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Abstract

Millimeter wave (mm-wave) communication with large-scale antenna array configuration is seen

as the key enabler of the next generation communication systems. Accurate knowledge of the mm-

wave propagation channels is fundamental and essential. In this contribution, a novel complexity-

efficient high resolution parameter estimation (HRPE) algorithm is proposed for the mm-wave channel

with large-scale uniform circular array (UCA) applied. The proposed algorithm is able to obtain the

high-resolution estimation results of the spherical channel propagation parameters. The prior channel

information in the delay domain, i.e., the delay trajectories of individual propagation paths observed

across the array elements, is exploited, by combining the high-resolution estimation principle and the

phase mode excitation technique. Fast initializations, effective interference cancellations and reduced

searching spaces achieved by the proposed schemes significantly decrease the algorithm complexity.

Furthermore, the channel spatial non-stationarity across the array elements is considered for the first

time in the literature for propagation parameter estimation, which is beneficial to obtain more realistic

results as well as to decrease the complexity. A mm-wave measurement campaign at the frequency band

of 28-30 GHz using a large-scale UCA is exploited to demonstrate and validate the proposed HRPE

algorithm.

X. Cai and W. Fan are with the APMS section at the Department of Electronic Systems, Falculty of Engineering and Science,

Aalborg University, Aalborg 9220, Denmark (e-mail: xuc@es.aau.dk; wfa@es.aau.dk).
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Index terms— Millimeter-wave, ultra-wideband, large-scale uniform circular array, spatial non-

stationarity and channel parameter estimation.

I. INTRODUCTION

While the next generation communication system (5G) is still on its ascendant, millimeter wave

(mm-wave) communication has been seen as the key enabling component due to the vast amount

of available spectrum [1]–[3]. However, the air attenuation, small antenna aperture etc. would

result in severe power loss [4] for the mm-wave propagations, compared to the sub-6 GHz

frequency bands with rich multipath components (MPCs) [5]. Nevertheless, the mm-wavelength

makes it practical to pack massive antennas [6] in a small area to form large scale antenna

arrays. Beamforming [7] and beam-selection [2] techniques can be exploited to compensate the

power loss and to enhance the spectrum efficiency through spatial multiplexing. Furthermore,

applications such as localization, tracking and surrounding environment reconstruction [8] are

promising, e.g., to help vision-disabled people.

To enable the advanced 5G mm-wave techniques and applications, accurate and realistic channel

models are fundamental and essential. The establishment of effective mm-wave channel models

relies on the comprehensive channel measurements and the channel characteristics extracted from

the measured data. In the mm-wave propagations with large scale antenna array configurations,

the assumptions applied for the previous generation communication systems (e.g. the Long Term

Evolution system) are violated. i) The narrowband assumption [9] is invalid due to the ultra-

wide system bandwidth up to several GHz; ii) The two dimensional (2D) propagation assumption

[10] was usually assumed in pervious communication systems since the base station was high

above, and the propagation distance was large. However, in the mm-wave frequency bands, the

propagation distance is generally limited due to the high power loss. It is not practical anymore

to assume the 2D propagation. That is, the elevation angels of MPCs [11] should be considered;

iii) The mm-wavelength and large array aperture can result in the Fraunhofer far-field distance up

to tens or hundreds of meters, which is significantly increased compared to the previous systems.

This necessitats the spherical wave propagation [12] model; iv) It is possible that the gain (not

just phases) of propagation paths evolve [13], [14] across the array elements. The so-called spatial

non-stationarity in path gainmust be considered as well. Thus the mm-wave channel models must
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provide realistic channel characteristics in multiple parameter domains, i.e., in delay, azimuth,

elevation, source distance and amplitude domains. Consequently, accurate, comprehensive yet

still complexity-efficient channel parameter estimation algorithms are vital to rapidly promote

the 5G progress.

Among the many mm-wave channel spatial profile measurements, the most frequently applied

measurement approach is to either mechanically rotate a horn antenna or mechanically move

an omnidirectional antenna to form virtual arrays [15]. The vector network analyzer (VNA) is

usually used due to its flexibility and easy-configuration. Various estimation algorithms have been

proposed for the mm-wave channel estimation based on the empirically measured data. Basically,

these algorithms can be classified into four categories, i.e., spectra based approaches, subspace

based approaches, sparsity recovery approaches and maximum likelihood approaches as follows.

i) For the horn antenna measurements, the measured channels at different steering directions

constructed the joint delay-angle power spectra, e.g., as done in [16]–[19]. The complexity is

of the algorithm is low, while the resulted channel characteristics show dependency on the

horn antenna pattern. In [20], the fast fourier transform (FFT) was applied for the extremely

large antenna array to distinguishing MPCs. A frequency invariant beamformer was proposed

in [21] and extended in [22] for a uniform circular array (UCA) to obtain the delays and

azimuths of MPCs in the 3D propagation scenarios. ii) In [23], the multiple signal classification

