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Abstract

The joint base station (BS) association and beamformingleno has been studied extensively in recent years,
yet the computational complexity for even the simplest Sk2Ge has not been fully characterized. In this paper,
we consider the problems for an uplink SISO/SIMO cellulammek under the max-min fairness criterion. We first
prove that the problems for both the SISO and SIMO scenarmgalynomial time solvable. Secondly, we present
a fixed point based binary search (BS-FP) algorithm for bé8C8and SIMO scenarios whereby a QoS (Quality of
Service) constrained subproblem is solved at each step bgd fioint method. Thirdly, we propose a normalized
fixed point (NFP) iterative algorithm to directly solve thaginal problem and prove its geometric convergence to
global optima. Although it is not known whether the NFP altfon is a polynomial time algorithm, empirically it
converges to the global optima orders of magnitude fastan the polynomial time algorithms, making it suitable
for applications in huge-scale networks.

I. INTRODUCTION

To meet the surging mobile traffic demand, wireless celluletworks have increasingly relied on low power
transmit nodes such as pico base stations (BS) to work inezbwith the existing macro BSs. Such a heterogeneous
network (HetNet) architecture can provide substantiatiprioved data service to cell edge users.

One crucial problem in the system design of future netwasksow to associate mobile users with serving BSs.
The conventional greedy scheme that associates receivtbréhe transmitter providing the strongest signal and its
modern variant Range Extensian [2] may be suboptimal dysgnipds of congestion. A more systematic approach
is to jointly design BS association and other system pararseto as to maximize a network-wide utility. The
early work in this direction[[3] and_[4] proposed a fixed poitetration to jointly adjust BS association and power
allocation in the uplink (UL), while subject to QoS (Qualitf Service) constraints, with the goal to minimize
total transmit power. The global convergence of this atharihas been established when the problem is feasible.
This algorithm has been extended to the single input singtpud (SISO) cellular network with power budget
constraints for both the UL and the downlink (DL) inl [5],/ [gspectively. The fixed point algorithm inl[3],][4]
can also be interpreted as an alternating optimizationcampr. fix the BS association, each user updates it power
to satisfy the QoS Constraint; fix the power, each user ugd&eBS association to maximize its SINR (Signal to
Interference plus Noise Ratio). This alternating optiriaapproach was extended to joint BS association, power
allocation and beamforming for UL SIMO cellular network IF][

Recently, various approaches have been applied to tacklB$hassociation problem][8]=[12]. The work [n [8]
proposed to solve a utility maximization problem by altéeta optimizing over BS association and other system
parameters for SISO DL cellular network. References [90] [donsidered a partial CoMP (Coordinated Multiple
Point) transmission strategy, i.e., allowing one user te&wed by multiple BSs for MIMO DL cellular network.
They proposed sparse optimization technigques to computesaattle BS association that incurs low overhead.
References[ [11],[12] studied the joint design of BS asgimeiaand frequency resource allocation for a fixed
transmission power for DL SISO Cellular Network .

The computational complexity of maximizing a certain tfilfunction by joint BS association and power
allocation has been studied in different scenarios [L3}-[For the sum rate utility function, the NP hardness
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of the joint design problem has been established for botiUthé1IMO cellular network [13] and the DL MIMO
cellular network [[14]. As a counterpart, for the max-minrfeiss utility, the joint design problem in a DL SISO
network is shown to be NP-hard in general, while for some igppeases (with an equal number of users and BSs
and under additional QoS constraints) this problem is shimnme polynomial time solvablé [16].

Despite the extensive research, a fundamental theoraficedtion remains open: is the joint design problem
under max-min fairness criterion in an UL cellular netwoddymomial time solvable? In addition, to handle large
scale networks, fast algorithms with performance guaefnet only theoretically polynomial time solvable) are
much needed.

In this paper, we aim to resolve these issues. In particwiargonsider the joint BS association and beamforming
problem under the the max-min fairness criterion for both BISO and SIMO cellular networks. Our main
contributions are as follows:

1) We prove that the problems for both SISO and SIMO scenatespolynomial time solvable. To be more
specific, we show that the problem for SIMO (resp. SISO) néta/can be solved by a binary search method
whereby each subproblem can be solved by SDP (resp. LP), andfer to this algorithm as BS-SDP (resp.
BS-LP). This is rather surprising since the considerednaigtition problem involves discrete variables and
falls into the class of mixed integer nonlinear programming

2) We present a globally optimal fixed point based binaryde@S-FP) algorithm in which the QoS constrained
subproblems are solved by fixed point algorithms, which camdainvoking a LP solver for SISO scenarios
or a SDP solver for SIMO scenarios.

3) We propose a normalized fixed point (NFP) algorithm toatlyesolve the joint BS association and beamform-
ing max-min fairness problem, which can avoid binary seafdteoretically, using results from the concave
Perron-Frobenius theory [17], [18], we prove the geometoiovergence of the proposed algorithm to global
optima. At this point, we are only able to show the pseudgpaiial time, not polynomial time complexity,
of the NFP algorithm, although empirically it is much fastiean the polynomial time algorithms BS-LP and
BS-SDP. In fact, the NFP algorithm converges in less thanté@tions for networks with hundreds of BSs
and users, as shown in the numerical experiments.

We summarize the computational complexity results for tietjBS association and beamforming problem under

the max-min fairness criterion for both UL and DL cellulartwerks in Tablelll below.

Table |
THE COMPLEXITY STATUS OF THEJOINT BS ASSOCIATION AND BEAMFORMING PROBLEM (MAX -MIN FAIRNESS)
Fixed BS association Joint
UL DL
SISO Polynomial [19] Polynomial (Theorem 1) NP-Hard [16]
SIMO Polynomial [20] Polynomial (Theorem 3) NP-Hard [16]
MISO | Polynomial [21], [22] Unknowrt NP-Hard [16]
MIMO NP-Hard [23f Unknown NP-Hard [16]

This paper is structured as follows. In Sectign I, the mar-fairness problem by joint BS association, power
control and beamforming problem for an UL SIMO cellular netkis introduced. In Sectionlll, we investigate
the SISO scenario. We first prove the polynomial time solitgbior the SISO scenario, then present a BS-FP
algorithm and finally propose the NFP algorithm. In Secli@iwe investigate the SIMO scenario. We first prove
the polynomial time solvability for the SIMO scenario, thpresent a BS-FP algorithm and finally propose the
NFP algorithm. Simulation results are provided in Secfioto\¢ompare the efficiency and the effectiveness of the
algorithms. Finally, some concluding remarks are offere&ectior V.

