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Optimal Caching Designs for Perfect, Imperfect

and Unknown File Popularity Distributions in

Large-Scale Multi-Tier Wireless Networks

Chencheng Ye, Ying Cui, Yang Yang and Rui Wang

Abstract

Most existing caching solutions for wireless networks rest on the ideal assumption that the file

popularity distribution is perfectly known. In this paper, we consider optimal random caching designs

for perfect, imperfect and unknown file popularity distributions in a large-scale multi-tier wireless

network. First, in the case of perfect file popularity distribution, we formulate the successful transmission

probability (STP) optimization problem, which is nonconvex. We propose an efficient parallel iterative

algorithm to obtain a stationary point based on parallel successive convex approximation (SCA). Then,

in the case of imperfect file popularity distribution, we formulate the worst-case STP maximization

problem. To solve this challenging robust optimization problem, we transform it to an equivalent

complementary geometric programming (CGP), and propose an efficient iterative algorithm to obtain a

stationary point based on SCA. To the best of our knowledge, this is the first work explicitly considering

the estimation error of file popularity distribution in the optimization of caching design. Next, in the case

of unknown file popularity distribution, we formulate the stochastic STP (i.e., the STP in the stochastic

form) maximization problem. This is a challenging nonconvex stochastic optimization problem, and

we develop an efficient iterative algorithm to obtain a stationary point based on stochastic parallel

SCA. As far as we know, this is the first work considering stochastic optimization in a large-scale

wireless network. Finally, by numerical results, we show that the proposed solutions achieve notable

gains over existing schemes in all three cases, and reveal the values of the robust caching optimization

and stochastic caching optimization in the cases of imperfect file popularity distribution and unknown

file popularity distribution, respectively.
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I. INTRODUCTION

The rapid proliferation of smart mobile devices has triggered an unprecedented growth of the

global mobile data traffic. Caching content closer to end users, e.g., at base stations (BSs) [1]–

[10] or even at end users [11], [12], has been proposed as an effective way to support the dramatic

traffic growth, by reducing the distance between popular contents and requesters, and alleviating

the backhaul load. In addition, caching has also been jointly designed with multicast [5], [7],

[10] and cooperation [1], [2]. In this paper, we focus on caching at BSs, and a large body of

recent research would be out of the scope of this paper.

Caching in single-tier wireless networks has been actively studied [3]–[5]. Specifically, in [3],

the authors consider the optimal caching design and transmission strategy to minimize the

required link capacity in a square grid wireless network. In [4] and [5], the authors consider

random caching at BSs, analyze and optimize the hit probability [4] and the successful transmis-

sion probability (STP) [5] in large-scale wireless networks that capture the stochastic nature of

geographic locations of BSs and users.1 As caching can successfully alleviate the urgent backhaul

requirement for small cells, a significant amount of research effort has been devoted to optimal

caching design in multi-tier wireless networks [6]–[10]. For instance, in [6], the authors consider

coded and uncoded caching at small BSs to minimize the expected downloading time in a macro

cell with multiple small BSs and users at fixed locations. In [7]–[10], the authors consider hybrid

caching [7] and random caching [8]–[10] in large-scale multi-tier wireless networks, and focus

on the analysis and optimization of the STP. Specifically, in our previous work [7], we obtain

optimal hybrid caching design for a two-tier wireless network. In [8] and [9], the authors obtain

optimal caching design for a multi-tier network in the case of uniform signal-to-interference

ratio (SIR) threshold for all users. In the general case of arbitrary SIR thresholds for users,

the optimization problem is nonconvex, and in [9], an optimal caching solution of a simplified

convex problem is used as a sub-optimal solution of the original nonconvex problem. In our

previous work [10], a stationary point of the nonconvex problem is obtained only for a two-

tier wireless network. Note that most existing works on caching [1]–[12] assume that the file

popularity distribution is perfectly known. In practice, however, such an assumption cannot be

reasonably justified [14].

