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Globally Optimal Joint Uplink Base Station
Association and Beamforming*

Wei Liu, Ruoyu Sun, Zhi-Quan Luo and Jiandong Li

Abstract

The joint base station (BS) association and beamforming problem has been studied extensively in recent years,
yet the computational complexity for even the simplest SISOcase has not been fully characterized. In this paper,
we consider the problems for an uplink SISO/SIMO cellular network under the max-min fairness criterion. We first
prove that the problems for both the SISO and SIMO scenarios are polynomial time solvable. Secondly, we present
a fixed point based binary search (BS-FP) algorithm for both SISO and SIMO scenarios whereby a QoS (Quality of
Service) constrained subproblem is solved at each step by a fixed point method. Thirdly, we propose a normalized
fixed point (NFP) iterative algorithm to directly solve the original problem and prove its geometric convergence to
global optima. Although it is not known whether the NFP algorithm is a polynomial time algorithm, empirically it
converges to the global optima orders of magnitude faster than the polynomial time algorithms, making it suitable
for applications in huge-scale networks.

I. INTRODUCTION

To meet the surging mobile traffic demand, wireless cellularnetworks have increasingly relied on low power
transmit nodes such as pico base stations (BS) to work in concert with the existing macro BSs. Such a heterogeneous
network (HetNet) architecture can provide substantially improved data service to cell edge users.

One crucial problem in the system design of future networks is how to associate mobile users with serving BSs.
The conventional greedy scheme that associates receivers with the transmitter providing the strongest signal and its
modern variant Range Extension [2] may be suboptimal duringperiods of congestion. A more systematic approach
is to jointly design BS association and other system parameters so as to maximize a network-wide utility. The
early work in this direction [3] and [4] proposed a fixed pointiteration to jointly adjust BS association and power
allocation in the uplink (UL), while subject to QoS (Qualityof Service) constraints, with the goal to minimize
total transmit power. The global convergence of this algorithm has been established when the problem is feasible.
This algorithm has been extended to the single input single output (SISO) cellular network with power budget
constraints for both the UL and the downlink (DL) in [5], [6],respectively. The fixed point algorithm in [3], [4]
can also be interpreted as an alternating optimization approach: fix the BS association, each user updates it power
to satisfy the QoS Constraint; fix the power, each user updates its BS association to maximize its SINR (Signal to
Interference plus Noise Ratio). This alternating optimization approach was extended to joint BS association, power
allocation and beamforming for UL SIMO cellular network in [7].

Recently, various approaches have been applied to tackle the BS association problem [8]–[12]. The work in [8]
proposed to solve a utility maximization problem by alternately optimizing over BS association and other system
parameters for SISO DL cellular network. References [9], [10] considered a partial CoMP (Coordinated Multiple
Point) transmission strategy, i.e., allowing one user to beserved by multiple BSs for MIMO DL cellular network.
They proposed sparse optimization techniques to compute a desirable BS association that incurs low overhead.
References [11], [12] studied the joint design of BS association and frequency resource allocation for a fixed
transmission power for DL SISO Cellular Network .

The computational complexity of maximizing a certain utility function by joint BS association and power
allocation has been studied in different scenarios [13]–[15]. For the sum rate utility function, the NP hardness
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of the joint design problem has been established for both theUL MIMO cellular network [13] and the DL MIMO
cellular network [14]. As a counterpart, for the max-min fairness utility, the joint design problem in a DL SISO
network is shown to be NP-hard in general, while for some special cases (with an equal number of users and BSs
and under additional QoS constraints) this problem is shownto be polynomial time solvable [16].

Despite the extensive research, a fundamental theoreticalquestion remains open: is the joint design problem
under max-min fairness criterion in an UL cellular network polynomial time solvable? In addition, to handle large
scale networks, fast algorithms with performance guarantee (not only theoretically polynomial time solvable) are
much needed.

In this paper, we aim to resolve these issues. In particular,we consider the joint BS association and beamforming
problem under the the max-min fairness criterion for both ULSISO and SIMO cellular networks. Our main
contributions are as follows:

1) We prove that the problems for both SISO and SIMO scenariosare polynomial time solvable. To be more
specific, we show that the problem for SIMO (resp. SISO) networks can be solved by a binary search method
whereby each subproblem can be solved by SDP (resp. LP), and we refer to this algorithm as BS-SDP (resp.
BS-LP). This is rather surprising since the considered optimization problem involves discrete variables and
falls into the class of mixed integer nonlinear programming.

2) We present a globally optimal fixed point based binary search (BS-FP) algorithm in which the QoS constrained
subproblems are solved by fixed point algorithms, which can avoid invoking a LP solver for SISO scenarios
or a SDP solver for SIMO scenarios.

3) We propose a normalized fixed point (NFP) algorithm to directly solve the joint BS association and beamform-
ing max-min fairness problem, which can avoid binary search. Theoretically, using results from the concave
Perron-Frobenius theory [17], [18], we prove the geometricconvergence of the proposed algorithm to global
optima. At this point, we are only able to show the pseudo-polynomial time, not polynomial time complexity,
of the NFP algorithm, although empirically it is much fasterthan the polynomial time algorithms BS-LP and
BS-SDP. In fact, the NFP algorithm converges in less than 20 iterations for networks with hundreds of BSs
and users, as shown in the numerical experiments.

We summarize the computational complexity results for the joint BS association and beamforming problem under
the max-min fairness criterion for both UL and DL cellular networks in Table I below.

Table I
THE COMPLEXITY STATUS OF THEJOINT BS ASSOCIATION AND BEAMFORMING PROBLEM (MAX -MIN FAIRNESS)

Fixed BS association Joint
UL DL

SISO Polynomial [19] Polynomial (Theorem 1) NP-Hard [16]
SIMO Polynomial [20] Polynomial (Theorem 3) NP-Hard [16]
MISO Polynomial [21], [22] Unknown1 NP-Hard [16]
MIMO NP-Hard [23]2 Unknown NP-Hard [16]

This paper is structured as follows. In Section II, the max-min fairness problem by joint BS association, power
control and beamforming problem for an UL SIMO cellular network is introduced. In Section III, we investigate
the SISO scenario. We first prove the polynomial time solvability for the SISO scenario, then present a BS-FP
algorithm and finally propose the NFP algorithm. In Section IV we investigate the SIMO scenario. We first prove
the polynomial time solvability for the SIMO scenario, thenpresent a BS-FP algorithm and finally propose the
NFP algorithm. Simulation results are provided in Section Vto compare the efficiency and the effectiveness of the
algorithms. Finally, some concluding remarks are offered in Section VI.

II. SYSTEM OVERVIEW

Consider an uplink cellular network whereK mobile users transmit toN BSs. Each user is equipped with a single
antenna and thenth BS is equipped withMn ≥ 1 antennas,n = 1, · · · , N . They share the same time/frequency

1The SIMO UL network (multiple antennas at each user while single antenna at each BS) does not seem to be a very interesting scenario.
2When the number of antennas at each transmitter (resp. receiver) is at least three and the number of antennas at each receiver (resp.

transmitter) is at least two.
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resource for transmission. Each user is to be associated with exactly one BS, but one BS can serve multiple users.
Assuming that the transmitted signal from thekth mobile user issk, the received signalyyyn at thenth BS may be
expressed as

yyyn =

K
∑

k=1

hhhnksk +nnnn, (1)

where theMn-dimensional vectorhhhnk denotes the flat fading channel coefficient between thekth mobile user and
the nth BS, while theMn-dimensional vectornnnn denotes the AWGN with zero mean and a covariance matrix of
σ2
nIII. Let a = (a1, a2, . . . , aK) denote the association profile, i.e.,ak = i if user k is associated with BSi. For the

kth user, the BSak invokes aM -dimensional unit-norm linear receiveruuuak,k to generate the decision signals̃k for
the kth user as

s̃k = uuuHak,kyyyak
= uuuHak,k

K
∑

j=1

hhhak,jsj + uuuHi,knnnk

= uuuHak,khhhak,ksk + uuuHak,k

K
∑

j=1,j 6=k

hhhak,jsj + uuuHak,knnnak
. (2)

The SINR for thekth user is given by

SINRk =
pkuuu

H
ak,k

hhhak,khhh
H
ak,k

uuuak,k

σ2
ak

+uuuHak,k

∑K
j=1,j 6=k pjhhhak,jhhh

H
ak,j

uuuak,k

, (3)

wherepk = E[sks
∗
k] denotes the transmission power of thekth user.

