3). Similarly,
if l is initialized to 1, a new cycle C3 is formed using {v1, v8}.

After selecting a destination candidate u in line 7, our
algorithm checks if u is already used to create a new cycle
(line 8). This is confirmed by a set of nodes U storing all the
nodes that are in newly formed cycles: {n | dC(v, n) ≤ i} (line
10). For instance in Fig. 3, U ← U∪{v1, v6, v7, v8}. As will be
understood, when another MA tries to form a new cycle using
one of these nodes in U, the new cycle and C3 share some
nodes, which means that those cycles are not disjoint. Also,
the arc set A is updated when the new destination is finally
fixed (line 9).

If there exists no possible destination for an MA (v,w)
that satisfies all the conditions, the relocation of the MA is

conducted by randomly selecting an incoming arc of v, (u, v)
and relocating (v,w) to (v, u), so that it composes a cycle
of length 2 (line 15, 16). This random selection is named
Minimal-add process.

The MAs relocated by the Minimal-add process satisfy
either of the following cases: 1) The node v does not be-
long to any cycles: C(v) = ∅, or 2) all the nodes in the
cycles of C(v) are already used to compose new cycles by
other MAs. Figs. 9 and 10 show examples of these two
conditions (dashed arcs). A given graph G has the MA set
M = {(v1, v5), (v2, v6), (v3, v7), (v6, v7), (v1, v7), (v3, v5), (v5, v6)}.
Eventually, the ∆H algorithm respectively relocates (v1, v5)
and (v3, v7) to (v1, v4) and (v3, v2). Because v6 is not in any
cycles in G (reason 1), the Minimal-add process picks the
source of one of the current incoming arcs in Ain(v), v5 as
the new destination. Also, (v2, v6) does not have any possible
destinations that are not in the set U (reason 2), and it is
relocated to (v2, v1) by the Minimal-add process.

D. Application to Clustered Networks

Our heuristic algorithm employs another algorithm named
Decompose-cluster to form subgraphs, which indicate candi-
date destinations for the MAs in each cluster, from a given
interdependent network. When interdependent networks are
clustered, the modification of the destinations of MAs needs to
be conducted under more constraints given by supportability
functions σi j : κj(v ∈ Vj) ∈ σi j(u ∈ Vi) ∀(u, v) ∈ A. The
Decompose-cluster algorithm selects each cluster (node set
W x

i (1 ≤ i ≤ k, 1 ≤ x ≤ γi)) and collects MAs (u, v) whose
sources are in the cluster (u ∈ W x

i ), or whose destinations and
sources are respectively in the cluster W x

i and in a cluster in
σi j(v) (v ∈ W x

i & κj(u ∈ Vj) ∈ σi j(v))). Using the collected
MAs and their endpoints, a subgraph Y for reallocations of
MAs in W x

i is composed. Each subgraph for each cluster
is given to the ∆H-algorithm so that it can improve the
survivability by restructuring dependencies in the subgraph.

As will be understood, no directed cycles exist if no MA
matches the condition of v ∈ W x

i & κj(u ∈ Vj) ∈ σi j(v).
However, this is not going to happen in our work due to the
assumption mentioned in Section IV-A. Note that the absence
of such MAs means that nodes in a cluster x are not provided
any support by the nodes that receive some supports from the
nodes in the cluster x.

E. Complexity Analysis

The Decompose-cluster algorithm extracts
∑k

i=1 γi sub-
graphs from a given graph G = (V, A). The number of clusters
γi in each constituent graph tends to be much smaller than
the number of nodes; thus,

∑k
i=1 γi can be considered as a

constant. In order to compose each subgraph, the algorithm
requires to check the source and destination of each arc in A.
However, each edge appears in exactly one subgraph because
of the used edge set D. Therefore, the total complexity of the
Decompose-cluster algorithm is O(|V | + |A|).

