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Abstract—Coded caching can significantly reduce the commu-
nication bandwidth requirement for satisfying users’ demands
by utilizing the multicasting gain among multiple users. Most
existing works assume that the users follow the prescriptions
for content placement made by the system. However, users may
prefer to decide what files to cache. To address this issue, we
consider a network consisting of a file server connected through
a shared link to K users, each equipped with a cache which
has been already filled arbitrarily. Given an arbitrary content
placement, the goal is to find a delivery strategy for the server
that minimizes the load of the shared link. In this paper, we
focus on a specific class of coded multicasting delivery schemes
known as the “clique cover delivery scheme”. We first formulate
the optimal clique cover delivery problem as a combinatorial
optimization problem. Using a connection with the weighted set
cover problem, we propose an approximation algorithm and show
that it provides an approximation ratio of (1 + log K), while
the approximation ratio for the existing coded delivery schemes
is linear in K . Numerical simulations show that our proposed
algorithm provides a considerable bandwidth reduction over the
existing coded delivery schemes for almost all content placement
schemes.

Index Terms—Caching, Coded Multicast, Clique Cover Deliv-
ery, Weighted Set Cover, Approximation Algorithm.

I. INTRODUCTION

A common way to reduce the burden of traffic in a network

system is to take advantage of memories distributed across

the network to duplicate parts of the content. This duplication

of content is called content placement or caching. A caching

system operates in two phases: the placement phase and the

delivery phase. In the placement phase which is performed

during off-peak hours when network resources are abundant,

users fill the local caches with contents anticipating their future

demands. Afterwards, the network is used for an arbitrarily

long time, referred to as the delivery phase. This phase can

contain a number of rounds where in each round, users reveal

their requests for content and the server must coordinate

transmissions such that these requests are satisfied.

Recently, a new class of caching schemes in which the

placement and delivery phases are jointly designed (a.k.a

“coded caching”) has drawn remarkable attention [2], [3]. It

has been shown that coded caching can significantly reduce
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the communication bandwidth requirement for satisfying the

users’ requests. Since then, design and analysis of caching

techniques for various kinds of networks have been researched

extensively [4]–[15]. Most existing works assume that the

users follow the prescriptions made by the system for the

content placement. However, it is difficult to enforce all users

to follow the particular prescriptions because each user may

have its own caching policy or may decide to discard some part

of their caches due to lack of space. When the users arbitrarily

fill the content of their caches, the existing coded delivery

schemes [2]–[6], [15], [16] could result in very inefficient

performance1 (see Example 1 in Section II and also Theorem 3

for the performance of these schemes under arbitrary caching

of users).

In this paper, we focus on the delivery phase and study

a caching system where the content placement phase has

been already carried out by the users arbitrarily and has been

reported to the server. More specifically, we consider a network

consisting of a file server connected through a shared link to

K users, each equipped with a cache which has been already

filled. In the delivery phase, the users request a set of files. In

order to take advantage of multicasting opportunities among

the users, each requested file can be divided into a set of

subfiles where each subfile is available only in the cache of

a group of users [2]–[4]. The goal is to design a delivery

strategy for the server that minimizes the load of the shared

link without imposing any restriction on the number of users,

size of the files, cache size of the users, and how the placement

phase has been carried out.

This problem is equivalent to a conventional “index coding”

problem. In our problem, the total number of subfiles that

the server needs to send can be exponential in the number

K of users and further, the size of subfiles can be distinct

in general. Therefore, existing algorithms [17]–[19] for the

conventional index coding problem and the recent algorithms

for the index coding problems with interlinked cycles [20] and

symmetric neighboring interference [21] are not appropriate

for our setting.

Since an index coding problem is computationally hard to

solve even only approximately [22], in this paper we focus

on a specific class of coded multicasting delivery schemes

for the server known as the “clique cover delivery scheme”.

Interestingly, many of the previous works on caching have

relied on this class of delivery schemes (for example, see

1Note that although [5] studies the coded caching problem for the case that
the file sizes can be different, the proposed delivery algorithm of this paper
is exactly the same as the delivery algorithm of [2]–[4].
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[6], [23]–[25]) due to its practical appeal and its capability in

reducing the communication bandwidth compared to uncoded

delivery schemes. In the clique cover schemes, when a set

of subfiles of different files are XORed as a packet and

transmitted to the users, for every subfile available in this

packet, at least one user requesting it can recover this subfile

by using its cache contents and only this XOR transmission.

XORing subfiles with different sizes means that all shorter

subfiles are zero padded to match the longest subfile and

then XORed. If sub-packetization is allowed, instead of zero

padding the shorter subfiles, these subfiles can be padded with

bits from other subfiles. Although this kind of schemes could

further reduce the bandwidth usage compared to the clique

cover delivery schemes, they require the knowledge of how the

sub-packetization should be performed. Finding the optimal

way of sub-packetization is formidable in general and only

heuristic methods are available [26], [27].

A. Our Contribution

In this paper, we first formulate the optimal clique cover

delivery problem as a combinatorial optimization problem and

show that it can be represented as an Integer Linear Program

(ILP). However, the number of variables of this ILP is equal to

the number of all cliques of the “side-information graph” [6],

[17]–[19], [23] (see Remark 1 for the detailed description of

this graph) generated from the set of all subfiles that the server

needs to send. Since the number of all cliques is generally

double exponential in the number K of users, directly solving

the ILP is computationally intractable even for a small number

of users.

To overcome the double exponential complexity, we focus

on approximation algorithms. We show that the optimal clique

cover delivery problem is equivalent to the weighted set

cover problem. Using this connection, we first propose an

approximation algorithm which is based on an approximation

algorithm for the weighted set cover problem. This algorithm

has a good approximation ratio, but its complexity is still

double exponential in the number K of users as it requires

finding all possible cliques of the side-information graph and

also searching over all of these cliques to find a set of cliques

that the server should send.

Then, we identify features of the optimal clique cover

delivery problem to reduce redundancy in this algorithm

and propose Size-Aware Coded Multicast (SACM) algorithm.

The significance of SACM algorithm is that it sidesteps the

difficulty of finding all possible cliques of the side-information

graph and further, it finds the set of cliques that the server

should send without the need for searching over all possible

cliques. The SACM algorithm has a complexity similar to the

coded delivery schemes of [2]–[6], [16] which is generally

exponential in the number K of users. We further show

that the exponential complexity in the number K of users is

inevitable for any algorithm with good approximation ratio for

the optimal clique cover delivery problem. In terms of perfor-

mance, we show that SACM algorithm provides (1 + log K)-

approximation2 which is significantly better than the linear (in

K) approximation ratio of the existing coded delivery schemes

of [2]–[6], [15], [16]. Furthermore, numerical simulations

show that our proposed algorithm provides a considerable

bandwidth reduction over the existing coded delivery schemes

of [2]–[6], [15], [16] for almost all content placement schemes.

B. Notation

For each file W , we denote the number of bits or size of

W by B(W). For two files W1 and W2, bit-wise XOR of W1

and W2 is denoted by W1 ⊕W2 where the files W1 and W2 are

assumed to be zero padded to match the longest file. Sets are

denoted by the calligraphic font and sets of sets are denoted

by script font. The cardinalities of set A and set of sets A

are denoted by |A| and |A |, respectively. We use vec(A) to

denote a column vector with the elements of set A. For a

number N , we use [N] to denote the set {1, 2, . . . , N}.