(P) : max
aaa,ppp,

{uuun,k}k=1,...,K,
n=1,...,N

min
k=1,...,K

SINRk

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

ak ∈ {1, 2, . . . , N}, k = 1, . . . ,K,

‖uuun,k‖ = 1, k = 1, . . . ,K, n = 1, . . . , N,

(4)

wherep̄k is the power budget of thekth user.
In the following, we will investigate the SISO and SIMO scenarios, respectively. Note that the results and

algorithms for SIMO are more general than those for SISO; butto make the ideas easier to understand, we will
present those for SISO separately.

III. JOINT BS ASSOCIATION AND POWER CONTROL FORUL SISO CELLUAR NETWORKS

In this section, we consider the SISO system whereMn = 1,∀ n. In this case, each beamforming vectoruuun,k
reduces to a scalerun,k and the optimalun,k is given byûn,k = h†n,k/‖hn,k‖, where the superscript† denotes the
complex conjugation. Substitutinĝun,k into problem (P) yileds

(PSISO) : max
p,a

min
k=1,...,K

SINRk =
gakkpk

σ2
ak

+
∑

j 6=k gakjpj
,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

ak ∈ {1, 2, . . . , N}, k = 1, . . . ,K,

(5)

wheregik = ‖hik‖2 is the channel gain between userk and BSi.
Optimizing p and a separately is easy. Specifically, given a fixed BS association a, the formulation (5) is a

max-min fairness power control problem for an I-MAC (interfering multiple-access channel). It can be solved in
polynomial time using a binary search strategy whereby a QoSconstrained subproblem is solved by LP (Linear
Programming) at each step [19]. Moreover, notice that the interference for userk is

∑

j 6=k gakjpj, which only

3



depends onak, and does not depend onaj ,∀j 6= k. Thus, given a power vectorp, the optimal association of each
userk does not depend on the choices of other users and can be easilycomputed:

ak = arg max
n∈{1,...,N}

{

gnkpk
σ2
n +

∑

j 6=k gnjpj

}

. (6)

In case of multiplen’s that achieve the maximum in (6), we just useargmax{. . . } to represent any element
achieving the maximum. However, it is not straightforward to jointly optimize the continuous variablep and the
discrete variablea, and this is the focus of our work.

A. Polynomial Time Solvability

In this section, we will prove that the problem (PSISO) is polynomial time solvable.
Theorem 1: The problem (PSISO), i.e., maximizing the minimum SINR by joint BS associationand power control

for an uplink SISO cellular network, is polynomial time solvable.
Proof of Theorem 1: The max-min fairness problem is closely related to the QoS constrained problem, i.e.,

minimize the total transmission power subject to the QoS constraints. The QoS constrained joint BS association
and power allocation problem is given as follows:

(PSISO-QoS) : min
ppp,aaa

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K, (7a)

ak ∈ {1, 2, . . . , N}, k = 1, . . . ,K, (7b)

SINRk =
gakkpk

σ2
ak

+
∑

j 6=k gakjpj
≥ γ, (7c)

k = 1, . . . ,K,

whereγ is the required SINR value. Thus, problem (PSISO) can be solved by a sequence of subproblems of the
form (PSISO-QoS) and a binary search onγ. In the following, we will show that the QoS constrained subproblem
(PSISO-QoS) can be transformed to a linear programming (LP).

Since the optimal BS associationak is given by (6), we have

∃ aaa satisfying (7b) and (7c)

⇐⇒ max
n∈{1,...,N}

gnkpk
σ2
n +

∑

j 6=k gnjpj
≥ γ, k = 1, . . . ,K (8)

⇐⇒ pk ≥ min
n∈{1,...,N}

γ(gggnkppp+ σ̃2
nk), k = 1, . . . ,K, (9)

where gggnk = [gn1/gnk, · · · , gn(k−1)/gnk, 0, gn(k+1)/gnk, · · · , gnK/gnk] and σ̃2
nk = σ2

n/gnk. Consequently, the
problem (PSISO-QoS) is equivalent to the following problem:

(PSISO-QoS-1) : min
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

pk ≥ min
n

γ(gggnkppp+ σ̃2
n), k = 1, . . . ,K.

(10)

According to [4, Lemma 4(2)], the equation

pk = min
n

γ(gggnkppp+ σ̃2
n). (11)

has a unique fixed point, denoted asp̂.
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Let us consider another QoS constrained problem (PSISO-QoS-2) below:

(PSISO-QoS-2) : max
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K;

pk ≤ min
n

γ(gggnkppp+ σ̃2
n), k = 1, . . . ,K.

(12)

This problem is always feasible since(0, 0, . . . , 0) is one feasible solution; in addition, the objective value is upper
bounded by

∑

k p̄k, thus the optimal solution to (PSISO-QoS-2) always exists.
The following result shows that (PSISO-QoS-1) and (PSISO-QoS-2) are “equivalent”.
Lemma 1: The two problems (PSISO-QoS-1) and (PSISO-QoS-2) are equivalent in the following sense: if (PSISO-QoS-1)

is infeasible, then for any optimal solution to (PSISO-QoS-2), denoted as̃p, there exists somek such thatp̃k <
minn γ(g

n
k p̃ + σ̃2

n); if (PSISO-QoS-1) is feasible, thenp̂ is the unique optimal solution to both (PSISO-QoS-1) and
(PSISO-QoS-2), wherep̂ is the unique fixed point of (11).

Proof : If (PSISO-QoS-1) is infeasible, supposẽp is one optimal solution to (PSISO-QoS-2), then p̃k ≤ minn γ(g
n
k p̃+

σ̃2
n),∀k. We must havẽpk < minn γ(g

n
k p̃+ σ̃2

n) for somek; otherwisep̃k = minn γ(g
n
k p̃+ σ̃2

n),∀k, implying that
p̃ is a feasible solution to (PSISO-QoS-1), a contradiction.

If (PSISO-QoS-1) is feasible, we claim that its optimal solutionp∗ must satisfy (11). In fact, if onep∗k > minn γ(ggg
n
kppp

∗+
σ̃2
n), then we can reduce the powerp∗k to strictly improve the objective function without violating all constraints.

According to [4, Lemma 4 (2)], the solution to the fixed point equation (11) is unique. Thusp∗ must coincide with
p̂ and (PSISO-QoS-1) has a unique optimal solution̂p.

Next, we show that̂p is also the unique optimal solution to (PSISO-QoS-2). Assume the contrary, that (PSISO-QoS-2)
has an optimal solutioñp 6= p̂. Due to the optimality ofp̃, we have

∑

k

p̃k ≥
∑

k

p̂k. (13)

Define a setK = {k | p̃k > p̂k}. According to (13) and the assumptioñp 6= p̂, the setK must be nonempty;
otherwise, we havẽpk ≤ p̂k,∀k, which together with (13) implies̃pk = p̂k, a contradiction.

Definek0 = argmaxk

{

p̃k

p̂k

}

andτ = maxk

{

p̃k

p̂k

}

=
p̃k0

p̂k0

> 1, then

τ p̂j ≥ p̃j , ∀j. (14)

We have

min
n

γ(gn
k0
p̃+ σ̃2

n)
(i)

≥ p̃k0
= τ p̂k0

(ii)
= τγmin

n
(gn

k0
p̂+ σ̃2

n)

(iii)
> γmin

n
(gn

k0
τ p̂+ σ̃2

n)
(iv)

≥ γmin
n

(gn
k0
p̃+ σ̃2

n).