(MUSIC) principle was applied to jointly estimating the delay and azimuth in a 2D mm-wave

propagation scenario. Unitary estimation of signal parameter via rotational invariance techniques

(ESPRIT) was also exploited in [24] for the 3D mm-wave propagation scenarios with plane wave

assumption. iii) Based on the sparsity assumption of mm-wave channels, the authors in [25]–[28]

recovered the channels and obtained the channel estimations by exploiting the compressive sens-

ing or optimization techniques. iv) The Space Alternating Generalized Expectation-maximization

(SAGE) algorithm was applied for the mm-wave channel estimation in [12], [14], [29]–[31].

Both the 3D plane-wave propagation scenarios [14], [29], [30] and the 3D spherical propagation

scenarios [12], [31] were concerned. However, the fundamental assumption of SAGE is that the

received signal contains multiple components that follow orthogonal stochastic measures (OSM)

[12], [32]. The violation [33] of the OSM assumption caused by 3D spherical propagation

could deteriorate the SAGE performance significantly, e.g., leading to the non-convergence. A

maximum likelihood estimator (MLE) based on the expectation-maximization (EM) principle
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was proposed in [34] aimed for the 3D spherical propagation scenario. The complexity is still

considerably high with the 4D parameter searching, though a coarse-to-fine search strategy was

applied.

Although efforts have been made to characterize the mm-wave propagation channels, a high

resolution propagation parameter estimation (HRPE) algorithm which is capable to obtain the

high-resolution estimation results of all the spherical propagation parameters (i.e. azimuths, ele-

vations, delays, source distances and amplitudes of MPCs) yet with low computation complexity

is still missing in the literature. The existing algorithms are either deficient in obtaining the high-

resolution estimation results of all propagation parameters or with fatal computation complexity

especially when considering the ultra-wide bandwidth and large-scale array aperture in mm-wave

propagation. Moreover, as far as we are concerned, the realistic spatial non-stationarity across

the array elements have never been considered for propagation parameter estimation, although

it has been widely observed in the mm-wave channel modeling works in the literature, leading

non-realistic estimation results and increasing complexity. To fill the above gaps, a complexity-

efficient HRPE algorithm is proposed in this paper for the ultra-wideband large-scale UCA. The

UCA is considered as it is capable to uniformly cover the whole 360◦ of azimuth compared to

the linear arrays and support for phase mode operations. The main contributions and novelties

of this paper include:

• The proposed algorithm exploits the high resolution estimation technique in the delay

domain, the UCA phase mode excitation technique and the maximum-likelihood estimation

principle. Fast initializations, effective interference cancellations and reduced searching

spaces substantially decrease the computation complexity while maintaining the ability to

gain the whole high-resolution estimation results of the 3D spherical mm-wave propagation

channel parameters.

• The UCA phase mode excitation technique applied in the 3D spherical mm-wave propaga-

tion scenarios is investigated through simulations, in terms of its ability to obtain the fast

initializations of delays and azimuths.

• Individual propagation paths are firstly identified in the delay domain, so that the fast

initializations and effective interference cancellations can be achieved for the spherical

propagation parameter estimation. Furthermore, the spatial non-stationarity observed across
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the array elements is considered for the first time in the literature for the propagation

parameter estimation, resulting in more realistic estimation results and significantly reduced

complexity.

• An ultra-wideband mm-wave channel measurement at the frequency band of 28-30 GHz

with large-scale (radius of 0.5 m and 720 elements) UCA applied was conducted. The

comparisons among the reference channel measured by using the horn antenna, the MLE

(or EM) results obtained by applying 4D parameter searchings [34] and the results obtained

by using the proposed HRPE algorithm validate the algorithm performance.

The rest of the paper is structured as follows. Sect. II elaborates the signal model. Sect. III

describes the measurement campaign and the observed channel characteristics. Sect. IV elaborates

the proposed HRPE algorithm. The algorithm validation and the remarks are included in Sect. V.

Finally, conclusions are given in Sect. VI.

II. SIGNAL MODEL FOR THE UNIFORM CIRCULAR ARRAY

As illustrated in Fig. 1, the UCA has P isotropic receiver antenna elements (Rxs) uniformly

arranged on its perimeter with radius of r, i.e., the azimuth of the pth Rx is φp = 2πp
P
, p =

[0, · · · , P − 1].

With a large UCA aperture, the spherical wave signal model has to be assumed due to the

violation of plane wave assumption. In the underlying channel model, a finite number of L

spherical waves are assumed to impinge into the UCA. Although an arbitrary reference point

can be selected, we consider the UCA center as the reference point for the model conciseness.