1The stochastic network model is a widely used tractable model that allows to study the average behavior of a network using

mathematical tools from stochastic geometry and is about as accurate as the standard grid model, when compared to an actual

network [13].
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Some recent works consider caching design in the case that the file popularity distribution

is not known and only instantaneous file requests from users can be observed [15]–[24]. These

works generally fall into two categories. One category adopts two-stage methods for caching

design in the case of unknown file popularity distribution [15]–[19]. Specifically, in the first

stage, the file popularity distribution is estimated based on historical file requests, via various

learning approaches; in the second stage, caching schemes are proposed based on the estimated

popularity distribution. To be specific, in [15] and [19], the file popularity distribution is estimated

using transfer learning [15] and file feature space partitioning [19]. Based on the estimated file

popularity distribution, the authors consider caching the most popular files, and analyze the

backhaul offloading [15] and cache hit [19]. In [17], the request frequency for each file obtained

from historical file requests is considered as the popularity of the file, and the performance

gap for minimizing the offloading time caused by the estimation error is analyzed. In [18],

the file popularity distribution is estimated by learning user preferences via probabilistic latent

semantic analysis, and a greedy algorithm is proposed to obtain a caching solution of the

offloading probability maximization problem (under the estimated file popularity distribution)

with performance guarantee. In [16], given apriori information on the file popularity distribution,

the file request rate is estimated using Bayesian framework, and an asymptotically optimal policy

is proposed to maximize the hit probability (under the estimated file popularity distribution). Note

that these works [15]–[19] consider either simple caching design without performance guarantee,

such as caching the most popular files at each BS [15], [19], or optimization-based caching design

obtained by optimizing simple performance metrics that may not fully reflect natures of wireless

networks (such as fading [17] and stochastic locations of BSs and users [16], [18]). In addition,

note that [15]–[19] fail to consider estimation errors in designing caching schemes.

The other category adopts single-stage methods for caching design [20]–[24] in the case of

unknown file popularity, where caching solutions are gradually updated while accumulating file

requests using stochastic optimization [20] or reinforcement learning [21]–[24]. Compared with

two-stage methods, the caching solutions obtained by single stage methods can be continuously

improved as new file requests are observed. Specifically, in [20], the authors optimize power

control and caching for video streaming in a multi-cell multi-user MIMO network using tech-

niques for stochastic optimization. In [21] and [22], the authors formulate the optimal caching

design problem for a single-cell wireless network [21] and the optimal cooperative caching

design problem for a multi-cell wireless network [22], and develop low-complexity algorithms
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to obtain approximate solutions using results for multi-armed bandit problems. In [23] and [24],

the authors formulate the dynamic optimal caching design problem for a single-cell wireless

network [23] and a multi-cell wireless network [24], and develop approximate solutions using

Q-learning techniques. However, the fixed network topologies considered in [20]–[24] cannot

fully capture the geographic features of the locationsof BS and users. In addition, the caching

solutions in [20]–[24] are for one BS [21], [23] or a single-tier of BSs [20], [22], [24].

Therefore, further studies are needed to optimize caching design in multi-tier wireless networks

when perfect file popularity distribution is not known. In this paper, we consider optimal random

caching design in three cases, i.e., the case of perfect file popularity distribution (where the file

popularity distribution has been estimated, and the estimation error is negligible), the case of

imperfect file popularity distribution (where the file popularity distribution has been estimated,

and a deterministic bound of the estimation error is known) and the case of unknown file

popularity distribution (where there is no prior information of the file popularity distribution,

but instantaneous file requests from some users can be observed over time), in a large-scale

multi-tier wireless network. Our main contributions are summarized below.

• In the case of perfect file popularity distribution, we formulate the STP maximization

problem, which is nonconvex with a complicated objective function. We propose an efficient

parallel iterative algorithm to obtain a stationary point based on parallel successive convex

approximation (SCA) [25]. Specifically, by carefully designing an approximation function

for each tier, we obtain closed-form optimal solutions for the approximate functions of all

tiers at each iteration, and hence can significantly reduce the computational complexity and

improve the convergence speed of the iterative algorithm.

• In the case of imperfect file popularity distribution, we formulate the worst-case STP (over

all possible values of the true file popularity distribution) maximization problem. This is

a challenging robust optimization problem which does not lie in the category of convex-

concave games that can be easily solved. We transform it to an equivalent complementary

geometric programming (CGP) and propose an efficient iterative algorithm to obtain a

stationary point using SCA [26]. Note that this case corresponds to that considered in the

second stage of the two-stage methods proposed in [15]–[19]. But the essential difference

is that we explicitly consider the estimation error of file popularity distribution in the

optimization of caching design.

