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Abstract

We consider a centralized caching network, where a server serves several groups of users, each

having a common shared homogeneous fixed-size cache and requesting arbitrary multiple files. An

existing coded prefetching scheme is employed where each file is broken into multiple fragments and

each cache stores multiple coded packets each formed by XORing fragments from different files. For

such a system, we propose an efficient file delivery scheme with explicit constructions by the server

to meet the arbitrary multi-requests of all user-groups. Specifically, the stored coded packets of each

cache are classified into four types based on the composition of the file fragments encoded. A delivery

strategy is developed, which separately delivers part of each packet type first and then combinatorially

delivers the remaining different packet types in the last stage. The rate as well as the worst rate of

the proposed delivery scheme are analyzed. We show that our caching model and delivery scheme can

incorporate some existing coded caching schemes as special cases. Moreover, for the special case of

uniform requests and uncoded prefetching, we make a comparison with existing results, and show that

our approach can achieve a lower delivery rate. We also provide numerical results on the delivery rate

for the proposed scheme.
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I. INTRODUCTION

Coded caching [1]–[6] is a technique that can reduce the communication load or latency in data

distribution via proactively storing part of data to users’ caches during off-peak traffic periods

and thus transmitting less amount of data to users during peak traffic periods. The transmissions

typically consist of two phases: placement (or prefetching) phase and delivery (or transmission)

phase. In the placement phase, uncoded [1], [7], [8] or coded [5], [9]–[14] partial contents are

placed into each user’s cache without knowing the future requests. According to whether the

users’ caches are coordinated or not in the placement phase, coded caching can be divided into

centralized [1] and decentralized [3] settings, where the latter adopts independent and identical

random prefetching strategies across caches. Since all users’ cached contents are coordinately

placed in a deterministic way by the server, centralized coded caching shows a lower delivery rate

than that of decentralized coded caching. Existing placement strategies in the centralized settings

are categorized as uncoded and coded prefetching, respectively. Under coded prefetching, the

storage resources of the caching network can be more efficiently utilized. Although such higher

storage efficiency may be obtained at the cost of delivery rate increment, coded prefetching can

achieve an improved trade-off between the (worst) delivery rate and the cache memory size than

uncoded prefetching when the cache size is relatively small [11], [15].

A number of the centralized coded caching algorithms with coded prefetching have been

proposed. In particular, [10] first proposed a coded prefetching scheme using binary-addition

(XOR) codes for the point that each cache size C is the inverse of the number of the users

K, i.e., C = 1
K

. Then [11] proposed a coded prefetching scheme using a combination of rank

metric codes and maximum distance separable (MDS) codes for K cache-size points at C =

(K−1)r+(N−1)(r−1)r
K(K−1) , r = 1, 2, ..., K, which locate in the regime when each cache size is not

greater than the total source-file size, i.e., 0 ≤ C ≤ N with N denoting the total file number.

Later [12] showed that such codes used in [11] can be simply replaced by the XOR codes. It is

shown that the rate-memory pair of [10] can be viewed as a special case of [11], and according

to [12] the scheme in [11] can outperform that in [8] within the small cache-size regime when

the total cache size of the network is less than the total source-file size, i.e., 0 ≤ C < N
K

, where

[8] proposed an uncoded prefetching scheme for K cache-size points at C = tN
K

, t = 1, 2, ..., K

over 0 ≤ C ≤ N based on [1] and is shown to be optimal in the regime when N
K
≤ C ≤ N .

Since coded prefetching can achieve better performance in small cache-size regime, [5] proposed



3

a coded prefetching scheme for a cache-size point at C = N−1
K

and [14] proposed a coded

prefetching scheme for N more cache-size points at C = N
Kα
, α = 1, 2, ..., N over 0 ≤ C ≤ N

K
.

It is shown that [14] can include coded prefetching [10], [11] at C = 1
K

and uncoded prefetching

[8] at C = N
K

as special cases, and can further improve coded prefetching performance over such

small cache-size regime [11], [15]. However, all the aforementioned coded prefetching schemes

are only applicable to the one-user-per-cache network, where each user can only make a single

request. To the best of our knowledge, there are few works considering coded prefetching for

multiple requests. Note that [16], [17] investigated single-layer coded caching with multiple

requests and [18], [19] investigated hierarchical coded caching with multiple requests, all of

which address uniform requests for uncoded prefetching. Moreover, [18] focused on centralized

hierarchical uncoded prefetching that can degenerate into [16], [17] with the same delivery rate,

while [19] focused on decentralized hierarchical uncoded prefetching.

In this paper, we focus on centralized coded prefetching with small sum-size caches for

arbitrary multiple requests per user in the regime when the total cache size is not greater than

the total source-file size of the server. Consider a caching network consisting of one server

and several groups of users, where each group has a common shared fixed-size cache with the

size homogeneously allocated over different groups and each user in a user-group can make

arbitrary multiple requests for the files stored in the server. The caching model can degenerate

into existing coded prefetching [5], [10]–[12], [14], [15] when each user-group consists of only

one user and makes a single request, but more generally we can consider arbitrary multiple

requests for each user. Our model is motivated by FemtoCaching networks [20], [21] and cache-

enabled small-cell networks [9], [22], where a number of homogeneous cache-enabled small-cell

base stations receive data from a controlling macro base station via a cellular downlink, and each

small-cell base station serves a group of users through its own local high-rate downlink. As a

prefetching scheme does not depend on the specific requests of users and our paper focuses on

the same cache-size regime with that of [14], we cache coded contents based on the prefetching

scheme given in [14], where each file is broken into multiple fragments and each cache stores

multiple coded packets each formed by XORing fragments from different files. Then an efficient

file delivery scheme with explicit constructions by the server to meet the multi-requests of all

user-groups is proposed. The delivery scheme is more complete and general than that of [14]

such that each user in a group can request arbitrary multiple files. Specifically, the stored coded

packets of each cache are classified into four types based on the composition of the file fragments
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encoded. A delivery strategy is developed by separately delivering part of each packet type first

and then combinatorially delivering the remaining different packet types in the last stage. After

that, the rate as well as the worst rate of the proposed delivery scheme are analyzed since under

our delivery scheme we can not only calculate the worst delivery rate as usually provided by

[16]–[19] but also calculate the actual delivery rate for each group of specific multiple requests.

We show that our caching model and delivery scheme can incorporate [14] as a very special case,

which includes some cases of the coded [10], [11] and uncoded [8] prefetching as mentioned

above. Moreover, for the special case of uniform requests and uncoded prefetching, we make

a comparison with existing schemes [16], [17] at the same cache size point, and show that our

approach can achieve a lower delivery rate. Finally, the performance of the proposed delivery

scheme is numerically evaluated.

The remainder of this paper is organized as follows. In Section II, the cache network model

is given and the coded prefetching scheme is described. In Sections III, the delivery scheme is

proposed. In Section IV, we provide the analyses on the delivery rate and worst delivery rate

for the proposed delivery scheme. Numerical results are provided in Section V. Finally, Section

VI concludes the paper.

 

Fig. 1: A shared-cache network.

II. BACKGROUND

A. System Description

Consider a centralized cache network as shown in Fig. 1, which consists of one server and

several groups of users each sharing a common equal-size cache. This network is characterized

by parameters (N,M,D, α) as follows:
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• The server has a database of N unit-size files S1, S2, . . . , SN . Denote the file index set by

N , {1, 2, ..., N}.

• There are M groups of users connected to the server via a shared error-free link [1].

Denote the user-group index set byM , {1, 2, ...,M}. Each user-group requests files from

the server with the assistance of its shared cache.

• Let D denote the sum of all user-groups’ distinct request numbers, which satisfies M ≤

D ≤ NM . Assume user-group m ∈M has Dm ≥ 1 distinct requests denoted as Dm, then

we have
M∑
m=1

Dm = D and
M⋃
m=1

Dm ⊆ N .

• α = N
MC

is a memory-size parameter, where C is the size of each cache, 1 ≤ α ≤ N and

thus the cache size C satisfies 1
M
≤ C ≤ N

M
. Note that when α = 1 we have uncoded

prefetching and otherwise we have coded prefetching.

Note also that when each user-group consists of only one user and requests the same number

of distinct files, the above (N,M,D, α) coded caching network becomes the traditional one-

user-per-cache network with D = M [5], [10], [11], [14] or with D1 = D2 = · · · = DM ≥ 1

[16], [17].

B. Coded Prefetching Scheme

We adopt the coded prefetching scheme in [14] consisting of a cached content assignment

step and an assigned content coding step, as follows:

• Step 1: Split each file Sn, n ∈ N , into MCα−1
N−1 non-overlapping fragments of equal size

and then assign Cα−1
N−1 fragments to cache m for any m ∈ M. Then cache m is assigned

with NCα−1
N−1 distinct fragments.

• Step 2: Perform XOR among each combination of α fragments each from a different file.

For N files, the number of such combinations is Cα
N with the combination set defined as

A , {(n1, ..., nα) : n1 < n2 < · · · < nα, ni ∈ N} ; (1)

and each file occurs in Cα−1
N−1 combinations with the combination set containing file Sn

defined as

An , {(n1, ..., nα) ∈ A such that nj = n for some 1 ≤ j ≤ α} . (2)
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Then we can index the Cα−1
N−1 fragments of Sn assigned to cache m as S(m)

n,(n1,...,nα)
, (n1, ..., nα) ∈

An. Thus the Cα
N cached packets in cache m are

P
(m)
(n1,...,nα)

=
α⊕
i=1

S
(m)
ni,(n1,...,nα)

, (n1, ..., nα) ∈ A. (3)

As the size of each packet is 1
MCα−1

N−1

, the cache size of each user-group is given by C =

CαN
MCα−1

N−1

= N
αM

. We illustrate the coded prefetching through the following example.

Example 1: Consider (N,M,α) = (3, 3, 2). The cache size is C = N
Mα

= 1
2
. Splitting each file

into MCα−1
N−1 = 6 non-overlapping fragments and storing every Cα−1

N−1 = 2 fragments in cache

m ∈ {1, 2, 3}, then the cached packets are shown in Table I.

User-group m 1 2 3

A (1, 2), (1, 3), (2, 3) (1, 2), (1, 3), (2, 3) (1, 2), (1, 3), (2, 3)

Prefetching

Assigned fragments
S

(1)

1,(1,2), S
(1)

2,(1,2) S
(2)

1,(1,2), S
(2)

2,(1,2) S
(3)

1,(1,2), S
(3)

2,(1,2)

S
(m)

n,(n1,n2)∈An

S
(1)

1,(1,3), S
(1)

3,(1,3) S
(2)

1,(1,3), S
(2)

3,(1,3) S
(3)

1,(1,3), S
(3)

3,(1,3)

S
(1)

2,(2,3), S
(1)

3,(2,3) S
(2)

2,(2,3), S
(2)

3,(2,3) S
(3)

2,(2,3), S
(3)

3,(2,3)

All cached packets
S

(1)

1,(1,2) ⊕ S
(1)

2,(1,2) S
(2)

1,(1,2) ⊕ S
(2)

2,(1,2) S
(3)

1,(1,2) ⊕ S
(3)

2,(1,2)

P
(m)

(n1,n2)∈A

S
(1)

1,(1,3) ⊕ S
(1)

3,(1,3) S
(2)

1,(1,3) ⊕ S
(2)

3,(1,3) S
(3)

1,(1,3) ⊕ S
(3)

3,(1,3)

S
(1)

2,(2,3) ⊕ S
(1)

3,(2,3) S
(2)

2,(2,3) ⊕ S
(2)

3,(2,3) S
(3)

2,(2,3) ⊕ S
(3)

3,(2,3)

TABLE I: Illustration of coded prefetching.