C. Organization

The rest of this paper is organized as follows. Section II de-

scribes the system model and formally formulates the optimal

clique cover delivery problem. In Section III, we propose an

approximation algorithm for solving the optimal clique cover

delivery problem. Section IV analyzes the complexity of our

proposed algorithm. In Section V, we numerically compare

our proposed algorithm with the existing coded delivery algo-

rithms. Section VI concludes the paper. The proofs of all the

technical results of the paper appear in the Appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system with one server connected through a

shared, error-free link to K users as shown in Fig. 1. The server

has access to a database of N popular files W1,W2, . . . ,WN

where the size of file Wn in bits is denoted by B(Wn). We use

the notations [K] := {1, 2, . . . ,K} and [N] := {1, 2, . . . , N}.

Each user k has a separate cache memory Zk . We assume that

users have filled the content of their caches using the database

in the Placement phase.

In the Delivery phase, each user k requests a file index dk ∈

[N]. We assume that users request different files3. Without loss

of generality, suppose user k requests file k in the delivery

phase, that is, dk = k.

Upon receiving the requests d = (d1, . . . , dK ) = (1, . . . ,K)

of the users, the server responds by transmitting a message

U = (U1,U2, . . . ) that consists of a sequence of packets over

the shared link. Each user k then aims to reconstruct its

requested file Wk using this message and its cache contents.

2An algorithm is an α-approximation to a problem if for any instance of
this problem the solution returned by this algorithm is within a factor α of
the optimal solution [28].

3Note that the probability of each user requesting a distinct file goes to one
as N −→ ∞ for a fixed number K of users. Hence, this assumption holds
with high probability because it is likely that N ≫ K in practice. Further,
note that the proposed algorithm of this paper can still be applied to the case
where there is repetition in the users’ requests by pretending that they are
different.
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Server

User 1 User 2 User K

Z1 Z2 ZK

W1 W2 W3 WN

Fig. 1: Illustration of system model.

B. Coded Multicasting Delivery Strategy

We focus on the delivery phase in this paper. We assume

that the server knows the requests d = (1, . . . ,K), the database

of files W1,W2, . . . ,WN , and the contents Z1, Z2, . . . , ZK of

the cache of users from the placement phase4. In order

to take advantage of multicasting opportunities among the

users and as proposed in the coded caching litertaure (e.g.,

see [2]–[4]), given the cache content of all the users, the

bits of the files can be grouped into subfiles Wn,A , where

Wn,A is the set of bits of file Wn which is available only

in the cache of users belonging to the set A. For example,

if K = 3, then for each n ∈ [N], file Wn can be split

into Wn,�,Wn, {1},Wn, {2},Wn, {3},Wn, {1,2},Wn, {1,3},Wn, {2,3},

Wn, {1,2,3} .

For each user k ∈ [K], the server needs to send all non-

empty subfiles of file Wk which is not available in the cache

of user k. Let

Wk = {Wk,A : A ⊆ [K] \ {k},B(Wk,A) , 0}. (1)

Then, Wk is the set of all subfiles that needs to be sent by

the server to user k. For example, when K = 3, we have

W1 = {W1,�,W1, {2},W1, {3},W1, {2,3}} if all these subfiles have

non-zero sizes. We denote the set of all subfiles that needs

to be sent by the server as W = ∪k∈[K]Wk and we define

τK = |W|.

In this paper, we focus on a specific class of coded multicas-

ting delivery schemes known as the clique5 cover scheme [6].

Clique cover delivery schemes have the following property.

Property 1. When a subset P of W is XORed, for every

subfile in P, at least one user requesting it can recover this

subfile by using its cache contents and only XOR transmission

U = ⊕W ∈PW.

For example, if A⊕ B ⊕C was sent, there is a user wanting

A that could recover it by using B and C stored in its cache

and similar conditions hold for one user wanting B and one

user wanting C. We call any P ⊆ W that satisfies Property

1 a feasible packet. We interchangeably use the term feasible

4In practice, each file Wn is divided into a number of parts with unique
sub-indices and a user can cache some (zero or more) of these parts. By
communicating only the sub-indices for all files that a user has cached to the
server, the server can reconstruct the cache contents of this user.

5A clique is a subset of vertices of an undirected graph such that every two
distinct vertices in the clique are adjacent. In other words, a clique is a graph
where every vertex is adjacent to every other.

packet to refer to both P and U = ⊕W ∈PW satisfying Property

1. The size or the number of bits of a packet U = ⊕W ∈PW

(or packet P) is denoted by B(U) (respectively by B(P)) and

is given by

B(U) = B(P) = max
W ∈P

B(W). (2)

Remark 1. The reason that a delivery scheme with Property 1

is called a clique cover scheme is as follows: Consider a graph

Gc where the set of vertices is W and the weight of vertex

Wk,A ∈ W is B(Wk,A). In this graph, there is an edge between

Wk,A and Wl,B if and only if subfiles Wk,A and Wl,B are

stored in the cache of users l and k, respectively. Then, for this

graph, known as “side-information graph” in the literature

[6], [17]–[19], [23], each clique is a feasible packet and vice-

versa. Hereafter, we use the terms feasible packet and clique

interchangeably.

Note that Property 1 has two straightforward implications:

1) a clique (or feasible packet) P cannot include more than

one subfile requested by each user k ∈ [K] and hence, it can

be written as a set {Wk,Ak
, k ∈ M} for some M ⊆ [K];

2) for each user k ∈ M to be able to recover Wk,Ak
, it

should have Wk′,Ak′
for all k ′ ∈ M \ {k} stored in its

cache, that is, for all k ′ ∈ M \ {k}, Ak′ should include k

(or equivalently, k ∈ ∩k′∈M\{k }Ak′). Such a clique P can

be equivalently described as PA1:K
with the convention that

Ak = ℵ if k < M. For example, in the case of K = 3,

P{2,3}, {1,3},ℵ = {W1, {2,3},W2, {1,3}} and Pℵ, {3},ℵ = {W2, {3}}.

C. Problem Formulation

The aim of this paper is to find a clique cover delivery

scheme that minimizes the total number of bits that the server

needs to send to the users such that each user is able to

reconstruct the file it has requested. This requires each subfile

belonging to the set W to be sent at least once. Let P denote

the set of all feasible packets that can be generated from the

set W of all subfiles (equivalently, P is the set of all cliques

of the side-information graph Gc) and let λK = |P |. For any

P ∈ P , let αP ∈ {0, 1} be a variable indicating whether P is

selected for transmission. We call α = vec({αP : P ∈ P}) a

clique cover delivery scheme. The problem of designing the

optimal clique cover scheme is formally defined below.

Problem 1 (Optimal Clique Cover Delivery Problem). For a

system of K users, given the set W of all subfiles that needs

to be sent by the server, find a clique cover delivery scheme

α that solves

min
∑

P∈P

αPB(P)

s.t. ∪P∈P:αP=1 P =W,

where P is the set of all cliques that can be generated from

W.

Remark 2. Note that although in Problem 1, we want to find

a clique cover with the minimum sum of sizes of cliques, this

problem is different from “Minimum Weighted Clique Covering

Problem” defined in the literature [29].
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The optimal clique cover delivery problem can be repre-

sented as an Integer Linear Program (ILP). To this end, recall

that τK = |W| and λK = |P |. We define L to be a {0, 1}-

valued matrix with τK rows and λK columns where each

row corresponds to a subfile that needs to be sent to a user

and each column corresponds to one clique. The entry of L

corresponding to subfile W and clique P is 1 if W can be

decoded from P; otherwise, it is 0. Using the matrix L, the

condition that each subfile belonging to the set W should be

sent at least once can be written as Lα ≥ 1 where 1 is an

all-one vector of size τK . Then, the ILP can be described as

follows.

Problem 2. For a system of K users, given the set W of all

subfiles and the set of P all cliques that can be generated

from W, find a clique cover delivery scheme α that solves

min
∑

P∈P

αPB(P)

s.t. Lα ≥ 1.