Here,(i) is becausẽp satisfies the constraints of (PSISO-QoS-2), (ii) is becausêp is the fixed point of (11),(iii) is
due to the facts thatτ > 1 and the noise variancẽσ2

n > 0,∀n, and(iv) follows from (14). The above relation is a
contradiction, thuŝp must be the unique optimal solution to (PSISO-QoS-2). ✷

Lemma 1 implies that solving (PSISO-QoS-2) either provides an optimal solution to (PSISO-QoS-1) or provides an
infeasibility certificate for (PSISO-QoS-1); in fact, (PSISO-QoS-1) is infeasible if and only if for any optimal solution to
(PSISO-QoS-2) there is at least one active inequality. Therefore, Lemma 1leads to a two-step algorithm for solving
(PSISO-QoS-1):

Step 1: Find one optimal solutioñp to (PSISO-QoS-2).
Step 2: Equality test: test whetherp̃k = minn γ(g

n
k p̃+ σ̃2

n),∀k. If yes, thenp̃ is the unique optimal solution to
(PSISO-QoS-1); if no, then (PSISO-QoS-1) is infeasible.
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Problem (PSISO-QoS-2) can be recast as

(PSISO-QoS-LP) : max
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

pk ≤ γ(gggnkppp+ σ̃2
n),

k = 1, . . . ,K, n = 1, . . . , N,

(15)

which is an LP (linear programming) and thus polynomial timesolvable. As a result, (PSISO-QoS-1) can be solved
by a two-step algorithm where the first step consists of solving an LP, and the second step is a simple equality
test. Thus (PSISO-QoS-1) can be solved in polynomial time.

Let us come back to the proof of Theorem 1. (PSISO) can be solved by a binary search method whereby each
subproblem (PSISO-QoS-1) can be solved by an LP plus an equality test (we refer to this method as BS-LP algorithm),
thus (PSISO) is polynomial time solvable.

B. A Fixed Point Based Binary Search Algorithm

In the BS-LP algorithm, we need to solve a series of LPs, whichmay still be computationally intensive. In this
section, we present a BS-FP algorithm, which solves the QoS constraint subproblem (PSISO-QoS) using an existing
fixed point method without resorting to LPs. To this end, define

T
(n)
k (p) ,

{

σ2
n +

∑

j 6=k gnjpj

gnk

}

, (16)

Tk(p) , min
1≤n≤N

T
(n)
k (p), (17)

Ak(p) , argmin
n

T
(n)
k (p). (18)

Notice thatT (n)
k (p) represents the minimum power needed by userk to achieve a SINR value of1 if its associated

BS isn and the power of other users are fixed atpj,∀j 6= k. The minimum power userk needs to achieve a SINR
level of 1 among all possible choices of BS association is defined asTk(p), and the corresponding BS association
is defined asAk(p) (if there are multiple elements inargminn T

(n)
k (p), let Ak(p) be any one of them). Note that

the BS associationak defined in (6) is preciselyAk(p).
Reference [5] proposed a general algorithmic framework based on the standard interference functions, and we

will use the fact thatTk(ppp) is a standard interference function (for completeness, seeLemma 5 for a proof) to apply
the framework to the QoS constrained problem (PSISO-QoS). The algorithm of [5] starts from any positive vector
p(0), and updates the power vector by

pk(t+ 1) = min{γTk(p(t)), p̄k}, k = 1, . . . ,K, (19)

where p(t) = (p1(t), . . . , pK(t)) is the power vector at thet-th iteration. It has been shown in [5, Section
V.B,Corollary 1] that the above procedure (19) converges toq, which is the unique fixed point of the following
equation:

qk = min{γTk(q), p̄k}, k = 1, . . . ,K, (20)

Let the corresponding BS associationbk = Ak(q), and denoteγach as the minimum SINR achieved by(q, b),
i.e.

γach = min
k

gbkkqk
σ2
bk

+
∑

j 6=k gbkjqj
= min

k

qk
Tk(qqq)

, k = 1, . . . ,K, (21)

Sinceqk ≤ γTk(q), ∀k, we haveγach ≤ γ.
Proposition 1: If γach = γ, then problem (PSISO-QoS) is feasible and(q, b) is an optimal solution; ifγach < γ,

(PSISO-QoS) is infeasible.
Proof of Proposition 1: See Appendix A.

Proposition 1 implies that the procedure (19) can be used to check the feasibility of problem (PSISO-QoS). Combining
the fixed point method (19) with a binary search method, the problem (PSISO) can be solved to global optima.
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C. A Normalized Fixed Point Algorithm

Both the BS-LP and BS-FP algorithms invoke the binary search, resulting in an intensive computational burden.
In this subsection, we propose a novel NFP (Normalized FixedPoint) algorithm, which can directly solve the joint
BS association and power control problem without resortingto the binary search method.

Denote
p̄ , (p̄1, . . . , p̄K),

T (p) , (T1(p), . . . , TK(p)),

wherep̄k is the power budget of userk, andTk(p) is defined in (17). Define a weighted infinity norm‖ · ‖p̄∞ as

‖x‖p̄∞ = max
1≤k≤K

xk
p̄k

, ∀ x ∈ R
K . (22)

If all users have the same power budgetp̄k = Pmax, the defined norm‖x‖p̄∞ = ‖x‖∞/Pmax.
The proposed algorithm is based on the following lemma, which states that the optimal power vector satisfies a

fixed point equation.
Lemma 2: Suppose(p∗,a∗) is an optimal solution to problem (PSISO), thenp∗ satisfies the following equation:

p∗ =
T (p∗)

‖T (p∗)‖p̄∞
. (23)

Proof of Lemma 2: For a given power allocationp∗, the optimal BS association isa∗k = Ak(p
∗) = argminn T

(n)
k (p∗).

Therefore, the SINR of userk at optimality is

SINR∗
k =

p∗k

T
(a∗

k)
k (p∗)

=
p∗k

minn T
(n)
k (p∗)

=
p∗k

Tk(p∗)
. (24)

Let γ∗ denote the optimal valuemink SINR∗
k, then we have

SINR∗
k = γ∗, ∀ k. (25)

In fact, if SINR∗
j > γ∗ for somej, then we can reduce the power of userj so that SINRj decreases and all other

SINRk ’s increase, yielding a minimum SINR that is higher thanγ∗. This contradicts the optimality ofγ∗, thus
(25) is proved.

According to (24) and (25), we have
γ∗Tk(p

∗) = p∗k, ∀ k. (26)

Next, we show that at least one user transmits at full power, i.e.

max
k

p∗k
p̄k

= 1. (27)

Assumeµ = maxk
p∗
k

p̄k
< 1. Define a new power vectorp = p∗/µ, thenp satisfies the power constraintspk ≤ p̄k,∀k.

The SINR of userk achieved by(p,a∗) is SINRk = pk/T
(a∗

k)
k (p) = p∗k/(µT

(a∗
k)

k (p∗/µ)) > p∗k/(T
(a∗

k)
k (p∗)) =

SINR∗
k, which contradicts the optimality of(p∗,a∗).

Plugging (26) into (27), we obtain

1

γ∗
= max

k

Tk(p
∗)

p̄k
= ‖T (p∗)‖p̄∞. (28)

Combining (26) and (28), we obtain (23).�
Based on the fixed point equation (23), we propose an NFP algorithm to solve problem (5). The following

theorem shows that the NFP algorithm in Table II converges tothe optimal solution to (5) at a geometric rate.
Theorem 2: Suppose(p∗,a∗) is an optimal solution to problem (PSISO). Then the sequence{p(t)} generated by

the NFP algorithm in Table II converges geometrically top∗, i.e.,

‖p(t)− p∗‖p̄∞ ≤ Cκt, (29)

whereC > 0, 0 < κ < 1 are constants that depend only on the problem data.

7



Table II
NFP ALGORITHM FOR UL SISO CELLULAR NETWORKS

Initialization: pick random positive power vectorp(0).
Loop t:
1) Compute BS association:ak(t)← Ak(p(t)), ∀ k.
2) Update power:p(t+ 1)← T (p(t)) ;
3) Normalize:p(t + 1)← p(t+1)

‖p(t+1)‖p̄∞
, where‖p(t+ 1)‖p̄∞ = maxk

pk(t+1)
p̄k

.

Iterate until convergence.

Proof of Theorem 2: By definition (16), the mappingT (p) = (T1(p), . . . , TK(p)) : RK
+ → R

K
+ is the pointwise

minimum of affine linear mappingsT (n)(p) = (T
(n)
1 (p), . . . , T

(n)
K (p)), for n = 1, . . . , N . It follows that T is a

concave mapping. According to Lemma 2,p∗ is a fixed point of (23). According to the concave Perron-Frobenius
theory [17, Theorem 1], (23) has a unique fixed point, and the NFP algorithm in Table II converges to this fixed
point. Therefore, the NFP algorithm in Table II converges top∗.