II. SYSTEM OVERVIEW

Consider an uplink cellular network whefé mobile users transmit t&/ BSs. Each user is equipped with a single
antenna and theth BS is equipped with\/,, > 1 antennasp = 1,--- , N. They share the same time/frequency

1The SIMO UL network (multiple antennas at each user whilglsimntenna at each BS) does not seem to be a very intereséngrio.
2When the number of antennas at each transmitter (respveegcés at least three and the number of antennas at eaclvee¢essp.
transmitter) is at least two.



resource for transmission. Each user is to be associatbdewictly one BS, but one BS can serve multiple users.
Assuming that the transmitted signal from thih mobile user issy, the received signa},, at thenth BS may be
expressed as

K

Yn = Zhnksk + Ny, (1)

k=1

where thelM,,-dimensional vectoh,,;, denotes the flat fading channel coefficient betweenithemobile user and
the nth BS, while theM,,-dimensional vecton,, denotes the AWGN with zero mean and a covariance matrix of
o2I. Leta = (a1, as,...,ax) denote the association profile, i.e; = i if userk is associated with BS. For the
kth user, the By, invokes aM -dimensional unit-norm linear receivey,, ; to generate the decision sigr/ for
the kth user as

K
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The SINR for thekth user is given by
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wherep;, = El[s;s;] denotes the transmission power of i@ user.
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ap€{1,2,...,N}, k=1,... K,
|lup il =1, k=1,...,K,n=1,...,N,
wherepy, is the power budget of thith user.
In the following, we will investigate the SISO and SIMO sceas, respectively. Note that the results and

algorithms for SIMO are more general than those for SISO;tbunhake the ideas easier to understand, we will
present those for SISO separately.

I[1l. JOINT BS ASSOCIATION AND POWER CONTROL FORUL SISO CELLUAR NETWORKS

In this section, we consider the SISO system whifg = 1,V n. In this case, each beamforming vectoy;,
reduces to a scaler, ; and the optimak, ; is given by, , = th «/ |hnk ||, where the superscrigtdenotes the
complex conjugation. Substituting, , into problem (P) yileds

(Ps|so) cmax in SINRk =3 JarkPk N
pa k=1,. K o2 + Z#k GayiDj
s.t. Oépkéﬁk7k:177K7 (5)

ar€{1,2,...,N}, k=1,... K,

whereg;,. = ||hi||? is the channel gain between useand BS:.

Optimizing p and a separately is easy. Specifically, given a fixed BS assoaiatiothe formulation [(b) is a
max-min fairness power control problem for an I-MAC (intmifig multiple-access channel). It can be solved in
polynomial time using a binary search strategy whereby a Qu&trained subproblem is solved by LP (Linear
Programming) at each step [19]. Moreover, notice that therfierence for usek is Z#k 9a,jPj» Which only



depends o, and does not depend an, Vj # k. Thus, given a power vectgy, the optimal association of each
userk does not depend on the choices of other users and can be easiputed:

o = arg max InkPk (6)
ne{l,...N} | o2 + Zj;ék: 9njPj

In case of multiplen’s that achieve the maximum inl(6), we just usesmax{...} to represent any element
achieving the maximum. However, it is not straightforwandjdaintly optimize the continuous variabje and the
discrete variablez, and this is the focus of our work.

A. Polynomial Time Solvability
In this section, we will prove that the problemg(&) is polynomial time solvable.
Theorem 1: The problem (Biso), i.e., maximizing the minimum SINR by joint BS associatemd power control
for an uplink SISO cellular network, is polynomial time sabte.
Proof of Theorem[Il The max-min fairness problem is closely related to the Qoa&tained problem, i.e.,
minimize the total transmission power subject to the QoSstraints. The QoS constrained joint BS association
and power allocation problem is given as follows:

K
(Psiso-qod : I;lian Zpk,

)

k=1
st. 0<pr<pg, k=1,..., K, (7a)
ar € {1,2,... N}, k=1,.... K, (7b)
SINRk = — YGa,kPk > 5, (7C)
Oa, t Zj;,ek GarjPj
k=1,...,K,

where~ is the required SINR value. Thus, problemsd?) can be solved by a sequence of subproblems of the
form (Psiso-go9 @and a binary search of. In the following, we will show that the QoS constrained stdipem
(Psiso-go9 can be transformed to a linear programming (LP).

Since the optimal BS associatian is given by [6), we have

Ja satisfying [(7b) and[{ic)

9nkPk
<= max >y, k=1,..|K (8)
{1, N} O + D72k, GnjD;
<=py> min_ A(gip+an), k=1,... K, €)
ne{l,...,N}
where g7 = [gn1/dnk> "+ Gn(k—1)/ Ik Os Gn(ot1) /G > Gnic/9nk] @Nd 62, = 07 /gni. Consequently, the
problem (Riso-qgo9 IS equivalent to the following problem:
K
(Psis0-Qos-1 n;in Zpk,
h=1 (10)

st. 0<pi<pg, k=1,..., K,
pi > miny(glp+52), k=1, K.
n

According to [4, Lemma 4(2)], the equation
Pk = miny(gip +57). (11)

has a unique fixed point, denoted @as



Let us consider another QoS constrained problegkRos-) below:

K
(Psis0-Qos-3 : max Zpk,

k=1 (12)
st. 0<pr<pi, k=1,...,K;

pr < minA(gjp+62), k=1,...,K.
n

This problem is always feasible sin¢@ 0, ..., 0) is one feasible solution; in addition, the objective vals@ipper
bounded by} ", px, thus the optimal solution to §o.qos-) always exists.

The following result shows that §o-gos-2 and (Riso-qos-) are “equivalent”.

Lemma 1: The two problems (Elso-gos-) and (Riso-qos-) are equivalent in the following sense: ifEo-qgos-)
is infeasible, then for any optimal solution tog(Eb.qos-), denoted a®p, there exists somé such thatp, <
min, y(gpp + 52); if (Psiso-gos-) is feasible, therp is the unique optimal solution to both ¢Bo-gos-) and
(Psiso-qos-2, Wherep is the unique fixed point of (11).

Proof: If (Psiso-qos-) is infeasible, supposg is one optimal solution to $so-gos-2, thenpy, < min, y(g;p +
52),Vk. We must haves,, < min, v(gi'p + 2) for somek; otherwisepy, = min,, v(g'p + 52), vk, implying that
p is a feasible solution to d&o-gos-), @ contradiction.

If (Psiso-qos-1 is feasible, we claim that its optimal solutigi must satisfy[(I1). In fact, if ong, > min,, v(g}p*+
52), then we can reduce the powgy to strictly improve the objective function without violag all constraints.
According to [4, Lemma 4 (2)], the solution to the fixed poiquation [11) is unique. Thys* must coincide with
p and (Rso-gos-) has a unique optimal solutiop.