We end this section by providing a motivating example

that shows the importance of solving the optimal clique cover

delivery problem (Problem 1). This simple example indicates

the significant bandwidth reduction that can be achieved by

solving Problem 1 compared to the conventional uncoded

delivery, Greedy Coded Multicast (GCM) scheme [2]–[5],

GCC scheme [6], GCLC and HgLC schemes [15], and Graph

Coloring-based Coded Multicast (GCCM) scheme [16]. Note

that in the conventional uncoded delivery, the server sends

each subfile of set W separately.

Example 1. Let K = 3 and W = {W1,�,W1, {2},W1, {3},

W1, {2,3},W2,�,W2, {1},W2, {3},W2, {1,3},W3,�,W3, {1},W3, {2},

W3, {1,2}} where the size of subfiles W1, {2,3} and W2, {1} is 300

bits and the rest of subfiles in W have the size of 10 bits. In

this case, the uncoded delivery scheme sends 10 subfiles of

size 10 bits and 2 subfiles of size 300 bits, resulting in the total

number of bits of 10 × 10 + 2 × 300 = 700. The GCM, GCC,

GCLC, and HgLC schemes choose6 cliques P{2,3}, {1,3}, {1,2},

P{2}, {1},ℵ, P{3},ℵ, {1}, Pℵ, {3}, {2}, P�,ℵ,ℵ,Pℵ,�,ℵ, Pℵ,ℵ,� with

sizes equal to 300, 300, 10, 10, 10, 10, 10; respectively.

Therefore, the total number of bits sent by the GCM,GCC,

GCLC, and HgLC schemes is 2 × 300 + 5 × 10 = 650.

The GCCM scheme7 chooses cliques Pℵ, {3}, {2}, P{2}, {1,3},ℵ,

P{2,3},ℵ, {1,2}, P{3},ℵ, {1}, Pℵ, {1},ℵ, P�,ℵ,ℵ,Pℵ,�,ℵ, Pℵ,ℵ,� with

sizes equal to 10, 10, 300, 10, 300, 10, 10, 10; respectively.

Therefore, the total number of bits sent by the GCCM scheme

is 2× 300+ 6× 10 = 660. If we solve8 Problem 2, the cliques

P{2}, {1,3},ℵ, P{3},ℵ, {1}, Pℵ, {3}, {2}, Pℵ,ℵ, {1,2}, P�,ℵ,ℵ, Pℵ,�,ℵ,

Pℵ,ℵ,�, P{2,3}, {1},ℵ are chosen with sizes equal to 300, 10, 10,

10, 10, 10, 10, 10; respectively. Therefore, the total number

of bits sent by the optimal solution is 300 + 7 × 10 = 370.

6Note that while these schemes are generally different, under our assump-
tion that users request different files, they all will simplify to the same
algorithm.

7Note that this algorithm picks vertices arbitrarily and hence, there may be
many outputs for this algorithm. We pick one arbitrarily. See [16] for more
details.

8The optimal solution to the ILP is calculated using the GUROBI opti-
mization solver [30].

This indicates that the optimal clique cover delivery strategy

reduces the number of bits required to be sent by 47%

compared to the uncoded delivery while the GCM (and

similarly GCC, GCLC, and HgLC) and GCCM schemes can

decrease this number only by 7.1% and 5.7%, respectively.

As can be seen from this simple example, the uncoded

delivery is inefficient because it does not take advantage of

sending multiple subfiles together as a packet. Furthermore,

the GCM (and similarly GCC, GCLC, and HgLC) and GCCM

schemes are not able to choose these packets efficiently enough

because they do not take the size of subfiles into consideration.

III. AN APPROXIMATION ALGORITHM FOR OPTIMAL

CLIQUE COVER DELIVERY PROBLEM

In Section II, we formulated the optimal clique cover

delivery problem as a combinatorial optimization problem and

we further showed that it can be represented as the ILP of

Problem 2. However, this ILP suffers from two significant

challenges.

(P1) In order to solve the ILP, one should first find the set

P of all feasible packets that can be generated from the

set W of subfiles. However, finding P is the same as

finding all possible cliques of the side-information graph

(a problem that is known as “Clique Problem”) which is

NP-hard [31].

(P2) The number τK of subfiles that needs to be sent by the

server can be as large as O(2K ) and the number λK of

all cliques can be as large as O(2τK ). Hence, the number

of variables in the ILP can be O(22K ), that is, double

exponential in K .

Due to the above points, directly solving this ILP is compu-

tationally intractable as its complexity is double exponential

in the number K of users. In this section, we propose an ap-

proximation algorithm for Problem 1. This algorithm provides

the approximation ratio of (1+ log K) and it has a complexity

similar to the coded delivery schemes of [2]–[6], [16]. To this

end, we show that the optimal clique cover delivery problem

(Problem 1) is equivalent to a weighted set cover problem [28].

This equivalence can be easily observed by considering W as

a set of elements that needs to be covered in the weighted set

cover problem, P as a set of subsets of the elements’ set in

the weighted set cover problem, and for each P ∈ P , B(P)

as the weight of subset P of elements in the weighted set

cover problem. Now using this equivalence of problems, we

propose Algorithm 1 for solving Problem 1. This algorithm

is based on an approximation algorithm for the weighted set

cover problem [32] which has been modified according to the

following property of the set P of all feasible packets in

Problem 1: If P1 and P2 are feasible packets, then P1 \ P2 is

either an empty packet or a feasible packet. The correctness of

this property results from the fact that all feasible packets are

cliques of the side-information graph and hence, subtracting

the vertices of one clique from another one results in either

another clique or an empty set.

Before presenting the results about the approximation ratio

that Algorithm 1 provides for Problem 1, we first describe

this algorithm in simple words: Let E be any subset of the set
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W of all subfiles that the server needs to send. Furthermore,

let S be the set of all cliques that can be generated from

E. Then, in each iteration of Algorithm 1, the PACKET-

BASED-OPTIMIZER (PBO) function determines a clique that

maximizes
|P |
B(P)

which is a metric that measures the number of

subfiles included in clique P per bit unit. Note that this metric

captures the fact that we would like to send as many subfiles

as possible with the minimum number of bits. Let P∗ denote

this clique. Then, we add this clique to set C of all cliques

that the server needs to send. Since it is redundant to send a

subfile more than once, we remove the subfiles available in

the clique P∗ from the set E. At the end, we update the set

S by eliminating all cliques S that intersect with P∗.

Algorithm 1

Input: Set W of subfiles and set P of all cliques.

1: C = ∅
2: E =W
3: S =P

4: while E , ∅ do
5: P∗

= PBO(S )
6: C = C ∪ {P∗}
7: E = E \ P∗

8: for S ∈ S do
9: if S ∩ P∗

, ∅ then
10: S = S \ {S}

Output: Set of cliques C .

function PBO(S )

return arg maxP∈S

|P |

B(P)

Lemma 1. If the set P of all cliques is known, Algorithm 1

achieves a (1 + log K)-approximation to Problem 1.

Proof: See Appendix A.

Note that although Lemma 1 suggests an algorithm with a

good approximation ratio for Problem 1, it still suffers from

issue (P1). Furthermore, in each iteration of Algorithm 1, in

order to find the output of function PBO, one should go over

the set S of cliques and find the clique maximizing
|P |
B(P)

. The

number of cliques in set S can be generally O(22K ), that is,

double exponential in the number K of users. To sidestep these

difficulties, in the next section, we propose a new algorithm

that enjoys the good approximation ratio of Algorithm 1, but

it does not work with the set S of cliques.

A. Size-Aware Coded Multicast

In this section, we first propose SUBFILE-BASED-

OPTIMIZER (SBO), an alternative way of calculating function

PBO which only needs the set W of subfiles. The following

theorem states this result.