III. PROPOSED DELIVERY SCHEME

Define NR (α ≤ NR ≤ N ) as the total number of distinct files requested by the users in the

whole network and NR as the corresponding requested file index set. Thus given the requests D1,

D2,..., DM , we have NR =
M⋃
m=1

Dm. Define the requested fragments as the fragments from the

files in NR, i.e.,
{
S
(m∈M)
n,(n1,...,nα)∈An : n ∈ NR

}
and the unrequested fragments as the fragments

from any files in N \NR, , i.e.,
{
S
(m∈M)
n,(n1,...,nα)∈An : n ∈ N \ NR

}
. Then our goal during the file

delivery stage is to deliver the requested fragments
{
S
(m∈M)
n,(n1,...,nα)∈An : n ∈ Dm

}
to user-group

m. We classify the cached packets {P (m)
(n1,...,nα)∈A : m ∈ M} into four types according to the

composition of the file fragments encoded, and devise the delivery strategy for the requested

fragments in these packets according to the packet type.
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A. Type-I Cached Packets

A cached packet P (m)
(n1,...,nα)

is Type-I if it is encoded from both requested and unrequested

fragments, i.e.,

P
(m)
(n1,...,nα)

=
α⊕
i=1

S
(m)
ni,(n1,...,nα)

, ∃ ni1 , ni2 ∈ {n1, ..., nα} such that ni1 ∈ NR, ni2 ∈ N \NR. (4)

For each Type-I packet P (m)
(n1,...,nα)

, the server directly transmits the requested fragments encoded

in it, i.e.,

S
(m)
ni,(n1,...,nα)

, ni ∈ NR. (5)

To illustrate this, we use an example based on the cached contents given in Table I by

assuming D1 = {1, 2}, D2 = {2} and D3 = {1, 2}. Then Type-I packets in the three caches

are S(m)
1,(1,3) ⊕ S

(m)
3,(1,3) and S

(m)
2,(2,3) ⊕ S

(m)
3,(2,3), m = 1, 2, 3 and the server just transmits S(m)

1,(1,3) and

S
(m)
2,(2,3), m = 1, 2, 3. The delivery load is 6 fragments.

We now theoretically compute the delivery load according to Type-I packets. For any ni ∈ NR,

all the fragments of Sni assigned to cache m are {S(m)
ni,(n1,...,nα)

: (n1, ..., nα) ∈ Ani} with the total

number being Cα−1
N−1 and the number of the fragments such that (n1, ..., nα) ∈ NR being Cα−1

NR−1.

Thus the number of the fragments such that {n1, ..., nα} ∩ (N \ NR) 6= ∅ is Cα−1
N−1 − Cα−1

NR−1,

which equals to the number of the assigned fragments of Sni encoded into Type-I packets in

cache m. Since there are M caches and NR distinct files requested by the users, the number of

the transmitted fragments according to Type-I packets is given by

TI = MNR

(
Cα−1
N−1 − Cα−1

NR−1
)
. (6)

B. Type-II Cached Packets

A cached packet P (m)
(n1,...,nα)

is Type-II if it is encoded by requested fragments only, among

which only one is requested by the user-group that caches it. Define the combination set of every

α requested fragments each from a different file from NR as

Ã , {(n1, ..., nα) : n1 < n2 < · · · < nα, ni ∈ NR} , (7)

where |Ã| = Cα
NR

. Then Type-II packets in cache m can be characterized by

P
(m)
(n1,...,nα)

=
α⊕
i=1

S
(m)
ni,(n1,...,nα)

, (n1, ..., nα) ∈ Ã and |{n1, ..., nα} ∩ Dm| = 1. (8)
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Suppose ni ∈ Dm, then we call the fragment S(m)
ni,(n1,...,nα)

the local fragment since it may not

need to be transmitted during the delivery. We first use the following example to illustrate Type-II

packets and the delivery scheme according to them.

User-group m 1 2 3

Requested files S1, S2, S3 S2, S3 S1, S4

Cached Packets (Type-II)

S
(1)

1,(1,4) ⊕ S
(1)

4,(1,4) S
(2)

1,(1,2) ⊕ S
(2)

2,(1,2) S
(3)

1,(1,2) ⊕ S
(3)

2,(1,2)

S
(1)

2,(2,4) ⊕ S
(1)

4,(2,4) S
(2)

1,(1,3) ⊕ S
(2)

3,(1,3) S
(3)

1,(1,3) ⊕ S
(3)

3,(1,3)

S
(1)

3,(3,4) ⊕ S
(1)

4,(3,4) S
(2)

2,(2,4) ⊕ S
(2)

4,(2,4) S
(3)

2,(2,4) ⊕ S
(3)

4,(2,4)

S
(2)

3,(3,4) ⊕ S
(2)

4,(3,4) S
(3)

3,(3,4) ⊕ S
(3)

4,(3,4)

Step 1

Transmissions
S

(1)

4,(1,4), S
(1)

4,(2,4) S
(2)

1,(1,2), S
(2)

1,(1,3) S
(3)

2,(1,2), S
(3)

3,(1,3)

S
(1)

4,(3,4) S
(2)

4,(2,4), S
(2)

4,(3,4) S
(3)

2,(2,4), S
(3)

3,(3,4)

Acquisition

S
(1)

1,(1,4), S
(1)

2,(2,4), S
(1)

3,(3,4) S
(2)

2,(1,2), S
(2)

3,(1,3) S
(3)

1,(1,2), S
(3)

4,(2,4), S
(3)

4,(3,4)

S
(2)

1,(1,2), S
(3)

2,(1,2), S
(3)

3,(1,3) S
(2)

2,(2,4), S
(2)

3,(3,4) S
(3)

1,(1,3), S
(1)

4,(1,4), S
(1)

4,(2,4)

S
(2)

1,(1,3), S
(3)

2,(2,4), S
(3)

3,(3,4) S
(3)

2,(1,2), S
(3)

3,(1,3) S
(2)

1,(1,2), S
(1)

4,(3,4), S
(2)

4,(2,4)

S
(3)

2,(2,4), S
(3)

3,(3,4) S
(2)

1,(1,3), S
(2)

4,(3,4),

Step 2
Transmissions S

(1)

1,(1,4) ⊕ S
(3)

1,(1,2), S
(1)

2,(2,4) ⊕ S
(2)

2,(1,2), S
(1)

3,(3,4) ⊕ S
(2)

3,(1,3)

Acquisition S
(3)

1,(1,2), S
(2)

2,(1,2), S
(2)

3,(1,3) S
(1)

2,(2,4), S
(1)

3,(3,4) S
(1)

1,(1,4)

Remaining fragments
∖

S
(2)

2,(2,4), S
(2)

3,(3,4) S
(3)

1,(1,3)

TABLE II: Illustration for the delivery of the fragments in Type-II packets.

Example 2: Assume (N,M,D, α) = (4, 3, 7, 2), where NR = N = 4, D1 = {1, 2, 3}, D2 =

{2, 3} and D3 = {1, 4}. Then all Type-II packets in the three caches are given in the third row

of Table II. Since each packet contains only one local fragment, the server first transmits the

other α − 1 = 1 fragment. Taking packet S(1)
1,(1,4) ⊕ S

(1)
4,(1,4) in cache 1 for example, the server

transmits S(1)
4,(1,4), then user-group 1 can obtain S

(1)
1,(1,4) by XOR decoding and meanwhile other

user-groups can obtain S
(1)
4,(1,4) from the direct transmission of the server. Note that S(1)

1,(1,4) is

also requested by user-group 3, whose cache also has local fragments from S1: S
(3)
1,(1,2) and

S
(3)
1,(1,3). To deliver these local fragments for the two user-groups, the server can then transmit

a pairwise-coded packet encoded by XORing S
(1)
1,(1,4) together with S

(3)
1,(1,2) or S(3)

1,(1,3). The rule

to form pairwise-coded packets is that no local fragment is repeatedly XORed between any two

caches. In our example we choose to transmit S(1)
1,(1,4) ⊕ S

(3)
1,(1,2), and thus S(3)

1,(1,3) is a remaining

unpaired fragment which will be delivered at the last stage. In such a way, the local fragments

that can be pairwise-coded are delivered to multiple user-groups (see Step 2 in the table) and

the untransmitted local fragments requested by multiple user-groups are shown in the last row.
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Next, we present the general delivery scheme according to Type-II packets, which is divided

into the following two steps:

1) Step 1: Transmit α − 1 fragments encoded in each packet P (m)
(n1,...,nα)

except the local

fragment S(m)
ni,(n1,...,nα)

, which are

S
(m)
n,(n1,...,nα)

, n = n1, ..., ni−1, ni+1, ..., nα. (9)

Then user-group m can obtain S
(m)
ni,(n1,...,nα)

by XOR decoding since ni ∈ Dm, and meanwhile

other user-groups in M\{m} can obtain their requested fragments given in (9) from the direct

transmissions.

For any ni ∈ Dm, the number of Type-II packets is Cα−1
NR−Dm and thus the number of

transmissions is Cα−1
NR−Dm(α − 1). Since the distinct request number of user-group m is Dm,

the number of transmissions for user-group m is DmCα−1
NR−Dm(α−1). Then the delivery load for

the M user-groups is given by

T
(1)
II =

M∑
m=1

Cα−1
NR−DmDm(α− 1). (10)

2) Step 2: Deliver the local fragments of Sni for any ni ∈ NR that can be pairwise-encoded

among the caches of M(ni) , where M(ni) denotes the set of user-groups requesting Sni .