To show the geometric convergence, we defineU as the set of power vectorsp with ‖p‖p̄∞ = 1 (i.e.maxk
pk

p̄k
= 1).

It can be easily verified that
Ak ≤ Tk(p) ≤ Bk, ∀ p ∈ U, (30)

whereAk = minn
σ2

n

gnk
andBk = Tk(p̄) = minn

σ2

n+
∑

j 6=k
gnj p̄j

gnk
are both constants that only depend on the problem

data. For two vectorsx, y, we denotex ≥ y if xk ≥ yk, ∀ k. Define κ = 1 − mink
Ak

Bk
∈ (0, 1) and e =

(B1, . . . , BK) > 0. Then (30) implies

(1− κ)e ≤ T (p) ≤ e, ∀ p ∈ U. (31)

According to the concave Perron-Frobenius theory [18, Lemma 3, Theorem], ifT is a concave mapping and satisfies
(31), then the NFP algorithm in Table II converges geometrically at the rateκ. �

Remark 1: Theorem 2 implies the pseudo-polynomial time solvability of problem (5). Without loss of generality,
we can assumeσ2

n = 1; in fact, replacingg2nk by g2nk/σ
2
n andσ2

n by 1 for all n, k does not change problem (5)
and the NFP algorithm in Table II. It is easy to verify thatκ ≤ 1 − 1/(KG · SNR + 1), whereSNR = maxk p̄k
andG = maxn,k{gnk}. To achieve anǫ-optimal solution, the NFP algorithm in Table II takesT ≤ log(1/ǫ)

log(1/κ) ≤
log(1/ǫ)(KG ·SNR+1) iterations. SinceKG ·SNR is polynomial in the input parametersK, {p̄k} and{gnk}, we
obtain the pseudo-polynomial time solvability of problem (5). Note that to prove the polynomial time solvability,
we need to show thatT is upper bounded by a polynomial function ofK, {log pk}, {log gnk}. It is an open question
whether the NFP algorithm is a polynomial time algorithm or not, though we observe that the NFP algorithm always
converges much faster than the polynomial time algorithm BS-LP in the numerical experiments.

IV. JOINT BS ASSOCIATION AND BEAMFORMING FOR UL SIMO CELLULAR NETWORKS

For a SIMO system whereMn > 1, ∀ n, the beamforming vectors{uuun,k} are also design variables, making
the problem (P) much more complicated than the SISO scenario. For fixed{uuun,k}, the problem reduces to a joint
BS association and power control design problem, which can be solved by the algorithms dedicated to the SISO
scenario. For a fixed powerppp, the optimal receiver beamforming vectoruuun,k is given by [20]

ûuun,k =MMM−1
n (ppp)hhhn,k (32)

up to a scaling factor (note that the optimaluuun,k is independent ofaaa), whereMMMn(ppp) is given by [20]

MMMn(ppp) = σ2
nIII +

K
∑

j=1

hhhn,jhhh
H
n,jpj, (33)

and the optimal association vectoraaa is given by

ak = arg max
n∈{1,...,N}

{

pkûuu
H
n,khhhn,khhh

H
n,kûuun,k

σ2
n + ûuuHn,k

∑K
j=1,j 6=k pjhhhn,jhhh

H
n,jûuun,k

}

. (34)
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For fixed association profileaaa, the problem reduces to maximizing the minimum SINR by jointly designingppp and
receiver beamforming vectors{uuuak,k}, which is polynomial time solvable [20]. Specifically, the optimal receiver
beamforming vectors{ûuuak,k} can be given by [20]

ûuuak,k =MMM−1
ak

(ppp)hhhak,k (35)

up to a scaling factor. Upon substituting (35) into (3), the SINR for the kth user can be expressed as

SINRk =
1

1
pkhhhH

ak,kMMM
−1

ak
(ppp)hhhak,k

− 1
. (36)

The problem becomes maximizing the minimum SINR of (36) overppp, which can be solved by a BS-SDP algorithm
in [20].

However, when joint designing BS association, power control and beamforming vectors, the problem (P) becomes
more complicated, which is the focus of this section.

A. Polynomial Time Solvability

In this section, we will prove that the problem (P) is polynomial solvable for the SIMO scenario. While the
overall proof framework is similar to the proof of Theorem 1,for Theorem 3 we need to deal with the extra operator
MMM−1

k (ppp) which does not have closed form. This makes the proof more involved than the proof of Theorem 1. For
example, the uniqueness of the solution in Lemma 4 was not known before, and we utilize the property ofMMM−1

k (ppp)
to derive a new proof.

Theorem 3: Problem (P), i.e., the maximizing the minimum SINR by joint BS association, power control and
beamforming for an uplink SIMO cellular network, is polynomial time solvable.

Proof of Theorem 3: Let us consider the following power minimization problem with QoS constraints:

(PSIMO-QoS) : min
ppp,aaa,{uuun,k}k=1,...,K, n=1,...,N

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K, (37a)

ak ∈ {1, 2, . . . , N}, k = 1, . . . ,K, (37b)

SINRk =
pkuuu

H
ak,k

hhhak,khhh
H
ak,k

uuuak,k

σ2
ak

+ uuuHak,k

∑K
j=1,j 6=k pjhhhak,jhhh

H
ak,j

uuuak,k

≥ γ, (37c)

k = 1, . . . ,K,

‖uuun,k‖ = 1, k = 1, . . . ,K, n = 1, . . . , N, (37d)

where γ is the required SINR value. Similar as the SISO scenario, Problem (P) can be solved by a sequence
of subproblems of the form (PSIMO-QoS) and a binary search onγ. In the following, we will show that the QoS
constrained subproblem (PSIMO-QoS) can be transformed to a semidefinite programming (SDP).

For fixed powerppp, based on the expression of the optimal receiver beamforming vectorûuun,k in (32), we have

∃ {uuun,k}, satisfying (37c) and (37d)

⇐⇒
pkhhh

H
ak,k

MMM−1
ak

(ppp)hhhak,k

1− pkhhh
H
ak,k

MMM−1
ak

(ppp)hhhak,k

≥ γ, k = 1, . . . ,K (38)

⇐⇒ pkhhh
H
ak,kMMM

−1
ak

(ppp)hhhak,k ≥
γ

1 + γ
, k = 1, . . . ,K. (39)

Since the optimal BS associationak is given by (34), we have

∃ aaa satisfying (37b) and (39)

⇐⇒ max
n∈{1,...,N}

pkhhh
H
n,kMMM

−1
n (ppp)hhhn,k ≥

γ

1 + γ
, k = 1, . . . ,K (40)
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Consequently, the problem (PSIMO-QoS) is equivalent to the following problem:

(PSIMO-QoS-1) : min
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

max
n∈{1,...,N}

pkhhh
H
n,kMMM

−1
n (ppp)hhhn,k ≥

γ

1 + γ
,

k = 1, . . . ,K.

(41)

Lemma 3: The equation

max
n∈{1,...,N}

pkhhh
H
n,kMMM

−1
n (ppp)hhhn,k =

γ

1 + γ
, k = 1, . . . ,K. (42)

has a unique fixed point.
Proof of Lemma 3: See Appendix B.

Proposition 2: For a givenγ, if problem (PSIMO-QoS-1) is feasible, its optimal solution̂ppp must satisfy (42), i.e.,

max
n

p̂khhh
H
n,kMMM

−1
n (p̂pp)hhhn,k =

γ

1 + γ
, k = 1, . . . ,K, (43)

andp̂pp is the unique solution to problem (PSIMO-QoS-1).
Proof of Proposition 2: If (43) does not hold for somek, according to [20, Lemma 3.1], we can reducep̂k

to achieve a lower objective value without violating any constraints. According to Lemma 3, sucĥppp is unique.
Reversing the direction of the inequality in the second constraint above and maximizing the objective function

instead of minimizing, we obtain a new problem

(PSIMO-QoS-2) : max
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

max
n∈{1,...,N}

pkhhh
H
n,kMMM

−1
n (ppp)hhhn,k ≤

γ

1 + γ
,

k = 1, . . . ,K,

(44)

which is always feasible since(0, 0, . . . , 0) is one feasible solution. The following result shows that (PSIMO-QoS-1)
and (PSIMO-QoS-2) are “equivalent”.