The frequency response H`(f) at the UCA center, which is contributed by the `th path (or wave)

with parameter set Θ` = [τ`, φ`, θ`, d`, α`], reads

H`(f) = α`e
−j2πfτ` (1)

where f = [f1, · · · , fK ] is the vector containing the K frequency points considered, Θ` is the

vector containing the parameters of the `th path, where τ` is the propagation delay, φ` and θ`

represent the azimuth and elevation angles, respectively, d` is the propagation distance between

the UCA center and the last source point during the propagation route, and α` denotes the
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Fig. 1: Multipath prorogation with UCA.

complex amplitude. The propagation distance between the pth Rx and the last source point is

then calculated as

dp,` =
√
d`

2 + r2 − 2rd` sin θ` cos(φ` − φp) (2)

Due to the propagation distance difference between the pth Rx and the UCA center, the frequency

response Hp,`(f) contributed by the `th path at the pth Rx consequently reads

Hp,`(f) =
d`
dp,`

H`(f)ej2πf∆dp,`/c (3)

where

∆dp,` = d` − dp,` (4)

with c the light speed, and d`
dp,`

denotes the amplitude change factor according to the Friis

transmission equation. The array output contributed by the `th path then reads H(p, f ; Θ`) =

[H0,`, · · · , HP−1,`]
T , where [·]T denotes the transpose operation of the argument. H(p, f ; Θ`) is

a complex-valued matrix with dimension of P ×K, i.e., H(p, f ; Θ`) ∈ CP×K .

The array output contributed by all the L paths is formatted as

Y (p, f ; Θ) =
L∑
`=1

H(p, f ; Θ`) + n(p, f) (5)

where n(p, f) ∈ CP×K is the zero-mean white Gaussian noise with variance of σ2, and Θ =

[Θ1, · · · ,ΘL] is the vector containing all the channel parameters. The objective of various

estimation algorithms is to obtain the estimation results of Θ. In the sequel, a novel HRPE

algorithm is proposed for the ultra-wideband large-scale UCA, which is demonstrated based
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Fig. 2: The basement where the measurement campaign was conducted. (a) The top-view sketch

of the basement. (b) A photo taken during the OLoS measurement.

on a measurement campaign where the realistic channel characteristics are well presented. The

proposed algorithm is capable to gain the estimation of Θ.

III. MEASUREMENT CAMPAIGN AND CHANNEL OBSERVATIONS

A. Measurement campaign

In this section, a recently conducted measurement campaign for a UCA is introduced. The

measurement scenario and the measurement setup including the transmitter (Tx), Rx, array

aperture, frequency range, bandwidth etc. are described.

Fig. 2(a) illustrates the top-view sketch of the basement where the measurement campaign was

conducted. The floor space was around 7.7∗7.9 m2 with few objects including one metallic stairs

and one metallic heater. Fig. 2(b) illustrates a photo taken during the measurement. A VNA was

used in the channel measurement. An omnidirectional biconical antenna was exploited as the

Tx and was put on the trolley with the VNA onboard. The height of the Tx to the ground was

0.84 m. An identical biconical antenna was fixed on the turntable as the Rx. A virtual UCA

was formed by rotating the Rx clockwise with radius of 0.5 m with 720 steps, i.e. r = 0.5 and

7



P = 720.1 The distance space between two neighboring Rx positions was 4.4 mm, which is less

than the half wavelength (5 mm) at 30 GHz and hence avoids the spatial aliasing [35]. The Rx

height was kept the same with that of the Tx, and the starting point of the virtual UCA was

marked as the star in Fig. 2(a), which means that the azimuth and elevation angles of the line

of sight (LoS) path were 180◦ and 90◦, respectively. Moreover, the distance between the Tx and

the UCA center was 5 m.

The frequency range f was set from 28 GHz to 30 GHz with 750 frequency sweeping points,

i.e, K = 750, in the VNA. The frequency step was 2.7 MHz which corresponds to a maximal

observable propagation distance of 111 m. It is sufficient to record the propagation paths confined

in the basement. The diameter (1 m) of the UCA is around 6.7 times the intrinsic distance

resolution (15 cm) determined by the system bandwidth of 2 GHz. Therefore, the narrowband

assumption [9] or the so-called small-scale characterization [36] is invalid in the ultra-wideband

measurement campaign. Moreover, the Fraunhofer far-filed distance calculated for the UCA is

around 200 m. Thus the near-filed (i.e. spherical wave) propagation must be taken into account.

Two different scenarios, i.e., LoS scenario and Obstructed-LoS (OLoS) scenario, were considered

during the measurement. In the OLoS scenario, a blackboard with a metallic substrate and

dimension of 1.2∗1.2 m2 was placed in between the Tx and the UCA to block the paths in LoS

direction. Furthermore, to obtain references for the measured channels in the two scenarios, we

also exploited the horn antenna to replace the Rx biconical antenna to repeat the measurements.

