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Abstract

In this paper, the problem of self-organizing, correlation-aware clustering is studied for a dense

network of machine-type devices (MTDs) deployed over a cellular network. In dense machine-to-

machine networks, MTDs are typically located within close proximity and will gather correlated data,

and, thus, clustering MTDs based on data correlation will lead to a decrease in the number of redundant

bits transmitted to the base station. To analyze this clustering problem, a novel utility function that

captures the average MTD transmission power per cluster is derived, as a function of the MTD location,

cluster size, and inter-cluster interference. Then, the clustering problem is formulated as an evolutionary

game, which models the interactions among the massive number of MTDs, in order to decrease MTD

transmission power. To solve this game, a distributed algorithm is proposed to allow the infinite number

of MTDs to autonomously form clusters. It is shown that the proposed distributed algorithm converges

to an evolutionary stable strategy (ESS), that is robust to a small portion of MTDs deviating from

the stable cluster formation at convergence. The maximum fraction of MTDs that can deviate from

the ESS, while still maintaining a stable cluster formation is derived. Simulation results show that the

proposed approach can effectively cluster MTDs with highly correlated data, which, in turn, enables

those MTDs to eliminate a large number of redundant bits. The results show that, on average, using

the proposed approach yields reductions of up to 23.4% and 9.6% in terms of the transmit power per

cluster, compared to forming clusters with the maximum possible size and uniformly selecting a cluster

size, respectively.
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I. INTRODUCTION

Machine-to-machine (M2M) communications is an important component of the emerging In-

ternet of Things (IoT) system, as it enables advanced networked applications such as smart home

technologies, smart grid, healthcare, drone systems, manufacturing systems, and surveillance [2]–

[7]. Within an M2M network, a massive number of machine-type devices (MTDs) will be densely

deployed over wireless cellular networks [8]. An MTD can be a sensor, actuator, or smart meter

whose typical role is to sense or measure an environment, and transmit the collected data to

cellular base stations (BSs). MTDs enable real-time monitoring and control of any physical

environment, without direct human involvement, thus making processes more efficient and im-

proving human welfare [4], [9]. Since the number of MTDs is expected to be massive and much

larger than the number of cellular-type devices (CTDs), it is expected that a massive-scale MTD

deployment will lead to quality-of-service (QoS) degradation, increased traffic and signaling,

increased latency, and reduced reliability [4]. Therefore, deploying MTDs over cellular networks

faces many challenges ranging from network modeling to resource management, massive-scale,

access, and MTD clustering as mentioned in [2], [4], [8], and [10].

Recently, the idea of clustering MTDs into smaller groups has emerged as a promising

technique to reduce the traffic load on the cellular BS and improve spatial reuse and energy

efficiency, while reducing interference in the network, as studied in [3], [9], [11], and [12].

Existing clustering techniques for M2M communications [1], [9], [11]–[21] have focused on

clustering MTDs based on resource allocation, location, load on the random access channel

(RACH), and data correlation. Clustering has been considered in literature, as an effective

approach to alleviate the potential massive congestion caused by MTDs, as done in [13]–[15]

and [16]. These aforementioned works aim to maximize the number of MTDs that attempt to

simultaneously access the BS, while minimizing network congestion, the load on the RACH

and signaling overhead [14], [15]. In [13], an energy-efficient cluster formation (load adaptive

multiple access scheme) and cluster head selection scheme was proposed, to maximize network

lifetime in a massive M2M network. In [14], a cognitive M2M communication system for a

large number of MTDs was considered, in order to reduce congestion on the RACH, by reducing

the number of MTDs directly accessing the BS. Furthermore, the work in [15], investigated the

problem of random access contention between cooperative groups of MTDs that coordinate their
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random access channel, while taking into account energy consumption and time varying queue

length. On the other hand, clustering techniques based on the QoS requirements and locations of

MTDs, are proposed in [9], [17]–[20] and [21], in order to maximize the number of supported

MTDs. A cluster prioritization scheme for massive access management is studied in [9], where

MTDs are clustered based on QoS requirements. In [10], a distributed resource (time) allocation

scheme was proposed, to address the diverse QoS requirements in an IoT network, while taking

into account data rate of CTDs and energy consumption of MTDs. The work in [17] proposes

a self-organized cluster formation mechanism in which MTDs form clusters with neighboring

MTDs. Additionally, the work in [18] considers cluster formation based on location to the

designated cluster head and a QoS threshold, while minimizing interference in the M2M network.

A number of works such as in [18], [19], and [20] have also considered joint clustering and

resource allocation (such as power control). The goal of these works is to maximize MTD

data rate and minimize MTD transmit power, in order to reduce interference to the cellular

network and other MTDs, as well as prolonging MTD battery lifetime. The aforementioned

works consider a machine-centric clustering approach, that clusters MTDs in order to maximize

MTD data rate and the number of supported MTDs in the network, while minimizing energy

consumption. Meanwhile, in [22], the authors proposed a game-theoretic clustering algorithm

that optimizes the tradeoff between sum-rate gains and power costs.

Due to the dense deployment of MTDs in M2M networks, MTDs within close proximity will

gather correlated data, thus often sending the same information (redundant bits) to the BS [12],

[23], [24]. Hence, a data-centric clustering approach can be used to improve the data quality

sent to the BS. Existing work on clustering MTDs with respect to data correlation remains

limited. Primarily, the works in [11] and [12] have studied the possibility of MTD clustering

based on location and correlation, however, these works rely on centralized approaches that

are not practical for large-scale M2M networks. Such centralized clustering approaches can

lead to significant signaling overhead as they require gathering of global information, such

as location and data correlation factors, for a large number of MTDs. Moreover, in practice,

centralized clustering approaches are not robust to small changes in the MTD networking

environment, such as the joining of new MTDs, MTD loss of battery, or rapid fluctuations

in the sensing environment. Meanwhile, the work in [25] proposed a distributed correlation-
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aware cell association algorithm, that maximizes the information sent to the small BS, as well

as maximizing the number of assigned IoT devices to every small BS. Even though some of

the proposed works, such as, [15] and [25], consider a distributed approach, they cannot be

applied to massive M2M networks. This is due to the fact that previous works such as [15]

and [25] do not consider a massive number of MTDs, as this would cause the aforementioned

distributed algorithms to significantly increase in complexity. Indeed, existing works in [9], [11]–

[21], and [25] consider clustering a small, finite number of MTDs, which is not the case for

practical IoT scenarios in which the number of MTDs within the network is massive and nearly

infinite. Additionally, the aforementioned works are also not robust to the dynamics of a large-

scale M2M network due to the factors such as the arrival or departure of new MTDs or the

deactivation of MTDs (e.g., due to battery loss). Therefore, a distributed clustering approach for

a massive number of MTDs is needed, while ensuring low signaling overhead and robustness

for small changes in the network.