Given any m ∈ M(ni), the number of local fragments of Sni in cache m is Cα−1
NR−Dm . Define

m , arg min
m∈M(ni)

Cα−1
NR−Dm . Then cache m has the minimum number of local fragments of Sni , given

by

S
(m)
ni,(n1,...,nα)

, (n1, ..., nα) ∈ Ã and {n1, ..., nα} ∩ Dm = {ni}. (11)

Note that the local fragments of Sni in different caches of M(ni) may come from the packets

with different file combinations, we denote them in cache m ∈M(ni) \ {m} by

S
(m)

ni,(n
(m)
1 ,...,n

(m)
α )

, (n
(m)
1 , ..., n(m)

α ) ∈ Ã and {n(m)
1 , ..., n(m)

α } ∩ Dm = {ni}, (12)

where (n
(m)
1 , ..., n

(m)
α ) 6= (n1, ..., nα) may hold. Take each local fragment of Sni in cache m as

a reference fragment, and XOR it together with one local fragment of Sni from any other cache

m ∈M(ni)\{m} to form |M(ni)|−1 pairwise-coded packets under the condition that no local

fragment is repeatedly XORed with different reference fragments, given by

S
(m)
ni,(n1,...,nα)

⊕ S(m)

ni,(n
(m)
1 ,...,n

(m)
α )

, m ∈M(ni) \ {m}. (13)
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The above packets are transmitted and then user-group m can obtain S
(m)

ni,(n
(m)
1 ,...,n

(m)
α )

, m ∈

M(ni) \ {m} in them via XOR operations since it caches S(m)
ni,(n1,...,nα)

; and any other user-

group m ∈ M(ni) \ {m} can obtain S
(m)
ni,(n1,...,nα)

and S
(k)

ni,(n
(k)
1 ,...,n

(k)
α )
, k ∈ M(ni) \ {m,m} in

them via XOR operations since it caches S(m)

ni,(n
(m)
1 ,...,n

(m)
α )

. Thus for the transmissions of (13) for

each reference fragment S(m)
ni,(n1,...,nα)

, every user-group of M(ni) can obtain the |M(ni)| local

fragments of Sni encoded in them, each from one cache of M(ni).

As there are Cα−1
NR−Dm local fragments of Sni in cache m, the number of transmitted packets

for any ni ∈ NR is (|M(ni)| − 1) Cα−1
NR−Dm . Since there are NR requested files, the total number

of transmitted packets is

T
(2)
II =

∑
ni∈NR

(|M(ni)| − 1) Cα−1
NR−Dm =

∑
ni∈NR

(|M(ni)| − 1) min
m∈M(ni)

Cα−1
NR−Dm . (14)

Note that cache m ∈M(ni) contains Cα−1
NR−Dm local fragments of Sni , and Cα−1

NR−Dm of them have

been pairwise-encoded and transmitted. After the transmissions of (13) for each S(m)
ni,(n1,...,nα)

, the

number of remaining unpaired local fragments for all ni ∈ NR that are requested by multiple

user-groups but untransmitted is

T
(RM)
II =

∑
ni∈NR

∑
m∈M(ni)

(
Cα−1
NR−Dm − min

m∈M(ni)
Cα−1
NR−Dm

)
. (15)

These remaining fragments will be delivered at the last stage, as will be discussed in Section

III-E.

Then based on the above analysis, the delivery load of Type-II packets by combining (10)

with (14) is given by

TII = T
(1)
II + T

(2)
II =

M∑
m=1

Cα−1
NR−DmDm(α− 1) +

∑
ni∈NR

(|M(ni)| − 1) min
m∈M(ni)

Cα−1
NR−Dm . (16)

C. Type-III Cached Packets

A cached packet P (m)
(n1,...,nα)

is Type-III if it is encoded by requested fragments only, among

which there are more than one local fragment. Such packet can be characterized by

P
(m)
(n1,...,nα)

=
α⊕
i=1

S
(m)
ni,(n1,...,nα)

, (n1, ..., nα) ∈ Ã and |{n1, ..., nα} ∩ Dm| > 1, (17)

where Ã ⊆ NR is defined in (7). We first use the following example to illustrate Type-III packets

and the delivery scheme according to them.
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User-group m 1 2 3

Requested files S1, S2, S3 S2, S3, S4 S2, S3, S5

Cached Packets (Type-III)

S
(1)

1,(1,2) ⊕ S
(1)

2,(1,2) S
(2)

2,(2,3) ⊕ S
(2)

3,(2,3) S
(3)

2,(2,3) ⊕ S
(3)

3,(2,3)

S
(1)

1,(1,3) ⊕ S
(1)

3,(1,3) S
(2)

2,(2,4) ⊕ S
(2)

4,(2,4) S
(3)

2,(2,5) ⊕ S
(3)

5,(2,5)

S
(1)

2,(2,3) ⊕ S
(1)

3,(2,3) S
(2)

3,(3,4) ⊕ S
(2)

4,(3,4) S
(3)

3,(3,5) ⊕ S
(3)

5,(3,5)

Step 1

Transmissions S
(1)

2,(1,2), S
(1)

3,(1,3), S
(1)

3,(2,3) S
(2)

2,(2,3), S
(2)

2,(2,4), S
(2)

3,(3,4) S
(3)

2,(2,3), S
(3)

2,(2,5), S
(3)

3,(3,5)

Acquisition

S
(1)

1,(1,2), S
(1)

2,(1,2), S
(1)

3,(1,3) S
(2)

2,(2,3), S
(2)

3,(2,3), S
(2)

4,(2,4) S
(3)

2,(2,3), S
(3)

3,(2,3), S
(3)

5,(2,5)

S
(1)

1,(1,3), S
(1)

2,(2,3), S
(1)

3,(2,3) S
(2)

2,(2,4), S
(2)

3,(3,4), S
(2)

4,(3,4) S
(3)

2,(2,5), S
(3)

3,(3,5), S
(3)

5,(3,5)

S
(2)

2,(2,3), S
(2)

2,(2,4), S
(2)

3,(3,4) S
(1)

2,(1,2), S
(1)

3,(1,3), S
(1)

3,(2,3) S
(1)

2,(1,2), S
(1)

3,(1,3), S
(1)

3,(2,3)

S
(3)

2,(2,3), S
(3)

2,(2,5), S
(3)

3,(3,5) S
(3)

2,(2,3), S
(3)

2,(2,5), S
(3)

3,(3,5) S
(2)

2,(2,3), S
(2)

2,(2,4), S
(2)

3,(3,4)

Step 2
Transmissions S

(1)

2,(2,3) ⊕ S
(2)

3,(2,3), S
(1)

2,(2,3) ⊕ S
(3)

3,(2,3)

Acquisition S
(2)

3,(2,3), S
(3)

3,(2,3) S
(1)

2,(2,3), S
(3)

3,(2,3) S
(1)

2,(2,3), S
(2)

3,(2,3)

Remaining fragments
∖ ∖ ∖

TABLE III: Illustration for the delivery of the fragments in Type-III packets.

Example 3: Assume (N,M,D, α) = (5, 3, 9, 2), where NR = N = 5, D1 = {1, 2, 3}, D2 =

{2, 3, 4} and D3 = {2, 3, 5}. Then all the Type-III packets in the three caches are given in the

third row of Table III. Similar to the delivery scheme according to Type-II packets, the server first

needs to transmit α − 1 = 1 fragment for each packet, by not transmitting the local fragment

that is least requested by other user-groups. Taking the packets in cache 1 for example, the

untransmitted local fragments for S(1)
1,(1,2) ⊕ S

(1)
2,(1,2) and S(1)

1,(1,3) ⊕ S
(1)
3,(1,3) are S(1)

1,(1,2) and S(1)
1,(1,3),

respectively; while the untransmitted local fragment for S(1)
2,(2,3) ⊕ S

(1)
3,(2,3) is S(1)

2,(2,3) or S(1)
3,(2,3)

since the numbers of user-groups requesting S2 and S3 are the same. As S1 is only requested

by user-group 1, no more transmission is needed for S(1)
1,(1,2) and S

(1)
1,(1,3) after Step 1 but more

transmissions are needed for S(1)
2,(2,3) as it is also requested by other user-groups. Similarly, after

Step 1 the untransmitted local fragments requested by multiple user-groups in caches 2 and 3

are S(2)
3,(2,3) and S(3)

3,(2,3), respectively. Take S(1)
2,(2,3) as the reference fragment and XOR it together

with S
(2)
3,(2,3) and S

(3)
3,(2,3), respectively, to form two packets, and then transmit them. Thus the

three untransmitted local fragments can be obtained by the three user-groups. After it, all local

fragments requested by multiple user-groups are obtained.

Next, we present the general delivery scheme according to Type-III packets, which can be

implemented by the following two steps:

1) Step 1: Transmit α − 1 fragments encoded in each packet P (m)
(n1,...,nα)

except the local

fragment that is least requested by other user-groups denoted as S(m)
ni0 ,(n1,...,nα)

. Thus for any
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ni ∈ {n1, ..., nα} ∩Dm we have |M(ni0)| ≤ |M(ni)|, and the transmitted α− 1 fragments are

S
(m)
n,(n1,...,nα)

, n = n1, ..., ni0−1, ni0+1, ..., nα. (18)

As the number of the distinct requests of user-group m is Dm, the number of Type-III packets

stored in cache m is
min{Dm,α}∑

n=2

Cn
DmCα−n

NR−Dm . (19)

Since each packet needs transmitting α− 1 fragments, the delivery load for the M user-groups

in Step 1 is given by

T
(1)
III =

M∑
m=1

min{Dm,α}∑
n=2

Cn
DmCα−n

NR−Dm(α− 1). (20)

2) Step 2: Deliver the untransmitted local fragments {S(m∈M)

ni0 ,(n1,...,nα)∈Ã
: ni0 ∈ {n1, ..., nα} ∩

Dm} that are requested by multiple user-groups and can be pairwise-encoded among the caches

ofM. Letting σm denote the number of distinct files requested by user-group m only, the number

of untransmitted local fragments that are requested by multple user-groups in cache m is

L(UnTr)
m =

min{Dm,α}∑
n=2

Cn
Dm−σmCα−n

NR−Dm . (21)

Denote m̃ , arg min
m∈M

L
(UnTr)
m and take cache m̃ as the reference cache. Then for each multi-

requested local fragment S(m̃)
ni0 ,(n1,...,nα)

in cache m̃, a group of M untransmitted local fragments

that are requested by multiple user-groups and unrepeatedly selected from the M caches can be

picked out, which are denoted as

S
(m̃)
ni0 ,(n1,...,nα)

and S
(m)

n
(m)
i0

,(n
(m)
1 ,...,n

(m)
α )

, m = 1, ..., m̃− 1, m̃+ 1, ...,M, (22)

where n(m)
i0
6= ni0 or (n

(m)
1 , ..., n

(m)
α ) 6= (n1, ..., nα) may hold as the untransmitted local fragments

in different caches may come from different files and also from different file combinations.

For each group of the M untransmitted local fragments, XOR one fragment from any cache

m ∈M \ {m̃} with that from cache m̃ to form M − 1 pairwise-coded packets to obtain

S
(m̃)
ni0 ,(n1,...,nα)

⊕ S(m)

n
(m)
i0

,(n
(m)
1 ,...,n

(m)
α )

, m = 1, ..., m̃− 1, m̃+ 1, ...,M. (23)

The above packets are transmitted. Similar to the case of Type-II packets, then every user-group

can obtain its requested fragments in the transmitted packets via XOR operations since it caches
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one of the requested fragments. Thus the untransmitted local fragments that are pairwise-encoded

can be delivered to the requesting user-groups.