Next, we show thap is also the unique optimal solution togBo.qos-). Assume the contrary, that {Ro.qgos-)
has an optimal solutiop # p. Due to the optimality ofp, we have

S k= b (13)
k P

Define a set = {k | pr > pr}. According to [(IB) and the assumptign=# p, the set must be nonempty;
otherwise, we havg; < py, vk, which together with[(1I3) implieg;. = p;, a contradiction.
Define ky = arg max;, {g—:} and T = max;, {g—:} = % > 1, then
We have
: N O . (i) s m s <2
min~y(gg,p +07,) = P, = TPk, = Ty min(gg,p +77)
(ii4) m A g (@) e 29
> ymin(gy, 7P +&;,) = ymin(gg p + 7y,).
Here, (7) is becausg satisfies the constraints of {Bo.qos-2, (i¢) is because is the fixed point of[(1l1)(iii) is
due to the facts that > 1 and the noise variancg’ > 0, ¥n, and (iv) follows from {I4). The above relation is a
contradiction, thugp must be the unique optimal solution tos{§.gos-3. U
Lemmall implies that solving @o-qos-) €ither provides an optimal solution to Bo-qgos-) Or provides an
infeasibility certificate for (Biso-qos-); in fact, (Rsiso-gos-) is infeasible if and only if for any optimal solution to
(Psiso-qos-) there is at least one active inequality. Therefore, Lerhite@atls to a two-step algorithm for solving
(Psiso-qos-3:
Step 1: Find one optimal solutiof to (Psiso-gos-3-
Step 2: Equality test: test whethgg = min,, v(g'p + 72), Vk. If yes, thenp is the unique optimal solution to
(PS|SO—QOS—3; if no, then (%lSO—QOS—i is infeasible.



Problem (Riso-gos-) can be recast as

K
(Psiso-qos-L9 mﬁprk,
k=1
st. 0<pi<pi, k=1,..., K, (15)

pe < Y(ghp +52),
k=1,....K,n=1,...,N,

which is an LP (linear programming) and thus polynomial tiswdvable. As a result, @ko-gos-) can be solved
by a two-step algorithm where the first step consists of aghan LP, and the second step is a simple equality
test. Thus (Biso-gos-) can be solved in polynomial time.

Let us come back to the proof of Theorem 1g§3) can be solved by a binary search method whereby each
subproblem (Biso-qos-1 can be solved by an LP plus an equality test (we refer to tleihod as BS-LP algorithm),
thus (Rso) is polynomial time solvable. [ |

B. A Fixed Point Based Binary Search Algorithm

In the BS-LP algorithm, we need to solve a series of LPs, whigly still be computationally intensive. In this
section, we present a BS-FP algorithm, which solves the QuiStmint subproblem @o.go9 USiNg an existing
fixed point method without resorting to LPs. To this end, defin

02+ guip
T]gn)(p) A { n Zg;ﬁkg jiPj }’ (16)
Ink
Ti(p) £ min T, (p), (17)
Ax(p) £ argmin T{" (p). (18)

Notice thatT,E”) (p) represents the minimum power needed by ustr achieve a SINR value df if its associated
BS isn and the power of other users are fixetpatvj # k. The minimum power uset needs to achieve a SINR
level of 1 among all possible choices of BS association is definefi.gg), and the corresponding BS association
is defined asA,(p) (if there are multiple elements irg min, Té”) (p), let Ax(p) be any one of them). Note that
the BS association;, defined in [§)) is preciselyAx(p).

Reference[[5] proposed a general algorithmic frameworletham the standard interference functions, and we
will use the fact thaff} (p) is a standard interference function (for completenessl.seemd’b for a proof) to apply
the framework to the QoS constrained problemgidB.q09. The algorithm of [[5] starts from any positive vector
p(0), and updates the power vector by

pk(t+1) :min{’ka(p(t))aﬁkL k=1,... K, (19)

where p(t) = (p1(t),...,pk(t)) is the power vector at the-th iteration. It has been shown inl[5, Section
V.B,Corollary 1] that the above proceduie {19) convergeg,tavhich is the unique fixed point of the following
equation:

qr = min{fka(q)aﬁkL k=1,... K, (20)

Let the corresponding BS associatibn= Ax(q), and denotey,., as the minimum SINR achieved ly, b),
ie.
el = Min b, k Gk — nin 2k
koo + Dtk Il ko Ti(q)
Sinceqr < Tx(q), Vk, we havey,, < 7.
Proposition 1: If v, = v, then problem (Eiso-qo9 is feasible andg, b) is an optimal solution; ify,., < 7,
(Psiso-qod is infeasible.
Proof of Proposition[I} See Appendix_A. [
Propositiori ]l implies that the procedurel(19) can be usetigolcthe feasibility of problem @so.qgo9. Combining

the fixed point method (19) with a binary search method, tlublpm (Rso) can be solved to global optima.

Jk=1,...,K, (21)

6



C. A Normalized Fixed Point Algorithm
Both the BS-LP and BS-FP algorithms invoke the binary searsulting in an intensive computational burden.
In this subsection, we propose a novel NFP (Normalized FBaidt) algorithm, which can directly solve the joint
BS association and power control problem without resortimthe binary search method.
Denote
— A _
p=(P1,---PK),

T(p) = (Tu(p), -, Tk (p)),
wherej;, is the power budget of usér, andT},(p) is defined in[(1l7). Define a weighted infinity norn |2, as

|zl = max £, vz e RK. (22)
1<k<K Di
If all users have the same power budggt= P,.y, the defined norniz||% = ||7]|oo / Pmax-
The proposed algorithm is based on the following lemma, lvisiates that the optimal power vector satisfies a
fixed point equation.
Lemma 2: Suppos€gp*,a*) is an optimal solution to problem §Ro), thenp* satisfies the following equation:

TeE (23)

Proof of Lemmal[Z For a given power allocatiop*, the optimal BS associationig = Ay (p*) = arg min,, T,i") (p*).
Therefore, the SINR of usér at optimality is

p

P Pk Pk
SINR;, = — = = —. (24)
" T,Ea")(p*) min, T}in) (p*) T (p*)
Let v* denote the optimal valusin; SINR;, then we have

SINR: =+*, Vk. (25)

In fact, if SINR; > ~+* for somej, then we can reduce the power of ugeso that SINR decreases and all other
SINR;, 's increase, yielding a minimum SINR that is higher th@h This contradicts the optimality of*, thus

(28) is proved.
According to [24) and(25), we have

YTe(Pp*) = pp, Yk (26)
Next, we show that at least one user transmits at full power, i
max@ =1. (27)
k Dk

Assumeu = maxy, g—f < 1. Define a new power vectgr = p*/u, thenp satisfies the power constraints < py, Vk.
The SINR of userk achieved by(p,a*) is SINR, = pi/T "% (p) = pi/(WT\"® (p*/u)) > pi/ (TS (p*)) =
SINR;, which contradicts the optimality dfp*, a*).

Plugging [26) into[(2]7), we obtain

—— = | T(p") % (28)

Combining [26) and[(28), we obtaih (23
Based on the fixed point equation {23), we propose an NFP itdgoito solve problem[(5). The following

theorem shows that the NFP algorithm in Table Il convergeth¢ooptimal solution to[(5) at a geometric rate.
Theorem 2: Suppos€p*, a*) is an optimal solution to problem §Rc). Then the sequende(t)} generated by
the NFP algorithm in Table]ll converges geometricallypfg i.e.,

Ip(t) — P15 < Cr', (29)

whereC' > 0, 0 < k < 1 are constants that depend only on the problem data.