The complexity of the ∆H-algorithm is sensitive to the
number of cycles in the interdependent network. It is known
that Johnson’s algorithm finds all elementary cycles within
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Algorithm 2 Decompose-cluster(G)
Input: interdependent network (directed graph) G = (V =⋃k

i=1 Vi, A), clustering functions κi
1: D← ∅
2: for a node set W x

i (1 ≤ i ≤ k, 1 ≤ x ≤ γi) do
3: P← ∅, R← ∅
4: for each (u, v) ∈ A \ D do
5: if u ∈ W x

i or (v ∈ W x
i & κj(u ∈ Vj) ∈ σi j(v)) then

6: P← P ∪ {u, v}
7: R← R ∪ (u, v)
8: D← D ∪ (u, v)
9: end if

10: end for
11: compose graph Y = (P, R)
12: ∆H-algorithm(Y, l)
13: end for

O((|V | + |E |)(|C(G)| + 1)). The ∆H-algorithm determines
a new destination after l

2 × C(G) searches for each MA,
in the worst case. When only one cycle whose size is 2
exists in the input, and the other nodes are supported by
the cycle, the size of the set M becomes |E | − 2. It is
obvious that the complexity of the Minimal-add process is
O(1), so the worst case analysis takes the case where all MAs
are reallocated by the ∆H-algorithm. Thus, its complexity is
O((|V |+ |E |)(|C(G)|+1))+O((|E |−2)(d l2 e×|C(G)|)). Assuming
the maximum hop l is small enough to be considered as a
constant, the overall complexity of our heuristic algorithm
becomes O((|V | + |E |)|C(G)|). Note that the assumption on
l is valid with our strategy, which tries to increase disjoint
directed cycles in a given graph.

F. Optimality in Special Graphs

In order to analyze the performance of our heuristic al-
gorithm, we consider the survivability improvement in special
graphs where either an exhaustive search gives us the optimum
survivability, or some special properties allow us to compute
the optimum.

In the analysis, the upper bound of the survivability im-
provement, which is used as a benchmark for the rest of this
paper, is calculated based on the number of the MAs that
satisfy the following two conditions. First, let Vs be a set of
nodes that hold more than one MA, and Ms be a set of MAs
whose source nodes are in Vs . Even when the MAs from v ∈ Vs

form more than one new cycles, the removal of such a source
node v can destroy all the newly formed cycles. This indicates
that restructuring increases the survivability by at most |Vs |,
when relocating MAs in Ms . Second, let Vd be a set of nodes
whose incoming arcs are all MAs, and Md be a set of MAs
whose destination nodes are in Vd . If all the MAs incident
to v ∈ Vd are relocated, v loses its functionality during this
restructuring. Therefore, at least one MA should remain as
an incoming arc to v. This implies that the number of cycles
newly formed by the MAs in Md is at most |Md | − |Vd |. Thus,
the upper bound U is obtained by |M | − |Ms | + |Vs | − |Vd |.

Fig. 11 illustrates a comparison of our algorithm with the
optimum solution in a small interdependent network such that
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Fig. 11. Numerical comparison with the optimum solution in a small
interdependent network.
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Fig. 12. Survivability of MA-saturated Path-Sunlet graphs ζ2(G ∈ L) with
two length-3 paths: |P | = 2, ki = 3 (∀Pi ∈ P).

each constituent graph has 15 nodes, and the number of depen-
dency arcs is 84, including 5 MAs. The optimum solution is
obtained by an exhaustive search of 759,375 combinations of
reallocations. This numerical example shows that the solution
given by the ∆H algorithm would not provide solutions that
are exceptionally divergent from the optimum solution. It also
infers that the upper bound is not tight in general.

Fig. 12 indicates that the survivability obtained by our
restructuring heuristic algorithm matches the optimum in a
special class of graphs, which are named MA-saturated Path-
Sunlet Graphs ζ2(G), G ∈ S. The optimum value of surviv-
ability for these graphs is always computable based on the
following discussion.

Definition 1. Path-Sunlet Graphs L: A set of graphs satisfying
the following conditions are named Path-Sunlet graphs. Let L
denote the set of Path-Sunlet graphs.

• G ∈ L only has one cycle C.
• The arcs that are not in the cycle C form a set of

disjoint paths whose initial nodes are in C: P = {Pi =

(vi1, v
i
2, ..., v

i
ki
) | vi1 ∈ C and Pi ∩ Pj = ∅ (∀Pj,i ∈ P)}.