Theorem 1. For any subset E ⊆ W of subfiles, let S denote

the set of all cliques that can be generated from E. Then,

the size of the cliques obtained by functions PBO and SBO is

equal, that is, B(PBO(S )) = B(SBO(E)).

function SBO(E)
Let M = {k : k ∈ [K],∃Wk,A ∈ E for some A ⊆ [K] \ {k}}
Let T = {T : T ⊆ M, |T | > 0}
for T ∈ T do

for j ∈ T do
Let L j,T = {Wj,A : Wj,A ∈ E, T \ { j} ⊆ A}9

Calculate Vj,T = arg minW ∈L j,T
B(W)

Let RT = {Vk,T : k ∈ T }

return arg maxRT :T∈T

|T |

B(RT)
10

W1, {2,3}W1, {2}W1, {3}W1,�

W2, {1,3}W2, {1}W2, {3}W2,�

W3, {1,2}W3, {1}W3, {2}W3,�

Fig. 2: Side-information graph Gc of Example 2.

Proof: See Appendix B.

Example 2. Consider Example 1 with K = 3 and W =

{W1,�,W1, {2},W1, {3},W1, {2,3},W2,�,W2, {1},W2, {3},W2, {1,3},W3,�,

W3, {1}, W3, {2},W3, {1,2}} where the size of subfiles W1, {2,3} and

W2, {1} is 300 bits and the rest of subfiles in W have the size

of 10 bits. The side-information graph Gc of this example is

shown in Fig. 2. Now, let E = W and S be the set of all

feasible packets that can be generated from W which is the

set of all cliques of graph Gc in Fig. 2.

• How to calculate PBO(S )? To this end, one should go

over the set S of all cliques of graph Gc and calculates
|P |
B(P)

for each clique P ∈ S to find the clique maximizing

this ratio. The set S is given as follows,

S = {P{2,3}, {1,3}, {1,2},P{2,3}, {1,3},ℵ,Pℵ, {1,3}, {1,2},P{2,3},ℵ, {1,2},

P{2,3}, {1},ℵ,P{2,3},ℵ, {1},P{2}, {1,3},ℵ,Pℵ, {1,3}, {2},P{3},ℵ, {1,2},

Pℵ, {1,3}, {2},P{3},ℵ, {1,2},Pℵ, {3}, {1,2},P{2}, {1},ℵ,P{3},ℵ, {1},

Pℵ, {3}, {2},P{2,3},ℵ,ℵ,Pℵ, {1,3},ℵ,Pℵ,ℵ, {1,2},P{2},ℵ,ℵ,P{3},ℵ,ℵ,

Pℵ, {1},ℵ,Pℵ, {3},ℵ,Pℵ,ℵ, {1},Pℵ,ℵ, {2},P�,ℵ,ℵ,Pℵ,�,ℵ,Pℵ,ℵ,�}.

(3)

• Why B(PBO(S )) = B(SBO(E))? First note that the

set S of all cliques of graph Gc can be decomposed

into following 7 disjoint sets QT for T ∈ T :=

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, that is S =

∪T∈T QT , where QT is the set of all cliques P including

exactly one subfile for each user in set T and no subfile

for users not in set T (See Appendix B for a proof of

disjointness of sets QT ’s).

9In case that there are more than one subfile W ∈ L j,T minimizing B(W ),
we can pick one arbitrarily. Further, define L j,T = {W∗ } with B(W∗) = ∞
whenever L j,T is empty.

10In case that there are more than one packet RT maximizing
|T |
B(RT )

, we

can pick one arbitrarily.
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Q{1} = {P�,ℵ,ℵ,P{2},ℵ,ℵ,P{3},ℵ,ℵ,P{2,3},ℵ,ℵ},

Q{2} = {Pℵ,�,ℵ,Pℵ, {1},ℵ,Pℵ, {3},ℵ,Pℵ, {1,3},ℵ},

Q{3} = {Pℵ,ℵ,�,Pℵ,ℵ, {1},Pℵ,ℵ, {2},Pℵ,ℵ, {1,2}},

Q{1,2,3} = {P{2,3}, {1,3}, {1,2}},

Q{1,2} = {P{2,3}, {1,3},ℵ,P{2,3}, {1},ℵ,P{2}, {1,3},ℵ,P{2}, {1},ℵ},

Q{1,3} = {P{2,3},ℵ, {1,2},P{2,3},ℵ, {1},P{3},ℵ, {1,2},P{3},ℵ, {1}},

Q{2,3} = {Pℵ, {1,3}, {1,2},Pℵ, {1,3}, {2},Pℵ, {3}, {1,2},Pℵ, {3}, {2}}.

(4)

Now, the sets QT ’s have this property that for any P ∈

QT , we have |P | = |T |. Remember that in the function

PBO, we want to find a feasible packet P ∈ S that

maximizes
|P |
B(P)

. Using the decomposition of space S

described above, instead of searching over space S , we

can search over the 7 subsets QT separately. In other

words,

B(PBO(S )) = max
P∈S

|P |

B(P)
= max

T
max
P∈QT

|P |

B(P)
. (5)

Since |P | = |T | for all P ∈ QT , maximizing
|P |
B(P)

over

P ∈ QT is equivalent to minimizing B(P) over P ∈ QT .

Now, let us focus on minimizing B(P) over P ∈ QT

for a specific set T . Taking for example T = {1, 2},

we can define the sets L1, {1,2} and L2, {1,2} of subfiles

as in Fig. 3d, that is, L1, {1,2} := {W1, {2},W1, {2,3}} and

L2, {1,2} := {W2, {1},W2, {1,3}}. Then any feasible packet

P ∈ Q{1,2} , being a clique in Fig. 3d, has exactly

one subfile from L1, {1,2} and one subfile from L2, {1,2}.

Hence, minimizing B(P) over all P ∈ Q{1,2} is the

same as finding the subfiles with the minimum size in

both L1, {1,2} and L2, {1,2} . We use V1, {1,2} and V2, {1,2}

to denote the two subfiles with the minimum sizes in

L1, {1,2} and L2, {1,2}, respectively. As it has been shown

in Fig. 3d with dark color, we have V1, {1,2} = W1, {2}

and V2, {1,2} = W2, {1,3}. Then R {1,2} = {V1, {1,2},V2, {1,2}} =

{W1, {2},W2, {1,3}} is a clique belonging to Q{1,2} and it

has the minimum size. Similarly, for all T ∈ T , we

can find RT such that B(RT) = minP∈QT
B(P), and

consequently, maxP∈QT

|P |
B(P)
=

|T |
B(RT )

. This together with

(5) implies that

B(PBO(S )) = max
T∈T

max
P∈QT

|P |

B(P)
= max

T∈T

|T |

B(RT)
. (6)

Now, (6) provides another way of calculating

B(PBO(S )) that does not involve the set S of

cliques; instead all it needs is the collection of sets RT

for T ∈ T . In order to find RT for any T ∈ T , all we

need is to find the sets L j,T for j ∈ T , which can be

done only by using the set E (See definition of L j,T in

the function SBO(E)). Since maxT∈T
|T |
B(RT )

is the size

of the output clique of the function SBO(E), from (6)

we have, B(PBO(S )) = B(SBO(E)).