It is worthy noting that except that the horn antenna was fixed at the UCA center, i.e. r = 0, the

other settings and measurement procedure were kept the same for the reference measurements.

The specifications of the measurement campaign and of the antennas applied in the measurement

campaign are included in Table I and Table II, respectively. The presented antenna gains and

half-power beamwidths in Table II are the values evaluated in the considered frequency range

28-30 GHz. Readers may refer to [37] for the detailed description of the measurement system

including the calibration, etc.

1The Fraunhofer distance, i.e. 2·(2r)2
λ

, is calculated as 200 m. Plane wave propagation is considered valid only when the

source distance d` is far greater than it.
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Table I: Measurement specifications applied in the measurement campaign

Measurement specifications

Tx and Rx Heights 0.84 m Frequency range 28-30 GHz

Radius of bicoinal array 0.5 m Frequency points 750

Number of virtual Rxs 720 LoS distance 5 m

Table II: Specifications of antennas applied in the measurement campaigns

Antenna specifications

Antenna type Biconical Reference horn

Operating frequency range 2-30 GHz 26.4-40.1 GHz

Gain 6 dBi 19 dBi

HPBW in azimuth Omni 20◦

Polarization Vertical Vertical

HPBW: Half power beamwidth

B. Channel observations

In this section, we present the measurement results to shed lights on the physical propagation

mechanisms for the ultra-wideband large-scale array system. By applying the inverse discrete

Fourier transform (IDFT) to the array output Y (p, f) with respect to f , the channel impulse

responses (CIRs) h(p, τ) across the P antennas can be obtained. Here, we omit Θ for a compact
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Fig. 3: CPDPs obtained by IDFT across the virtual Rxs. (a) LoS scenario. (b) OLoS scenario.
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notation of Y (p, f ; Θ). Fig. 3(a) and Fig. 3(b) illustrate the measured concatenated power delay

profiles (CPDPs), i.e., |h(p, τ)|2 for the LoS scenario and OLoS scenario, respectively. The

further delay range is not shown as no paths are present with the selected dynamic range. By

observing and comparing Fig. 3(a) and Fig. 3(b), we have the following observations.

• Finite trajectories exist in both Fig. 3(a) and Fig. 3(b). The delay shifts of one path across

virtual Rxs can be clearly observed. However, limited by the IDFT operation, sidelobes

along these trajectories are also obvious, e.g., along the LoS path as illustrated in Fig. 3(a).

• The shapes of trajectories vary due to their different angles-of-arrivals (AoAs). For example,

the LoS path in Fig. 3(a) is dominant with a “(”-alike trajectory. This is consistent with the

measurement setup that the virtual UCA elements started at the furthest position to the Tx.

It can be expected that these trajectories become straight lines in the narrowband system.

• The spatial non-stationarity of the trajectories across the array elements can be clearly

observed. That is, one propagation path may present “birth-death” behaviour (or break)

across the elements when the array aperture is large. This has also been observed in the

other works, e.g. in [13], [14]. However, the non-stationarity has not been considered in the

literature regarding the channel parameter estimation to our best knowledge.

• In the OLoS scenario as illustrated in Fig. 3(b), the LoS power attenuates significantly due

to the blockage of the blackboard with a metallic substrate. Furthermore, two trajectories

disappear in Fig. 3(b). They are marked as “trajectory 1” and “trajectory 2” in Fig. 3(a),

respectively. It can be inferred that trajectory 1 was contributed by the “wall A” as illustrated

in Fig. 2(a), since its trajectory shape is the same with that of LoS path, and the delay

difference is consistent with the measurement setup. Similarly, trajectory 2 contributed by

the wall B with an opposite trajectory shape also disappears.

The above observations demonstrate the fact that the parameters (e.g. delays and azimuths) of

propagation paths actually can be roughly obtained by observing the CPDPs. This motivates us

to come up with the idea that it is possible to distinguish the individual paths by identify their

trajectories in the CPDPs figure, so that the channel parameter Θ can be estimated. However,

the IDFT sidelobes blur these paths, resulting in the interference among paths and limiting

the resolution. Furthermore, the trajectory shapes of different propagation paths change with

respect to the AoAs, which hinders the trajectory identification. To cope with these issues, a
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novel algorithm is proposed, and its high-resolution ability and low computation cost are also

demonstrated.

IV. THE PROPOSED ALGORITHM

The proposed algorithm basically include three parts, i.e. obtaining the high resolution estima-

tion results of element-wise delays and amplitudes for the UCA, trajectory identification using

the phase-mode excitation technique and estimating Θ` according to the maximum likelihood

principle.