Definition 2. MA-saturation ζδ(G) of a graph G: The MA-
saturation is an operation of adding additional arcs to a given
graph until any addition of an arc makes the graph non-simple,
maintaining the out-degree constraint that the out-degree of
any node does not exceed a given constant δ ∈ N.

Remark. The optimal restructuring of MAs in MA-saturated
Path-Sunlet graphs ζ2(G), G ∈ L consists of forming length-2
cycles using an MA and an edge in either Pi ∈ P or C.

We consider the cases where |P | ≥ 1, because the surviv-
ability in the case of |P | = 0 is obviously

⌈
|V (C) |

2

⌉
.

Lemma 4. By removing arcs that are not in any cycle, the
optimally restructured MA-saturated Path-Sunlet graph ζ2(G)
is decomposed into some sequence of cycles.
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Proof. Three or more cycles do not meet at the same node,
since δ = 2. Therefore, the only possible topology with
multiple length-2 cycles is a chain of cycles, in which two
cycles share exactly one node. �

Lemma 5. The survivability of the optimally restructured
MA-saturated Path-Sunlet graphs ζ2(G), G ∈ L is

∑
q∈Q

⌈ q
2
⌉
,

where Q is the set of all the sequences of cycles obtained by
removing the arcs that are not in any cycles.

Proof. A removal of one node that is shared by two cycles
breaks the two cycles. When q is even, the process gives us
the survivability of q

2 . If q is odd, one additional removal is
needed to destroy the remaining cycle. Thus, the survivability
of a sequence of q cycles is

⌈ q
2
⌉
.

Since each sequence in Q is disjoint with the other, the
survivability of the entire graph is obtained by summing up
the survivability of each sequence. �

VI. SIMULATION

In order to understand the performance of the proposed
algorithm, our simulations are conducted in both non-clustered
and clustered interdependent network models of different
sizes. The results from the simplest cases where each con-
stituent network only consists of one cluster (non-clustered)
are first described, and the clustered cases follow.

A. Network Topology

The performance of the proposed algorithm is analyzed
in random directed bipartite graphs that contain at least one
directed cycle. Assuming the situation in which a current
interdependent network is working normally, each node is
either a member of some cycle or reachable from a node in a
cycle through some directed path in the input graph. Because
our algorithm only concerns the dependency arcs between 2
constituent graphs (k = 2), any interdependent network is
represented as a directed bipartite graph whose arcs connect
a pair of different types of nodes.

Each random bipartite graph is generated by specifying the
following parameter: Vi , maxv∈V degin(v) and minv∈V degin(v).
In order to observe the performance in different conditions,
experiments are conducted in symmetric and asymmetric in-
terdependent networks. A symmetric interdependent network
has constituent networks which each have identical number
of nodes: |V1 | = |V2 |, while constituent networks of an
asymmetric interdependent network have different number of
nodes: |V1 | = |V2 |

q (q ∈ N). The degree of each node is
determined based on the uniform distribution between the
given maximum and minimum incoming degree.

B. Clustering Settings

As the non-clustered cases have symmetric and asymmetric
constituent graphs, clustered interdependent networks are also
examined in three patterns of topology configurations. In our
simulations, each constituent graph has three clusters: W1

i , W2
i

and W3
i (i = 1, 2) (See Fig. 13). In symmetric cases, a pair of

corresponding clusters in different constituent graphs have the

W 1
1 W 2

1 W 3
1

W 3
2W 1

2 W 2
2

NW1

NW2

solid

dashed

dotted

Fig. 13. Dependency models of clustered interdependent networks. Arrows
show the dependency relationships between clusters. Model 1: solid. Model
2: solid and dashed. Model 3: solid, dashed, and dotted.

same number of nodes: W x
1 = W x

2 , while a cluster is half-sized
to the corresponding cluster in the other constituent graph in
asymmetric models: W x

1 =
W x

2
2 .