Lemma 4: The two problems (PSIMO-QoS-1) and (PSIMO-QoS-2) are equivalent in the following sense: for a givenγ,
if (PSIMO-QoS-1) is infeasible, then for any optimal solution to (PSIMO-QoS-2), denoted as̃p, there exists somek such
that maxn∈{1,...,N} p̃khhh

H
n,kMMM

−1
n (p̃pp)hhhn,k < γ

1+γ ; if problems (PSIMO-QoS-1) is feasible, then̂p is the unique optimal
solution to both (PSIMO-QoS-1) and (PSIMO-QoS-2), wherep̂ is the unique fixed point of (42).

Proof of Lemma 4: See Appendix C.
Problem (PSIMO-QoS-2) can be rewritten as

max
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

pkhhh
H
n,kMMM

−1
n (ppp)hhhn,k ≤

γ

1 + γ
,

k = 1, . . . ,K, n = 1, . . . , N.

(45)
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By using Schur complement, the above problem can be further rewritten in the SDP format as (note that (46) is
an SDP sinceMMMn(ppp) defined by (36) depends linearly onppp) [20]

(PSIMO-QoS-SDP) : max
ppp

K
∑

k=1

pk,

s.t. 0 ≤ pk ≤ p̄k, k = 1, . . . ,K,

MMMn(ppp) � pk(1 +
1

γ
)hhhn,khhh

H
n,k,

k = 1, . . . ,K, n = 1, . . . , N,

(46)

which is polynomial time solvable.
Lemma 4 and Proposition 2 suggest a two-step algorithm to solve (PSIMO-QoS-1) [20]:
Step 1: SDP: For a givenγ, solve the problem (PSIMO-QoS-SDP) and denote its optimal solution asp̂pp.
Step 2: Equality test: test whetherp̂pp satisfies (43). If yes, then̂p is the unique optimal solution to (PSISO-QoS-1);

if no, then (PSIMO-QoS-1) is infeasible.
Let us come back to the proof of Theorem 3. Problem (P) can be solved by a binary search method whereby

each subproblem (PSIMO-QoS-1) can be solved by an SDP and equality test (we refer to this method as BS-SDP
algorithm), thus (P) is also polynomial time solvable.

B. A Fixed Point Based Binary Search Algorithm

In the BS-SDP algorithm, solving a series of SDPs may impose an intensive computational burden. In this
section, we present a BS-FP algorithm, which solves the QoS constrained subproblem (PSIMO-QoS) using a fixed
point method without invoking SDP. This algorithm is a direct generalization of the BS-FP algorithm for the SISO
case. However, this algorithm was not explicitly stated in the literature; in addition, we are not aware of an explicit
statement and proof of Lemma 5 in previous works, even thoughit is probably not surprising for experts in this
area. To this end, denote

T̃ n
k (ppp) , min

‖uuun,k‖=1

{

σ2
n + uuuHn,k

∑K
j=1,j 6=k pjhhhn,jhhh

H
n,juuun,k

uuuHn,khhhn,khhh
H
n,kuuun,k

}

=
σ2
n + ûuuHn,k

∑K
j=1,j 6=k pjhhhn,jhhh

H
n,jûuun,k

ûuuHn,khhhn,khhh
H
n,kûuun,k

, (47)

which represents the minimum power needed by userk to achieve a SINR value of1 if its associated BS isn and
the power of other users are fixed atpj, ∀ j 6= k and the optimal receiver beamforming vectorûuun,k is determined
by (32).

Lemma 5: T̃ n
k (ppp) is a standard interference function (see the definition in [5, Definition]).

Proof: See Appendix D.
Denote

T̃k(ppp) , min
1≤n≤N

T̃ n
k (ppp), (48)

Ãk(ppp) , argmin
n

T̃ n
k (ppp), (49)

whereT̃k(ppp) represents the minimum power userk needs to achieve SINR level of1 among all possible choices
of BS association, and the corresponding BS association is defined asÃk(ppp) (if there are multiple elements in
argminn T̃

n
k (ppp), let Ãk(ppp) be any one of them).

SinceT̃ n
k (ppp) is a standard interference function,T̃k(ppp) is a standard interference function as well [5, Theorem 5].

We apply the algorithmic framework of [5] to propose the following algorithm: starting from any positive vector
ppp(0), update the power vectorppp as

pk(t+ 1) = min{γT̃k(ppp(t)), p̄k}, (50)
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whereppp(t) = [p1(t), · · · , pK(t)] denotes the power vector at thet-th iteration. According to [3, Section V.B,
Corollary 1], the algorithm (42) converges to a unique fixed point qqq, which is the unique fixed point for

qk = min{γT̃k(ppp), p̄k}, k = 1, · · · ,K. (51)

Denotebbb = [b1, · · · , bK ] as the association profile corresponding toqqq, wherebk = Ãk(ppp
∗), and denoteγach as the

minimum SINR achieved by(qqq, bbb).
Proposition 3: If γach = γ, then problem (PSIMO-QoS) is feasible and(q, b) is an optimal solution; ifγach < γ,

(PSIMO-QoS) is infeasible.
The proof of Proposition 3 is similar to that for Proposition1. Consequently, combining (50) with a binary search
method, problem (P) can be solved to global optima.

C. A Normalized Fixed Point Algorithm

In both the BS-SDP and BS-FP algorithms, the binary search could require significant computational burden.
In this subsection we propose an NFP algorithm, which can directly solve the joint BS association, power control
and beamforming problem without resorting to the binary search. Again, this algorithm is a generalization of NFP
algorithm for the SISO case. The most nontrivial part is the proof of Lemma 6 stated later, which is based on a
technical result proved recently in [20]. With Lemma 6, the proof of the main result in this subsection Theorem 4
is a rather direct extension of Theorem 2. Define

T̃ (ppp) , (T̃1(ppp), T̃2(ppp), . . . , T̃K(ppp)). (52)

Lemma 6: Suppose(ppp∗, {uuu∗
n,k}k=1,...,K, n=1,...,N ,aaa∗) is an optimal solution to problem (P), thenppp∗ satisfies the

following equation:

ppp∗ =
T̃ (ppp∗)

‖T̃ (ppp∗)‖p̄pp∞
. (53)

Proof of Lemma 6: For a given power allocationppp∗, the optimal BS associationa∗k = Ãk(ppp
∗) = argminn T̃

n
k (ppp

∗).
Let SINR∗

k denote the SINR of the userk at the optimality. For optimal association profileaaa∗ and optimal
beamforming vectoruuua∗

k,k, according to (36), we have

SINR∗
k =

1
1

p∗
khhh

H
a∗
k
,k
MMM−1

a∗
k
(ppp∗)hhha∗

k
,k

− 1
. (54)

Let γ∗ denote the optimal valuemink SINR∗
k, then we can prove

SINR∗
k = γ∗, ∀ k. (55)

In fact, if SINR∗
j > γ∗, we can reduce the power of userj, so that SINR∗j decreases while the other SINR∗

k ’s
increase, resulting in a minimum SINR∗k that is higher thanγ∗. Here, we use the fact that SINR∗j is a strictly
increasing function inpj ≥ 0 and SINR∗k is a strictly decreasing function inpj ≥ 0, ∀ k 6= j [20, Lemma 3.1] (The
original version of [20, Lemma 3.1] only claims that SINR∗

k is a decreasing function onpj ≥ 0, ∀ k 6= j. However,
when the entries inhhhn,j are generic (e.g., drawn from a continuous probability distribution),

∑K
j=1hhhn,jhhh

H
n,jpj is

a positive definite matrix with probability one, in which case we can prove that SINRk is a strictly decreasing
function onpj ≥ 0, ∀ k 6= j).