• In the case of unknown file popularity distribution, we formulate the stochastic STP (i.e.,
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the STP in the stochastic form) maximization problem. This is a challenging nonconvex

stochastic optimization problem, and we develop an efficient parallel iterative algorithm to

obtain a stationary point based on stochastic parallel SCA [27]. Specifically, by carefully

designing an approximation function for each tier, we obtain closed-form optimal solutions

for the approximate functions of all tiers at each iteration, make full use of instantaneous

file requests from users at each slot, and significantly improve the convergence speed of the

iterative algorithm. Note that this case corresponds to that considered in the single-stage

methods proposed in [20]–[24]. The key difference is that we consider stochastic optimiza-

tion in a large-scale wireless network which captures the channel fading, interference and

stochastic nature of wireless networks.

• Finally, by numerical simulations, we show the convergence of the proposed solutions. We

also show that the proposed solutions achieve notable gains over existing schemes in all

three cases.

II. SYSTEM MODEL

A. Network Model

In this part, we first elaborate on the network model which extends those in [8]–[10] in the

sense that besides perfect file popularity distribution, it also models imperfect and unknown

file popularity distributions. We consider a large-scale M-tier network consisting of M tiers

of BSs, where M ≥ 2,2 as shown in Fig. 1. The locations of the BSs in tier m are spatially

distributed as an independent homogeneous Poisson point process (PPP), denoted as Φm, with

density λm, for all m ∈ M , {1, 2, . . . ,M}. The locations of the users are also distributed as

an independent homogeneous PPP Φu. Consider a discrete-time system with time being slotted.

Let t ∈ {1, 2, . . . } denote the slot index. Each BS in tier m has one transmit antenna with fixed

transmission power Pm. Each user has one receive antenna. All BSs are operating on the same

frequency band and each BS adopts an orthogonal transmission mechanism over frequency or

time at each slot. Both path loss and small-scale fading are considered: for path loss, a transmitted

signal from either tier with distance D is attenuated by a factor D−α, where α > 2 is the path loss

exponent [7]–[10]; for small-scale fading, at each slot, Rayleigh fading channels are adopted.

2Note that for M = 1, the case of perfect file popularity distribution has been studied in our previous work [5], and the cases

of imperfect and unknown file popularity distributions can be easily investigated following the results for M ≥ 2 in this paper.
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Since a multi-tier network is primarily interference-limited, we ignore the thermal noise for

simplicity [9].

Let N , {1, 2, · · · , N} denote the set of N files in the M-tier network. For ease of illustration,

as in [6]–[10], [15], assume that all files have the same size.3 At each slot, a user requests at

most one file at random. Let πs(t) ∈ {0} ∪ N denote the file request status of user s ∈ Φu at

slot t ∈ {1, 2, . . . }, where πs(t) = 0 if user s does not request any file and πs(t) = n ∈ N

if user s requests file n. For ease of analysis, assume πs(t), s ∈ Φu, t ∈ {1, 2, . . . } are i.i.d.

with respect to s and t [7]–[10], [15].4 Denoted an , Pr[πs(t) = n|πs(t) 6= 0] ∈ [0, 1], s ∈ Φu,

n ∈ N , where
∑

n∈N an = 1. Thus, a , (an)n∈N represents the file popularity distribution,

which usually evolves at a slower timescale. In this paper, we consider the following three cases

of file popularity distribution.

Perfect file popularity distribution: In this case, we assume that the file popularity distribution

has been estimated by some learning methods, and the estimation error is negligible. That is,

the exact value of a is known.

Imperfect file popularity distribution: In this case, we assume that the file popularity dis-

tribution has been estimated by some learning methods, and a deterministic bound of the

estimation error is known. Note that this case corresponds to that considered in the second

stage of the two-stage methods proposed in [15], [17], [18]. Let â , (ân)n∈N denote the

estimated file popularity distribution, and let ∆ , (∆n)n∈N denote the estimation error. Assume
∑

n∈N ân = 1,
∑

n∈N ∆n = 0, and |∆n| ≤ εn for some known εn > 0, for all n ∈ N , which are

usually satisfied for effective learning methods. The (true) file popularity distribution is given

by a = â+∆, and satisfies a ∈ A ,
{
(xn)n∈N

∣∣ an ≤ xn ≤ an, n ∈ N ,
∑

n∈N xn = 1
}

, where

an , max{ân − εn, 0}, and an , min{ân + εn, 1} for all n ∈ N .