A. Element-wise high resolution estimation

Considering the ultra-wideband nature of the measurement, (3) can be rewritten as

Hp,`(f) = α`pe
−j2πfτ`p (6)

with

α`p =
d`
dp,`

α` (7)

and

τ `p = τ` −∆dp,`/c (8)

Two parameters, i.e. τ `p and α`p are capable to characterize the `th path when a single (the

pth) array element is considered. We denote the parameter vector Ω`
p = [τ `p , α

`
p], then the L

propagation paths impinging at the pth antenna element can be characterized by the parameter

vector Ωp = [Ω1
p, · · · ,ΩL

p ].

It can be observed from Fig. 3 that the conventional spectra-based methods such as the IDFT is not

capable to obtain the high-resolution estimation of Ωp. The sidelobes of individual propagation

paths exist and interfere with each other, and the weak paths can be buried by the sidelobes of

strong paths. Therefore, the SAGE principle [10] or the EM principle[38] is applied to estimating

Ωp element-wise. With an ultra-wide system bandwidth, the SAGE algorithm can resolve two

paths with very small relative propagation delay. By updating the parameter estimations sequen-

tially and providing the maximum-likelihood estimation results iteratively, it has been proven

practically in [10] that the SAGE algorithm has the ability to resolve two paths with ∆τ ' 1
5B

.
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Fig. 4: UCA element-wise SAGE estimation results Ω.

B and ∆τ represent the bandwidth and the relative delay between two paths, respectively. In

our measurement campaign, paths with propagation distance differences no less than 3 cm can

be well resolved by using the SAGE algorithm.

Fig. 4 illustrates the element-wise SAGE estimation results, Ω̂ = [Ω̂1, · · · , Ω̂P ] for the channel

measured in the LoS scenario. In practice, the path number L should be set sufficiently large

to fully extract the received power in the channel, which is evaluated as 20 in our case. It

can be observed from Fig. 4 that the MPCs are well resolved. Different propagation paths

with different trajectories are obvious by visual inspection, e.g. the LoS trajectory is smooth

and continuous with the highest power. Furthermore, the channel spatial non-stationarity across

the array elements can be clearly observed. The path strength along one trajectory may vary,

which can result in the break (“birth-death” behavior) of the trajectory in the extreme case. In

the literature, channel stationarity over the array elements is typically assumed for propagation

parameter estimation, resulting in unrealistic estimation results and increasing complexity.
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B. Trajectory identification based on the phase mode excitation

In this section, we firstly introduce the phase mode excitation technique applied for the 3D

wideband spherical propagation scenario, and the trajectory identification for the LoS path is

presented.

1) Phase mode excitation: As indicated by (8), [τ`, φ`, θ`, d`] determines the delay trajectory of

the `th propagation path in Ω. The prior knowledge of the parameters is helpful to identify the

trajectory.

The phase mode excitation technique [39], [40] have been proposed to transform the spatial-

domain array response of the UCA, i.e. Y (p, f) into the phase-mode domain so that a frequency-

invariant beamformer can be achieved for the joint delay and angle estimation. However, the

frequency-invariant beamformer is effective only for the two-dimensional (2D) propagation

scenario, i.e. with all the elevations of paths strictly limited to 90◦.

According to the Taylor expansion, (4) can be rewritten as

∆dp,` = r sin θ` cos(φ` − φp) + εp,` (9)

where εp,` is the remainder of the Taylor series introduced by the spherical wave propagation.

To begin with, let us consider the 2D propagation scenario with plane wave assumption, i.e.

θ` = 90◦ and d` = +∞ (εp,` = 0). The frequency response Hp,`(f) contributed by the `th path

at the pth Rx defined in (3) becomes

Hp,`(f) = H`(f)ej2πf
r
c

cos(φ`−φp)

= H`(f)
+∞∑

n=−∞

jnJn(2πf
r

c
)ejn(φ`−φp)

(10)

The second equality in (10) holds according to the expansion

ejβ cos γ =
+∞∑

n=−∞

jnJn(β)ejnγ (11)

where Jn(·) is the first kind of Bessel function with order n. By involving the so-called phase

mode [40], i.e. the basis function e−jmφp , and a filter Wm(f), the mth phase-mode response is
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formatted as

Hm,`(f) =
1

P

P−1∑
p=0

Hp,`(f)e−jmφpWm(f)

= H`(f)
+∞∑

n=−∞

Jn(2πf
r

c
)Wm(f)e−jnφ`

P−1∑
p=0

ej(m−n)φp

P

≈ H`(f)Jm(2πf
r

c
)Wm(f)e−jmφ`

= H`(f)e−jmφ`

(12)

The third approximation in (12) holds because

1

P

P−1∑
p=0

ej(m−n)φp = 1 (13)

holds only if n = m + P · z where z is an arbitrary integer, and Jn(2πf r
c
) decrease to near 0

when z 6= 0. The fourth equability in (12) is achieved by making

Wm(f) =
1

Jm(2πf r
c
)

(14)

The noiseless array response in the phase-mode domain reads

Y (m, f ; Θ) =
L∑
`=1

H`(f)e−jmφ` (15)

Therefore, the joint delay-azimuth estimation can be accomplished by applying the 2D fast

Fourier transform (FFT) to Y (m, f ; Θ).