Table Il
NFP ALGORITHM FORUL SISO CELLULAR NETWORKS

Initialization: pick random positive power vectgr0).
Loop t:

1) Compute BS associationj.(t) < Ax(p(t)), V k.
2) Update powerp(t + 1) < T(p(t)) ;

3) Normalize:p(t + 1) + ﬁ , where|[p(t + 1)||2, = max; 2,
Iterate until convergence.

Proof of Theorem[2 By definition [16), the mappin@(p) = (Ti(p), ..., Tx(p)) : RE — RE is the pointwise
minimum of affine linear mapping® ™ (p) = (Tl(")(p), . ,T[((”)(p)), forn =1,...,N. It follows thatT is a
concave mapping. According to Leminiaz2; is a fixed point of [(2B). According to the concave Perron-Erobs
theory [17, Theorem 1][(23) has a unique fixed point, and tR® Migorithm in Tablé]l converges to this fixed
point. Therefore, the NFP algorithm in Talblé Il convergepto

To show the geometric convergence, we definas the set of power vectogswith ||p|/, = 1 (i.e. max;, g—i =1).
It can be easily verified that

Ap <Ty(p) < By, VpelU, (30)

where A;, = min,, ;i and By = T (p) = min, W are both constants that only depend on the problem
data. For two vectors:,y, we denotexr > y if 2 > yp, V k. Definex = 1 — mink%: € (0,1) ande =

(B1,...,Bg) > 0. Then [30) implies
(1-re<T(p)<e, Vpel. (31)

According to the concave Perron-Frobenius theory [18, LariiTheorem], ifl” is a concave mapping and satisfies
(37), then the NFP algorithm in Tabl€ Il converges geomalisicat the rate<. B

Remark 1. Theorem P implies the pseudo-polynomial time solvabilitpmblem [3). Without loss of generality,
we can assume? = 1; in fact, replacingg?, by g2, /02 ando? by 1 for all n,k does not change probler (5)
and the NFP algorithm in Tablel Il. It is easy to verify that< 1 — 1/(KG - SNR + 1), whereSNR = maxy, py,
and G = max, ,{gni}. TO achieve are-optimal solution, the NFP algorithm in Takld Il takés < % <
log(1/€)(KG-SNR + 1) iterations. Sincd{G - SNR is polynomial in the input parameterfs, {p;. } and{g,x}, we
obtain the pseudo-polynomial time solvability of probleh).(Note that to prove the polynomial time solvability,
we need to show thdl is upper bounded by a polynomial function &f {log py }, {log g, }. It is an open question
whether the NFP algorithm is a polynomial time algorithm ot, though we observe that the NFP algorithm always
converges much faster than the polynomial time algorithmLBSn the numerical experiments.

IV. JOINT BS ASSOCIATION AND BEAMFORMING FORUL SIMO CELLULAR NETWORKS

For a SIMO system wheré/,, > 1, V n, the beamforming vectorgu,, ;,} are also design variables, making
the problem (P) much more complicated than the SISO scerfasiofixed {u,, ;. }, the problem reduces to a joint
BS association and power control design problem, which @sdived by the algorithms dedicated to the SISO
scenario. For a fixed power, the optimal receiver beamforming vecty, 5, is given by [20]

Up g, = My (D)hy g (32)
up to a scaling factor (note that the optima) ;. is independent o), whereM ,(p) is given by [20]
K
M,(p) = onl + ) huhyl ;. (33)
j=1
and the optimal association vecioris given by
{ prty o kbl i }
on + ﬂfk Zf:l,j;ék pjhn,jhgjﬁn,k

ap = arg max (34)

ne{lva}



For fixed association profile, the problem reduces to maximizing the minimum SINR by jgiesigningp and
receiver beamforming vectoru,, 1}, which is polynomial time solvable [20]. Specifically, thetmnal receiver
beamforming vectorgu,, .} can be given by [20]

o,k = M, (D)ha, i (35)
up to a scaling factor. Upon substitutiig 35) infd (3), tHBIR for the kth user can be expressed as
SINR; = T L . (36)

-1

pehll Mo (Pha, x

The problem becomes maximizing the minimum SINR[of (36) guexhich can be solved by a BS-SDP algorithm
in [20].

However, when joint designing BS association, power cdm@tnd beamforming vectors, the problem (P) becomes
more complicated, which is the focus of this section.

A. Polynomial Time Solvability

In this section, we will prove that the problem (P) is polyrahsolvable for the SIMO scenario. While the
overall proof framework is similar to the proof of Theoréhfdr, TheoreniB we need to deal with the extra operator
M,;l(p) which does not have closed form. This makes the proof momiad than the proof of Theorem 1. For
example, the uniqueness of the solution in Leniina 4 was navirefore, and we utilize the property M,;l(p)
to derive a new proof.

Theorem 3: Problem (P), i.e., the maximizing the minimum SINR by joink Bissociation, power control and
beamforming for an uplink SIMO cellular network, is polyn@aitime solvable.

Proof of Theorem[3: Let us consider the following power minimization problenttwQoS constraints:

K

(Psimo-qo9) Dpagu ;Pm

st. 0<p <pp, k=1,..., K, (37a)
ar€{1,2,....N}, k=1,... K, (37b)
SINR,, — Ditla chow kP o i > 4, (37¢)

o7, Fug Zle,#k Pihay it jtha
k=1,...,K,
|wnill =1, k=1,...,K, n=1,...,N, (37d)

where v is the required SINR value. Similar as the SISO scenarioblBne (P) can be solved by a sequence
of subproblems of the form @rio-0o9) and a binary search of. In the following, we will show that the QoS
constrained subproblem §Rio-go9 can be transformed to a semidefinite programming (SDP).

For fixed powerp, based on the expression of the optimal receiver beamformeatora,, ;. in (32), we have

3 {u, 1}, satisfying [(37c) and_(37d)
pehll M (D)ha,

- >q, k=1,... K (38)
1 _pkhi7kMak1 (p)hak,k?
<:\?pkh‘(lli{c,kM;}}(p)h(lk,k 2 %7 k= 17"'7K' (39)

Since the optimal BS associatian is given by [3%4), we have

Ja satisfying [37b) and (39)

— RE M by > —— k=1,... K 40
pepax b M, Phng = T (40)



Consequently, the problem {fRio-qo9) is equivalent to the following problem:

K
(PsiMo-Qos-1 n%in Zpk,

k=1
st. 0<pr<pi, k=1,..., K, (41)
R M~ (p)h, > ——,
peax P M, @k = 1 —
k=1,... K.
Lemma 3: The equation
R M phyp = —— k=1,...,K. 42
pemax pif My @)k = 17 5 (42)
has a unique fixed point.
Proof of Lemma[3 See AppendixB. [ |
Proposition 2: For a giveny, if problem (Rvo-qos-1) is feasible, its optimal solutiop must satisfy[(4R), i.e.,
max prh?, M~ DV p = ——. k=1,.... K, 43
nxpk n, k" n (p) k 1+~ ( )

andp is the unique solution to problem §Rio-qos-1)-
Proof of Proposition[2 If (43) does not hold for somé, according to([20, Lemma 3.1], we can redyge
to achieve a lower objective value without violating any swaints. According to Lemma 3, sughis unique. m

Reversing the direction of the inequality in the second tairg above and maximizing the objective function
instead of minimizing, we obtain a new problem

K
(PsiMo-Qos-2 : max Zplm
L
st. 0<pi<pi, k=1,..., K, (44)
R M~ D)k, < ——
peax Pk Mo, Phn < 5 e

k=1,..., K,

which is always feasible sinc@®,0,...,0) is one feasible solution. The following result shows thafB-qos-1)
and (Rimo-gos-2 are “equivalent”.