• How to calculate SBO(E)? To this end, we first find sets

M and T as described in the function SBO(E). Note

that M is the set of users’ indices for which there exists

a subfile in E and T is the set of all non-empty subsets

W1, {2,3}L1,{1,2,3}

W2, {1,3}L2,{1,2,3}

W3, {1,2}L3,{1,2,3}

R{1,2,3}

(a) T = {1, 2, 3}

W1, {2,3}W1, {3}

L1,{1,3}

W3, {1,2}W3, {1}

L3,{1,3}

R{1,3}

(b) T = {1, 3}

W2, {1,3}W2, {3}

L2,{2,3}

W3, {1,2}W3, {2}

L3,{2,3}

R{2,3}

(c) T = {2, 3}

W1, {2,3}W1, {2}L1,{1,2}

W2, {1,3}W2, {1}L2,{1,2}

R{1,2}

(d) T = {1, 2}

W3, {1,2}W3, {1}W3, {2}W3,�

L3,{3}
R{3}

(e) T = {3}

W2, {1,3}W2, {1}W2, {3}W2,�

L2,{2}
R{2}

(f) T = {2}

W1, {2,3}W1, {2}W1, {3}W1,�

L1,{1}
R{1}

(g) T = {1}

Fig. 3: (3a)-(3g): Graphical representation of sets L j,T for the first
iteration of Algorithm 2 applied to Example 1. Sets L j,T are denoted
by blue rectangles. For each set L j,T , the corresponding subfile Vj,T
is denoted in dark color. Sets RT are denoted by red ellipses.

of M. Then, for each T ∈ T , we find sets L j,T for all

j ∈ T . Sets L j,T are denoted by blue rectangles in Fig.

3. For each set L j,T , Vj,T , which is the subfile with the

smallest size, is denoted in dark color. Furthermore, for

each T ∈ T , set RT which includes the subfiles Vj,T for

all j ∈ T is denoted by a red ellipse. Then, the output of

function SBO(E) is the clique RT maximizing
|T |
B(RT )

.

Note that according to Theorem 1, the function PBO in

Algorithm 1 can be replaced by the function SBO without

altering the optimality bound for the algorithm. By doing so,

we can also eliminate the steps of updating set S (lines 8-

10 of Algorithm 1) since we do not need S as input to

the function SBO. The resulting algorithm is described in

Algorithm 2. The optimality bound of Algorithm 2 is stated

in the following theorem.

Theorem 2. Algorithm 2 achieves a (1+log K)-approximation

to Problem 1.

Proof: See Appendix C.

If we apply Algorithm 2 to Example 1, the cliques

Pℵ, {3}, {2}, P{2}, {1,3},ℵ, P{3},ℵ, {1}, P�,ℵ,ℵ, Pℵ,�,ℵ, Pℵ,ℵ,�,
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Algorithm 2 SACM (Size-Aware Coded Multicast)

Input: Set of subfiles W.

1: C = ∅;
2: E =W;
3: while E , ∅ do
4: P∗

= SBO(E);
5: C = C ∪ {P∗};
6: E = E \ P∗;

Output: Set of cliques C .

Pℵ,ℵ, {1,2}, and P{2,3}, {1},ℵ are chosen with the total size of

7×10+300 = 370. Fig. 3 illustrates a graphical representation

of sets L j,T , subfiles Vj,T , and sets RT for the first iteration

of Algorithm 2 applied to Example 1. Compared to the total

number of bits for the optimal solution to Example 1, we can

see that for this example, the total number of bits for our

algorithm is equal to that of the optimal solution.

B. Comparison to State-of-the-Art

We theoretically compare the worst-case approximation

ratio between our proposed algorithm with the uncoded deliv-

ery, the GCM scheme [2]–[5], GCC scheme [6], GCLC and

HgLC schemes [15], and the GCCM scheme [16]11. While

Theorem 2 states that the approximation ratio for our proposed

algorithm is (1 + log K), the following result shows that the

ratio for the other mentioned schemes is linear in K .

Theorem 3. For a system with K users, there are instances

on which the approximation ratio of

1) the uncoded delivery is only K,

2) the GCM (greedy coded multicast) scheme (and similarly

GCC, GCLC, and HgLC schemes) is only ⌊ K−1
2

⌋,

3) the GCCM (graph coloring-based coded multicast)

scheme is only K − 1.

Proof: See Appendix D.

According to Theorems 2 and 3, our proposed algorithm

(Algorithm 2) provides a significantly better approximation

ratio compared to the above schemes.

IV. COMPLEXITY ANALYSIS

In this section, we first analyze the complexity of SACM

algorithm we proposed in Section III. It can be seen that

SACM needs O(τKK2K ) operations where τK = |W| is the

number of non-empty subfiles and it can change12 from K to

K2K−1. The GCM scheme [2]–[5] needs O(K2K) operations

while the GCC, GCLC, and HgLC schemes as well as the

GCCM scheme [16] require O(τ2
K
). Note that in most existing

placement schemes, e.g., [3], [4], [6], almost all subfiles are

non-empty, that is, the number of subfiles is exponential in K

(more precisely, τK ≈ K2K−1). This means that under these

placement schemes, SACM, GCM, GCC, GCLC, HgLC, and

GCCM all have the same complexity which is exponential

11We do not compare with the proposed schemes of [26], [27] as these
algorithms take advantage of the sub-packetization which is not allowed in
the problem we study in this paper.

12It is K2K−1 when for each k ∈ [K] we have B(Wk,A) , 0 for all
A ⊆ [K] \ {k }.

with respect to the number K of users. If the number of

subfiles is not exponential in K [2], then GCC, GCLC, HgLC,

and GCCM schemes achieve lower complexity compared to

SACM and GCM schemes.

Next, we show that the exponential complexity (in the

number K of users) is inevitable for any algorithm with

good approximation ratio for Problem 1. This result which is

presented in the following theorem is based on the facts that

minimum clique cover problem is a special case of Problem

1 and it is NP-hard to find a polynomial-time approximation

for the minimum clique cover problem [33].

Theorem 4. Unless P = NP, there is no polynomial-time (in

the number K of users) algorithm for Problem 1 with the

approximation ratio of K1−ε for any ε > 0.

Proof: See Appendix E.

V. NUMERICAL EXPERIMENTS

In this section, we compare our proposed algorithm, that is,

Size-Aware Coded Multicast (SACM) with the GCM (greedy

coded multicast) scheme [2]–[5], GCC scheme [6], GCLC and

HgLC schemes [15], the GCCM scheme [16], and the uncoded

delivery. For a system with K users, let τK denote the number

of subfiles with non-zero size required to be sent by the server,

that is, τK = |W|. We assume that the size of each subfile

in the set W can be between 1 to 1000 bits. In order to

make sure that our comparison does not depend on a particular

content placement, we take 100 samples uniformly among all

placement possibilities. We consider a system with the number

of users K = 3, 6, 8, 10. For each system, the number τK of

non-zero subfiles can change from K to K2K−1. For K = 3,

since the number τ3 of subfile is at most 12, it is possible

to find all feasible packets and solve the ILP of Problem 2.

This is the reason the optimal solution of Problem 1 is only

calculated for K = 3. Fig. 4a-4b shows the average number

of bits requires to be sent by the server versus the number

of subfiles with non-zero size for K = 3, 6. As can be seen

from Fig. 4a, when K = 3, all coded delivery schemes (that

is, SACM, GCM, GCC, GCLC, HgLC, and GCCM schemes)

perform almost the same as the optimal clique cover delivery

scheme as their confidence intervals overlap. However, as can

be observed from Fig. 4b, when K = 6, our proposed algorithm

(SACM) outperforms GCM, GCC, GCLC, HgLC, and GCCM.

Further, it can be observed that as the number of subfiles with

non-zero size increases, the ratio of the number of bits required

to be sent by GCCM scheme to that of our proposed algorithm

(SACM) increases while the ratio of GCM, GCC, GCLC, and

HgLC schemes to our algorithm (SACM) increases at first and

then decreases.