However, in the realistic channel, it is not practical to assume that all the elevations of paths

are exactly 90◦. Moreover, for the large-scale antenna array, spherical wave propagation can-

not be neglected. Consequently, the bessel function part in the second step of (12) becomes

Jn(2πf r sin θ`
c

), and the summation part with respect to p in the second step of (12) becomes∑
p e

j2π
εp,`
c ej(m−n)φp . The null misalignments between Jm(2πf r

c
) and Jm(2πf r sin θ`

c
) destroys

the phase-mode transform. The additive phases caused by εp,` may also make (13) invalid. To

cope with the 3D propagation scenario with plane wave propagation, the filter

Gm(f) =
2

Jm(2πf r
c
) + J ′m(2πf r

c
)

(16)

was proposed in [21], where J
′
n(γ) represents the derivative of Jn(γ) with respect to γ. The

basic idea is to make use of the cosine-alike oscillation of bessel function Jn(γ) when γ is much

larger than n. Therefore, the denominator of the filter is approximately the envelope of Jn(γ).
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Fig. 5: Investigations for the phase mode excitation technique through simulations. (a) power

spectrum of a single spherical wave (path). (b) estimation errors of delay. (c) estimation errors

of azimuth.

In such a way that the nulls of Jn(γ) is avoided, while the amplitude is about 2 times of Jn(γ),

resulting in the numerator of (16) as 2.

Fig. 5(a) illustrates the simulated noiseless delay-azimuth power spectrum p(τ, θ) of a single path

with Θ = [15 ns, 180◦, 70◦, 5 m, 1] by applying the filter defined in (16). The other simulation

configurations are the same with that as applied in the measurement campaign. The estimated

delay and azimuth angle indicated by the spectrum maxima in Fig. 5(a) are 15 ns and 180◦,

which are identical to the set values. Note that the elevation angle and source distance cannot

be estimated in this step. In addition, it can be observed that sidelobes exist in both delay and

azimuth domain, and the power is lower than the real path power. The reasons include that i) the

null locations and the intervals between these nulls of Jm(2πf r sin θ`
c

) shift with respect to that of

Jm(2πf r
c
); ii) and that the additive spherical-wave phases are introduced. Nevertheless, the peak

of the power spectrum is able to indicate the real τ and θ of this path. To investigate the effect of
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elevation and source distance to the estimation results of delay and azimuth, Fig. 5(b) illustrates

the estimation errors of the path delay with different source distances and elevations, and Fig. 5(c)

illustrates that of azimuths. It can be observed that for the spherical wave propagations with

different elevations and source distances, phase mode excitation works well to obtain rough

estimation results of azimuth and delay for the dominant path, with low computation complexity

of 2D FFT.

2) Trajectory identification: The steps to identify the trajectory for the `th propagation path

in Ω̂−(`−1) based on the phase mode excitation are as follows, where the superscript −(` − 1)

indicates the remainder of Ω after removing the first ` − 1 path trajectories already identified,

e.g., Ω̂0 = Ω̂.

1) Reconstruct the current array output Ŷ −(`−1)(p, f) according to (6) using Ω̂−(`−1).

2) Apply the phase-mode transform to Ŷ −(`−1)(p, f) and then 2D FFT to Ŷ −(`−1)(m, f) to

obtain the angle-delay power spectrum ẑ−(`−1)(τ, φ). The azimuth φ̂` and delay τ̂` of the

`th path are obtained by checking the peak of ẑ−(`−1)(τ, φ).

3) Define the area Aθ` with the trajectory pairs (Tθ` −∆τ , Tθ` + ∆τ ), where

Tθ` = τ̂` −
r

c
sin θ` cos(φ̂` − φp) (17)

Note that d` is ignored to avoid joint 2D searching. ∆τ is aimed to tolerate the delay

variation caused by the disturbance and the ignorance of d`. As an example, Fig. 6(a)

illustrates the path areas A90◦ and A30◦ for the LoS path identification, where ∆τ is

practically set as 1
2B

. It can be observed that the LoS path trajectory is confined within

A90◦ perfectly however not in A30◦ , indicating the elevation angle is close to 90 degrees.