Lemma 4: The two problems (8wvo-qos-1) and (Rimo-qos-9 are equivalent in the following sense: for a given
if (Psimo-gos-1) is infeasible, then for any optimal solution tog(fo.qgos-2, denoted agp, there exists somg such
that max,cq1,... Ny ﬁkhﬁkM,;l(i;)hn,k < %; if problems (Rmo-gos-1 is feasible, therp is the unique optimal
solution to both (Bimo-qos-) and (Rimo-gos-2, Wherep is the unique fixed point of (42).

Proof of Lemma[d See Appendix C. [
Problem (Rimo-qos-9 can be rewritten as
K
mas i,
k=1

H ar— i
pkhn,anl(P)hn,k < 1y

k=1,....,K, n=1,...,N.

10



By using Schur complement, the above problem can be furtheritten in the SDP format as (note thhtl(46) is
an SDP sinceM ,,(p) defined by [(36) depends linearly g [20]

K
(Psimo-Qos-spd) : max » _ py,
i
st. 0<pp <pp, k=1,..., K, (46)

1
k=1,...,K, n=1,...,N,

which is polynomial time solvable.

Lemmal4 and Propositidd 2 suggest a two-step algorithm tes®simo-qos-) [20]:

Step 1: SDP: For a givef), solve the problem (&vo-gos-spd and denote its optimal solution @s

Step 2: Equality test: test whethprsatisfies[(4B). If yes, thep is the unique optimal solution to §Ro.qos-);
if no, then (Rimo-qos-) is infeasible.

Let us come back to the proof of Theorem 3. Problem (P) can beddy a binary search method whereby
each subproblem @Rio0-gos-) can be solved by an SDP and equality test (we refer to thisodets BS-SDP
algorithm), thus (P) is also polynomial time solvable. [ |

B. A Fixed Point Based Binary Search Algorithm

In the BS-SDP algorithm, solving a series of SDPs may impaséntensive computational burden. In this
section, we present a BS-FP algorithm, which solves the QufStmined subproblem §Rio-gog) USINg a fixed
point method without invoking SDP. This algorithm is a dirgeneralization of the BS-FP algorithm for the SISO
case. However, this algorithm was not explicitly statedhie literature; in addition, we are not aware of an explicit
statement and proof of Lemnia 5 in previous works, even thaughprobably not surprising for experts in this
area. To this end, denote

2 H K -
Tn(p) £ min Tn + U g ijLj#k thTLJhn,jumk
k = = b
[,k ||=1 un,khnvkhn,kun,k
2 ~H K o
on+ 'U:n,k ijl,j3ﬁk pjthhn7]un7k

- - (47)
uf’khn’khf’kun’k

which represents the minimum power needed by uéster achieve a SINR value df if its associated BS is and
the power of other users are fixedgt V j # k and the optimal receiver beamforming vecigy;, is determined

by (32).

Lemma 5: T,?(p) is a standard interference function (see the definition jrO&finition]).

Proof: See AppendixD. [ |
Denote
. A e m
Ty (p) = i T3 (p), (48)
Ar(p) £ argmin T} (p), (49)

whereT},(p) represents the minimum power useneeds to achieve SINR level afamong all possible choices
of BS association, and the corresponding BS associatiorfisatl asA;(p) (if there are multiple elements in
argmin, 7} (p), let A, (p) be any one of them).

SinceT}!(p) is a standard interference functidfj,(p) is a standard interference function as well [5, Theorem 5].
We apply the algorithmic framework of[[5] to propose the daling algorithm: starting from any positive vector

p(0), update the power vecter as
pr(t +1) = min{y Ty, (p(t)), v}, (50)

11



wherep(t) = [p1(t), - ,px(t)] denotes the power vector at theh iteration. According to[[3, Section V.B,
Corollary 1], the algorithm (42) converges to a unique fix@ihpg, which is the unique fixed point for

qr = min{’ka(p),ﬁk}, k=1,--- K. (51)

Denoteb = [b1,--- ,bk] as the association profile correspondingytawhereb;, = flk(p*), and denotey,.;, as the
minimum SINR achieved byg,b).

Proposition 3: If v, = 7, then problem (Bvo-qog) is feasible andg, b) is an optimal solution; ify,e, < 7,
(Psimo-qo9 is infeasible.
The proof of Propositionl3 is similar to that for PropositiinConsequently, combining_(50) with a binary search
method, problem (P) can be solved to global optima.

C. A Normalized Fixed Point Algorithm

In both the BS-SDP and BS-FP algorithms, the binary searcifidaquire significant computational burden.
In this subsection we propose an NFP algorithm, which caectir solve the joint BS association, power control
and beamforming problem without resorting to the binary&eaAgain, this algorithm is a generalization of NFP
algorithm for the SISO case. The most nontrivial part is th@op of Lemmal6 stated later, which is based on a
technical result proved recently in [20]. With Lemina 6, theqd of the main result in this subsection Theorem 4
is a rather direct extension of Theoréi 2. Define

T(p) £ (T1(p), To(p), . .., Trc (p)). (52)

Lemma 6: Suppos€p®, {u;, ; }r=1,..k, n=1,..~,a") is an optimal solution to problem (P), then satisfies the
following equation:
. _Tor
17 (p*)[5
Proof of Lemmal6& For a given power allocatiopr, the optimal BS associatiatf, = A (p*) = argmin,, T,?(p*).
Let SINR; denote the SINR of the usér at the optimality. For optimal association profig and optimal
beamforming vectou,;: ;, according to[(36), we have

1
SINR;, = T T (54)
chf;,kM;;;l(p*)ha;,k N
Let v* denote the optimal valumin; SINR;, then we can prove
SINR;, =~*, V k. (55)

In fact, if SINR; > ~*, we can reduce the power of usgrso that SINR decreases while the other SINR
increase, resulting in a minimum SIfiRhat is higher tham*. Here, we use the fact that SINRs a strictly
increasing function ip; > 0 and SINR, is a strictly decreasing function im; > 0, V k # j [20, Lemma 3.1] (The
original version of[[20, Lemma 3.1] only claims that SINEK a decreasing function g > 0, V k£ # j. However,
when the entries irth,, ; are generic (e.g., drawn from a continuous probabilityritiigtion), Z;ilhnvjh{;{jpj is
a positive definite matrix with probability one, in which eawie can prove that SINRis a strictly decreasing
function onp; > 0, V k # j).
Note that SINR can also be expressed as

SINR; = —2= (56)
Tkk *)
According to [55) and[(86), we have
v T(p") = vk, Y . (57)
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Next, we show that at least one user transmits at full power, i

max& =1. (58)
k- Pr
Assumep = maxy % < 1. Define a new powep = ”7*, thenp satisfies the power constraings < p, V k. For
givena* andp, the SINR of the usek achieved can be expressed as

SINR, =2+ — Pk~ P _gNR, (59)
T,*(p)  wI*(p*/p) T (p*)
where the last inequality is due tb (73) proved in the appentiie above relation contradicts the optimality of
(59), thus the assumptianax; 2= < 1 does not hold. Therefore, we have proved (58).