In order to study the effect of number K of users, we

have plotted the average number of bits requires to be sent

by the server versus the number of subfiles with non-zero

size for K = 8, 10. As can be seen from Fig. 4a-4d, our

proposed algorithm (SACM) significantly outperforms GCM,

GCC, GCLC, HgLC, and GCCM schemes when there are

more users. Our simulation results indicate that for a system

of 10 users, our proposed algorithm (SACM) can reduce
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Fig. 4

the number of bits required to be sent between 15% to

45% compared to GCCM scheme and between 16% to 57%

compared to GCM, GCC, GCLC, and HgLC schemes.

TABLE I: The bandwidth reduction for our proposed algorithm
compared to uncoded delivery. For each number K of users, the range
indicates the lower and upper bounds of the bandwidth reduction for
a various number of subfiles with non-zero sizes.

Number of users (K) 3 6 8 10

Bandwidth Reduction % 17 to 24 25 to 60 43 to 62 46 to 72

Table I indicates the bandwidth reduction for our proposed

algorithm compared to the uncoded delivery. As can be seen

from the table, for a system of 10 users, our proposed

algorithm can reduce the number of bits required to be sent

up to 72%.

VI. CONCLUSION

In this work, given an arbitrary content placement, we for-

mulated the optimal clique cover delivery problem and showed

that it can be represented as an Integer Linear Program (ILP).

We then proposed an approximation algorithm for the optimal

clique cover delivery problem by investigating the connection

between our problem and the weighted set cover problem.

We showed that for a system with K users, our proposed

algorithm provides (1 + log K)-approximation for the optimal

clique cover delivery problem, while the approximation ratio

for the existing coded delivery schemes is linear in K . Further,

through simulations, we showed that our proposed algorithm

can remarkably decrease the bandwidth required for satisfying

the demands of the users compared to the existing coded

delivery schemes for almost all content placement schemes.
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APPENDIX A

PROOF OF LEMMA 1

The proof is based on the following result for the minimum

weighted set cover problem.

Lemma 2. Let d be the size of the largest set P ∈ P .

Then, Algorithm 3 provides a (1+ log d)-approximation to the

minimum weighted set cover problem where W is the set of

elements that needs to be covered, P is the set of subsets of

W, and for each P ∈ P , B(P) is the weight of subset P of

elements [32]13.

Let T
(1)

1
= {1, 2, . . . , λK }, P

(s) be the selected packet at the

s-th iteration, and P
(s)

k
be packet Pk at the beginning of s-th

iteration of Algorithm 3. Then, for iter = 2, . . ., define

T
(iter)

1
=

{k : k ∈ T
(1)

1
,P

(1)

k
∩ P (s)

= ∅ for all 1 ≤ s ≤ iter − 1}, (7)

T
(iter)

2
= T

(1)

1
\ T

(iter)

1
. (8)

Note that T
(iter)

1
denotes the set of indices of packets that

Algorithm 3 Weighted-Set-Cover-Solver [32]

Input: Set of subfiles W and set of all feasible packets P

labeled as {P
(1)

1
,P

(1)

2
, . . . ,P

(1)
λK

} where λK = |P |.

1: C = ∅
2: E =W
3: iter = 1
4: while E , ∅ do

5: j = arg maxk=1,...,λK

|P
(iter)

k
|

B(P
(1)

k
)

6: P(iter)
= P

(1)
j

7: C = C ∪ {P(iter)}
8: E = E \ P(iter)

9: for k = 1, . . . , λK do

10: P
(iter+1)

k
= P

(iter)

k
\ P(iter)

11: iter = iter + 1

Output: Set of packets C .

do not intersect with any selected packet before iteration iter,

and T
(iter)

2
is its complement. Further, define

S
(iter)

1
= {P

(iter)

k
: k ∈ T

(iter)

1
}. (9)

Now, we state some preliminary results and then, use them to

prove Lemma 1.

Claim 1. For any k ∈ T
(1)

1
= {1, 2, . . . , λK } and for any

iteration iter, P
(iter)

k
is either an empty packet or a feasible

packet.

Proof: To show this, note that P
(1)

k
is a feasible packet (it

belongs to P). Now assume that P
(iter−1)

k
is either an empty

packet or a feasible packet. Note that P (s) is a feasible packet

for any iteration s because it is equal to P
(1)
j

for some j ∈ T
(1)

1

and we know that all P
(1)

j
are feasible. If P

(iter−1)

k
is an empty

packet, it is clear that P
(iter)

k
is also an empty packet. Further,

if P
(iter−1)

k
is a feasible packet, since P (iter−1) is also a feasible

packet, P
(iter)

k
= P

(iter−1)

k
\P (iter−1) is clearly either an empty

packet or a feasible packet.

13Note that this algorithm is exactly the one proposed in [32] which has
been intentionally described as in Algorithm 3 for the sake of comparison
with Algorithm 1.
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Claim 2. For any k ∈ T
(iter)

1
, P

(iter)

k
does not intersect with

any selected packet before iter-th iteration, that is, P
(iter)

k
∩

P (s)
= ∅, ∀ 1 ≤ s ≤ iter − 1.

Proof: This proof results from the update equation for

P
(iter)

k
given in Algorithm 3.

Claim 3. For any k ∈ T
(iter)

1
, P

(1)

k
= P

(2)

k
= . . . = P

(iter)

k
,

that is, packet P
(1)

k
does not change over the first iter − 1

iterations.

Proof: This proof results from the definition of set T
(iter)

1

in (7). Since k ∈ T
(iter)

1
, P

(1)

k
does not intersect with any

P (s) for s ≤ iter − 1. Then, from the update equation for

P
(iter)

k
given in Algorithm 3, the correctness of Claim 3 can

be concluded.

Claim 4. Let P1 and P2 be feasible packets and let P3 =

P1 \ P2. Then, B(P3) ≤ B(P1).

Proof: The proof results from the definition B(.) in (2)

and the fact that P3 ⊆ P1.

Now, we show that P (iter) selected at the iter-th iteration

of Algorithm 3 is the same as P chosen at the iter-th iteration

of Algorithm 1. To this end, we show that

max
k∈T

(1)

1

|P
(iter)

k
|

B(P
(1)

k
)
= max

k∈T
(iter )

1

|P
(iter)

k
|

B(P
(1)

k
)
, (10)

that is, in order to find maximizer index k ∈ T
(1)

1
, we only

need to focus on k’s belonging to set T
(iter)

1
. To show this,

choose any k ∈ T
(iter)

1
. Then, from Claim 1, P

(iter)

k
is either

an empty packet or a feasible packet.

• If P
(iter)

k
is an empty packet, we have |P

(iter)

k
| = 0 and

hence index k is never chosen as long as there exists some

packet P
(iter)

k′
with |P

(iter)

k′
| > 0. Therefore, we can ignore

k in the optimization of (10). Further, if |P
(iter)

k′
| = 0 for

all k ′ ∈ T
(1)

1
, it can be easily observed that E = ∅ at the

beginning iter-th iteration, and hence, we do not need to

solve (10).

• If P
(iter)

k
is a feasible packet, then there should be some

lk ∈ T
(1)

1
such that P

(1)

lk
= P

(iter)

k
because T

(1)

1
contains

the indices of all feasible packets. Then from Claim 2,

P
(1)

lk
does not intersect with any selected packet before

iter-th iteration and hence, by definition of T
(iter)

1
in (7),

we have lk ∈ T
(iter)

1
. Then, from Claim 3, we have

P
(1)

lk
= P

(2)

lk
= . . . = P

(iter)

lk
. (11)

Furthermore, from Claim 4, we have B(P
(iter)

k
) ≤ B(P

(1)

k
)

and since P
(1)

lk
= P

(iter)

k
, we have B(P

(1)

lk
) ≤ B(P

(iter)

k
).