The main contribution of this paper is to address the problem of fully distributed correlation-

aware clustering for an infinite number of MTDs densely deployed in a cellular network. In

particular, we formulate the MTD clustering problem as a dynamic evolutionary game. In

this game, MTDs can self-organize in a fully distributed manner to form clusters, based on

data correlation and potential transmission power savings. Then, using stochastic geometry, we

accurately model and characterize the distance distributions between MTDs which, in turn, allows

deriving a closed-form expression for the inter-cluster interference, i.e., the interference generated

from MTDs in other clusters to a cluster head. Based on the distance distributions of MTDs

and inter-cluster interference, for the proposed evolutionary game, we derive a closed-form

expression for the utility function per cluster, as a function of MTD distance distributions, inter-

cluster interference, and cluster size. Hence, by combining both game theory, for distributed

decision making, and stochastic geometry, for deriving concrete utility functions, we analyze

the evolutionary stable state (ESS) (i.e., the equilibrium) of the proposed game. In particular,

we propose a novel, distributed algorithm that enables the MTDs to autonomously form clusters

and converge to an ESS cluster formation, that is robust to potential changes in the cluster

membership decisions of the MTDs that can occur due to the joining of new MTDs, MTD loss

of battery, or rapid fluctuations in the sensing environment. In this regard, we also derive the
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maximum portion of MTDs that can deviate from the ESS, while still maintaining a stable cluster

formation. Simulation results show how the proposed dynamic evolutionary-based correlation-

aware clustering algorithm converges to an ESS. The results also show that, the proposed

evolutionary algorithm can substantially decrease transmission power per cluster, and increases

the number of redundant bits that can be eliminated in a given cluster, compared to a pure

cluster type baseline and a uniform cluster type baseline. In addition, the results show that, as

the network density and data correlation increase, the proposed distributed algorithm determines

the number of MTDs within each cluster, based on network density and cluster radius. Moreover,

the simulation results uncover a tradeoff between cluster size and maximum transmission power

per cluster, given the network density and correlation constant. In summary, the novelty of our

contributions is outlined as follows:

• We characterize the energy consumption and radius of an MTD cluster. We also investigate

the impacts of MTD density, data correlation of MTDs, and the inter-cluster interference,

when clustering MTDs. Additionally, based on stochastic geometry, a closed-form expres-

sion for inter-cluster interference is also determined.

• Based on the derived analysis results from stochastic geometry, a distributed evolutionary

game-theoretic approach is proposed to cluster MTDs with correlated data, in order to

decrease MTD transmission power by reducing the number of redundant bits, in a massive

and locally finite M2M network.

• A fully distributed algorithm based on an evolutionary game is proposed to find the

stable cluster formation of MTDs. The robustness of the proposed distributed algorithm,

with respect to the maximum number of MTDs that can change their cluster formation,

is derived. Moreover, the accuracy of the stochastic geometry analysis as well as the

effectiveness of the game-theoretic approach are corroborated by extensive simulations.

The rest of the paper is organized as follows. In Section II, we define the system model and

problem formulation for correlation-aware clustering of MTDs. In Section III, an evolutionary

game based on data correlation and transmission energy is proposed to cluster an infinite

number of MTDs. As well as using stochastic geometry to characterize distances and inter-

cluster interference. Within Section III-B, the proposed evolutionary game stability is analyzed.

Simulation results are illustrated in Section IV. Finally, conclusions are drawn in Section V.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the uplink of a wireless cellular network having a single BS serving an infinite

number of MTDs engaged in M2M communications. All MTDs in the set M are randomly

deployed in a 2D space R2, where the location of each MTD m is denoted by ym, ∀m ∈ M,

and is based on a Poisson point process (PPP) ΦM = {ym ∈ R2|m ∈ M} with density λm.

We assume that MTDs gather data from a Gaussian random field, as this model can capture the

worst-case scenario for the number of bits needed to encode a source field [23], [24]. Thus, the

data source sm for each MTD m, is a Gaussian random variable with mean µm and variance

σ2
m [23]. Here, we use entropy to model the information of each MTD’s data. Each MTD

quantizes its continuous Gaussian data source with a sufficiently small quantization step ∆.

Hence, the entropy Hm of each MTD’s quantized data source will be given by [23]:

Hm =
1

2
log2

(

2πe

∆2
σ2
m

)

. (1)

In this network, each MTD m sends its data via a cellular link to the BS. The BS allocates

orthogonal resource blocks to each MTD for the cellular link, based on an orthogonal frequency-

division multiple access (OFDMA) system. A set Z of Z resource blocks are used for cellular

link transmission, with fixed bandwidth B Hz per resource block, during each time slot t with

a fixed duration T . Each MTD m is allocated one resource block z ∈ Z , and a transmit power

pm ∈ [0, Pmax], for cellular link transmission. The transmission power per resource block z ∈ A

that MTD m requires to send Hm bits over the cellular link during each time slot, is given by:

pm(t) =

(

BN0

gm(t)(z)

)

(

2
Hm
TB − 1

)

, (2)

where gm(t)
(z) is the channel gain of MTD m over the cellular link on resource block z; and

N0 is the noise power spectral density.

In the uplink of existing cellular networks, the number of available orthogonal resource blocks

have been designed to suit the needs of CTDs. Thus, the number of available resource blocks for

each MTD is limited, and as a result, not all MTDs will be allocated orthogonal resources for

transmission. If MTDs are unable to send their sensed data to the BS, this may lead to missing

information for particular a environment. However, due to the dense deployment of MTDs, MTDs

within close proximity will gather correlated data due to sensing the same environment [23].
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For example, sensors deployed to measure temperature in the same room, will measure very

similar readings, which is highly correlated. Hence, multiple MTDs will potentially send a large

number of redundant bits (same information) to the BS. Next, we introduce a correlation-aware

clustering scheme that will enable an infinite number of MTDs to cooperatively form clusters by

sharing their data via M2M links. Clustering allows a reduction in the number of MTDs accessing

the cellular uplink, thus saving orthogonal resources in the uplink for CTDs. Additionally, within

each cluster, MTDs can coordinate and eliminate the redundant bits of the shared data, which

means that the overall number of bits sent via the cellular link can be reduced, thus minimizing

transmission energy and improving overall system efficiency.

A. Problem Formulation

The goal of clustering in a dense M2M network is to decrease the number of redundant bits

sents to the BS, and to decrease transmission power on the cellular link, as well as to decrease

the number of MTDs transmitting to the BS. Within each cluster, an MTD is designated as a

cluster head and will relay all of the data gathered from its cluster to the BS over the cellular

link. All cluster members send their data via M2M links to the designated cluster head. Thus,

the BS needs to allocate one resource block per cluster for the cellular link, instead of one

resource block per MTD. Moreover, clustering MTDs based on data correlation also reduces

MTD transmission power consumption, and thus, energy-efficiency is increased and MTD battery

lifetime is prolonged. We assume that orthogonal resource blocks are allocated to the M2M links

in each cluster. The resource blocks of cellular links are orthogonal to M2M links. Thus, each

MTD m is allocated one resource block, and transmit power per resource block is bounded by

qm ∈ [0, Qmax], for M2M link transmission. Hence, there is no interference between any M2M

links in the same cluster, that is, no intra-cluster interference. However, M2M links in different

clusters can simultaneously reuse the same resource blocks, which causes interference to M2M

links in other clusters, that is, inter-cluster interference.