Note that SINR∗k can also be expressed as

SINR∗
k =

p∗k

T̃
a∗
k

k (ppp∗)
. (56)

According to (55) and (56), we have

γ∗T̃k(ppp
∗) = p∗k, ∀ k. (57)
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Next, we show that at least one user transmits at full power, i.e.,

max
k

p∗k
p̄k

= 1. (58)

Assumeµ = maxk
p∗
k

p̄k
< 1. Define a new powerppp = ppp∗

µ , thenppp satisfies the power constraintspk ≤ p̄k, ∀ k. For
givenaaa∗ andppp, the SINR of the userk achieved can be expressed as

SINRk =
pk

T̃
a∗
k

k (ppp)
=

p∗k

µT̃
a∗
k

k (ppp∗/µ)
>

p∗k

T̃
a∗
k

k (ppp∗)
= SINR∗

k, (59)

where the last inequality is due to (73) proved in the appendix. The above relation contradicts the optimality of
(59), thus the assumptionmaxk

p∗
k

p̄k
< 1 does not hold. Therefore, we have proved (58).

Upon plugging (57) into (58), we arrive at

1

γ∗
= max

k

T̃
a∗
k

k (ppp∗)

p∗k
= ‖T̃ (ppp∗)‖p̄pp∞. (60)

Upon plugging (60) into (57), we can obtain (53).
Based on the fixed point equation (53), we propose an NFP algorithm to solve problem (P) (See Table III). The

Table III
NFP ALGORITHM FOR UL SIMO CELLULAR NETWORKS

Initialization: pick random positive power vectorppp(0).
Loop t:
1) Compute the optimal beamforming vector{ûuun,k(t)}:
2) Compute BS association:ak(t)← Ãk(ppp(t)), ∀ k.
3) Update power:ppp(t+ 1)← T̃ (ppp(t)) ;
4) Normalize:ppp(t + 1)← ppp(t+1)

‖ppp(t+1)‖p̄∞
, where‖ppp(t+ 1)‖p̄∞ = maxk

pk(t+1)
p̄k

.

Iterate until convergence.

convergence property of this algorithm is given in the following result.
Theorem 4: Suppose(p∗, {uuu∗n,k}k=1,...,K, n=1,...,N ,a∗) is an optimal solution to problem (P). Then the sequence

{p(t)} generated by the NFP algorithm in Table III converges geometrically to p∗, i.e.,

‖p(t)− p∗‖p̄∞ ≤ Cκt, (61)

whereC > 0, 0 < κ < 1 are constants that depend only on the problem data.
Before proving Theorem 4, we introduce the following lemma.

Lemma 7: The mappingT̃ (ppp) is concave.
Proof of Lemma 7: For fixedppp, T̃ n

k (ppp) is the minimum of a family of functions
{

T̂ n
k (ppp,uuun,k) =

σ2
n + uuuHn,k

∑K
j=1,j 6=k pjhhhn,jhhh

H
n,juuun,k

uuuHn,khhhn,khhh
H
n,kuuun,k

}

‖uuun,k‖
=1

,

thusT̃ n
k (ppp) is a concave function ofppp. Furthermore, the functioñTk(ppp) defined in (48) is the minimum ofN concave

functionsT̃ n
k (ppp), n = 1, . . . , N , henceT̃ (ppp) = (T̃1(ppp), T̃2(ppp), . . . , T̃K(ppp)) is a concave function. Consequently, the

mappingT̃ (ppp) is a concave mapping.
Proof of Theorem 4: See Appendix E.

Remark 2: Theorem 4 implies the pseudo-polynomial time solvability of problem (5). Without loss of generality,
we can assumeσ2

n = 1 [24], which does not change problem (5) and the NFP algorithmin Table III. Based on
Cauchy-Schwarz inequality, we have‖uuuHn,khhhn,j‖2 ≤ ‖hhhn,j‖2. Hence, it is easy to verify thatκ ≤ 1−1/(KG·SNR+

1), whereSNR = maxk p̄k andG = maxn,k{‖hhhnk‖2}. To achieve anǫ-optimal solution, the NFP algorithm in
Table III takesT ≤ log(1/ǫ)

log(1/κ) ≤ log(1/ǫ)(KG ·SNR+1) iterations, where we have used the property− log(1−x) >

x,when x < 1. SinceKG · SNR is polynomial in the input parametersK, {p̄k} and {‖hhhnk‖2}, we obtain the
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pseudo-polynomial time solvability of problem (5). Note that to prove the polynomial time solvability, we need to
show thatT is upper bounded by a polynomial function ofK, {log pk} and{log ‖hhhnk‖2}.

Remark 3: With fixed BS association, problem (P) becomes a joint beamforming and power allocation problem
in an SIMO I-MAC. We can adapt the NFP algorithm in Table III tosolve this simplified problem (assuming
fixed BS associationa): replacingûuun,k(t) with ûuuak,k(t), skipping step 2, and replacing̃T (ppp(t)) with T̃aaa(ppp) ,

(T̃ a1

1 (ppp), T̃ a2

2 (ppp), . . . , T̃ aK

K (ppp)). Using a similar argument, we can prove that this simplified algorithm also converges
to the global optima geometrically.

V. SIMULATION RESULTS

In this section, numerical results are provided to demonstrate the performance of the proposed algorithms. We
consider both homogeneous networks (HomoNets) and heterogeneous networks (HetNets). For HomoNets, each
macro cell contains one macro BS in the center and the distance between adjacent macro BSs is 1000m. For
HetNets, we assume that each macro cell contains one macro BSin the center and there are 3 pico BSs randomly
placed in each macro cell. There areK users with the same power budgetp̄k = Pmax in the network and we
consider two user distributions: in “Uniform”, users are uniformly distributed in the network area; in “Congested”,
K/4 users are placed randomly in one macro cell, while other users are uniformly distributed in the network
area. For SISO cellular networks,gnk = Snk(200/dnk)

3.7 wherednk is the distance from userk to BS n and
10 log10 Sn,k ∼ N (0, 64) models the shadowing effect. For SIMO cellular networks, the number of antennas at
each BS is set to be the same asM1 = · · · = MN = 4 and the channel coefficients between userk and BSn
are modeled as zero mean circularly symmetric complex Gaussian vector withSnk(200/dnk)

3.7 being the variance
for both real and imaginary dimensions. Suppose the noise power is σ = 1, and define the signal to noise ratio as
SNR= 10 log10(Pmax).

A. Comparison of Average Computation Time

Firstly, the average computation time is considered as the efficiency indicator of the three different algorithms.
We perform the numerical experiments in a PC with a Pentium G2030 3GHz CPU, 4GB RAM and Matlab R2014a.

Table IV
COMPARISON OFAVERAGE COMPUTATION TIME USED BY DIFFERENTALGORITHMS FOR A SISO SCENARIO

SNR (dB) 0 5 10 15 20 25 30
Time (s) BS-LP 70.8511 87.7384 116.8736 122.2134 102.6065 81.3555 70.0839
Time (s) BS-FP 0.0112 0.0121 0.0139 0.0138 0.0204 0.0334 0.0519
Time (s) NFP 0.0004 0.0005 0.0007 0.0009 0.0015 0.0021 0.0026

Table V
COMPARISON OFAVERAGE COMPUTATION TIME USED BY DIFFERENTALGORITHMS FOR ASIMO SCENARIO

SNR (dB) 0 5 10 15 20 25 30
Time (s) BS-SDP 61.0384 54.5044 68.0620 66.6358 70.2120 69.8054 89.1961
Time (s) BS-FP 0.2388 0.2022 0.4163 0.6571 1.1019 2.0289 4.2315
Time (s) NFP 0.0207 0.0188 0.0233 0.0228 0.0231 0.0232 0.0247

For the SISO scenario, we consider a HetNet that consists of 10 hexagon macro cells. There are 3 pico BSs
randomly placed in each macro cell, thus in total there areN = 40 BSs. There areK = 80 users uniformly
distributed in the network area. For BS-LP algorithm, the LPsubproblem is solved by “linprog” function in Matlab
with simplex method. The average computation time is obtained by averaging over500 monte carlo runs and is
listed in Table IV and the stopping criterion is‖ppp(t + 1) − ppp(t)‖ ≤ ǫ, whereǫ = 10−6Pmax

√
K. As we can see

from Table IV, the NFP algorithm is at least 26000 times faster than BS-LP algorithm and BS-FP algorithm is at
least 1300 times faster than BS-LP algorithm for all considered SNR values.