Upon plugging [(B]7) into[I58§’,c we arrive at

~]gz (p*) T/ %\ [|D

— = max =||T L 60
S = ma T = T 2 (60)
Upon plugging [(6D) into[(57), we can obtain [53). [ |

Based on the fixed point equatidn {53), we propose an NFPitdgoto solve problem (P) (See Taklellll). The

Table 111
NFP ALGORITHM FORUL SIMO CELLULAR NETWORKS

Initialization: pick random positive power vectp(0).
Loop t:

1) Compute the optimal beamforming vectar,, ;(t)}:
2) Compute BS association;,(t) < Ax(p(t)), ¥ k.

3) Update powerp(t + 1) < T(p(t)) ;
(t+1)

oA p(t+1) P Pk
4) Normalize:p(t 4+ 1) < PEIDIE where ||p(t + 1)[[5, = max;, *=

Iterate until convergence.

convergence property of this algorithm is given in the foilog result.
Theorem 4: Supposgp*, {“Z,k}kﬂ,...,K, n=1,.,N,@") is an optimal solution to problem (P). Then the sequence
{p(t)} generated by the NFP algorithm in Tabl€ Il converges gedoady to p*, i.e.,

Ip(t) — p*|I5 < Ok, (61)
whereC' > 0, 0 < k < 1 are constants that depend only on the problem data.
Before proving Theorem 4, we introduce the following lemma.

Lemma 7: The mappingl(p) is concave.
Proof of Lemmal[Zt For fixedp, T} (p) is the minimum of a family of functions

2 H K 3 BH
Op + Uy g, Zj:l,j;ék pyhnuhn,junvk
H H )

u, hychy sk [tk 1

{TI?(I% un,k) -

thusT}(p) is a concave function gf. Furthermore, the functiof, (p) defined in[(4B) is the minimum a¥ concave
functions7}(p),n = 1,..., N, henceT (p) = (T1(p), Tz (p), - .., Tk (p)) is a concave function. Consequently, the
mappingT'(p) is a concave mapping. [ |
Proof of Theorem[di See AppendixE. [
Remark 2: Theorem 4 implies the pseudo-polynomial time solvabilitypmblem [5). Without loss of generality,
we can assume? = 1 [24], which does not change problefd (5) and the NFP algorittniiable[Ill. Based on
Cauchy-Schwarz inequality, we hajfe’, h,, ;||> < ||k, ;||*>. Hence, it is easy to verify that < 1-1/(KG-SNR +
1), whereSNR = maxy p, and G = max,, ;{||h.£*}. To achieve anc-optimal solution, the NFP algorithm in

Table[Illl takesT" < ;25((11//2)) <log(1/e)(KG-SNR+1) iterations, where we have used the propertpg(l—x) >

r,whenz < 1. Since KG - SNR is polynomial in the input parameteds, {p} and {||h,x||*}, we obtain the

13



pseudo-polynomial time solvability of problem] (5). Noteatho prove the polynomial time solvability, we need to
show thatT" is upper bounded by a polynomial function &f, {log p;} and {log ||h,..||*}

Remark 3: With fixed BS association, problem (P) becomes a joint beamifg and power allocation problem
in an SIMO I-MAC. We can adapt the NFP algorithm in Tablg Il golve this simplified problem (assuming
fixed BS associatiom): replacingd,, (t) with 4., »(t), skipping step 2, and replacirif(p(t)) with 7%(p) £
(T{ (p), T3> (p), - .., T (p)). Using a similar argument, we can prove that this simplifigdthm also converges
to the global optima geometrically.

V. SIMULATION RESULTS

In this section, numerical results are provided to demaistthe performance of the proposed algorithms. We
consider both homogeneous networks (HomoNets) and heteeogis networks (HetNets). For HomoNets, each
macro cell contains one macro BS in the center and the disthetween adjacent macro BSs is 1000m. For
HetNets, we assume that each macro cell contains one macio B8 center and there are 3 pico BSs randomly
placed in each macro cell. There aké users with the same power budgit = Puax in the network and we
consider two user distributions: in “Uniform”, users ardfarmly distributed in the network area; in “Congested”,
K /4 users are placed randomly in one macro cell, while othersuaeg uniformly distributed in the network
area. For SISO cellular networks,, = S,x(200/d,;)>" whered,,. is the distance from usér to BS n and
10log;o Sn.kx ~ N(0,64) models the shadowing effect. For SIMO cellular networkg tlumber of antennas at
each BS is set to be the same s = --- = My = 4 and the channel coefficients between ukeand BSn
are modeled as zero mean circularly symmetric complex Gausgctor withS,,;(200/d,,;)>" being the variance
for both real and imaginary dimensions. Suppose the noisepis o = 1, and define the signal to noise ratio as
SNR= 1010g1(( Prax)-

A. Comparison of Average Computation Time

Firstly, the average computation time is considered as ffi@emcy indicator of the three different algorithms.
We perform the numerical experiments in a PC with a Pentiu@3823GHz CPU, 4GB RAM and Matlab R2014a.