We consider a reference cluster head, MTD i located at yi, with an M2M link coverage area of

radius rn. We model the area around MTD i as a ball b(yi, rn), which forms a typical cluster Ki,n

of n MTDs, where n = ⌊λmπr
2
n⌋. Those MTDs within the ball are independently and uniformly

distributed. The maximum number of MTDs in a cluster is N , where N = ⌊λπr2N⌋, and rN

is the maximum distance from the reference cluster head i, where MTDs can have a reliable



8

b(yi, rn)

4

rn

rN

b(yj, rn)

6

MTD cluster head

MTD cluster member

M2M link
Interfering MTD

Interfering M2M link

Fig. 1: Illustration example of clustering in an M2M network.

communication with the cluster head. A typical cluster, models a finite circular area, where

MTDs within a cluster have highly correlated data. The typical cluster is defined as follows:

Definition 1. A typical cluster Ki,n is defined as a cluster centered around reference cluster

head i located at yi (the same point as the ball) and consists of n MTDs. The typical cluster

Ki,n is a subset of the set of MTDs, Ki,n ⊆ M, that covers a circular area of radius rn, with

n = ⌊λmπr
2
n⌋ MTDs.

From Definition 1, we can see that the number of MTDs within the typical cluster Ki,n is a

function of the cluster radius rn and the location of cluster head yi. We assume that the MTDs

form a collection of infinite disjoint clusters K. A cluster Ki,n ∈ K is defined as a subset of

M, where
⋃

Ki,n∈K
Ki,n = M. Fig. 1 represents an illustrative example of a ball and a typical

cluster, in the M2M network. Within the ball, we consider a typical cluster Ki,n ∈ K with cluster

size n, and a reference cluster head located at the center of the ball and the typical cluster. Note

that, the index of the typical cluster directly relates to the cluster size, that is, the number of

MTDs within the cluster including the reference cluster head. As shown in Fig. 1, MTDs outside

of the ball will cause inter-cluster interference to the reference cluster head i. As illustrated in

Fig. 1, we consider an example scenario, where cluster Ki,n has a radius rn and a maximum

cluster radius of rN . In cluster Ki,n and cluster Kj,n, MTDs 4 and 6 respectively, share the same

resource block, and MTD 6 from cluster Kj,n causes interference to cluster head i in cluster
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Ki,n.

We assume that, within any typical cluster Ki,n ∈ K during time slot T , each MTD m must be

able to send Hm bits, as given by (1), to the reference cluster head i. Therefore, the transmission

rate Rmi of the M2M link between each cluster member m ∈ Ki,n \{i} and cluster head i, must

be greater than or equal to the threshold bit rate Hm

T
, that is, ∀m ∈ Ki,n\{i} : Rmi ≥

Hm

T
. Based

on the Gaussian random field model, the collection of data streams, si = [sm]n×1, from all of the

MTDs in cluster Ki,n will follow a multi-variate Gaussian distribution. Here, MTDs within close

proximity may gather correlated data [23]. The covariance matrix of the data from the MTDs

in each cluster will be ΣKi,n
= [σml]n×n , ∀m, l ∈ Ki,n, where σml =

√

κ
κ+dml

, ∀m, l ∈ Ki,n, dml

is the distance between MTD m and l, and κ is the correlation factor. Thus, as the distance

between MTDs decreases, the covariance will increase. To model the joint information of data

within each cluster, we use the notation of a joint entropy derived in [26]. Since the number

of MTDs considered in our system model is massive and the location of MTDs are random,

deriving the exact distance between the cluster members and the cluster head can be challenging.

In order to simplify our model we assume the worst-case scenario of joint information in each

cluster, that is, we assume that the distance between each cluster member and the cluster head

is the maximum cluster radius, rn. Hence, the worst-case joint entropy HKi,n
for each cluster

will be given by [26]:

HKi,n
= Hm +Hm(n− 1)

(

1−
α

rn
c
+ 1

)

, (3)

where α = log2(e)
log2(2πe)

, c is a correlation constant, and all MTDs have the same individual entropy

Hm.

The transmission power per resource block, qmi, for MTD m in cluster Ki,n that is used to

send Hm bits over an M2M link to the reference cluster head i, is given by:

qmi(t) =

(

I−i(t)

gmi(t)

)

(

2
Hm
TB − 1

)

, (4)

where I−i(t) is the inter-cluster interference from MTDs in clusters outside Ki,n, if those MTDs

use the same resource blocks that MTDs in cluster Ki,n use to send their data to cluster head i,

thus K−i = {Kj|∀Kj ∈ K,Kj 6= Ki}. The channel gain between MTD m and MTD i is given

by gmi(t) = ξ(t)At

(

4πdmi

µ

)−ν

, where ν is the path loss exponent, dmi is the distance between
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TABLE I: Summary of the notations used throughout this work.

Notation Description

φM PPP modeling the locations of MTDs.

λm Density of φM .

φIn PPP modeling the locations of interfering MTDs.

λIn Density of φIn .

gmi(t) Channel gain power between MTD m and MTD i at time slot t.

ν Path loss exponent for all M2M and cellular links, where ν > 2.

Ki,n Typical cluster with radius rn and MTD i as the cluster head; subset of MTDs

Ki,n ⊂ M.

n Size of a typical cluster Ki,n, where n = ⌊λmπr
2
n⌋.

N Maximum number of MTDs per cluster.

rN Maximum distance from the reference cluster head i, i.e., the maximum cluster

radius.

pm; qm Transmit power via the: cellular link, pm ∈ [0, Pmax], and the M2M link, qm ∈
[0, Qmax].

Hm Individual joint entropy of MTD m.

HKi,n
Joint entropy of cluster Ki,n.

MTD m and i, µ is the wavelength of an electromagnetic wave, ξ(t) is the time-varying fading

channel attenuation, and At is the antenna gain of the transmitter and receiver. For simplicity, we

assume that the thermal noise is negligible compared to the interference and hence is ignored.

For a quick reference, the notation used in this paper is summarized in Table I.

We derive an expression for M2M link distance within the typical cluster Ki,n and the reference

cluster head i, by substituting the channel gain expression, gmi(t) into (4), and rearranging for

dmi, as follows:

qmi(t) =







I−i(t)

ξ(t)At

(

4πdmi

µ

)−ν







(

2
Hm
TB − 1

)

,

∴ dmi =
µ (qmi(t)ξ(t)At)

1
ν

4π
((

2
Hm
TB − 1

)

I−i(t)
)

1
ν

. (5)

Given (5) and assuming maximum M2M link transmission power is used qmi(t) = Qmax for

all MTDs within cluster Ki,n, the worst-case scenario for maximum M2M link distance can

be derived, which will result in maximum joint entropy. Hence, the maximum distance to

successfully send Hm bits over an M2M link between MTD m and cluster head i, is given



11

by:

Dmi =
µ (Qmaxξ(t)At)

1
ν

4π
((

2
Hm
TB − 1

)

I−i(t)
)

1
ν

. (6)

Thus, the maximum radius for reference cluster head i is rN = Dmi. The total transmission

power of a typical cluster Ki,n, can be defined as the summation of transmission powers over all

M2M links and the cellular link within cluster Ki,n. Following (2) and (4), the total transmission

power PKi,n
(t) of cluster Ki,n is given by:

PKi,n
(t) =

∑

m∈Ki,n\{i}

(

I−i(t)

gmi(t)

)

(

2
Hm
TB − 1

)

+

(

BN0

gi(t)

)(

2
HKi,n

TB − 1

)

. (7)

As the correlation between MTD data within the cluster increases, this causes the total

transmission power of the typical cluster Ki,n to also increase, which is due to the increasing

number of MTDs within the typical cluster. From (7), with decreasing joint entropy, the cellular

link transmit power will also decrease. Thus, there are many benefits, such as, reduced transmit

power per MTD and increasing redundant bits, when clustering MTDs based on correlation

in an M2M network. However, finding an optimal and centralized cluster formation for an

infinite number of MTDs in a densely deployed M2M network is challenging. Centralized

clustering methods can potentially increase the complexity and signaling overhead due to the

density of M2M networks. The signaling overhead can further increase due to the dynamics

of the MTD network that can stem from various factors, such as the joining of new MTDs,

MTD loss of battery, or rapid fluctuations in the sensing environment. However, any fully

distributed correlation-aware clustering of MTDs also depends on power allocation, location

of MTDs, and the correlation between MTD data. Thus, determining how MTDs form clusters

in a fully distributed manner, when the number of MTDs is large and their location is random,

is challenging.