For the SIMO scenario, we consider a HomoNet that consists of3 hexagon macro cells. There areK = 10
users uniformly distributed in the network area. For BS-SDPalgorithm, the SDP subproblem is solved by CVX
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2.1. The average computation time is obtained by averaging over 500 monte carlo runs and is listed in Table V
and the stopping criterion is‖ppp(t + 1) − ppp(t)‖ ≤ ǫ, whereǫ = 10−6Pmax

√
K. As we can see from Table V, the

NFP algorithm is at least 2800 times faster than BS-SDP algorithm for any SNR and BS-FP algorithm can be 21
to 260 times faster than BS-SDP algorithm depending on SNR. Due to the high efficiency of both the BS-FP and
the NFP algorithms, we only investigate the performance of these two algorithms below.

B. Comparison of Number of Iterations

The simulation scenarios in the last subsection are limitedto small size networks, as the running time required for
BS-LP and BS-SDP algorithms increases substantially with increasing number of BSs and users. In this subsection,
we consider the scenarios with many more users and BSs than the scenarios considered in the last subsection to
further evaluate the performance of the BS-FP and the NFP algorithms. In particular, we consider a HetNet that
consists of 25 hexagon macro cells, each containing one macro BS in the center. There are 3 pico BSs randomly
placed in each macro cell, thus in total there areN = 100 BSs. Furthermore, there areK = 160 users. When only
the FP algorithm is considered, it has similar computation complexity with one iteration of the NFP algorithm.
Hence, the biggest difference of the BS-FP and the NFP algorithms comes from the binary search invoked in BS-FP.
We will show that the binary search makes the BS-FP algorithmmuch slower than the NFP algorithm in terms of
number of iterations.

Fig. 1 depicts the CDF (Cumulative Distribution Function) of the number of iterations needed in the context
of SISO cellular networks for the following three algorithms to converge: the BS-FP, the NFP and the algorithm
“Oracle” when SNR= 15dB. In the algorithm “Oracle”, we fix the BS association to be the optimal onea, and
compute the optimal power allocation by the following procedure (proposed in [25])

pk(t+ 1)← T ak

k (p(t))

‖Taaa(p(t))‖p̄∞
, (62)

whereTaaa(p) , [T a1

1 (p), T a2

2 (p), . . . , T aK

K (p)]. A little surprisingly, the NFP algrorithm and the algorithm “Oracle”
converge equally fast: they usually converge in 10∼30 iterations. Due to the binary search step, BS-FP algorithms
takes more than150 iterations in total to converge.

Fig. 2 depicts the CDF of the number of iterations needed in the context of SIMO cellular networks for the
following three algorithms to converge: the BS-FP, the NFP and the algorithm “Oracle” when SNR= 10dB. In the
algorithm “Oracle”, we fix the BS association to be the optimal onea, and compute the optimal power allocation
by the algorithm in Remark 3, i.e.

pk(t+ 1)← T̃ ak

k (p(t))

‖T̃aaa(p(t))‖p̄∞
. (63)

As mentioned in Remark 3, the above procedure also convergesgeometrically. In Fig. 2, it can be observed that
the NFP algorithm and the algorithm “Oracle” converge equally fast: they usually converge in 20∼40 iterations.
Due to the binary search step, BS-FP algorithms takes more than 150 iterations in total to converge.

C. Comparison of Minimum SINR Achieved

In this subsection, the system performance is evaluated in terms of achievable minimum SINR. The system
configuration is the same as that in Subsection V-B.

Fig. 3 compares the minimum SINR achieved by the BS-FP, the NFP and the “max-SNR” algorithm for SISO
cellular networks. The “max-SNR” algorithm computes the BSassociation based on the maximum receive SNR, i.e.
ak = argmaxn{gnkp̄k}. For a fair comparison, the optimal power allocation corresponding to “max-SNR” algorithm
is then computed by (62). Each point in the figure is obtained by averaging over500 monte carlo runs. The BS-FP
and the NFP algorithms have similar performance in terms of the minimum rate. For the setting “Uniform”, the
NFP algorithm outperforms “max-SNR” by approximately70% (when SNR= 35dB); for “Congested”, the NFP
algorithm outperforms “max-SNR” by400% (when SNR= 35dB).

Fig. 4 compares the minimum SINR achieved by the BS-FP, the NFP and the “max-SNR” algorithms for SIMO
cellular networks. The “max-SNR” algorithm computes the BSassociation based on the maximum receive SNR,
i.e. ak = argmaxn{‖hhhnk‖2p̄k}. For a fair comparison, the optimal power allocation corresponding to “max-SNR”
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algorithm is then computed by (63). Each point in the figure isobtained by averaging over500 monte carlo runs.
The BS-FP and the NFP algorithms almost have the same performance in terms of the minimum rate. For the
setting “Uniform”, the NFP algorithm outperforms “max-SNR” by approximately35% (when SNR= 25dB); for
“Congested”, the NFP algorithm outperforms “max-SNR” by200% (when SNR= 25dB).
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Figure 1. Distribution of the number of iterations requiredto converge for SISO cellular networks.N = 100 BSs,K = 160 users,
SNR= 15dB.
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Figure 2. Distribution of the number of iterations requiredto converge for SIMO cellular networks.N = 100 BSs,K = 160 users,
SNR= 10dB.

VI. CONCLUSIONS

In this paper, we investigate the joint BS association and beamforming problem for max-min fairness criterion
in the context of UL SIMO cellular networks. We prove the polynomial time solvability of the problem for both
SISO and SIMO scenarios by transferring the original problem into a binary search method in conjunction with a
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Figure 3. Comparison of the minimum SINR achieved for SISO cellular networks.N = 100 BSs,K = 160 users.
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Figure 4. Comparison of the minimum SINR achieved for SIMO cellular networks.N = 100 BSs,K = 160 users.

series of QoS subproblems which can solved by LP for SISO or SDP for SIMO scenarios, yielding the so-called
BS-LP and BS-SDP algorithms. Furthermore, in order to avoidthe computational complexity imposed by LP or
SDP, we present a BS-FP algorithm where QoS subproblems are solved by a fixed point method. Moreover, for the
further reduction of computational complexity, we proposed a novel NFP algorithm which can directly solve the
original problem without resorting to the binary search. Weshow that the NFP algorithm converges to the global
optima at a geometric rate. Though we are not able to prove that the NFP algorithm is a polynomial time algorithm,
empirically it converges much faster than BS-FP and the provably polynomial time algorithm (BS-LP and BS-SDP).
It is a theoretically interesting open question whether theNFP algorithm is a polynomial time algorithm.

APPENDIX A
PROOF OFPROPOSITION1

Proof: We first prove the following fact: if problem (PSISO-QoS) is feasible, then its optimal power vectorppp∗

satisfies the fixed point equation (20). It can be seen thatp∗
k

Tk(ppp∗) = γ; otherwise, we can reduce the powerp∗k to
improve the objective function without violating all constraints. Asppp∗ satisfies the constraints of (PSISO-QoS), we
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havep̄ppk ≥ p∗k = γTk(ppp
∗). Consequently,p∗k = min{γTk(ppp

∗), p̄k}, ∀ k, which means thatppp∗ satisfies the fixed point
equation of (20).

If γach= γ, according to (21), we have SINRk = qk
Tk(qqq)

≥ γ,∀k. Based on (20), we have0 ≤ qk ≤ p̄k,∀k. Hence
qqq satisfies the constraints of problem (PSISO-QoS), i.e.qqq is a feasible solution to (PSISO-QoS). Assumeppp∗ is an optimal
power vector to (PSISO-QoS), then by the argument in the last paragraphppp∗ satisfies (20). As bothqqq andppp∗ are fixed
points of (20) and as mentioned earlier that according to [5,Section V.B,Corollary 1]qqq is the unique fixed point
of (20), we haveqqq = ppp∗ and (q, b) is an optimal solution to (PSISO-QoS).

If γach < γ, according to (21) there exists at least oneqk satisfying qk < γTk(qqq) and for thisqk, based on
(20), we havep̄k = qk < γTk(qqq). Assume (PSISO-QoS) is feasible and its optimal power vector isppp∗, we have
ppp∗ = γTk(p

∗) ≤ p̄k, ∀ k, thusqqq 6= ppp∗. Therefore,qqq andppp∗ are two distinct fixed points of (20), which contradicts
the the fact that (20) has a unique fixed point. Hence, (PSISO-QoS) is infeasible.