Table IV
COMPARISON OFAVERAGE COMPUTATION TIME USED BY DIFFERENTALGORITHMS FOR ASISO SENARIO

SNR (dB) 0 5 10 15 20 25 30
Time () BS-LP| 70.8511 | 87.7384 | 116.8736| 122.2134| 102.6065| 81.3555| 70.0839
Time (s) BS-FP| 0.0112 | 0.0121 | 0.0139 | 0.0138 | 0.0204 | 0.0334 | 0.0519
Time (s) NFP | 0.0004 | 0.0005 | 0.0007 | 0.0009 | 0.0015 | 0.0021 | 0.0026

Table V
COMPARISON OFAVERAGE COMPUTATION TIME USED BY DIFFERENTALGORITHMS FOR ASIMO SCENARIO

SNR (dB) 0 5 10 15 20 25 30
Time (s) BS-SDP| 61.0384 | 54.5044 | 68.0620| 66.6358| 70.2120| 69.8054 | 89.1961
Time (s) BS-FP | 0.2388 | 0.2022 | 0.4163 | 0.6571 | 1.1019 | 2.0289 | 4.2315
Time (s) NFP 0.0207 | 0.0188 | 0.0233 | 0.0228 | 0.0231 | 0.0232 | 0.0247

For the SISO scenario, we consider a HetNet that consist® dfekagon macro cells. There are 3 pico BSs
randomly placed in each macro cell, thus in total there idre= 40 BSs. There ardd = 80 users uniformly
distributed in the network area. For BS-LP algorithm, theduBproblem is solved by “linprog” function in Matlab
with simplex method. The average computation time is okthiby averaging ove$00 monte carlo runs and is
listed in Table[ IV and the stopping criterion jig(t + 1) — p(t)|| < ¢, wheree = 107 %P,/ K. As we can see
from Table[1V, the NFP algorithm is at least 26000 times fattan BS-LP algorithm and BS-FP algorithm is at
least 1300 times faster than BS-LP algorithm for all con®deSNR values.

For the SIMO scenario, we consider a HomoNet that consist3 béxagon macro cells. There aie = 10
users uniformly distributed in the network area. For BS-Sidgorithm, the SDP subproblem is solved by CVX
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2.1. The average computation time is obtained by averagweg &0 monte carlo runs and is listed in Talilé V
and the stopping criterion igp(t + 1) — p(t)|| < ¢, wheree = 1076P,,,,vVK. As we can see from Tablel V, the
NFP algorithm is at least 2800 times faster than BS-SDP #igorfor any SNR and BS-FP algorithm can be 21
to 260 times faster than BS-SDP algorithm depending on SNR. i the high efficiency of both the BS-FP and
the NFP algorithms, we only investigate the performanceneseé two algorithms below.

B. Comparison of Number of Iterations

The simulation scenarios in the last subsection are limiaexall size networks, as the running time required for
BS-LP and BS-SDP algorithms increases substantially witheiasing number of BSs and users. In this subsection,
we consider the scenarios with many more users and BSs tleascdnarios considered in the last subsection to
further evaluate the performance of the BS-FP and the NF&Yitligns. In particular, we consider a HetNet that
consists of 25 hexagon macro cells, each containing onean8rin the center. There are 3 pico BSs randomly
placed in each macro cell, thus in total there Are= 100 BSs. Furthermore, there afé = 160 users. When only
the FP algorithm is considered, it has similar computatiompglexity with one iteration of the NFP algorithm.
Hence, the biggest difference of the BS-FP and the NFP #hgosicomes from the binary search invoked in BS-FP.
We will show that the binary search makes the BS-FP algorithuch slower than the NFP algorithm in terms of
number of iterations.

Fig. 1 depicts the CDF (Cumulative Distribution Functiorf)tbe number of iterations needed in the context
of SISO cellular networks for the following three algoritarto converge: the BS-FP, the NFP and the algorithm
“Oracle” when SNR= 15dB. In the algorithm “Oracle”, we fix the BS association to be pbptimal ones, and
compute the optimal power allocation by the following prdagee (proposed in [25])

T2 (p(1)).
ITe @)%’

whereT%(p) £ [T (p), T5*(p), . .., T3 (p)]. A little surprisingly, the NFP algrorithm and the algorittOracle”
converge equally fast: they usually converge in-B0 iterations. Due to the binary search step, BS-FP algosth
takes more than50 iterations in total to converge.

Fig. 2 depicts the CDF of the number of iterations needed éendbntext of SIMO cellular networks for the
following three algorithms to converge: the BS-FP, the NRE tne algorithm “Oracle” when SNR 10dB. In the
algorithm “Oracle”, we fix the BS association to be the optimae a, and compute the optimal power allocation
by the algorithm in Remark 3, i.e. B

Ty (p(t))

ITe(p(t)l5
As mentioned in Remark 3, the above procedure also convgemsetrically. In Fig. 2, it can be observed that

the NFP algorithm and the algorithm “Oracle” converge elyufast: they usually converge in 2810 iterations.
Due to the binary search step, BS-FP algorithms takes marel# iterations in total to converge.

pr(t+1) < (62)

pr(t+1) (63)

C. Comparison of Minimum SINR Achieved

In this subsection, the system performance is evaluateérimst of achievable minimum SINR. The system
configuration is the same as that in Subsedfion| V-B.

Fig. 3 compares the minimum SINR achieved by the BS-FP, the Aiffd the “max-SNR” algorithm for SISO
cellular networks. The “max-SNR” algorithm computes thed&Sociation based on the maximum receive SNR, i.e.
ay = arg max,{gnxDr }- FOr a fair comparison, the optimal power allocation cqreegling to “max-SNR” algorithm
is then computed by (62). Each point in the figure is obtainedJeraging oves00 monte carlo runs. The BS-FP
and the NFP algorithms have similar performance in termshefrhinimum rate. For the setting “Uniform”, the
NFP algorithm outperforms “max-SNR” by approximate&l§% (when SNR= 35dB); for “Congested”, the NFP
algorithm outperforms “max-SNR” by00% (when SNR= 35dB).

Fig. 4 compares the minimum SINR achieved by the BS-FP, thie aitd the “max-SNR” algorithms for SIMO
cellular networks. The “max-SNR” algorithm computes the &Sociation based on the maximum receive SNR,
i.e. ap = argmax, {||h,.+||*px}. For a fair comparison, the optimal power allocation cquoeling to “max-SNR”
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algorithm is then computed bj (63). Each point in the figurebtained by averaging ovéo0 monte carlo runs.
The BS-FP and the NFP algorithms almost have the same perfi@enin terms of the minimum rate. For the
setting “Uniform”, the NFP algorithm outperforms “max-SNBy approximately35% (when SNR= 25dB); for
“Congested”, the NFP algorithm outperforms “max-SNR” 0% (when SNR= 25dB).
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VI. CONCLUSIONS

In this paper, we investigate the joint BS association arahiferming problem for max-min fairness criterion
in the context of UL SIMO cellular networks. We prove the padynial time solvability of the problem for both
SISO and SIMO scenarios by transferring the original pnwbieto a binary search method in conjunction with a
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series of QoS subproblems which can solved by LP for SISO d? 8D SIMO scenarios, yielding the so-called

BS-LP and BS-SDP algorithms. Furthermore, in order to awioe computational complexity imposed by LP or

SDP, we present a BS-FP algorithm where QoS subproblemskeridy a fixed point method. Moreover, for the

further reduction of computational complexity, we propdbsenovel NFP algorithm which can directly solve the
original problem without resorting to the binary search. $t®w that the NFP algorithm converges to the global
optima at a geometric rate. Though we are not able to provdgibeNFP algorithm is a polynomial time algorithm,

empirically it converges much faster than BS-FP and theglitywypolynomial time algorithm (BS-LP and BS-SDP).

It is a theoretically interesting open question whetherN#d> algorithm is a polynomial time algorithm.