Hence, the area in which the `th trajectory is confined can be identified as

θ̂` = arg max
θ`

C(Aθ`) (18)

where C(Aθ`) denotes the number of array elements with propagation paths confined in

Aθ` . As an example, Fig. 6(b) illustrates the C(Aθ1) with respect to different θ1s for the LoS

path. It can be observed from Fig. 6(b) that C(Aθ1) is 720 (i.e. P ) with elevation angles

from 60◦ to 90◦. That is, by applying (18), a rough estimation or a rough initialization of

θ` can be obtained in this step. Note that due to the spatial non-stationarity, the maximum

value of C(Aθ`) can be less then the elements number P . Furthermore, it is possible that

16



Propagation delay [s]

V
ir

tu
al

R
x

in
de

x
(p

)

R
ec

ei
ve

d
po

w
er

[d
B

]

A90◦

A30◦

(a)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

θ1 [◦]

C
(A

θ
1
)

(b)

Fig. 6: Identification for the LoS path. (a) LoS path with example Aθ1 . (b) C(Aθ1) with respect

to different θ1.

for one element, more than one path can be contained in Aθ̂` . To cope with the issue, the

mean power of paths in Aθ̂` is calculated, and the path with minimal power difference

from the mean power is selected element-wise. The selected paths forming the trajectory

in Ω̂−(`−1) are denoted as Ω`.

As an example, readers can refer to the identification steps for the LoS trajectory (Ω̂1) as

illustrated in Figs. 7(a)-7(c).

C. Maximization estimation for Θ`

The rough estimation results of delay, azimuth and elevation, i.e., [τ̂`, φ̂`, θ̂`], have been obtained

in the former steps. The estimation of Θ` for the `th path include three steps as follows.

1) Reconstruct the array output Ĥ(p, f ; Θ`) contributed by this single path according to (6)

using Ω` obtained in the trajectory identification.

2) Update the estimation of [φ̂`, θ̂`, d̂`] by solving the following maximization problem

(φ̂`, θ̂`, d̂`) = arg max
φ,θ,d

vec{Ĥ(p, fk; Θ`)}Tvec{W ∗(p, fk)} (19)

where W (p, fk) is generated by using (3) with parameter set [0, φ, θ, d, 1], d is no larger

than cτ̂`, vec{·} denotes the vectorization of the argument matrix, and (·)∗ represents

17



the conjugation of the argument. Although the maximization problem is solved by 3D

searching, the searching space is heavily reduced with known prior information of τ`,

φ` and θ`. Furthermore, without delay considered, only one single frequency point fk is

selected for the maximization, which also decreases the computation load significantly.

3) Update τ̂` by solving the following maximization problem

τ̂` = arg max
τ

vec{Ĥ(p, f ; Θ`)}Tvec{W ∗(p, f)} (20)

where W (p, f) is generated by using (3) with parameter set [τ, φ̂`, θ̂`, d̂`, 1]. The maxi-

mization is achieved by 1D searching with prior information of τ`.

4) Calculate the amplitude α̂` as

α̂` =
1

CK
vec{Ĥ(p, f ; Θ`)}Tvec{W ∗(p, f)} (21)

where C is the number counted in Sect. IV-B2, i.e. C = C(Aθ̂`), and the W (p, f) here is

generated using (3) with parameter set [τ̂`, φ̂`, θ̂`, d̂`, 1].

D. Algorithm implementation

The channel parameters of multiple propagation paths are estimated through an “identification-

removing” operation. The procedure is elaborated in the pseudocodes listed in Algorithm 1.

Algorithm 1: The channel parameter Θ is estimated according to the procedure described

by the following pseudo-codes:

Input: Measured array output Y (p, f)

Output: The parameter Θ characterizing the 3D spherical propagation channel
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Fig. 7: An example plot of the algorithm implementation procedure for the first two propagation

paths.
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1 Obtain element-wise high-resolution Ω̂ from Y (p, f);

2 Let the path number ` be 1;

3 Let Θ̂ be an empty set.

4 while True

5 if ` = 1 then

6 Ω̂−(`−1) = Ω̂;

7 else

8 Ω̂−(`−1) = Ω̂−
∑`−1

n=1 Ω̂n;

9 end if

10 Obtain Ω̂` from Ω̂−(`−1) according to Sect. IV-B2;

11 Obtain Θ̂` from Ω̂` according to Sect. IV-C;

12 if C < Cs then

13 break;

14 end

15 Θ̂ = Θ̂ + Θ̂`;

16 ` = `+ 1;

17 end while

Fig. 7 exemplifies the procedure for the first two propagation paths. Note that Cs in line 12

of Algorithm 1 is the threshold for checking the reasonability of Ω̂` identified. The estimation

procedure stops if there are not enough elements with propagation paths in the current Ω̂`, where

it is considered that all the reasonable propagation paths have been identified and estimated. Fig.