Next, we propose a fully distributed correlation-aware MTD clustering framework based on

evolutionary game theory [27]–[29] for an infinite number of MTDs. Accurate modeling of

the M2M network topology becomes a key step towards meaningful performance analysis of

correlation-aware clustering. To perform such modeling, prior to formulating the game, we first

use stochastic geometry tools [30], [31] to characterize metrics, such as the distribution of
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distances between MTDs and inter-cluster interference. Then, based on these system parameters,

we propose an evolutionary game model that can effectively capture the dynamics pertaining to an

infinite number of possible MTD cluster formations. At the convergence point, an evolutionary

game is robust to potential deviations of MTDs that can result from factors such as, MTDs

leaving/entering the network, or rapid fluctuations in the sensing environment. The proposed

model based on stochastic geometry and evolutionary game theory, can help network designers

predict how design parameters, such as the density of MTDs, transmission power, resource block

bandwidth, and duration time slot, will affect the evolutionary stable clusters of MTDs.

III. CORRELATION-AWARE EVOLUTIONARY GAME IN AN INFINITE M2M NETWORK

In this section, we propose an evolutionary game [27]–[29], [32]–[35] for clustering an infinite

number of MTDs, in order to reduce transmission power for each MTD as well as the number

of redundant bits sent to the BS. This approach is fully distributed, as it allows an infinite

number of MTDs to self-organize into clusters based on increasing data correlation and reducing

transmission power. In order to define a tractable utility expression for this evolutionary game,

we first use stochastic geometry, we characterize the distribution of distances from the reference

cluster head to all cluster members. Then, we determine the distribution of the inter-cluster

interference to all cluster members, excluding the reference cluster head. Since the number of

MTDs within the network is massive, we cannot easily and accurately obtain all MTD locations

in the network. By characterizing the distance distributions between MTDs, we can precisely

analyze the data correlation within each cluster. In fact, we observe that, as the distance between

MTDs decreases, the covariance between MTD data will increase, which in turn, causes the joint

entropy of the cluster to decrease. Using this analysis, we can then derive the utility function

for our game and use it to analyze the outcome of the MTDs’ interactions.

To model the distance distribution of each cluster member in any typical cluster Ki,n to the

reference cluster head i, we consider the k-closest MTD approach, where MTD m ∈ Ki,n\{i} is

the kth closest MTD to cluster head i. Therefore, we need to “order” the distances from cluster

head i to all MTDs in cluster Ki,n, in increasing order. We define an ordered set of distances

Di = {d(k)i}k=1:n−1, by sorting dmi in ascending order, such that d(1)i ≤ d(2)i ≤ . . . ≤ d(k)i ≤

. . . ≤ d(n−1)i. Since the random variables of the sequence Di are independent and identically

distributed (i.i.d.), the probability distribution function (PDF) of the distance from the kth closest
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MTD to cluster head i, will be given by [36]:

f
(k)
Di

(d) =
(n− 1)!

(k − 1)!(n− 1− k)!
FDi

(d)k−1
fDi

(d)
(

1− FDi
(d)

)n−1−k
, (8)

where d = d(k)i, fDi
(d(k)i) =

2d(k)i
r2n

for 0 ≤ d(k),i ≤ rn, and FDi
(d(k)i) =

d2
(k)i

r2n
for 0 ≤ d(k),i ≤ rn.

Next, we characterize the distribution of the inter-cluster interference to the reference cluster

head.

The worst-case inter-cluster interference for all M2M links in cluster Ki,n is considered. We

assume that the M2M links in different clusters K−i = {Kj|∀Kj ∈ K,Kj 6= Ki} simultaneously

reuse the same resource blocks. Therefore, the distance between an interfering MTD from cluster

K−i to cluster head i ∈ Ki,n is greater than the cluster radius, rn. In the worst-case, one M2M

link in each cluster uses the same resource block, thus the number of interfering MTDs is equal

to the number of other clusters in K−i ∈ K, which is less than the total number of MTDs. If

MTDs form cluster with radius rn, the location of interfering MTDs follows PPP, ΦIn , with

density λIn = 1
πr2n

. This is due to the fact that there is one randomly deployed interferer MTD

in each cluster [30]. Based on the PPP φIn , the mean interference for a typical cluster head, is

given by [30]:

E(In) = E





∑

y∈ΦIn

qAtξ(t)

(

4π

µ

)−ν

‖y‖−ν



 = qAtξ(t)

(

4π

µ

)−ν ∫

R2\b(yi,rn)

λIn‖x‖
−νdx,

∴ E(In) = qAtξ(t)

(

4π

µ

)−ν (
1

πr2n

)
∫ ∞

rn

∫ 2π

0

r−νrdθdr, (9)

where rn is the radius of a typical cluster. Lets assume 2 < ν and 2 6= ν, then the mean

interference for a typical cluster head with radius rn, is given by [30]:

E(In) = 2qAtξ(t)

(

4π

µ

)−ν (
1

rνn(ν − 2)

)

. (10)

The mean inter-cluster interference in (10), is a function of the typical cluster radius and the

path loss exponent. As the network density increases, this causes the inter-cluster interference

to also increase due to the increasing number of MTDs in the network. Additionally, as the

radius of the typical cluster increases, this causes the inter-cluster interference to reduce, due to

reducing the number of interfering MTDs outside the cluster.
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Now, having derived the needed metrics, next, we define the notion of a cluster type that is

needed to formally define our proposed evolutionary game. Then, we use the proposed game

to study the distributed clustering problem for an infinite number of MTDs, while taking into

account MTD data correlation and transmission power.

Definition 2. A cluster type j ∈ S represents the number of MTDs within a cluster, that is, a

cluster of size j.

Thus, the proposed evolutionary game can be formally defined as follows:

Definition 3. An evolutionary game is defined by, GE = (M,S,x, u), where M is an infinite set

of MTDs (population), S is the finite set of cluster types (pure strategy set), x is the population

state, and u is the utility function of a cluster.

In our proposed evolutionary game, the finite set of cluster types for a cluster is, S =

{1, 2, . . . , N}, which denotes the set of potential cluster sizes. Note that, N = ⌊λmπr
2
N⌋ is

the maximum potential cluster size for any cluster head within the ball, with rN being the

maximum M2M range which is equal to Dmi in (6).