Note that cache m̃ has L
(UnTr)
m̃ multi-requested local fragments {S(m̃)

ni0 ,(n1,...,nα)∈Ã
: ni0 ∈

{n1, ..., nα} ∩ Dm̃}, each corresponding to a group of M untransmitted local fragments from

the M caches and leading to the transmissions of M − 1 pairwise-coded packets. Thus the total

number of transmitted packets is

T
(2)
III =(M − 1)L

(UnTr)
m̃ = (M − 1) min

m∈M
L(UnTr)
m ; (24)

and the number of remaining untransmitted local fragments that are requested by multiple user-

groups is given by

T
(RM)
III =

M∑
m=1

L(UnTr)
m −ML

(UnTr)
m̃ =

M∑
m=1

L(UnTr)
m −M min

m∈M
L(UnTr)
m . (25)

Similarly, the delivery of these remaining fragments will be conducted at the last stage.

Then combining (20) with (24) we can obtain the delivery load given by

TIII = T
(1)
III + T

(2)
III =

M∑
m=1

min{Dm,α}∑
n=2

Cn
DmCα−n

NR−Dm(α− 1) + (M − 1) min
m∈M

L(UnTr)
m , (26)

where L(UnTr)
m is given in (21).

D. Type-IV Cached Packets

A cached packet P (m)
(n1,...,nα)

is Type-IV if it is encoded by requested fragments only, all of

which are not local fragments. Such packet can be characterized by

P
(m)
(n1,...,nα)

=
α⊕
i=1

S
(m)
ni,(n1,...,nα)

, (n1, ..., nα) ∈ Ã and {n1, ..., nα} ∩ Dm = ∅, (27)

where Ã ⊆ NR is defined in (7). Define the packet-group as a group of cached packets each

from a different cache and define V , {r0, r1, ..., rα} ⊆ NR as an (α+ 1)-request set such that

no user-group requests two or more than two of its elements, i.e.,

M(ri) ∩M(rj) = ∅, ∀ri 6= rj ∈ V , (28)

where M(r) denotes the set of all the user-groups in M requesting file Sr. Letting MV ,⋃
r∈V
M(r), we have |Dm ∩ V| = 1 for any m ∈ MV and there exists a packet-group consisting

of MV = |MV | Type-IV packets {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈ MV} such that each packet is encoded
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by α fragments from α files in V , i.e., {n(m)
1 , ..., n

(m)
α } ⊂ V for any m ∈ MV , according

to the definition of Type-IV packets. Then in the delivery of Type-IV packets, the server first

delivers the fragments in each such packet-group corresponding to an (α+ 1)-request set V and

then delivers the fragments in the remaining Type-IV packets, which result in three steps in

the delivery according to Type-IV packets. To illustrate such type of packets and the delivery

scheme according to it, we first present the following example.

User-group m 1 2 3

Requested files S1, S2, S4 S2, S3 S4, S5

Cached Packets (Type-IV)

S
(1)

3,(3,5) ⊕S
(1)

5,(3,5) S
(2)

1,(1,5)⊕ S
(2)

5,(1,5) S
(3)

1,(1,3) ⊕S
(3)

3,(1,3)

S
(2)

4,(4,5) ⊕ S
(2)

5,(4,5) S
(3)

2,(2,3) ⊕ S
(3)

3,(2,3)

S
(2)

1,(1,4) ⊕ S
(2)

4,(1,4) S
(3)

1,(1,2) ⊕ S
(3)

2,(1,2)

Step 1
Transmissions

S
(1)

5,(3,5)⊕ S
(2)

5,(1,5) S
(2)

1,(1,5)⊕ S
(3)

1,(1,3) S
(3)

3,(1,3)⊕ S
(1)

3,(3,5)

S
(3)

1,(1,3) ⊕ S
(1)

3,(3,5) ⊕ S
(2)

5,(1,5)

Acquisition S
(2)

1,(1,5), S
(3)

1,(1,3) S
(3)

3,(1,3), S
(1)

3,(3,5) S
(1)

5,(3,5), S
(2)

5,(1,5)

Step 2
Transmissions

∖
S

(2)

4,(4,5), S
(2)

5,(4,5) ⊕ S
(3)

3,(2,3), S
(3)

2,(2,3)

Acquisition S
(2)

4,(4,5), S
(3)

2,(2,3) S
(3)

3,(2,3), S
(3)

2,(2,3) S
(2)

4,(4,5), S
(2)

5,(4,5)

Step 3
Transmissions

∖
S

(2)

4,(1,4) S
(3)

2,(1,2)

Acquisition S
(2)

4,(1,4), S
(3)

2,(1,2) S
(3)

2,(1,2) S
(2)

4,(1,4)

Remaining fragments
∖

S
(2)

1,(1,4) S
(3)

1,(1,2)

TABLE IV: Illustration for the delivery of the fragments in Type-IV packets.

Example 4: Assume (N,M,D, α) = (5, 3, 7, 2), where NR = N = 5, D1 = {1, 2, 4}, D2 =

{2, 3} and D3 = {4, 5}. Then all the Type-IV packets in the three caches are given in the third

row of Table IV. According to the requests of the network, it can be seen that there exists one

(α + 1)-request set V = {1, 3, 5} that satisfies (28), which leads to MV = {1, 2, 3} and the

packet-group corresponding to V given by {P (1)
(3,5), P

(2)
(1,5), P

(3)
(1,3)} and shown in the first row in

the cached packets. Then, in Step 1, select α + 1 = 3 fragments from the 3 packets such that

each selected fragment boxed in the table corresponds to a distinct request from V . XOR each

unselected fragment together with a selected fragment of the same file to form MVα−(α+1) = 3

transmitted packets and meanwhile XOR all the 3 selected fragments together to form one more
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transmitted packet, as seen from the transmissions in the fourth and fifth rows of the table. Then

the delivery of the MVα = 6 fragments in the packet-group can be completed. Taking user-group

1 for example, it can first obtain S
(3)
1,(1,3) , which is the selected fragment of S1, by XORing its

cached packet S
(1)
3,(3,5) ⊕ S

(1)
5,(3,5) together with the transmitted packets S(1)

5,(3,5) ⊕ S
(2)
5,(1,5) and

S
(3)
1,(1,3) ⊕ S

(1)
3,(3,5) ⊕ S

(2)
5,(1,5) , then it can obtain S(2)

1,(1,5), which is the unselected fragment of S1,

by XORing S
(3)
1,(1,3) together with the transmitted packet S(2)

1,(1,5) ⊕ S
(3)
1,(1,3) . The delivery load

for Step 1 is 4 and thus the delivery gain is 2, where the delivery gain denotes the number of

reduced transmissions compared with direct transmissions. Over the remaining Type-IV packets,

there is a packet-group {P (2)
(4,5), P

(3)
(2,3)} chosen from the caches of M̃ = {2, 3} that each packet

contains a fragment only requested by the user-groups in M̃, as seen from the second row in the

cached packets. Then, in Step 2, select these M̃ = |M̃| = 2 fragments overlined in the table and

XOR them together to transmit S(2)
5,(4,5)⊕S

(3)
3,(2,3), and meanwhile transmit the other M̃(α−1) = 2

unselected fragments directly. Then, the delivery of the M̃α = 4 fragments in the packet-group

can be completed with a delivery load of 3, i.e., a delivery gain of 1. After that, there are two

packets remaining in caches 2 and 3. Thus in Step 3, the server delivers α− 1 = 1 fragment for

each packet by transmitting S
(2)
4,(1,4) and S

(3)
2,(1,2), which are requested by more user-groups than

the remaining untransmitted ones. And the remaining ones will be delivered at the last stage.

The total delivery load according to Type-IV packets is 9.

Next, we present the general delivery scheme according to Type-IV packets.

1) Step 1: Deliver the fragments encoded in each packet-group {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈ MV}

that corresponds to an (α + 1)-request set V satisfying (28). And the delivery scheme for the

fragments encoded in {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈MV} can be summarized by two sub-steps as follows:

• Select α+ 1 fragments from α+ 1 packets from {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈MV} such that each

fragment comes from a different file in V = {r0, r1, ..., rα}, which are denoted as

S
(m0)

r0,(n
(m0)
1 ,...,n

(m0)
α )

, S
(m1)

r1,(n
(m1)
1 ,...,n

(m1)
α )

, ..., S
(mα)

rα,(n
(mα)
1 ,...,n

(mα)
α )

, (29)

where the box is adopted to differentiate with other MVα− (α+ 1) unselected fragments in

the packet-group. Note that the α+1 fragments from certain α+1 caches m0,m1, ...,mα ∈

MV should always exist as we can have
α⋃
i=0

{n(mi)
1 , ..., n

(mi)
α } = V and (n

(m0)
1 , ..., n

(m0)
α ) 6=

· · · 6= (n
(mα)
1 , ..., n

(mα)
α ) according to (28). This can be proved by assuming mi ∈ M(nmi)

and mj ∈M(nmj), where nmi ∈ Dmi∩V and nmj ∈ Dmj ∩V for nmi 6= nmj . Based on the
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α+ 1 selected fragments given in (29), the server can then XOR each unselected fragment

together with a selected fragment of the same file to form MVα− (α + 1) pairwise-coded

packets and then transmit them, which are

W (m)
ri

= S
(m)

ri,(n
(m)
1 ,...,n

(m)
α )
⊕ S

(mi)

ri,(n
(mi)
1 ,...,n

(mi)
α )

, ri ∈ V , (30)

where m ∈MV \ {mi} such that ri ∈ {n(m)
1 , ..., n

(m)
α } with i = 0, 1, ..., α.

• Transmit one packet encoded by the α + 1 selected fragments given in (29), which is

WV =
⊕
ri∈V

S
(mi)

ri,(n
(mi)
1 ,...,n

(mi)
α )

=
α⊕
i=0

S
(mi)

ri,(n
(mi)
1 ,...,n

(mi)
α )

. (31)

Based on the transmissions given in (30) and (31), all user-groups in MV can obtain their

requested fragments encoded in {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈MV} via XOR operations. Take user-group

m ∈ MV caching P
(m)

(n
(m)
1 ,...,n

(m)
α )

for example. Assuming it requests Sr0 with Dm ∩ V = {r0},

we have {n(m)
1 , ..., n

(m)
α } = V \ {r0} = {r1, ..., rα} and m 6= m0 as user-group m0 caches

P
(m0)

(n
(m0)
1 ,...,n

(m0)
α )

containing the fragment of Sr0 . Thus user-group m can first obtain

P
(m)

(n
(m)
1 ,...,n

(m)
α )
⊕

 ⊕
ri∈V\{r0}

W (m)
ri

⊕WV
=

(
α⊕
i=1

S
(m)

ri,(n
(m)
1 ,...,n

(m)
α )

)
⊕

(
α⊕
i=1

(
S
(m)

ri,(n
(m)
1 ,...,n

(m)
α )
⊕ S

(mi)

ri,(n
(mi)
1 ,...,n

(mi)
α )

))
⊕WV

=
α⊕
i=1

S
(mi)

ri,(n
(mi)
1 ,...,n

(mi)
α )

⊕
α⊕
i=0

S
(mi)

ri,(n
(mi)
1 ,...,n

(mi)
α )

= S
(m0)

r0,(n
(m0)
1 ,...,n

(m0)
α )

,

(32)

which is the selected fragment of Sr0 cached by user-group m0. As each unselected fragment of

Sr0 has been encoded with S
(m0)

r0,(n
(m0)
1 ,...,n

(m0)
α )

and transmitted via (30), user-group m can then

obtain all the unselected fragments of Sr0 by combining (30) with (32). Thus the delivery of

the MVα fragments in {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈MV} can be completed since MV =
⋃
r∈V
M(r) and

Dm ∩ V = ∅ for any m ∈M \MV .