8 illustrates all the Ω̂`s identified by applying Algorithm 1 to the measured array output in the

LoS scenario as illustrated in Fig. 3(a). In this case, Cs is practically chosen as 360, the half of

the UCA element number P . ∆τ is practically chosen as 1
2B

.

V. RESULTS AND REMARKS

In this section, the estimation results of the proposed algorithm are firstly presented, followed

by the remarks on the proposed algorithm.

20



Propagation delay [s]

V
ir

tu
al

R
x

in
de

x
(p

)

Fig. 8: Identified trajectories of different propagation paths. Totally 14 paths are estimated in

this case.

A. Estimation results

Fig. 9(a) and Fig. 9(b) illustrate the delay-azimuth power spectra obtained by using the proposed

algorithm and measured with the reference horn antenna, respectively, for the LoS scenario.

It can be observed that the estimated delay-azimuth power spectrum is in good consistency

with the spectrum measured by using the reference horn antenna. Fig. 9(c) also illustrates the

estimated delay-azimuth power spectrum by using the MLE algorithm proposed in [34] with

4D parameter searchings. By comparing Figs. 9(a) and 9(c), it can be observed that the two

results are very close. However, due to the fact that the channel non-stationarity across the

array elements cannot be considered in the MLE algorithm (or the SAGE algorithm), more than

one stationary propagation paths (typically with very similar geometrical parameters yet different

complex amplitudes) are estimated to mimic the spatial non-stationarity of one propagation path,

which results in more artificial paths estimated and increases the estimation complexity.

Fig. 10 illustrates the source distances for different propagation paths estimated. It can be

observed from Fig. 10 that the estimated source distances generally become larger when the

propagation distances are larger, which demonstrates the fact that the basement walls were

probably smooth and with high reflection effects.
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Fig. 9: Delay-azimuth power spectra for the LoS scenario. (a) estimation results of the proposed

algorithm. (b) measured delay-azimuth power spectrum by using the reference horn antenna. (c)

estimated by using the MLE algorithm proposed in [34].
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B. Remarks on the proposed algorithm

The proposed algorithm is essentially a HRPE algorithm based on the maximization-likelihood

principle. Compared to the other HRPE algorithms, e.g., in [12], [30], [31], [34], [41], the

proposed algorithms have the following advantages.

• The proposed algorithm is based on the array-element-wise high resolution estimation in

the delay domain as elaborated in Sect. IV-A. In this step, the high resolution ability of the

algorithm is guaranteed. Moreover, due to the fact that only delay domain is searched, the

complexity in this step is low.

• In the trajectory identification step as elaborated in Sect. IV-B, the proposed algorithm

exploits the phase mode excitation technique, the delay trajectories of propagation paths can

be identified with 2D FFT with low computation load. Note that the trajectory identification

procedure also has the effect of interference cancellation among different paths, which means

that the considerable iterations applied in [12], [30], [31], [34], [41] are no longer required.

Furthermore, the rough estimation results of delay, azimuth and elevation can be obtained.

• In the maximization estimation step as elaborated in Sect. IV-C, although a 3D and a 1D

parameter searchings are applied, the searching spaces are heavily reduced with the prior

initializations obtained in the trajectory identification. Therefore, the computation complex-

ity is decreased significantly compared to the MLE algorithm [34] with exhaustive 4D

parameter searchings. Moreover, the joint parameter searching avoids the space-alternating

operations in the SAGE algorithm [12], [30], [31], where the violation of OSM can lead to
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the convergence failure of the SAGE algorithm.

• The channel non-stationarity across the array elements is considered in (21), which is firstly

addressed in the literature for the propagation parameter estimation. The estimation results

are more realistic to reproduce the spherical propagation compared to the SAGE [12], [30],

[31] and MLE [34] algorithms where stationarity paths are assumed.

VI. CONCLUSIONS

In this contribution, a complexity-efficient high resolution parameter estimation (HRPE) al-

gorithm was proposed for the ultra-wideband large-scale uniform circular array (UCA). The

algorithm was demonstrated based on a recently conducted measurement campaign in a basement.

The delay trajectories of different propagation paths across the virtual array elements were well

observed, which can roughly indicate the channel information. The proposed HRPE algorithm

takes advantage of the prior channel information obtained in the trajectories and is capable to

involve the spatial non-stationarity of realistic channels. Investigations show that the algorithm

can obtain the high-resolution results, i.e., the delays, azimuths, elevations, source distances

and complex amplitudes for individual spherical propagation paths in the underlying mm-wave

channel. Fast initializations and effective interference cancellations reduce the computation load

heavily. Furthermore, the consideration of the channel spatial non-stationarity is helpful to

obtain more realistic results and to decrease the algorithm complexity, by avoiding the artificial

stationary paths being estimated. In addition, it is noteworthy that the basement walls have

significant reflection effects for the mm-wave channel at 28-30 GHz.
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