The population state vector x ∈ RN , where
∑

j∈S xj = 1, captures the percentage of MTDs

forming potential cluster sizes. Thus, each element xj of x represents the average percentage

of MTDs forming a cluster size j, according to Definition 2. The utility achieved by a given

cluster Ki,j at time slot t is denoted as uKi,j
(t). Note that, within the ball b(yi, rj), we consider

one cluster whose cluster head is located at yi in the network.

We need to derive a utility function that captures the average transmission power per MTD

per cluster Ki,j . The defined utility function will include two main terms. In the first term, we

model the average transmission power of M2M links across all MTDs m ∈ Ki,j \ {i} to the

reference cluster head i, as defined in (4). In the second term of the utility function, we capture

the cellular link transmit power of cluster head i to the BS, as defined in (2). Since we are

considering an infinite number of MTDs, the utility function must also take into account the

MTD distance distributions, as defined in (8), and inter-cluster interference, as defined in (10), in

order to accurately model MTD average transmission power. Thus, the closed-form expression

of the proposed utility function at time slot t, uKi,j
(t), can be derived as follows.
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Theorem 1. The closed-form expression of the utility function uKi,j
(t) when typical cluster Ki,j

chooses type j, is expressed as follows:

uKi,j
(t) =−

1

j

(

1

Atξ(t)

)(

4πrj
µ

)ν (
2 (j − 1)E(Ij)

2 + ν

)

(

2
Hm
TB − 1

)

−
1

j

(

BN0

gi

)






2

Hm+Hm(j−1)



1− α
rj
c +1





TB − 1






, (11)

where j = ⌊λmπr
2
j ⌋.

Proof: See Appendix A.

The proposed utility function (11), is the average transmission power per MTD per cluster

Ki,j selecting cluster size j, during time slot t. Depending on the cluster type of the typical

cluster, this will affect the size of the cluster and the average transmission power per MTD

per cluster. Thus, as the cluster size increases (that is, increasing the cluster type), this causes

average transmission power and signaling overhead to increase, due to the increasing number of

MTDs within the cluster sharing their data over the M2M link.

A. Dynamics of Cluster Formation

Evolutionary game theory uses biologically-inspired dynamics to model how individual MTDs

form different types of clusters (i.e., cluster of different sizes) over time [33], [34]. In our MTD

game, we assume that the percentage of MTDs that select cluster type j ∈ S is xj , where

xj ∈ [0, 1] is an element of the population state vector x.

To update the percentage of MTDs selecting cluster type j, we adopt properties from continuous-

time replicator dynamics (see [33], [34], and [37]). Replicator dynamics are used to model the

rate of cluster Ki,j selecting strategy type j from the set of cluster types S. Over time, the

MTDs in a cluster Ki,j will update their preference in x and will become more certain about

what cluster type they would prefer to form [33], [37]. In continuous-time replicator dynamics,

the rate of MTDs selecting cluster type j is proportional to the difference between the fitness of

cluster type j and the average expected fitness of the population [34], [35]. Note that, fitness of

a type is defined as the average payoff of that type, and is a function of the population state x.

We use replicator dynamics to model the evolution of MTD cluster size preferences, based on
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high data correlation and reduced transmission power [33], [34], [38]. The evolution of cluster

type j, is given by:

ẋj(t) = xj(t)(ūKi,j
(x, t)− UKi

(x, t)), (12)

where ūKi,j
(x, t) is the fitness of cluster Ki,j with size j, and UKi

(x, t) is the average expected

fitness of the population. Thus, the fitness of cluster type j, is defined as:

ūKi,j
(x, t) =

∑

j′∈S

uKi,jj′
(t)xj′(t), (13)

where uKi,jj′
(t) = uKi,j

if uKi,j
≥ uKi,j′

, or uKi,jj′
(t) = uKi,j′

if uKi,j′
> uKi,j

; xj′ is the

population state of cluster type j′ ∈ S in the evolutionary game; and uKi,j
is given by (11).

Furthermore, the average expected fitness of the population, UKi
(x, t), is given by:

UKi
(x, t) =

∑

j∈S

ūKi,j
(x, t)xj(t). (14)

The evolution of cluster type j for the MTD population in (12) can be either greater than, less

than, or equal to zero. If ẋj is greater than 0, this implies that the fitness of cluster type j is greater

than the average expected fitness of the population, and thus the percentage of the population

selecting cluster type j is increasing. If ẋj is less than 0, this indicates that the percentage of

the population selecting cluster type j is decreasing, that is, cluster type j is growing extinct.

When ẋj is equal to 0 then, we have a stationary point for the percentage of MTDs selecting

cluster type j (an evolutionary equilibrium for cluster type j). Thus, no MTD has incentive to

change their cluster type from j, as the fitness of cluster type j is equal to the average expect

fitness of the population.

To solve the proposed evolutionary game, we propose a fully distributed algorithm to find

a stable cluster formation for correlated-aware clustering in M2M communications. The pro-

posed distributed algorithm, shown in Algorithm 1, enables an infinite number of MTDs to

autonomously update their type to form the best cluster. Algorithm 1 outputs the population

state, x◦, which includes the percentage of MTDs in the population selecting a cluster type from

the strategy set.
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Algorithm 1 Evolutionary Game for Correlation-Aware Clustering in Massive M2M Network

1: Input: Network density: λm; Set of MTDs: M; Maximum radius: rN ;

2: Place a ball b(yi, rn) randomly in the network, centered at yi, i ∈ M with radius rn, where

MTD i is the cluster head.

3: Find the maximum number of MTDs, N , within the ball, given the network density λm and

radius of the ball rN , N = ⌊λmπr
2
N⌋;

4: Define the set of cluster types for a cluster as S = {1, 2, . . . , N}, and set the initial population

state for all cluster types as x(t = 0);
5: repeat

6: for cluster type j ∈ 1 . . . N do

7: Find the inter-cluster interference, E(Ij), given the network density λm and radius

of the ball rj;
8: For a cluster Ki,j that chooses cluster type j, calculate the utility function, uKi,j

(t),
as in (11);

9: For cluster type j determine the evolution of MTD preference, ẋj(t), using (12),

(13), and (14);
10: Update population state for cluster type j: xj(t+ 1) = xj(t) + ẋj(t);
11: end for

12: t = t + 1;

13: until Convergence to ESS and ẋj(t) = 0 ∀j ∈ S
14: Output: Population state, x◦ = {xj |∀j ∈ S}, that represents the formed MTD clusters.

B. Evolutionary Game Stability Analysis

To solve the evolutionary game, we consider the concept of an ESS. The ESS is robust to

a small portion ǫx ∈ (0, 1), ∀ ǫ ∈ (0, ǫx), of MTDs changing their cluster type. This change

in cluster type could be due to the joining of new MTDs, rapid fluctuations in the sensing

environment, or MTD loss of battery. The ESS is defined as follows:

Definition 4. The population state x
∗ ∈ RN is an ESS, if there exists a portion of MTDs ǫ∗j > 0

for each cluster size j ∈ S, such that for all 0 < ǫ < ǫ∗j and for all j ∈ S:

UKi
(x∗

j(t), (1− ǫ)x∗
−j(t) + ǫx′

−j(t)) > UKi
(x′

j(t), (1− ǫ)x∗
−j(t) + ǫx′

−j(t)) (15)

where x
′(t) ∈ R

N is any population state which is different from x
∗(t), i.e., x′(t) 6= x

∗(t)

and x′
j(t) is an element of x

′(t). In particular, ǫx′(t) represents portion ǫ of MTDs from the

population, that will choose a strategy from the population state x
′(t) instead of x∗(t).