Also, Fig. 13 illustrates the three models that have different
dependency relationships indicated as arrows. Note that when
an arrow is drawn from W x

i to W x′
j , it means that the nodes in

cluster W x′
j can have supports from the nodes in W x

i . Model
1 consists only of the solid arrows, which means that each
pair of corresponding clusters has dependency relationships.
Model 2 has the dependencies illustrated by the solid and
dashed arrows, while Model 3 has all the arrows (solid, dashed
and dotted). A major difference between these models is the
possibility for a network to have some directed cycles over
three or more clusters. In Model 1 and 2, directed cycles are
able to exist only in a subgraph consisting of W1

1 and W1
2 , W2

1
and W2

2 , or W3
1 and W3

2 , while a directed cycle can lie over
the entire graph containing all the clusters in Model 3.

C. Metrics

The survivability of the given graphs, restructured graphs,
randomly reassigned graphs, and the upper bound of the
improvement are illustrated in our results. The random reas-
signments of MAs are conducted with a uniform distribution
over all the nodes in the other constituent graph from the
constituent graph that includes the source of an MA.

Computing the size of the cycle hitting set is known
to be NP-complete even in bipartite graphs, so the exact
value cannot be obtained in larger graphs. Our evaluation is
conducted using a well-known approximation algorithm whose
approximation factor is ln |V | + 1 [24].

Furthermore, the density of a given graph G = (V, A) defined
by |A |∏

i |Vi | is used to examine the relationship between the
survivability improvement, and the maximum and minimum
degrees.

D. Results

1) Non-clustered Cases: Figs. 14 and 15 illustrate the
survivability of the given and restructured graphs with identical
and halved size constituent graphs, respectively. In both cases,
our method demonstrates more improvement of the survivabil-
ity compared to the random reassignment. The survivability of
the original graphs |H(G)| maintains a similar value regardless
of the size of graphs, though the survivability of the graphs
restructured by our method |H(G′)| steeply increases along
with the size of the graph. Since, in the original graph G, arcs
are randomly added, it could be difficult to form larger directed
cycles. Therefore, it is reasonable that the number of disjoint
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Fig. 14. Survivability of interdependent net-
works before and after the improvement un-
der |V1 | = |V2 |, maxv∈V degin(v) = 4, and
minv∈V degin(v) = 2, and l = 1, 3.
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Fig. 15. Survivability of interdependent networks
before and after the improvement under |V1 | =
|V2 |

2 , maxv∈V degin(v) = 4, minv∈V degin(v) =
2, and l = 1, 3.
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Fig. 16. The relationship between graph density
and ∆H .
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Fig. 17. Survivability of clustered interdependent
networks (Model 2) before/after the improvement
under |W 1
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Fig. 18. Survivability of clustered interdependent
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Fig. 19. Comparison of survivability among
different dependency models.

cycles indicates the tendency to stay within a similar range
of values. On the other hand, there would exist more MAs in
larger graphs, because these graphs have more arcs that are
not in directed cycles. This results in dramatic enhancement
of the survivability in larger graphs. The difference caused by
the given maximum hop l for our algorithm remains small
over all sizes of a graph.

Fig. 16 indicates the relationship between the density of
graphs and ∆H, the amount of survivability improvement. We
compare our method to the random reassignment. The result
shows that, in graphs with lower density, our method has
greater success in increasing the survivability. An observed
general trend of our method is the gradual decrease in ∆H in
accordance with the density. This trend seems to be induced
by the fact that the graphs with more arcs have a higher
possibility of composing cycles even in the original topology.
This implies that graphs with higher density have fewer MAs
that can form new disjoint cycles. On the other hand, the
random reassignment does not demonstrate its effectiveness
for the improvement in graphs with any density, which is
the same result from Figs. 14 and 15. Moreover, the random
reassignment sometimes decreases the survivability (∆H < 0).
It is conceivable that the reassignment connects two (or more)
cycles and make it possible to decompose all these cycles
by the removal of a node. This result implies that imprudent
restructuring of the dependency may cause more fragility of
the interdependent networks.