According to the transmissions given in (30) and (31), the delivery load for each packet-group

{P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈ MV} is MVα − (α + 1) + 1 = (MV − 1)α and thus the delivery gain is

α since there are MVα fragments. This means no matter what MV is, the delivery gain for

the corresponding packet-group is α. To find all such packet-groups such that different groups

consist of totally different packets, all the valid (α + 1)-request sets need to be found first,
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and thus the following additional condition needs to be added with (28) for any two obtained

(α + 1)-request sets V1 and V2,|V1 ∩ V2| < α; or

|V1 ∩ V2| = α and 4V 6⊆ Dm, ∀m ∈M,
(33)

where 4V , (V1 ∪ V2) \ (V1 ∩ V2) denotes the set of different requests between V1 and V2.

The condition on 4V for |V1 ∩ V2| = α indicates that any two different requests in V1 and V2
cannot simultaneously come from any one of the user-groups inM. Otherwise, only one request

set can be selected. The search procedure is summarized in Algorithm 1 and is illustrated in

Appendix A. Then according to each obtained V , both the requesting user-groups MV and the

corresponding packet-group {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈MV} can be obtained based on (28). Summing

up the delivery gains for all the valid request sets V , the total delivery load for Step 1 can be

finally obtained.

Algorithm 1 Search procedure for the valid (α + 1)-request sets satisfying (28)
Input: M, N , NR, {Dm, Dm : m ∈M}, α

Output: All the valid (α + 1)-request sets denoted by R

1: Initialization: Set R = ∅ and define Zα , {m1, ...,mα} as a set of any α user-groups.

2: for m0 = 1 : M − α do

3: for Zα ∈M \ {1, 2, ...,m0} do

4: for {nmi ∈ Dmi}αi=0 such that (28) holds do

5: V1 = {nm0 , nm1 , ..., nmα};

6: if V1 and V2 satisfy (33), ∀ V2 ∈ R then

7: Update R = {R,V1};

8: end if

9: end for

10: end for

11: end for

12: return R
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2) Step 2: Deliver the fragments encoded in each packet-group {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈ M̃} for

any M̃ , {m0,m1, ...,mM̃−1} ⊆ M over the remaining Type-IV packets that satisfies

{n(m)
1 , ..., n(m)

α } 6⊆
⋃

k∈M\M̃

Dk, m ∈ M̃, (34)

which indicates each packet should contain at least one fragment not requested by the user-

groups in M\M̃. Note that M̃ ≥ 2 and (34) can always be satisfied when M̃ =M. Then the

delivery scheme for the fragments encoded in {P (m)

(n
(m)
1 ,...,n

(m)
α )

: m ∈ M̃} can be summarized by

two sub-steps as follows:

• Transmit α− 1 fragments encoded in each packet P (mi)

(n
(mi)
1 ,...,n

(mi)
α )

except the fragment

S
(mi)

ni,(n
(mi)
1 ,...,n

(mi)
α )

, ni 6∈
⋃

k∈M\M̃

Dk and ni ∈ {n(mi)
1 , ..., n(mi)

α }, (35)

where i = 0, 1, ..., M̃ − 1.

• XOR one untransmitted fragment S(mi)

ni,(n
(mi)
1 ,...,n

(mi)
α )

together with its next one from i = 0 to

i = M̃ − 2 to form M̃ − 1 pairwise-coded packets and transmit them, which are

S
(mi)

ni,(n
(mi)
1 ,...,n

(mi)
α )
⊕ S(mi+1)

ni+1,(n
(mi+1)

1 ,...,n
(mi+1)
α )

, i = 0, 1, ..., M̃ − 2. (36)

The directly transmitted α− 1 fragments in each packet can be delivered to the requesting user-

groups inside both M̃ andM\M̃. Then we only need to consider the indirectly transmitted one

fragment encoded in each packet. Assume user-group mi requests fragment S(mj)

nj ,(n
(mj)

1 ,...,n
(mj)
α )

,

which is encoded in packet P (mj)

(n
(mj)

1 ,...,n
(mj)
α )

cached by user-group mj with j > i. Then user-group

mi can first compute
j−1∑
l=i

(
S
(ml)

nl,(n
(ml)
1 ,...,n

(ml)
α )
⊕ S(ml+1)

nl+1,(n
(ml+1)

1 ,...,n
(ml+1)
α )

)
= S

(mi)

ni,(n
(mi)
i ,...,n

(mi)
α )
⊕ S(mj)

nj ,(n
(mj)

1 ,...,n
(mj)
α )

. (37)

After that user-group mi can obtain S(mj)

nj ,(n
(mj)

1 ,...,n
(mj)
α )

via an XOR operation as it caches S(mi)

ni,(n
(mi)
i ,...,n

(mi)
α )

.

In the same way user-group mj can also obtain S(mi)

ni,(n
(mi)
i ,...,n

(mi)
α )

if it needs the fragment. Since

mi,mj ∈ M̃ are arbitrary, the selected fragments in each packet can be delivered to the requesting

user-groups. Thus all the fragments in the packet-group can be delivered.

From the above, it can be seen that the delivery load for each packet-group satisfying (34)

is M̃(α − 1) + M̃ − 1 = M̃α − 1. Thus no matter what M̃ is, the delivery gain for each

packet-group is 1. And when α = 1, Steps 1 and 2 can be merged into one step as the delivery

methods in both steps become the same. To find all the packet-groups, for each M̃ = 2, 3, ...,M ,
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set a reference cache m0 by letting m0 = 1, ...,M − M̃ + 1, then given each reference cache

m0, find the remaining cached packets from cache m0 and every other M̃ − 1 caches from

{m0 + 1, ...,M} that can form packet-groups to satisfy (34). Note that (34) can always be

guaranteed for any packet-group for M̃ = M . The search procedure for the packet-groups is

summarized in Algorithm 2. Summing up the delivery gains for all packet-groups, the total

delivery load for Step 2 can be finally obtained.

Algorithm 2 Search procedure for all the packet-groups satisfying (34)
Input: M, N , NR, {Dm, Dm : m ∈M}, α

Output: All the valid packet-groups denoted by G

1: Initialization: Set G = ∅, and define Pm as the set of the remaining Type-IV packets in

cache m ∈M after Step 1 and ZM̃−1 , {m1, ...,mM̃−1} as a set of any M̃ − 1 caches.

2: for M̃ = 2 : M do

3: for m0 = 1 : M − M̃ + 1 do

4: for ZM̃−1 ∈ {m0 + 1, ...,M} do

5: for {P (mi)

(n
(mi)
1 ,...,n

(mi)
α )
∈ Pmi : mi ∈ M̃ = {m0,ZM̃−1}} such that (34) holds do

6: P = {P (mi)

(n
(mi)
1 ,...,n

(mi)
α )
∈ Pmi : mi ∈ M̃};

7: Update G = {G,P};

8: Update {Pm : m ∈M} by Pmi = Pmi \ {P
(mi)

(n
(mi)
1 ,...,n

(mi)
α )
}, mi ∈ M̃;

9: end for

10: end for

11: end for

12: end for

13: return G

3) Step 3: Decode the remaining Type-IV packets in all the caches by transmitting α − 1

most requested fragments for each one. The untransmitted one fragment in each packet will be

delivered at the last stage.

As the delivery gains for Steps 1 and 2 depend on the specific requests of the entire caching

system, we use δ to denote the sum of them and use N (DEL)
IV to denote the corresponding number

of Type-IV packets delivered in these two steps. Then the number of transmissions in Step 3 is(
M∑
m=1

Cα
NR−Dm −N

(DEL)
IV

)
(α − 1) since the number of Type-IV packets cached by user-group
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m ∈M is Cα
NR−Dm . Thus the delivery load according to Type-IV packets is given by

TIV = N
(DEL)
IV α− δ +

(
M∑
m=1

Cα
NR−Dm −N

(DEL)
IV

)
(α− 1)

=
M∑
m=1

Cα
NR−Dm(α− 1) +N

(DEL)
IV − δ.

(38)

Since the total number of fragments in Type-IV packets is
M∑
m=1

Cα
NR−Dmα, the number of re-

maining untransmitted fragments is

T
(RM)
IV =

M∑
m=1

Cα
NR−Dm −N

(DEL)
IV . (39)

E. Last Stage

The last stage is to deliver all the (T
(RM)
II +T

(RM)
III +T

(RM)
IV ) untransmitted fragments remaining

in Types II, III and IV packets that are requested by multiple user-groups, where T (RM)
II , T (RM)

III

and T (RM)
IV are given in (15), (25) and (39), respectively. We first use the following example to

illustrate the delivery scheme at the last stage.