APPENDIXA
PROOF OFPROPOSITION1

Proof: We first prove the following fact: if problem go.qo9 is feasible, then its optimal power vectpf
satisfies the fixed point equation {20). It can be seen = v, otherwise, we can reduce the powsr to
improve the objective function without violating all corants. Asp* satisfies the constraints of {Bo.qgo9, We
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havep, > p; = 7T (p*). Consequentlyy; = min{yT}%(p*),pr}, V k, which means thagt* satisfies the fixed point
equation of [(2D).

If ~vach = 7, according to[(21), we have SINR= = (q) > ~,Vk. Based on[(20), we have< ¢;. < pg, Vk. Hence
q satisfies the constraints of problems(&®.q09, i.€. ¢ IS a feasible solution to @ko-go9. Assumep* is an optimal
power vector to (Biso-qo9. then by the argument in the last paragraprsatisfies[(20). As both andp* are fixed
points of [20) and as mentioned earlier that according tdSggtion V.B,Corollary 1] is the unique fixed point
of (20), we havey = p* and (q, b) is an optimal solution to (§so-qo9-

If vach < 7, according to[(21) there exists at least apesatisfying ¢, < vTx(g) and for thisg;, based on
(20), we havep;, = qr < 71Ix(q). Assume (RBiso-qod is feasible and its optimal power vector p8, we have
p* =Tr(p*) < pr, V k, thusq # p*. Thereforeg andp* are two distinct fixed points of (20), which contradicts
the the fact that (20) has a unique fixed point. Hencesfo9 is infeasible. |

APPENDIX B
PROOF OFLEMMA 3

Proof: We can prove this Lemma by following the argumentlin| [20].
Denote

fak() = kM '®hug, k=1,...,K, n=1,...,N, (64)

which is a strictly increasing function op, > 0 and a decreasing function gn, j # k [20, Lemma 3.1].
Suppose there are two distinct solutighandp satisfying quElZ) ie.
wk(D) = k(D E=1,...,K. 65
max f (p) = max fr 1 (p) = 1+7 (65)
Define a nonempty set = {k € K | p/pr > 1} andky = arg maxgex{pr/Pr}. Define the vecton =
[aq, -+ ,ak], whereay is given by

Pkg

. (66)
1, otherwise

{?ﬁ>1, if kek;
Q. =

Consequently, we have

i) B N
fnko( ) fnk‘o(pk‘o?p k‘o) fnk‘o(pk)o?a—k‘o Op k‘o)

D gty (021 + ay, > bkl pi+
jexK

Zhn,jhnhtjﬁj)_lhn,kg

JgK

(iii) R

> Dk, nkoaI+Zh,J jpj—l--i—
JEK

Zhd n,jP5) 1hnko
JéK

= fnko (D), (67)

where the notatior denotes the Hadamard produgt,, is the power vector withigth element deleted anpl

as well asa_, are defined analogously. Moreover, (i) is dueptg, < a_x, op_;,, (i) is due to Eql(66), while

(iii) is due to oy, p; > pj,j € K.
Consequently, we have y

HlTELiX fn,ko@) > mr?“x fn7k0@) = m7 (68)

which contradicts the e@.(65), hence ked.(42) has a uniged fiint. [ |
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APPENDIXC
PROOF OFLEMMA 4
Proof: For a givenfy, if (Psimo- Qos]) is infeasible, supposg is one optimal solution to @vo-gos-2, then
max,e(1,.. N}pkhn MoADhy, g < 1+ , Vk. We must havenax,c; . N}ﬁkhf;lkM‘l(i;) V for somek;
otherwisemax,,c(;, . n} pkhn M D)hy g = 1+ka implying thatp is a feasible solutlon to @ﬂv.o Qos-1), @

contradiction.
If (Psimo-gos-1) is feasible, denote its optimal solution psAccording to Propositioh]3 is the unique solution

to (43). Assume is one solution to (Elwo-gos-) With p # p. In this case, we have

max f,, (P )_117 k=1,... K. (69)

K - K
and Zkzlpk > Zk:1pk-
Define a nonempty seé€ = {k € K | pr/pr > 1} andky = arg maxyex{pr/pr}. Define the vector =
[aq, -+ ,ak], whereay is given by

pko i .
ap = p0>1 |fkel§7 (70)
1, otherwise

Consequently, we have
fn,ko(ﬁ) = fn,ko(ﬁkmi)—ko) > fn,ko(ﬁkma—ko Oi)—ko)
= Pt o (02 + gy > b shl i+ +

jek
Z hy, ;b jpj 1hn ko
JgK
> Probir, (00 + Y bl ps + +
jek
> haghil i) B,
igk
= fnko(P) (71)
Consequently, we have y
mT?“X fn,ko(p) > IIITELLX fn,ko(p) = mv (72)

which contradicts Ed.(69).
Consequently, if problems §Rio-gos-) is feasible, the problems §Rio-qos-) and (Rimo-gos-2 have the same
solution. [ |

APPENDIXD
PROOF OFLEMMA 5

Proof: In order to show thaf}(p) is a standard interference function, we need to show threpepties:
1) Positivity: Forp > 0, Tk( ) > 0; i
2) Monotonicity: If p > p’, thenT}(p) > T} (p');
3) Scalability: For any > 1, o1} (p) > 17 (ap).
1) is obvious; 2) can be obtained from [7, Lemma 2 (c)]. In orleshow the scalability, we have

~ {Jgk+aunk23 1j;£kpjh‘ Jh‘ unk}

T (ap) = min
g Jfun xl|=1 ull, oy b

{U +unkZ] 1,j2k Dihn bl unk}

<« min
e | =1 wll o chll
= o1} (p). (73)
HenceT} (p) is a standard interference function. [ |
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APPENDIX E
PrROOF OFTHEOREM[4]

Proof: According to Lemmal6p* is a fixed point of [(5B). According to the concave Perron-Erabs theory
[17, Theorem 1], we know thaff (53) has a unique fixed point &edNFP algorithm in Tablell converges to this
fixed point. Hence, the NFP algorithm in Tabld Il convergep1t.
DefineU as the set of power vectogswith Hp”oo = 1. It can be verified that

Ay <Ti(p) < Bi, VpeU, (74)

2

where Ay = min, mingy, =1} grp—pr e = Wi, ﬁ (note that the second equality is based on the
Cauchy-Schwarz inequality qm{jkhmy? < |lhn|I?), and By, = T1,(p) =

2 H H =

Uk Z 1,j#k hn jhn jUn kDP; 1
il I, 1) = e G = Wil G
depend on the problem data. Based [of (74), we have

—1, both of which are constants that only

(1-r)e<T(p)<e VpeU, (75)
wherex = 1 — mlnk € (0,1) ande = (By,Bs,...,Bg) > 0. According to the concave Perron-Frobenius
Theory [18, Lemma 3, Theorem], the NFP algorithm in Tdblecbhverges geometrically at the rate [ |
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