This means that

|P
(1)

lk
|

B(P
(1)

lk
)
≥

|P
(iter)

k
|

B(P
(1)

k
)
=⇒

|P
(iter)

lk
|

B(P
(1)

lk
)
≥

|P
(iter)

k
|

B(P
(1)

k
)

(12)

where (12) is correct because of (11). Therefore, we can

ignore k in the optimization of (10) in favor of lk .

Consequently, in order to find the k maximizing
|P

(iter )

k
|

B(P
(1)

k
)

, we

only need to focus on set T
(iter)

1
and hence, (10) is correct.

Further, note that from (11) and (10), we have

max
k∈T

(1)

1

|P
(iter)

k
|

B(P
(1)

k
)
= max

k∈T
(iter )

1

|P
(iter)

k
|

B(P
(1)

k
)
= max

k∈T
(iter )

1

|P
(1)

k
|

B(P
(1)

k
)

= max
P∈S

(iter )

1

|P |

B(P)
, (13)

where the last equality follows from the definition of S
(iter)

1

in (9). Now, from the definition of function PBO and lines 5

and 6 of Algorithm 3, (13) means that P (iter)
= PBO(S

(iter)

1
).

Note that S
(iter)

1
is exactly the set S at the iter-th iteration

of Algorithm 1. Therefore, P (iter) and P are the same at the

iter-th iteration of Algorithm 3 and Algorithm 1. Hence, these

two algorithms are equivalent. Since Algorithm 3 provides a

(1+log d)-approximation to minimum weighted set cover prob-

lem, and further this problem and Problems 1 are equivalent,

Algorithm 1 provides a (1+ log d)-approximation to Problems

1. Furthermore, note that in Problem 1, we have |P | ≤ K for

all P ∈ P . Therefore, Algorithm 3 provides a (1 + log K)-

approximation to Problem 1.

APPENDIX B

PROOF OF THEOREM 1

Let E be any subset of W and let S denote the set of all

possible feasible packets that can be generated from E. We

define M ⊆ [K] as the indices of users for which there exists

a subfile in E that needs to be sent. More specifically,

M = {k : k ∈ [K],∃Wk,A ∈ E for some A ⊆ [K] \ {k}}.

(14)

Let T be set of all non-empty subsets of M, that is, T =

{T ⊆ M : |T | , 0}. Then, we define for T ∈ T ,

QT = {PA1:K
: PA1:K

∈ S ,∀ j ∈ T A j , ℵ, ∀ j < T A j = ℵ}.

(15)

Claim 5. Let E be any subset of W and let S denote the

set of all possible feasible packets that can be generated from

E. Define M using (14) and T = {T ⊆ M : |T | , 0}.

Furthermore, for any T ∈ T , define QT using (15). Then the

sets QT , T ∈ T , are disjoint and ∪T∈T QT = S .

Proof: The proof is easily concluded from the definition

of set QT in (15).

For any set T ∈ T and any j ∈ T , we define

L j,T = {Wj,A : Wj,A ∈ E,T \ { j} ⊆ A}. (16)

Further, we define L j,T = {W∗} with B(W∗) = ∞ whenever

L j,T is empty from definition above. Note that L j,T includes

subfiles in E needed to be sent to user j which are available

in the cache of all users of set T \ { j}. If T \ { j} = �, then

L j,T includes all subfiles in E requested by user j.

Claim 6. Given T ∈ T , let QT be defined as in (15) and

L j,T for all j ∈ T be as defined in (16).
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1) If PA1:K
is a feasible packet in QT , then for each j ∈ T ,

there is exactly one subfile Wj,A j
∈ PA1:K

that Wj,A j
∈

L j,T .

2) If PA1:K
is a collection of subfiles Wj,A j

, one for each

j ∈ T where subfile Wj,A j
∈ L j,T , then, PA1:K

is a

feasible packet in QT .

Proof: We first prove part 1. According to (15), for any

packet PA1:K
∈ QT , we have A j , ℵ for all j ∈ T and

A j = ℵ for all j < T . For each j ∈ T , since A j , ℵ,

there should be a subfile Wj,A j
∈ PA1:K

. Since PA1:K
∈ QT ,

we have Wj,A j
∈ E. Furthermore, since PA1:K

is a feasible

packet, we should have T \ { j} ⊆ A j for all j ∈ T . Hence,

Wj,A j
∈ L j,T for all j ∈ T .

To prove part 2, let PA1:K
= {Wj,A j

: j ∈ T }. Since for

each j ∈ T , Wj,A j
∈ L j,T , by definition of L j,T in (16),

we know that T \ { j} ⊆ A j . This is true for all j ∈ T ,

hence PA1:K
= {Wj,A j

: j ∈ T } satisfies the definition of

feasible packets. Therefore, PA1:K
is a feasible packet and

since A j , ℵ for all j ∈ T and A j = ℵ for all j < T ,

PA1:K
∈ QT .

Claim 6 suggests that finding packet PA1:K
∈ QT with the

minimum size is equivalent to finding a collection of subfiles

Vj,T , j ∈ T where Vj,T has the minimum size among the

subfiles of set L j,T . The following Lemma states this result.

Claim 7. Let E be any subset of W and let T ∈ T . Define

QT from (15) and for all j ∈ T , define L j,T from (16). Then,

if Vj,T = arg minW ∈L j,T
B(W) and RT = {Vj,T : j ∈ T },we

have minP∈QT
B(P) = B(RT) where we define L j,T = {W∗}

with B(W∗) = ∞ whenever L j,T is empty by definition of (16).

Proof: From part 1 of Claim 6, we know that each feasible

packet P ∈ QT includes exactly one subfile Wj,A j
∈ L j,T for

each j ∈ T . Consider a feasible packet P ∈ QT , then we can

write B(P) as B(P) = maxj∈T B(Wj,Aj
). Since Vj,T is the sub-

file with the smallest size in L j,T , we have B(Wj,Aj
) ≥ B(Vj,T)

for each j ∈ T . Consequently, B(P) ≥ maxj∈T B(Vj,T) for

any feasible packet P ∈ QT , which immediately implies

that minP∈QT
B(P) ≥ maxj∈T B(Vj,T). Now, from part 2 of

Claim 6, we know that RT = {Vj,T : j ∈ T } is indeed a

feasible packet. This means that B(RT ) ≥ minP∈QT
B(P).

Furthermore, maxj∈T B(Vj,T) = B(RT ) from the definition

of the size of a feasible packet. Then, we have B(RT ) ≥

minP∈QT
B(P) ≥ maxj∈T B(Vj,T) = B(RT). Hence, the above

inequalities must hold with equality, and the proof of the claim

is complete.

Now we use the above results to prove Theorem 1 as

follows,

PBO(S ) = max
PA1:K

∈S

|PA1:K
|

B(PA1:K
)
= max

T∈T

max
PA1:K

∈QT

|PA1:K
|

B(PA1:K
)

= max
T∈T

max
PA1:K

∈QT

|T |

B(PA1:K
)
= max

T∈T

|T |

minPA1:K
∈QT
B(PA1:K

)

= max
T∈T

|T |

B(RT)
= SBO(E), (17)

where the first equality is true by definition of function PBO,

the second equality is true because of Claim 5, the third

equality is true because for all PA1:K
∈ QT , |PA1:K

| = |T |,

the fifth equality is true by Claim 7, and the last equality is

true by definition of function SBO.

APPENDIX C

PROOF OF THEOREM 2

First note that lines 8-10 of Algorithm 1 guarantee that

S at end of each while loop is the set of all possible

feasible packets that can be generated from E of line 7.

Therefore from Theorem 1, the size of the packet obtained

from function PBO is the same as the size of the packet

obtained from function SBO. Hence, we can replace function

PBO with function SBO and this not change the optimality

order of Algorithm 1. In other words, Algorithm 2 provides a

(1 + log K)-approximation to Problem 1.