Example 5: Assume (N,M,D, α) = (3, 3, 6, 2), where NR = N = 3, D1 = {1, 2, 3}, D2 =

{2, 3} and D3 = {1}. Then all the cached packets can be divided into three types as shown in

Table V. For Type-II packets, as user-group 1 requests all the files but its cache does not contain

such type of packets, the server just transmits α − 1 = 1 fragment except the only one local

fragment in each packet; for the similar reason for Type-III packets, the server just transmits

α − 1 = 1 fragments except the least requested local fragment in each packet, where the least

requested local fragments can be arbitrarily selected since the requests for each file are the

same; for Type-IV packets, as there is no packet-groups that can be delivered by Step 1 and Step

2, the server also just transmits α− 1 = 1 fragment for the only one packet in cache 3, where

the transmitted fragment can be also arbitrarily selected. Thus, after the separate delivery of

each type of packets, every cache still contains three untransmitted fragments. Then at the last

stage, take the fragments in cache 1 as the reference fragments and XOR them together with

the fragments in cache 2 and cache 3, respectively, to form 3 groups of packets, each group

consisting of two pairwise-coded packets is transmitted to deliver the 3 fragments in them. And

the final delivery gain is 3.
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User-group m 1 2 3

Requested files S1, S2, S3 S2, S3 S1

All cached

Type-II

∖ S
(2)

1,(1,2) ⊕ S
(2)

2,(1,2) S
(3)

1,(1,2) ⊕ S
(3)

2,(1,2)

packets

S
(2)

1,(1,3) ⊕ S
(2)

3,(1,3) S
(3)

1,(1,3) ⊕ S
(3)

3,(1,3)

Type-III

S
(1)

1,(1,2) ⊕ S
(1)

2,(1,2) S
(2)

2,(2,3) ⊕ S
(2)

3,(2,3) ∖
S

(1)

1,(1,3) ⊕ S
(1)

3,(1,3)

S
(1)

2,(2,3) ⊕ S
(1)

3,(2,3)

Type-IV
∖ ∖

S
(3)

2,(2,3) ⊕ S
(3)

3,(2,3)

Transmissions according

Type-II
∖

S
(2)

1,(1,2), S
(2)

1,(1,3) S
(3)

2,(1,2), S
(3)

3,(1,3)

to different packet types
Type-III S

(1)

2,(1,2), S
(1)

3,(1,3), S
(1)

3,(2,3) S
(2)

2,(2,3)

∖
Type-IV

∖ ∖
S

(3)

3,(2,3)

Remaining fragments S
(1)

1,(1,2), S
(1)

1,(1,3), S
(1)

2,(2,3) S
(2)

2,(1,2), S
(2)

3,(1,3), S
(2)

3,(2,3) S
(3)

1,(1,2), S
(3)

1,(1,3), S
(3)

2,(2,3)

Transmissions at the

S
(1)

1,(1,2) ⊕ S
(2)

2,(1,2), S
(1)

1,(1,2) ⊕ S
(3)

1,(1,2)

last stage
S

(1)

1,(1,3) ⊕ S
(2)

3,(1,3), S
(1)

1,(1,3) ⊕ S
(3)

1,(1,3)

S
(1)

2,(2,3) ⊕ S
(2)

3,(2,3), S
(1)

2,(2,3) ⊕ S
(3)

2,(2,3)

TABLE V: Illustration of the delivery scheme at the last stage.

Next, we present the general delivery scheme for the last stage, which is implemented by the

following two steps:

1) Step 1: Deliver the untransmitted fragments that are requested by multiple user-groups

and can be pairwise-encoded among the M caches similar to Step 2 in Type-III packets. Take

the fragments from the cache having the minimum number of untransmitted fragments as the

reference fragments. Then for each reference fragment, XOR it together with an unrepeatedly

selected fragment from any other caches to form M−1 pairwise-code packets and transmit them.

Then the fragments in these transmitted packets can be delivered to the requesting user-groups.

2) Step 2: Deliver all the remaining fragments that are requested by multiple user-groups via

direct transmissions.

Define ∆ as the minimum number of the remaining untransmitted fragments over the M

caches, then the number of the transmitted pairwise-coded packets in Step 1 is (M −1)∆. Since

each cache has been delivered ∆ fragments after Step 1, the number of the transmitted fragments

in Step 2 is (T
(RM)
II + T

(RM)
III + T

(RM)
IV −M∆). Thus the total delivery load at the last stage is
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given by

TRM = T
(RM)
II + T

(RM)
III + T

(RM)
IV −M∆ + (M − 1)∆

= T
(RM)
II + T

(RM)
III + T

(RM)
IV −∆,

(40)

from which it can be seen that ∆ also denotes the delivery gain obtained at the last stage.

Based on the delivery strategies introduced in Sections III-A-III-E, we can summarize the

proposed delivery scheme by Table VI.

Delivery stages Specific delivery strategies

Type-I cached packets Directly transmit the requested fragments encoded in each Type-I packet.

Type-II cached packets

Step 1: Transmit α − 1 fragments encoded in each Type-II packet except the local fragment,

which is assumed to be the fragment of Sni , ni ∈ NR;

Step 2: Deliver the untransmitted local fragments of Sni that can be pairwise-encoded among

the caches of M(ni) , where M(ni) denotes the set of user-groups requesting Sni .

Type-III cached packets

Step 1: Transmit α − 1 fragments encoded in each Type-III packet except the local fragment

that is least requested by other user-groups;

Step 2: Deliver the untransmitted local fragments that are requested by multiple user-groups

and can be pairwise-encoded among the caches of M.

Type-IV cached packets

Step 1: Deliver the fragments encoded in each packet-group that corresponds to an (α + 1)-

request set V satisfying (28), where 2 ≤ α ≤ N and V is obtained by Algorithm 1;

Step 2: Deliver the fragments encoded in each packet-group over the remaining Type-IV packets

for any M̃ ⊆M that satisfies 34, where the packet-group is obtained by Algorithm 2;

Step 3: Decode the remaining Type-IV packets in all the caches by transmitting α − 1 most

requested fragments for each one.

Last stage

Step 1: Deliver the untransmitted fragments that are requested by multiple user-groups and can

be pairwise-encoded among the M caches similar to Step 2 in delivery of Type-III packets;

Step 2: Deliver all the remaining fragments that are requested by multiple user-groups via direct

transmissions.

TABLE VI: Summary of the proposed delivery scheme.

IV. ANALYSES

In this section, we first show the correctness of our proposed delivery scheme and then

summarize the overall delivery rate R. We also analyze the worst delivery rate R∗ , max
{Dm:m∈M}

R

and make a comparison with an existing uncoded prefetching scheme.
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A. Correctness

Since all fragments of each file have been un-repeatedly encoded in the four types of cached

packets, every file can be recovered by its requesting user-groups when all these encoded

fragments are decoded and delivered to them. According to the proposed delivery scheme, the

delivery of Sn for any n ∈ NR can be summarized as follows:

• In Type-I packets, all fragments of Sn are directly transmitted one by one, thus all of them

can be delivered to the user-groups in M(n);

• In Type-II packets, all fragments of Sn in the caches of M\M(n) are not local fragments

and each one belongs to the α− 1 directly transmitted fragments of a packet, thus they can

be delivered to the user-groups in M(n) via direct transmissions; whereas all fragments

of Sn from the caches of M(n) for |M(n)| > 1 are local fragments and multi-requested,

then the ones that can be pairwise-coded among M(n) are delivered to the user-groups in

M(n) via coded transmissions and the remaining ones are left to be delivered at the last

stage, where coded or direct transmissions or both may be used.

• In Type-III packets, similar to Type-II packets, all fragments of Sn in the caches of M\

M(n) are not local fragments and can be delivered to the user-groups in M(n) via direct

transmissions; whereas all fragments of Sn in the caches of M(n) are local fragments, but

different from Type-II packets, some of the local fragments of Sn may have been delivered

via direct (α − 1)-transmissions for each packet in Step 1 for Type-III packets, as every

Type-III packet has more than one local fragment. Then part of the untransmitted local

fragments of Sn can be delivered by combining with the untransmitted local fragments of

other files via pairwise-coded transmissions among the M caches in Step 2 for Type-III

packets. If there are still some fragments undelivered, then the remaining ones are left to

be delivered at the last stage.

• In Type-IV packets, the fragments of Sn are only encoded in the caches of M\M(n) and

can be delivered by Steps 1 and 2 if the corresponding condition is satisfied. Otherwise,

they will be delivered via direct (α−1)-transmissions for each packet in Step 3 for Type-IV

packets since they are not local fragments.

Hence all fragments of Sn for any n ∈ NR can be delivered to the user-groups in M(n).

Thus we can conclude that each user-group can obtain its requested files.
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B. Delivery Rate R

Summing up TI, TII, TIII, TIV and TRM given in (6), (16), (26), (38) and (40), respectively,

and dividing them by MCα−1
N−1, the delivery rate for the proposed approach is given by

R =
TI + TII + T

(RM)
II + TIII + T

(RM)
III + TIV + T

(RM)
IV −∆

MCα−1
N−1

. (41)

Note that TI = MNR

(
Cα−1
N−1 − Cα−1

NR−1
)

and

TII + T
(RM)
II =

M∑
m=1

Cα−1
NR−DmDmα−

∑
n∈NR

min
m∈M(n)

Cα−1
NR−Dm ,

TIII + T
(RM)
III =

M∑
m=1

min{Dm,α}∑
n=2

Cn
DmCα−n

NR−Dm(α− 1)

+
M∑
m=1

min{Dm,α}∑
n=2

Cn
Dm−σmCα−n

NR−Dm

− min
m∈M

min{Dm,α}∑
n=2

Cn
Dm−σmCα−n

NR−Dm ,

TIV + T
(RM)
IV =

M∑
m=1

Cα
NR−Dmα− δ,

M∑
m=1

min{Dm,α}∑
n=0

Cn
DmCα−n

NR−Dmα =
M∑
m=1

Cα
NR
α = MNRCα−1

NR−1,

(42)

where the first equality in (42) is obtained by
∑
n∈NR

∑
m∈M(n)

am =
M∑
m=1

Dmam. We have the

following result on the delivery rate R.

Theorem 1: Consider an (N,M,D, α) caching network with D =
M∑
m=1

Dm and C = N
Mα

, where

Dm denotes the number of distinct requests of user-group m ∈ M and C denotes the size of

each cache. Denoting the total set of distinct requests of the system as NR and NR = |NR| ≤ N ,

the delivery rate is given by

R =NR −
∑
n∈NR

min
m∈M(n)

Cα−1
NR−Dm

MCα−1
N−1

+
M∑
m=1

min{Dm,α}∑
n=2

(
Cn
Dm−σm − Cn

Dm

)
Cα−n
NR−Dm

MCα−1
N−1

− min
m∈M

min{Dm,α}∑
n=2

Cn
Dm−σmCα−n

NR−Dm

MCα−1
N−1

− δ + ∆

MCα−1
N−1

,

(43)

where σm denotes the number of the distinct files that are only requested by user-group m,

M(n) denotes the set of the user-groups requesting Sn for any n ∈ NR, δ denotes the delivery

gain according to Type-IV packets and ∆ denotes the delivery gain obtained at the last stage.
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C. Worst Delivery Rate R∗

Based on the caching model and the delivery scheme, it can be seen that the classification of

the four types of the cached packets depends on the specific requests of the users of the whole

caching network. When the request-file set NR, i.e., NR, is given, all the cached packets can be

non-overlappingly classified. However, when NR increases, some Type-I packets will be included

into other types of packets as the unrequested fragments encoded in them will be re-defined as

requested fragments. Thus the delivery load will increase for the whole caching network since

the transmissions for each type of packets are non-overlapping and the delivery load utilizing

any packet of Type-II, III and IV is not less than α − 1, whereas that utilizing any packet of

Type-I is not greater than α − 1. Then we can conclude that the worst delivery rate R∗ should

be achieved at NR = N . In the following, we analyze R∗ at NR = N according to the total

number of the distinct requests D for the whole caching network.

1) The case of D = M : As
M∑
m=1

Dm = D, we have D1 = D2 = · · · = DM = 1, which means

each user-group has only one distinct request. Let NR = N . Then according to (43), R∗ can be

formulated as

R∗ =N −

(∑
n∈N

Cα−1
N−1

MCα−1
N−1

+
δ + ∆

MCα−1
N−1

)
= N −

NCα−1
N−1 + δ + ∆

MCα−1
N−1

, (44)

where δ denotes the delivery gain according to Type-IV packets and ∆ denotes the minimum

number of the remaining untransmitted fragments over the M caches at the last stage.