The replicator dynamics in (12) capture the dynamics of distributed MTD clustering in

our proposed algorithm. Algorithm 1 converges to percentages of various cluster sizes within
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the MTD population, and if so to which percentages [39]. Next, we prove that the proposed

Algorithm 1 converges to a population state x
∗, and we find the maximum portion of MTDs, ǫ,

that may deviate from an ESS, based on Definition 4.

Theorem 2. The proposed Algorithm 1 converges to a population state, x∗, which is an ESS

for the proposed evolutionary correlation-aware clustering game in GE. At the convergence, the

maximum portion of MTDs that can deviate from ESS, ǫ∗, is given as follows:.

ǫ∗ = min
j∈S

1

2ūKi,j
(x∗, t)− uKi,j

(x∗, t)
. (16)

Proof: See Appendix B.

IV. SIMULATION RESULTS

For our simulations, we consider a single BS located at the center of a circular area with a

2 km radius. We consider a Poission-based distribution for distributing MTDs around a randomly

placed MTD within the network. We focus on a small section of the circular area around the

reference cluster head, that has a 500 m radius. The BS allocates orthogonal resource blocks to

cluster heads that they can use to send the data of the clusters to the BS. Within each cluster, each

MTD is also allocated an orthogonal resource block, to send its data to the cluster head. However,

M2M links in different clusters can simultaneously reuse the same resource blocks, resulting in

inter-cluster interference. Each resource block has a fixed bandwidth of B = 180 kHz, and the

maximum transmission power over the cellular link is Pmax = 35 dBm and the M2M link is

Qmax = 20 dBm. The duration of each time slot t is fixed to T = 1 ms. We consider a carrier

frequency of 2 GHz. Furthermore, we assume MTDs are static, where the cellular and M2M

links have a path loss exponent of 2.5. The cellular and M2M links have a transmit and receive

antenna gain of 9.54 dB. The noise power spectral density over a cellular link is −176 dBm/Hz.

The data source of each MTD m has µm = 0 and σm = 10. The quantization step for each

MTD is set to ∆ = 1
256

[23].

The evolutionary game is evaluated using Monte Carlo simulations with varying MTD density

λm, path loss exponent ν, and correlation constant c. We compare our proposed evolutionary

game at convergence to two benchmarks, which are: (i) a pure cluster type, where the population

of MTDs prefer to select cluster type N with preference 1; and (ii) uniform cluster type, where
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Fig. 3: Simulated and analytical M2M link

transmit power as a function of MTD density,

λm, where c = 6.

an equal percentage of the MTD population are uniformly distributed across all cluster types,

that is, each cluster type has preference 1
N

.

Fig. 2 shows the inter-cluster interference for different network densities and path loss ex-

ponents. From this figure, we can see that the analytical results derived using (10) closely

match the corresponding simulation results. Also, in Fig. 2, we observe that, as the network

density increases, this causes the inter-cluster interference to increase, due to the ball radius, rN ,

decreasing as shown in Fig. 6. Furthermore, by increasing the path loss exponent from ν = 2.5

to ν = 3 the inter-cluster interference will be reduced due to the higher propagation losses.

Fig. 3 shows the M2M link transmit power per cluster for different network densities and path

loss exponents. From the figure, we can see that the analytical results derived using (11) closely

match the corresponding simulation results. Also, in Fig. 3, we observe that, as the network

density increases, this causes the M2M link transmit power per cluster to increase, due to the

increasing interference as shown in Fig. 2. Furthermore, by increasing the path loss exponent

from ν = 2.5 to ν = 3 the M2M link transmit power per cluster will also be reduced due to the

higher propagation losses.

In Fig. 4, we show the probability density function (PDF) of MTD preference for forming

certain cluster sizes within the ball, under different path loss exponents, ν. We observe that, as

the path loss exponent increases, the maximum preference of MTDs forming a particular cluster
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Fig. 4: Percentage of MTDs forming a particular cluster size as a function of path loss

exponents, ν, where density of MTDs is λm = 0.09 and c = 6.

size is the same. As the path loss exponent increases, this causes bad channel modeling over the

cellular and M2M links, and thus, causes MTDs to prefer to form smaller clusters. We can see

that, in our proposed evolutionary algorithm, MTDs prefer to form a cluster of size 5 for 8.8%

of the time for ν = 2.5, whereas MTDs prefer to form a cluster of size 5 for 6.9% of the time,

for ν = 3. Overall, as the path loss exponent increases, MTDs prefer to form larger clusters.

Fig. 5 shows the probability density function (PDF) of MTD preference for forming certain

cluster sizes within the ball, under different network densities, λm, and correlation constants, c.

We observe that, as the network density and correlation constant increase, the MTDs’ preferences

for forming particular cluster sizes does not change significantly. This is due to the fact that

the maximum radius of the ball, defined in (6), is a function of MTD density. As illustrated in

Fig. 6, the radius of the ball changes according to the density, thus maintaining the number of

MTDs within the ball consistent. Furthermore, we observe that, in the proposed evolutionary

algorithm, MTDs prefer to form a cluster of size 3 for 13.1% of the time for c = 0.5 and

λm = 0.09, whereas MTDs prefer to form a cluster of size 5 for 8.2% of the time for c = 30

and λm = 0.09. As the correlation constant increases within the cluster, MTDs prefer to form

slightly larger clusters. The results also show that, in the proposed evolutionary algorithm, MTDs

prefer to form a cluster of size 3 for 19.1% of the time for λm = 0.36 and c = 6, whereas MTDs

prefer to form a cluster of size 5 for 8% of the time for λm = 0.045 and c = 6.
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Fig. 7 shows the average transmission power per MTD per cluster over time, under different

correlation constants. In this figure, we can see that any increase in the correlation constant will

lead to a decrease in the average transmission power per MTD per cluster, due to the increase in

data correlation within the cluster. The proposed evolutionary algorithm converges to an ESS at

t = 1000 for all correlation constants. Over time, the proposed evolutionary algorithm converges

to an average transmit power per MTD of 11.5 dBm for c = 0.5, 11.18 dBm for c = 6, and

11.14 dBm for c = 30.

Moreover, in Fig. 8, we show the total transmit power per cluster at convergence, under

different network densities and correlation constants. We observe that, as the network density

and correlation constant increase, the cluster size and data correlation will increase. As cluster

size and data correlation increase, the total transmit power per cluster will also increase. We

compare the proposed evolutionary-based correlation aware clustering algorithm for different

correlation constants to the singleton scenario, as well as the two benchmarks. The singleton

scenario, assumes all MTDs within the ball transmit their own data via the cellular link to the

BS, thus no clustering within the ball. On average, the transmit power per cluster is reduced of

around 20.7% for c = 0.5, 18.4% for c = 6, and 18.1% for c = 30, compared to the singleton

scenario. The proposed evolutionary algorithm decreases the transmission power per cluster of

around 28.5% for c = 0.5, 26.4% for c = 6, and 26.2% for c = 30, compared to the pure cluster
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MTDs is λm = 0.09 and ν = 2.5.