APPENDIX D

PROOF OF THEOREM 3

We first prove part 1 of Theorem 3 by providing an instance

of Problem 1 on which the approximation ratio of the uncoded

delivery is only K . To see this, consider an instance of Problem

1 with K users where W = {Wk,[K]\{k } : k ∈ [K]} and B(W) =

B bits for all W ∈ W. Fig. 6 indicates the graph for this

instance of Problem 1. For this instance, the total number of

bits sent by the conventional uncoded delivery is KB while the

optimal solution to Problem 1 sends packet P̃ = {Wk,[K]\{k } :

k ∈ [K]} with the total number of bits equal to B. Therefore,

the ratio between the number of bits sent by the conventional

uncoded delivery to the number of bits sent by the optimal

solution to Problem 1 is K .

Next, we prove part 2 of Theorem 3 by providing an

instance of Problem 1 on which the approximation ratio of

the greedy coded multicast (GCM) scheme is only ⌊ K−1
2

⌋.

We use [k] denote the set {1, . . . , k}. Consider an instance of

Problem 1 with K users and W =W ′ ∪W ′′ where W ′
=

{W1,[K]\{1},W2,[K−1]\{2},W3,[K−2]\{3}, . . . ,Wl,[K−(l−1)]\{l }},

W ′′
= {Wk,[K]\{k } : k ∈ [K] \ [l]}, B(W) = B bits

for all W ∈ W ′, and B(W) = ǫ bits for all W ∈ W ′′

such that ǫ ≪ B. For Problem 1, the packet W ′ is a

feasible packet if K − (l − 1) ≥ l (because we should

have [l − 1] ⊆ [K − (l − 1)] \ {l}). Therefore, W ′ is

feasible if l ≤ K+1
2

. We denote the largest value for l

as l∗ = ⌊ K+1
2

⌋ (note that l should be an integer) and

set l = l∗. Fig. 5 indicates the graph for this instance

of Problem 1. According to GCM scheme [2]–[5], the

packets P1 = {W1,[K]\{1}} ∪ W ′′, P2 = {W2,[K−1]\{2}},

P3 = {W3,[K−2]\{3}}, ..., and Pl∗ = {Wl∗,[K−(l∗−1)]\{l∗ }} are

sent with the total number of bits equal to Bl∗. However,

since W ′ is feasible (see Fig. 5), the optimal solution to

Problem 1 sends packets P̃1 = W ′ and P̃2 = W ′′ with

the total number of bits of B + ǫ . Therefore, the ratio

between the number of bits sent by the GCM scheme to the

number of bits sent by the optimal solution to Problem 1 is
Bl∗

B+ǫ
≥ l∗ − 1 = ⌊ K−1

2
⌋. Furthermore, under our assumption

that users request different files, one can easily observe that

GCC, GCLC, and HgLC schemes all will simplify to the

GCC algorithm. Therefore, for the example we provided
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W1,[K]\{1}W2,[K−1]\{2}Wl∗−1,[l∗−2]∪{l∗ }Wl∗,[l∗−1] Wl∗+1,[K]\{l∗+1} WK−1,[K]\{K−1} WK,[K]\{K }

Fig. 5: Instance of Problem 1 for Part 2 of Theorem 3

W1,[K]\{1} W2,[K]\{2} W3,[K]\{3} WK−1,[K]\{K−1} WK,[K]\{K }

Fig. 6: Instance of Problem 1 for Part 1 of Theorem 3

W1,[K]\{1} W2,[K]\{2} W3,[K]\{3} WK−1,[K]\{K−1} WK,[K]\{K }

W1, {2} W2, {3} WK−2, {K−1} WK−1, {K } WK, {1}

Fig. 7: Instance of Problem 1 for Part 3 of Theorem 3

above, the ratio between the number of bits sent by these

schemes to the number of bits sent by the optimal solution to

Problem 1 is also Bl∗

B+ǫ
≥ l∗ − 1 = ⌊ K−1

2
⌋.

Finally, we prove part 3 of Theorem 3 by providing an

instance of Problem 1 on which the approximation ratio of

the graph coloring-based coded multicast (GCCM) scheme is

only K − 1. Consider an instance of Problem 1 with K users

and W = W ′ ∪ W ′′ where W ′
= {Wk,[K]\{k } : k ∈ [K]},

W ′′
= {W1, {2},W2, {3}, . . . ,WK−1, {K },WK, {1}}, B(W) = B bits

for all W ∈ W ′ and B(W) = ǫ bits for all W ∈ W ′′ such

that ǫ ≪ B. Fig. 7 indicates the graph for this instance of

Problem 1. For this instance of Problem 1, if we assume that

the GCCM scheme [6] picks vertices in the following order

W1, {2},W2, {3}, . . . ,WK−1, {K },WK, {1},W1,[K]\{1},W2,[K]\{2}, . . . ,

WK,[K]\{K }, then this algorithm chooses packets

P1 = {W1, {2},W2,[K]\{2}}, P2 = {W2, {3},W3,[K]\{3}},

..., PK−1 = {WK−1, {K },WK,[K]\{K }}, and PK =

{WK, {1},W1,[K]\{1}} with the total number of bits equal

to KB. On the other hand, for Problem 1, the packets

P̃1 = {W1, {2}}, P̃2 = {W2, {3}}, ..., P̃K−1 = {WK−1, {K }},

P̃K = {WK, {1}}, and P̃K+1 = W ′ are feasible packets.

Therefore, the optimal solution to Problem 1 sends these

packets with the total number of bits of Kǫ + B. Therefore,

the ratio between the number of bits sent by the GCCM

scheme to the number of bits sent by the the optimal solution

to Problem 1 is KB
B+Kǫ

≥ K − 1.

APPENDIX E

PROOF OF THEOREM 4

First, we show that the minimum clique cover problem

defined below is a special case of Problem 1.

Problem 3 (Minimum Clique Cover Problem). Given graph

G = (V, E), find a set C of cliques such that every vertex

V ∈ V is a member of at least one clique C ∈ C and |C | is

minimum.

To this end, consider any graph G = (V, E) with K vertices,

that is, |V| = K . We want to solve the minimum clique cover

problem (Problem 3) for this graph. Let’s label vertices of this

graph with V1, . . . ,VK . For each k ∈ [K], define Ak = {m :

m ∈ [K] \ {k}, (Vk,Vm) ∈ E}. That is, Ak includes the indices

of all vertices connected to vertex Vk . The sets Ak for all k ∈

[K] can be computed in polynomial-time in K . Now, consider

graph Gc with the same vertices and edges where we have

relabeled each vertex Vk by Wk,Ak
and all vertices have the

weight of 1. Now, any clique of graph Gc is a feasible packet

in Problem 1. This means that, graph Gc becomes an instance

of Problem 1 where W = {Wk,Ak
: k ∈ [K]}, and since

B(Wk,Ak
) = 1 for all k ∈ [K], all feasible packets of P have

the size of 1. Therefore, solving the minimum clique cover

problem for graph G is the same as solving Problem 1 for the

graph Gc . In other words, any instance of the minimum clique

cover problem can be written as a special case of Problem 1.

Now, by contradiction, assume there is a polynomial-time

(in the number K of users) algorithm for Problem 1 with the

approximation ratio of K1−ε for some ε > 0. Since we have

shown that the minimum clique cover problem is a special case

of Problem 1, it means that this algorithm can approximate

the minimum clique cover problem with the ratio of K1−ε for

some ε > 0. However, this is a contradiction because we know

that unless P = NP, there is no polynomial-time algorithm for

the minimum clique cover problem on a K-vertex graph with

the approximation ratio of K1−ε for any ε > 0 [33].
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