Since there are N distinct requests and each user-group has only one distinct request, every

α+ 1 distinct requests can meet (28) and (33). Thus the number of the (α+ 1)-request sets is

Cα+1
N =

N(N − α)

α(α + 1)
Cα−1
N−1. (45)

Note that for each Type-IV packet P (m)
(n1,...,nα)

, {n1, ..., nα,Dm} is always an (α + 1)-request

set V since Dm = 1, thus it can be included into the packet-group corresponding to V . Then

all the fragments in Type-IV packets can be delivered by Step 1, and T
(RM)
IV = 0 with T

(RM)
IV

defined in (39). As each request set meeting (28) and (33) can achieve a delivery gain of α,

based on (45) δ is given by

δ =
N(N − α)

α + 1
Cα−1
N−1. (46)

As D1 = D2 = · · · = DM = 1, we have T (RM)
II = 0 and T

(RM)
III = 0, where T (RM)

II and T
(RM)
III

are given in (15) and (25), respectively. Thus we have ∆ = 0. Substituting (46) into (44) leads

to R∗ = N − N(N+1)
(α+1)M

. To further illustrate (45) and (46), we present an example in Table VII.
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Example 6: Consider (N,M,D, α) = (4, 5, 5, 2). For simplicity, we use the XORed file indices

to denote the stored Type-IV packets. For example, (2 ⊕ 3)(1) denotes packet S(1)
2,(2,3) ⊕ S

(1)
3,(2,3).

Based on the requests given in the table, it can be seen that the (α+ 1)-request sets that satisfy

(28) and (33) are {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}, respectively, which is equivalent to
N−α∑
n=1

Cα
N−n = 4. As Table IV has already presented a detailed example on Step 1, we can easily

verify that all Type-IV packets can be decoded and delivered and δ = 8 according to the 4

(α + 1)-request sets shown in Table VII, and the specific delivery process is omitted here.

User-group m 1 2 3 4 5

Requested files S1 S1 S2 S3 S4

Cached Packets

(2⊕ 3)(1) (2⊕ 3)(2) (1⊕ 3)(3) (1⊕ 2)(4) (1⊕ 2)(5)

(Type-IV)
(2⊕ 4)(1) (2⊕ 4)(2) (1⊕ 4)(3) (1⊕ 4)(4) (1⊕ 3)(5)

(3⊕ 4)(1) (3⊕ 4)(2) (3⊕ 4)(3) (2⊕ 4)(4) (2⊕ 3)(5)

Delivery using

V = {1, 2, 3}, MV = {1, 2, 3, 4}, packet-group:
{
(2⊕ 3)(1), (2⊕ 3)(2), (1⊕ 3)(3), (1⊕ 2)(4)

}

Step 1

V = {1, 2, 4}, MV = {1, 2, 3, 5}, packet-group:
{
(2⊕ 4)(1), (2⊕ 4)(2), (1⊕ 4)(3), (1⊕ 2)(5)

}
V = {1, 3, 4}, MV = {1, 2, 4, 5}, packet-group:

{
(3⊕ 4)(1), (3⊕ 4)(2), (1⊕ 4)(4), (1⊕ 3)(5)

}
V = {2, 3, 4}, MV = {3, 4, 5}, packet-group:

{
(3⊕ 4)(3), (2⊕ 4)(4), (2⊕ 3)(5)

}
TABLE VII: An example of delivery gain that meets (45) and (46) for Type-IV packets.

Based on the above analysis we then have the following corollary.

Corollary 1: Consider an (N,M,D, α) caching network with D =
M∑
m=1

Dm and C = N
Mα

,

where Dm denotes the number of distinct requests of user-group m ∈ M and C denotes the

size of each cache. For D = M , the worst delivery rate R∗ is given by

R∗ = N − N(N + 1)

(α + 1)M
, M ≥ N. (47)

Note that M ≥ N in Corollary 1 results from D ≥ N and the worst delivery rate for D = M

is the same as that given in [14]. Thus our model and delivery approach can incorporate the

existing results as a special case.

2) The case of D > M : Then there is at least one user-group that has more than one

request. Since the minimum number of Type-IV packets over the M caches is min
m∈M

Cα
N−Dm

under NR = N , there is at least a delivery gain of min
m∈M

Cα
N−Dm that can be obtained using Step

2 in Type-IV packets for M̃ =M. Assuming that no α+ 1-request set V satisfies (28) for any
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MV ⊆M or packet-group satisfies (34) for any M̃ ⊂M, the total delivery gain using Type-IV

packets can be formulated as

δ = min
m∈M

Cα
N−Dm . (48)

To verify (48) is achievable, we present an example in Table VIII.

Example 7: Consider (N,M,D, α) = (6, 4, 12, 3). Similarly, for simplicity, we use the XORed

file indices to denote the stored Type-IV packets. For example, (3 ⊕ 5 ⊕ 6)(1) denotes packet

S
(1)
3,{3,5,6} ⊕ S

(1)
5,{3,5,6} ⊕ S

(1)
6,{3,5,6}. According to the requests and packets presented, there is no

α + 1-request set V satisfies (28) for any MV ⊆ M or packet-group satisfies (34) for any

M̃ ⊂ M. Then the delivery gain utilizing Type-IV packets mainly comes from Step 2, which is

used to deliver the fragments in the min
m∈M

Cα
N−Dm packet-groups over M̃ = M. Then (48) is

verified.

User-group m 1 2 3 4

Requested files S1, S2, S4 S3, S5, S6 S1, S2, S4 S3, S5, S6

Cached Packets (3⊕ 5⊕ 6)(1) (1⊕ 2⊕ 4)(2) (3⊕ 5⊕ 6)(3) (1⊕ 2⊕ 4)(4)

(Type-IV)

Delivery using Step 2 M̃ =M, min
m∈M

CαN−Dm
= 1 packet-group consisting of 4 packets from the 4 caches.

TABLE VIII: An example of Type-IV packets that meets (48).

Substituting (48) into (43) and letting NR = N , R∗ can be formulated as

R∗ =N −
∑
n∈N

min
m∈M(n)

Cα−1
N−Dm

MCα−1
N−1

+
M∑
m=1

min{Dm,α}∑
n=2

(
Cn
Dm−σm − Cn

Dm

)
Cα−n
N−Dm

MCα−1
N−1

− min
m∈M

min{Dm,α}∑
n=2

Cn
Dm−σmCα−n

N−Dm

MCα−1
N−1

− min
m∈M

Cα
N−Dm

MCα−1
N−1
− ∆

MCα−1
N−1

,

(49)

where M(n) denotes the set of the user-groups requesting Sn for any n ∈ N ; σm denotes the

number of distinct files only requested by user-group m; and ∆ denotes the minimum number

of remaining fragments over the M caches at the last stage.

Observing the terms related to {σm : m ∈ M} on the right-hand side of (49), it is seen that

the largest R∗ is achieved at σm = 0 for all m ∈ M. This means that the worst delivery rate
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will be maximized at the point that every file is requested by multiple user-groups. Note that

{σm = 0 : m ∈M} does not depend on the value of δ in (48), R∗ can be further simplified as

R∗ = N−
∑
n∈N

min
m∈M(n)

Cα−1
N−Dm

MCα−1
N−1
− min
m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm

MCα−1
N−1

− min
m∈M

Cα
N−Dm

MCα−1
N−1
− ∆

MCα−1
N−1

. (50)

Assume Dm1 ≥ Dm2 ≥ · · · ≥ DmI+1
≥ Dm for any m ∈M\ {m1, ...,mI+1}, where I is the

integer such that N ≥
I∑
i=1

Dmi and N <
I+1∑
i=1

Dmi . Then, we have

∑
n∈N

min
m∈M(n)

Cα−1
N−Dm

MCα−1
N−1
≥

I∑
i=1

Cα−1
N−Dmi

Dmi

MCα−1
N−1

+

(
N −

I∑
i=1

Dmi

)
Cα−1
N−DmI+1

MCα−1
N−1

, (51)

where the equality is achievable when
I⋃
i=1

Dmi ⊆ N and N ⊂
I+1⋃
i=1

Dmi , which indicates that

the reference fragments for all n ∈ N in Step 2 for Type-II packets are chosen from caches

m1, ...,mI+1 and the total number is
I∑
i=1

Cα−1
N−Dmi

Dmi +

(
N −

I∑
i=1

Dmi

)
Cα−1
N−DmI+1

.

Combining (50) with (51) we can further bound the worst delivery rate R∗ as

R∗ ≤N −

(
I∑
i=1

Cα−1
N−Dmi

Dmi

MCα−1
N−1

+

(
N −

I∑
i=1

Dmi

)
Cα−1
N−DmI+1

MCα−1
N−1

+ min
m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm

MCα−1
N−1

+ min
m∈M

Cα
N−Dm

MCα−1
N−1

+
∆

MCα−1
N−1


,N −

(
G+

∆

MCα−1
N−1

)
.

(52)

Note that DmCα−1
N−Dm ,

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm and Cα
N−Dm denote the numbers of Type-II, III

and IV packets in cache m ∈M, respectively, where the sum is Cα
N . According to the delivery

scheme, it can be seen from (52) that min
m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm and min
m∈M

Cα
N−Dm are the

numbers of delivered Types III and IV packets in each cache, respectively, where the delivered

packets represent the packets whose encoded fragments have been totally delivered; while

DmiC
α−1
N−Dmi

, i = 1, ..., I are the numbers of delivered Type-II packets in caches m1,m2...,mI ,

which indicates the Type-II packets in the I caches that have been totally delivered. To obtain

∆, we need to compute the minimum number of undelivered packets over the M caches after

the separate delivery of the four types of packets. Although the numbers of delivered Type-II

packets in the other M − I caches are not known, denoting Am as the number of delivered

Type-II packets in cache m ∈ M, we have Ami = DmiC
α−1
N−Dmi

for i ∈ {1, 2, ..., I} and
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Am ≤
I∑
i=1

DmiC
α−1
N−Dmi

+

(
N −

I∑
i=1

Dmi

)
Cα−1
N−DmI+1

for any m ∈ M \ {m1,m2, ...,mI} as

the number of the delivered Type-II packets in cache m should be not greater than the total

number of reference fragments chosen from caches m1, ...,mI+1 in the delivery of Step 2 for

Type-II packets. Then according to the definition of ∆, we have

∆ = min
j∈M

Cα
N − Aj − min

m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm − min
m∈M

Cα
N−Dm


= min

m∈M
(Cα

N − Am)− min
m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm − min
m∈M

Cα
N−Dm

≥

Cα
N − max

m∈M
Am − min

m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm − min
m∈M

Cα
N−Dm

+

≥

Cα
N −

I∑
i=1

DmiC
α−1
N−Dmi

−

(
N −

I∑
i=1

Dmi

)
Cα−1
N−DmI+1

− min
m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm − min
m∈M

Cα
N−Dm

+

=
(
Cα
N −GMCα−1

N−1
)+
,

(53)

where G is defined in (52). We can easily prove that the equality in (53) can be achieved by

simply letting D1 = N and D2 = 1. Then G = 0 and ∆ = Cα
N , and the delivery scheme is

equivalent to first transmitting α − 1 fragments for each packet of Type-II, Type-III and Type-

IV, and then transmitting the remaining fragments by pairwise coding. This can be verified by

Example 5. Based on (52) and (53), we have the following corollary.