0.045 0.09 0.18 0.36
Density of MTDs

15

20

25

30

35

40

45

T
ot

al
 tr

an
sm

it 
po

w
er

 p
er

 c
lu

st
er

 (
dB

m
)

ESS c = 0.5
ESS c = 6
ESS c = 30
ESS c = 0.5 singleton scenario
Pure (N) c = 0.5
Pure (N) c = 30
Uniform (1/N) c = 0.5
Uniform (1/N) c = 30

Fig. 8: Total transmit power per cluster as a

function of MTD density, λm, where ν = 2.5.

type benchmark for c = 0.5, whereas transmission power per cluster decreases of around 24.9%

for c = 0.5, 22.7% for c = 6, and 22.4% for c = 30, compared to the pure cluster type benchmark

for c = 30. On the other hand, the proposed evolutionary algorithm also decreases transmission

power per cluster of around 15.9% for c = 0.5, 13.5% for c = 6, and 13.2% for c = 30,

compared to the uniform cluster type benchmark for c = 0.5, whereas transmission power per

cluster decreases around 12% for c = 0.5, 9.5% for c = 6, and about 9.2% for c = 30, compared

to the uniform cluster type benchmark for c = 30. On the average, the proposed evolutionary

algorithm minimizes transmit power by 23.4% and 9.6% across all correlation constants and

network densities, compared to the pure cluster type benchmark and the uniform cluster type

benchmark respectively.

Fig. 9 shows the average number of redundant bits per cluster, for different network densities

and correlation constants. The average number of redundant bits per cluster, is the amount of

bits that could be removed by the cluster head, before transmitting the cluster data to the BS.

Thus, decreasing network density and increasing the correlation constant, as in Fig. 9, leads to

an increase in data correlation, cluster size, and the number of redundant bits. On the average,

in Fig. 9, the proposed evolutionary-based correlation aware clustering algorithm increases the

number of redundant bits by more than double, that is, 43.6 %, when increasing the correlation



23

0.045 0.09 0.18 0.36
Density of MTDs

0

50

100

150

200
N

um
be

r 
of

 r
ed

un
da

nt
 b

its
 p

er
 c

lu
st

er
ESS c = 0.5
ESS c = 6
ESS c = 30
Pure (N) c = 0.5
Pure (N) c = 30
Uniform (1/N) c = 0.5
Uniform (1/N) c = 30

Fig. 9: Number of redundant bits per cluster

as a function of MTD density, λm, where

ν = 2.5.

0.045 0.09 0.18 0.36
Density of MTDs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ax

im
um

 p
er

ce
nt

ag
e 

of
 d

ev
ia

tin
g 

M
T

D
s 

(%
)

ESS c = 0.5
ESS c = 6
ESS c = 30

Fig. 10: Maximum percentage of deviating

MTDs from ESS as a function of MTD
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TABLE II: Simulation analysis for Fig. 9

ESS Algorithm Pure c = 0.5 Pure c = 30 Uniform c = 0.5 Uniform c = 30
c = 0.5 −36.5% −71.6% −0.04% −43.6%

c = 6 15% −52.7% 77.2% −6.1%

c = 30 24.3% −49.6% 90.8% 0%

constant from c = 0.5 to c = 30. On the average, the proposed evolutionary correlation-aware

clustering algorithm percentage comparisons to the pure cluster type benchmark and uniform

cluster type benchmark, are outlined in Table II. As shown in Fig. 9 and Table II, the pure

benchmark with correlation constant c = 30 maximizes the number of redundant bits per cluster

across all network densities, as this benchmark considers all MTDs preferring to form the

maximum possible size cluster within the ball. Thus, considering the results of Figs. 7 and

8, both benchmarks yielded a larger transmit power and number of redundant bits per cluster,

compared to the proposed distributed algorithm. However, both benchmarks require a centralized

approach in order to achieve these results, and those benchmarks are not robust to stochastic

changes in the M2M network environment.

In Fig. 10, we show the maximum percentage of deviating MTDs at an ESS for our proposed

evolutionary game, under different network densities, λm, and correlation constants, c. As the

density and correlation constant increase (that is, as the network becomes denser and data in the

cluster becomes more correlated) the maximum percentage of deviating MTDs also increases. For
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a correlation constant, c = 0.5, when the network density is λm = 0.045 the maximum portion of

MTDs that will deviate due to additional deployment of MTDs or MTD loss of battery, is about

0.6%. However, as the density of the network increases to λm = 0.36, the maximum percentage

of MTDs that will deviate is about 0.92%. Therefore, at the ESS, as the network becomes denser

and more correlated, MTDs have more options to deviate compared to when the network density

is sparse. Additionally, when the network becomes more correlated, the maximum percentage

of MTDs that may deviate saturates when the network density increases.

Fig. 11 shows the average transmit power per cluster as a function of cluster size, for different

network densities. We observe an increasing relationship between cluster size and transmit power

per cluster. Depending on network density, the potential cluster size changes, which is due to

the changing of the ball radius with respect to the network density. As the network density

decreases, the ball radius will also decrease, leading to an increase in the potential number of

MTDs per cluster. On average, in Fig. 11, the proposed evolutionary-based correlation aware

clustering algorithm has a maximum transmit power per cluster of 31.2 dBm for a maximum

cluster size of 45 for λm = 0.045, whereas for λm = 0.18 the proposed game has a maximum

transmit power per cluster of 25.9 dBm for a maximum cluster size of 20.

Fig. 12 shows the average transmit power per cluster as a function of cluster size, for different

correlation constants. We observe an increasing relationship between cluster size and transmit
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power per cluster size, that is similar to the one shown in Fig. 11. We observe that, as the

correlation constant increases, the potential cluster sizes do not change, which is again due to

the ball radius adapting to the changes in the network. On average, in Fig. 12, the proposed

evolutionary algorithm has a maximum transmit power per cluster of 29.1 dBm for a maximum

cluster size of 28 for c = 0.5, whereas for c = 30 the proposed game has a maximum transmit

power per cluster of 27.4 dBm for a maximum cluster size of 28.

V. CONCLUSION

In this paper, we have proposed a novel distributed correlation-aware clustering scheme for

reducing the number of redundant bits being set to the BS, as well as reducing transmission

power for each MTD in a massive and locally finite M2M network. In the proposed model,

MTDs self-organize in a fully distributed manner to form cluster, based on data correlation and

potential transmission power savings. We have modeled the problem using evolutionary game

theory and stochastic geometry. Stochastic geometry has been used to accurately model and

characterize the distance distributions between MTDs, in order to derive a closed-form expression

for inter-cluster interference. Additionally, stochasic geometry has also been used to derive

average power consumption per cluster, as a function of MTD location, cluster size, and inter-

cluster interference. Based on the evolutionary game, we have proposed a distributed clustering

algorithm, in which MTDs autonomously seek to minimize the average MTD transmission power

per cluster. We have shown that the proposed distributed algorithm converges to a stable state,

that is, an ESS which is robust to a small portion of MTDs deviating from the stable cluster

formation. Moreover, we have also derived a maximum portion of MTDs that can deviate from the

ESS, while still maintaining a stable cluster formation. Simulation results show that, the average,

the proposed evolutionary algorithm decreases transmission power per cluster, and increases the

number of redundant bits that can be eliminated in a given cluster.