2) Clustered Cases: The results in clustered interdependent
networks whose dependency relationships follow Model 2 are
shown in Figs. 17 and 18. Similar trends to non-clustered cases

are observed for both symmetric and asymmetric cases. The
proposed method succeeds in increasing the survivability for
different sizes of interdependent networks.

Fig. 19 illustrates the difference in survivability after re-
structuring among the three types of dependency models of
symmetric networks. The value of “Additive” is obtained by
the simple addition of non-clustered cases that jointly compose
a clustered case. For instance, the case of clustered networks
consisting of 20, 40, and 20 nodes clusters is compared with
the sum of the survivability of the cases of non-clustered
networks of 20, 40, and 20 nodes shown in Fig. 14. The
dependency relations among clusters increase from Model 1
to Model 3 (See Fig 13).

Model 1 gives similar survivability to the simple addition of
non-clustered cases, since a pair of corresponding clusters in
two constituent graphs is independent from the other pairs in
this model. In Model 2, the survivability of the entire network
increases, because the nodes in cluster W2

i can have more
supports from the clusters whose cycles are disjoint from
the cycles in W2

i . Although more supports exist among the
clusters in Model 3, its survivability is less than the other
models. In Model 3, a cycle can lie on more clusters because
of the bidirectional dependencies among all the clusters. This
topological characteristic is likely to increase the overlapping
of multiple cycles and results in the decline of survivability in
this model. These results cast a doubt on a naive statement
claiming that the increase of dependencies induces more
fragility in general interdependent networks.
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Fig. 20. The number of failed nodes (Worst case and Average) after a single
node failure under |V1 | = |V2 |, maxv∈V degin(v) = 4, minv∈V degin(v) = 2,
and l = 1.

VII. DISCUSSION: IMPACT ALLEVIATION VS
SURVIVABILITY

Although it is not the primary focus of this paper, in this
section, we evaluate the behavior of the proposed algorithms
in terms of its effect on the size or impact of a cascading
failure. Fig. 20 illustrates the influence of our dependency
modifications on the size of cascading failures induced by a
single node. In this experiment, the impact of a single node
failure at a node v is defined as the number of nodes θv that
become nonfunctional after a cascading failure initiated by the
failure of v. The results are analyzed in terms of the following
two metrics:
• Worst (non-filled points): the size of the largest cascading

failure: maxv∈V θv ,
• Average (filled points): the average size of all possible

cascading failures:
∑

v∈V θv
|V | .

The robustness of restructured networks against a single
node failure always declines in comparison with the original
topology. The decline in the size of the largest cascading
failure is most remarkable in the case of |V1 | = |V2 | = 50
in our simulation. In this case, the size of a cascading failure
increases by 1 node after the restructuring.

In general, the concentrations of provisioning on a certain
portion of a network can improve the survivability, though
it can make the other portions more fragile. In contrast,
appropriate distributions of provisioning are necessary in order
to alleviate the impact of any possible single node failure.
This difference in robustness against single node failures and
system survivability could be a reason for the decline.

However, when examining the average size of cascading
failures, it is observed that the increase in the average number
of failed nodes is suppressed within 0.1 nodes over all net-
work sizes. Thus, it could be said that our method does not
deteriorate the robustness against single node failures.

VIII. CONCLUSION

This paper addresses the design problem of survivable clus-
tered interdependent networks under some constraints relating
to the existence of legacy systems during restructuring. Based
on the definition of the survivability proposed in a related
work, it is claimed that the increase of disjoint cycles could
enhance the survivability. The proposed heuristic algorithm
tries to compose new disjoint cycles by gradual relocations
of certain dependencies (Marginal Arcs) in order to guarantee

the functionality of existing systems. Our simulations indicate
that the algorithm succeeds in increasing the survivability,
especially in networks with fewer dependencies. Moreover, the
empirical result implies that the number of dependencies, in
general, is not the root cause of the vulnerability to cascading
failures. Rather, the appropriate additions of dependencies
can improve the overall survivability, while poorly designed
dependencies make networks more fragile. When redesigning
the interdependency between control and functional entities
in SDN, NFV, or CPSs based on the proposed algorithm, the
possibility to experience catastrophic cascading failures would
decrease.
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