Corollary 2: Consider an (N,M,D, α) caching network with D =
M∑
m=1

Dm and C = N
Mα

,

where Dm denotes the number of distinct requests of user-group m ∈ M and C denotes the

size of each cache. For D > M , the worst delivery rate R∗ is given by

R∗ =N −

(
G+

(
N

Mα
−G

)+
)
, (54)

where

G =
I∑
i=1

Cα−1
N−Dmi

Dmi

MCα−1
N−1

+

(
N −

I∑
i=1

Dmi

)
Cα−1
N−DmI+1

MCα−1
N−1

+ min
m∈M

min{Dm,α}∑
n=2

Cn
DmCα−n

N−Dm

MCα−1
N−1

+ min
m∈M

Cα
N−Dm

MCα−1
N−1

,

(55)
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and Dm1 ≥ Dm2 ≥ · · · ≥ DmI+1
≥ Dm for any m ∈ M \ {m1, ...,mI+1} with I obtained by

N ≥
I∑
i=1

Dmi and N <
I+1∑
i=1

Dmi .

D. Special Case of R∗ for Uniform Requests

We analyze R∗ for the special case that each user-group has the same number of distinct

requests by assuming D1 = · · · = DM = L with 1 ≤ L ≤ N . Based on Corollary 2, we have

the following on the worst delivery R∗ for 2 ≤ L ≤ N and ML > N ,

R∗ =N −

(
G+

(
N

Mα
−G

)+
)
, (56)

where

G =
(N − L) Cα−1

N−L

MCα−1
N−1

+
N

Mα
. (57)

According to G given in (57), R∗ can be simplified as R∗ = N − G. Then combining with

Corollary 1 we have the following on R∗ for the uniform-request case.

Corollary 3: Consider an (N,M,D, α) caching network with D =
M∑
m=1

Dm and C = N
Mα

,

where Dm denotes the number of distinct requests of user-group m ∈ M and C denotes the

size of each cache. For D1 = · · · = DM = L, the worst delivery rate R∗ is given by

R∗ =


N − N(N+1)

(α+1)M
, L = 1 and M ≥ N ;

N − (N−L)Cα−1
N−L

MCα−1
N−1

− N
Mα

, 2 ≤ L ≤ N and L > N
M
.

(58)

Since we consider the worst delivery rate at the point that all the N files are requested by

the users and our coded prefetching algorithm can degenerate into the uncoded prefetching one

by letting α = 1, a comparison of the delivery rate with those of traditional one-user-per-cache

case [1], [16], [17] using uncoded prefetching at D = ML ≥ N can be performed. According

to [16, Theorem 4] and [17, Lemma 1], the achievable delivery rate for uncoded prefetching at

C = N
M

and D1 = · · · = DM = L is

RUncod
URC =


M−1
2
, L = 1 and N ≤M ≤ 2N ;

min
{
L(M−1)

2
, N − N

M

}
, otherwise,

(59)

whereas according to Corollary 3, the worst delivery rate R∗ for uncoded prefetching at C = N
M

and D1 = · · · = DM = L is

R∗ =

N −
N(N+1)

2M
, L = 1 and M ≥ N ;

N − 2N−L
M

, 2 ≤ L ≤ N and L > N
M
.

(60)



31

Comparing (59) with (60), we can easily prove that R∗ ≤ RUncod
URC at L = 1 and at L ≥ 2

for D = LM ≥ 2N − L. Such condition is obtained by RUncod
URC − R∗ = L(M−1)

2
− N +

2N−L
M

= (M−2)(LM+L−2N)
2M

≥ 0. Thus our delivery algorithm can outperform conventional uncoded

prefetching for the uniform-request case at cache size C = N
M

.

V. NUMERICAL RESULTS

In this section, we present some numerical results for the achieved delivery rates given in

Section IV. As a benchmark, the cut-set lower bound on the delivery rate of our model is

computed, which, based on the derivation of the bound for traditional one-request-per-cache

networks given in [1, Theorem 2], can be formulated as

R ≥ RCSB(NR) = max
s,{Dmi}

s
i=1

s∑
i=1

Dmi −
sC⌊
NR
s∑
i=1

Dmi

⌋ ,
(61)

where s ∈
{

1, 2, ...,min{d NR

min
m∈M

Dm
e,M}

}
and

s∑
i=1

Dmi ≤ NR. Setting s = 1 we have RCSB(NR) ≥

max
m∈M

(
Dm − C/bNR

Dm
c
)

based on (61). According to (54), we can upper bound the worst delivery

rate R∗(N) for the multi-request case D > M as R∗(N) = N −
(
G+ (C −G)+

)
≤ N − C.

Thus the gap between R∗(N) and RCSB(NR) for any NR ≤ N can be upper bounded by

R∗(N)−RCSB(NR) ≤ N − C − max
m∈M

(
Dm − C

/ ⌊
NR

Dm

⌋)
≤ N − C − max

m∈M
(Dm − C)

= N − max
m∈M

Dm.

(62)

In simulations, the actual delivery rates for 100 groups of randomly produced requests for each

given D are calculated, and the corresponding average delivery rates are plotted. The worst

delivery rate is determined by the maximum value of the worst delivery rates among the 100

groups, whereas the cut-set bound is determined by the minimum value of the cut-set bounds

among the 100 groups.

For the proposed delivery scheme, Fig. 2 shows detailed results of the delivery rate versus

the ratio of the total request number D to the cache number M , i.e., D
M

, for both uncoded and

coded prefetching. Fig. 3 shows detailed results of rate-memory pairs for both arbitrary and

uniform multiple requests. It can be seen that all the actual and average delivery rates in the

seven subfigures fall between the proposed worst delivery rate and the lower bound, with the gap
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(a)  

 

 

 

(b)

 

 

 

 

(c)

Fig. 2: Results of the delivery rate v.s. D
M

, where N = 10 and M = 6. (a) Uncoded prefetching

(α = 1) for arbitrary requests. (b) Uncoded prefetching (α = 1) for uniform requests such that

L = D
M

. (c) Coded prefetching (α = 2) for arbitrary requests.
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(a)  
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(c)  (d)

Fig. 3: Results of rate-memory pairs over 0 ≤ C ≤ max
α

N
Mα

= N
M

, where N = 7. (a) Arbitrary

multiple requests with M = 5 and D = 15. Uniform multiple requests with L = 3 and (b)

M = 3 < N . (c) M = 5 < N . (d) M = 8 > N .

lower than the bound given in (62). Furthermore, it can be seen that both the average and worst

delivery rates increase with the sum number of requests D according to Fig. 2, and decrease

with the cache size C according to Fig. 3. Note that the cut-set bound may not monotonously

change as shown in Figs. 2(b) and 2(c) as it is chosen from 100 independent random samples

for each point under the minimax criterion.

Additionally, Fig. 2(b) indicates that our proposed delivery scheme for the uniform-request

case can achieve the same or a lower average delivery rate than that given in [16], [17]. It

can achieve the same or a lower worst delivery rate than that given in [16], [17] except the

point D
M

= 2, which is consistent with the analysis provided in Section IV-D since D = M or
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D = ML ≥ 2N − L for D > M holds at all other points. Under such conditions, whether

M ≥ N or not, our proposed coded prefetching can achieve a better rate-memory trade-off than

the uncoded prefetching [16], [17] over 0 ≤ C ≤ N
M

, as shown in Figs. 3(c) and 3(d). Although

the worst delivery rates plotted in Fig. 3(b) are not all lower than the envelope of the delivery

rate provided by [16], [17] as LM = 9 < 2N − L = 11, the average delivery rats are lower.
 

 

 

 

(a)  

 

 

 

(b)

Fig. 4: Results of rate-memory pairs for different M over 0 ≤ C ≤ min
M

N
M

, where N = 6. (a)

Arbitrary multiple requests with D = 10. (b) Uniform multiple requests with D = 18.

Finally, Fig. 4 shows the results of rate-memory pairs under different M for both arbitrary and

uniform multiple requests, which indicates that increasing M can achieve better rate-memory

trade-offs since both the average and worst delivery rates decrease with M .

VI. CONCLUSIONS

We have considered a centralized caching network, where a server serves several groups of

users, each having a common shared homogeneous fixed-size cache and requesting arbitrary

multiple files. An efficient file delivery scheme with explicit constructions by the server to meet

the multi-requests of all user-groups was first proposed. Then the rate as well as the worst rate

of the proposed delivery scheme were analyzed. We showed that our caching model and delivery

scheme can incorporate some existing coded caching schemes as special cases. Moreover, for the

special case of uniform requests and uncoded prefetching, we made a comparison with existing

results, and showed that our approach achieved a lower delivery rate. Finally, numerical results

demonstrated the effectiveness of the proposed delivery scheme.
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APPENDIX A

SEARCH ALGORITHM FOR THE (α + 1)-REQUEST SETS

The search algorithm of the valid (α + 1)-request sets V consists of two steps:

Step 1: Identify every α+1 different user-groups to find V satisfying (28) based on a reference

user-group m0 for m0 = 1, ...,M − α. Each time given the reference user-group m0 and one

of its requests nm0 , the server arbitrarily picks out α distinct requests nm1 , nm2 , ..., nmα from

other α user-groups m1, ...,mα from {m0 + 1, ...,M} to guarantee that V = {nm0 , nm1 , ..., nmα}

satisfies (28).

Step 2: Make sure that each V corresponds to a totally different packet-group based on (33).

As given a reference user-group m0, there will be more than one choice of nm0 , or given nm0

or different nm0 from different reference user-groups, there will be more than one choice of the

request sets, resulting in at least two obtained (α + 1)-request sets with the same α requests.

This may lead to different packet-groups containing a common Type-IV packet. Thus (33) is

added with (28) for any two obtained (α+ 1)-request sets to guarantee different request sets for

totally different packet-groups.

Based on (28) and (33), all the valid (α+ 1)-request sets can be obtained. The corresponding

search procedure is summarized in Algorithm 1 and the illustration of the search algorithm is

presented in Example 8.

Example 8: An example is shown in Table IX, from which 7 valid (α+1)-request sets satisfying

both (28) and (33) can be obtained. The sets satisfying (28) but not selected are {1, 4, 5, 7},

{1, 4, 7, 8}, {1, 5, 7, 8}, {2, 5, 6, 8}, {3, 4, 6, 8} and {4, 5, 7, 8}. For example, set {2, 5, 6, 8} is

not selected since {1, 5, 6, 8} and {2, 5, 6, 8} do not meet (33) and thus only one set is selected.
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