APPENDIX

A. Proof of Theorem 1

The utility function uKi,j
(t) of typical cluster Ki,j choosing type j, is expressed as follows:

uKi,j
(t) = −

1

j

j−1
∑

k=1

∫ rj

0

(

E(Ij)

gki

)

(

2
Hk
TB − 1

)

f
(k)
Di

(r)dr −
1

j

(

BN0

gi

)(

2
HKi,j

TB − 1

)

. (17)
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In (17), there is a tradeoff between cluster size and transmission power for MTDs. Thus, as

the cluster size increases, the transmit power per cluster also increases, due to the increasing

number of MTDs. The proposed utility function in (17) captures the average transmission power

for all MTDs across the M2M and cellular links within the cluster, sending all the gathered data

of the cluster. From (3), we can rewrite (17) as follows:

uKi,j
(t) =−

1

j

j−1
∑

k=1

∫ rj

0

(

E(Ij)

(

4πr

µ

)ν)
(

2
Hk
TB − 1

)

f
(k)
Di

(r)dr−

1

j

(

BN0

gi

)



2

Hm+Hm(j−1)

(

1− α
rj
c +1

)

TB − 1



 . (18)

The utility function in (18) for a given cluster Ki,j , is a function of the cluster radius rj and

the cluster type j, where j is equal to the cluster size, j = Ki,j . Furthermore, from (8) and

(10), we can rewrite the utility function (18) of cluster Ki,j choosing type j as a closed-form

expression, as follows:

uKi,j
(t) =−

1

j

(

4π

µ

)ν

E(Ij)
(

2
Hm
TB − 1

)

j−1
∑

k=1

(j − 1)!

(k − 1)!(j − 1− k)!

∫ rj

0

2rν+1

r2j

(

r2

r2j

)k−1

×

(

1−
r2

r2j

)j−1−k

dr −
1

j

(

BN0

gi

)






2

Hm+Hm(j−1)



1− α
rj
c +1





TB − 1






. (19)

To further simplify (19), if r2

r2j
= a, then dr =

rjda

2a
1
2

and r = rja
1
2 . Thus:

∫ rj

0

2rν+1

r2j

(

r2

r2j

)k−1(

1−
r2

r2j

)j−1−k

dr =

∫ 1

0

2arν−1
j a

ν−1
2 ak−1 (1− a)j−1−k rjda

2a
1
2

(20)

∴ = rνj

∫ 1

0

ak+
ν−2
2 (1− a)j−1−k

da.

Since
∫ rj

0
2rν+1

r2j

(

r2

r2j

)k−1 (

1− r2

r2j

)j−1−k

dr =
rνj Γ(j−k)Γ(k+ v

2
)

Γ(j+ v
2
)

, where Γ(·) is the Gamma function,

and j and k are integers, such that j > k, and 2k + ν > 0 where ν > 2 and ν is not an integer.

Thus, (19) can be rewritten as:

uKi,j
(t) = −

1

j

(

4π

µ

)ν

E(Ij)
(

2
Hm
TB − 1

)

j−1
∑

k=1

(j − 1)!

(k − 1)!(j − 1− k)!

rνjΓ(j − k)Γ(k + ν
2
)

Γ(j + ν
2
)

−
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1

j

(

BN0

gi

)






2

Hm+Hm(j−1)



1− α
rj
c +1





TB − 1






. (21)

Since path loss, ν, is not always an integer we cannot express (21) as a function of factorials,

thus we can further simplify (21) in terms of the Γ function, given that Γ(n) = (n − 1)!,

Γ(n + 1) = nΓ(n), and (n − 1 −m)! = Γ(n −m), where n and m are positive integers. (21)

can be rewritten as:

uKi,j
(t) =−

1

j

(

4πrj
µ

)ν

E(Ij)
(

2
Hm
TB − 1

)

j−1
∑

k=1

Γ(j)Γ(k + ν
2
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−

1
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gi

)






2

Hm+Hm(j−1)
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1− α
rj
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TB − 1






. (22)

Therefore, by deriving the closed-form expression of the summation in (22),
∑j−1

k=1

Γ(j)Γ(k+ ν
2
)

Γ(k)Γ(j+ ν
2
)
=

2(j−1)
2+ν

, we can find the closed-form expression of (17), as defined in (11).

B. Proof of Theorem 2

Since the set of cluster types in game GE is finite, the replicator dynamic will converge to the

steady state which is the (symmetric) mixed strategy Nash equilibrium of GE [39]. Let x∗ be the

converged population state of the replicator dynamic from proposed Algorithm 1. Following (12),

at the converged population state of proposed Algorithm 1, we have:

∂ẋ∗
j (t)

∂x∗
m(t)

=











ūKi,j
(x∗, t)− UKi

(x∗, t) +
(

∂ūKi,j
(x∗,t)

∂x∗
j (t)

−
∂UKi

(x∗,t)

∂x∗
j (t)

)

x∗
j , for j = m

(

∂ūKi,j
(x∗,t)

∂x∗
m(t)

−
∂UKi

(x∗,t)

∂x∗
m(t)

)

x∗
m, for j 6= m

(23)

Based on (12), at the convergence, for any 0 < x∗
j (t), ūKi,j

(x∗, t)−UKi
(x∗, t) = 0. Moreover,

∂ūKi,j
(x∗,t)

∂x∗
j (t)

= uKi,j
,
∂UKi

(x∗,t)

∂x∗
j (t)

= ūKi,j
(x, t)+uKi,j

(x, t)x∗
j +

∑

n∈S\{j} uKi,nj
(x, t)x∗

n,
∂ūKi,j

(x∗,t)

∂x∗
m(t)

=

uKi,jm
, and

∂UKi
(x∗,t)

∂x∗
m(t)

= ūKi,m
(x, t) + uKi,jm

(x, t)x∗
m +

∑

n∈S\{m} uKi,jn
(x, t)x∗

n . Therefore, (23)

can be rewritten as follows:

∂ẋ∗
j (t)

∂x∗
m(t)

=
(

uKi,jm
(x∗, t)− 2ūKi,m

(x∗, t)
)

x∗
m. (24)

Since x∗ is mixed strategy Nash equilibrium, i.e., uKi,m
(x∗, t) ≤

∑

j′∈S uKi,mj′
(t)x∗

j′ , and based
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on (13) ūKi,m
(x∗, t) =

∑

j′∈S uKi,mj′
(t)x∗

j′ , and thus,
∂ẋ∗

j (t)

∂x∗
m(t)

< 0. Consequently, the convergence

state of the proposed algorithm, and specifically the steady state of the replicator dynamic in

(12) is asymptotically stable. Since steady state of the replicator dynamic is an asymptotically

stable state in our problem, then the proposed Algorithm 1 will converge to ESS [39]. This

completes the proof.

We assume x
ǫ is a preference profile vector, where ǫ potion of MTDs deviate while the

remaining 1 − ǫ potion of MTDs choose the converged population state x
∗. Let xǫ

j = x∗
j +

ǫj
∂ẋj

∂xj
(x∗). Since, 0 ≤ xǫ

j , we have:

|ǫj | ≤ 1, ∀j ∈ S, (25)

∑

j∈S

ǫj = 0, (26)

∴ |ǫj| ≤
1

2ūKi,j
(x∗, t)− uKi,j

(x∗, t)
∀j ∈ S. (27)

To hold the above inequalities, the maximum value of ǫ is given by (16).
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