APPENDIX B
PROOF OFLEMMA 3

Proof: We can prove this Lemma by following the argument in [20].
Denote

fn,k(ppp) = pkhhh
H
n,kMMM

−1
n (ppp)hhhn,k, k = 1, . . . ,K, n = 1, . . . , N, (64)

which is a strictly increasing function onpk ≥ 0 and a decreasing function onpj, j 6= k [20, Lemma 3.1].
Suppose there are two distinct solutionsp̃pp andp̂pp satisfying Eq.(42), i.e.

max
n

fn,k(p̃pp) = max
n

fn,k(p̂pp) =
γ

1 + γ
, k = 1, . . . ,K. (65)

Define a nonempty setK = {k ∈ K | p̃k/p̂k > 1} and k0 = argmaxk∈K{p̃k/p̂k}. Define the vectorααα =
[α1, · · · , αK ], whereαk is given by

αk =

{

p̃k0

p̂k0

> 1, if k ∈ K;
1, otherwise,

(66)

Consequently, we have

fn,k0
(p̃pp) = fn,k0

(p̃k0
, p̃pp−k0

)
(i)
≥ fn,k0

(p̃k0
,ααα−k0

◦ p̂pp−k0
)

(ii)
= αk0

p̂k0
hhhH
n,k0

(σ2
nIII + αk0

∑

j∈K

hhhn,jhhh
H
n,j p̂j+

∑

j 6∈K

hhhn,jhhh
H
n,j p̂j)

−1hhhn,k0

(iii)
> p̂k0

hhhHn,k0
(σ2

nIII +
∑

j∈K

hhhn,jhhh
H
n,j p̂j ++

∑

j 6∈K

hhhn,jhhh
H
n,j p̂j)

−1hhhn,k0

= fn,k0
(p̂pp), (67)

where the notation◦ denotes the Hadamard product,p̃pp−k0
is the power vector withk0th element deleted and̂ppp−k0

as well asααα−k0
are defined analogously. Moreover, (i) is due top̃pp−k0

≤ ααα−k0
◦ p̂pp−k0

, (ii) is due to Eq.(66), while
(iii) is due toαk0

p̂j > p̂j, j ∈ K.
Consequently, we have

max
n

fn,k0
(p̃pp) > max

n
fn,k0

(p̂pp) =
γ

1 + γ
, (68)

which contradicts the eq.(65), hence eq.(42) has a unique fixed point.
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APPENDIX C
PROOF OFLEMMA 4

Proof: For a givenγ, if (PSIMO-QoS-1) is infeasible, supposẽppp is one optimal solution to (PSIMO-QoS-2), then
maxn∈{1,...,N} p̃khhh

H
n,kMMM

−1
n (p̃pp)hhhn,k ≤ γ

1+γ ,∀k. We must havemaxn∈{1,...,N} p̃khhh
H
n,kMMM

−1
n (p̃pp)hhhn,k ≤ γ

1+γ for somek;
otherwisemaxn∈{1,...,N} p̃khhh

H
n,kMMM

−1
n (p̃pp)hhhn,k = γ

1+γ ,∀k, implying that p̃ is a feasible solution to (PSIMO-QoS-1), a
contradiction.

If (PSIMO-QoS-1) is feasible, denote its optimal solution asp̂pp. According to Proposition 3,̂ppp is the unique solution
to (43). Assumẽppp is one solution to (PSIMO-QoS-2) with p̃pp 6= p̂pp. In this case, we have

max
n

fn,k(p̃pp) ≤
γ

1 + γ
, k = 1, . . . ,K. (69)

and
∑K

k=1 p̃k ≥
∑K

k=1 p̂k.
Define a nonempty setK = {k ∈ K | p̃k/p̂k > 1} and k0 = argmaxk∈K{p̃k/p̂k}. Define the vectorααα =

[α1, · · · , αK ], whereαk is given by

αk =

{

p̃k0

p̂k0

> 1, if k ∈ K;
1, otherwise,

(70)

Consequently, we have

fn,k0
(p̃pp) = fn,k0

(p̃k0
, p̃pp−k0

) ≥ fn,k0
(p̃k0

,ααα−k0
◦ p̂pp−k0

)

= αk0
p̂k0

hhhH
n,k0

(σ2
nIII + αk0

∑

j∈K

hhhn,jhhh
H
n,j p̂j ++

∑

j 6∈K

hhhn,jhhh
H
n,j p̂j)

−1hhhn,k0

> p̂k0
hhhHn,k0

(σ2
nIII +

∑

j∈K

hhhn,jhhh
H
n,j p̂j ++

∑

j 6∈K

hhhn,jhhh
H
n,j p̂j)

−1hhhn,k0

= fn,k0
(p̂pp) (71)

Consequently, we have
max
n

fn,k0
(p̃pp) > max

n
fn,k0

(p̂pp) =
γ

1 + γ
, (72)

which contradicts Eq.(69).
Consequently, if problems (PSIMO-QoS-1) is feasible, the problems (PSIMO-QoS-1) and (PSIMO-QoS-2) have the same

solution.

APPENDIX D
PROOF OFLEMMA 5

Proof: In order to show that̃T n
k (ppp) is a standard interference function, we need to show three properties:

1) Positivity: Forppp ≥ 000, T̃ n
k (ppp) > 0;

2) Monotonicity: If ppp ≥ ppp
′

, then T̃ n
k (ppp) ≥ T̃ n

k (ppp
′

);
3) Scalability: For anyα > 1, αT̃ n

k (ppp) > T̃ n
k (αppp).

1) is obvious; 2) can be obtained from [7, Lemma 2 (c)]. In order to show the scalability, we have

T̃ n
k (αppp) = min

‖uuun,k‖=1

{

σ2
ak

+ αuuuHn,k
∑K

j=1,j 6=k pjhhhn,jhhh
H
n,juuun,k

uuuHn,khhhn,khhh
H
n,kuuun,k

}

< α min
‖uuun,k‖=1

{

σ2
n + uuuHn,k

∑K
j=1,j 6=k pjhhhn,jhhh

H
n,juuun,k

uuuHn,khhhn,khhh
H
n,kuuun,k

}

= αT̃ n
k (ppp). (73)

HenceT̃ n
k (ppp) is a standard interference function.
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APPENDIX E
PROOF OFTHEOREM 4

Proof: According to Lemma 6,ppp∗ is a fixed point of (53). According to the concave Perron-Frobenius theory
[17, Theorem 1], we know that (53) has a unique fixed point and the NFP algorithm in Table III converges to this
fixed point. Hence, the NFP algorithm in Table III converges to ppp∗.

DefineU as the set of power vectorsppp with ‖ppp‖p̄pp∞ = 1. It can be verified that

Ak ≤ T̃k(ppp) ≤ Bk, ∀ ppp ∈ U, (74)

whereAk = minn min{‖uuun,k‖=1}
σ2

n

uuuH
n,khhhn,khhhH

n,kuuun,k
= minn

σ2

n

‖hhhn,k‖2 (note that the second equality is based on the

Cauchy-Schwarz inequality of‖uuuH
n,khhhn,j‖2 ≤ ‖hhhn,j‖2), andBk = T̃k(p̄pp) =

minnmin{‖uuun,k‖=1}
σ2

n+uuuH
n,k

∑
K

j=1,j 6=k
hhhn,jhhhH

n,juuun,kp̄j

uuuH
n,khhhn,khhhH

n,kuuun,k
= minn

1
p̄khhhn,kMMM

−1

n (p̄pp)hhhn,k

−1, both of which are constants that only
depend on the problem data. Based on (74), we have

(1− κ)eee ≤ T̃ (ppp) ≤ eee, ∀ ppp ∈ U, (75)

whereκ = 1 − mink
Ak

Bk
∈ (0, 1) and eee = (B1, B2, . . . , BK) > 0. According to the concave Perron-Frobenius

Theory [18, Lemma 3, Theorem], the NFP algorithm in Table IIIconverges geometrically at the rateκ.
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