Unknown file popularity distribution: In this case, we assume that there is no prior information

of the file popularity distribution a, but the file requests from the users in some set U ⊆ Φu

without bias can be observed over time. Here U can represent the set of users located in the

physical area of a BS or a cluster of BSs.5 Note that this case corresponds to that considered in

3The results in this paper can be easily extended to the case of different file sizes by considering file combinations of the

same total size, but formed by files of possibly different sizes [10].

4The results in this paper can be extended to the case where there are multiple classes of users and file requests of users in

the same class are i.i.d..

5For example, a user can submit its file request to its nearest BS, and each BS can gather file requests corresponding to an

unbiased observation of the file popularity distribution.
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Fig. 1. Network model. M = 3 and N = 8. Each file n ∈ N corresponds to a Voronoi tessellation (in the same

color as the file), determined by the locations and transmission powers of all BSs storing this file.

the single-stage methods proposed in [20]–[24].

The M-tier network consists of cache-enabled BSs. In tier m, each BS is equipped with a

cache of size Km < N (in number of files) to store Km different popular files out of N . We say

every Km different files form a combination. Thus, there are in total
(

N

Km

)
different combinations,

each with Km different files. Let Im denote the set of indices for the
(

N

Km

)
combinations. More

detailed descriptions of Im and Im,n can be found in [5], [7], [10].

B. Caching and User Association

To provide high spatial file diversity, we consider random caching in the cache-enabled M-tier

network [8]–[10], as illustrated in Fig. 1. In particular, each BS in tier m stores Km different

files with certain probability [8]–[10]. The probability that combination i ∈ Im is stored at each

BS in tier m is pm,i, where pm,i satisfies:

0 ≤ pm,i ≤ 1, m ∈ M, i ∈ Im, (1)

∑

i∈Im

pm,i = 1, m ∈ M. (2)

April 15, 2019 DRAFT
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A random caching design is specified by the caching distributions for file combinations p ,

(pm,i)m∈M,i∈Im . Let Im,n ⊂ Im denote the set of indices for the
(

N−1
Km−1

)
combinations containing

file n. Based on p, we also define the probability that file n is stored at a BS in tier m, i.e.,

Tm,n ,
∑

i∈Im,n

pm,i, m ∈ M, n ∈ N . (3)

From [4], [5], [7], [10], we know that the constraints on p in (1), (2) and (3) can be equivalently

rewritten as the following constraints on T , (Tm,n)m∈M,n∈N :

0 ≤ Tm,n ≤ 1, m ∈ M, n ∈ N , (4)

∑

n∈N

Tm,n = Km, m ∈ M. (5)

The constraints in (5) are due to the fact that each file combination in tier m contains Km

different files and the sum of the caching probabilities for all file combinations is one. The

details can be found in [5]. For any T satisfying (4) and (5), one corresponding p satisfying (1),

(2) and (3) can be easily obtained using the method proposed in [4].6 Random caching design is

specified by the caching distributions for file combinations p, the size of which is
∑M

m=1

(
N

Km

)
.

However, later we shall see that the performance metrics and optimal random caching design

problems considered in this paper depend only on the caching probabilities for files T, the size

of which is MN .

If a file is stored in a tier, a user requesting the file is associated with the BS which provides the

maximum long-term average received power among all BSs storing the file [8]–[10]. Otherwise,

the user will be served through other service mechanisms [8]–[10], the investigation of which

is beyond the scope of this paper.7 The probability that an arbitrary user requesting file n is

associated with tier m is given by [8]–[10]:

Am,n(T) =
λmTm,n

λmTm,n +
∑

l∈M\{m} λlTl,n

(
Pl

Pm

) 2
α

, m ∈ M, n ∈ N . (6)

6When the file popularity changes, the cache content of each BS can be easily updated based on its previous cached content.

7As in [8]–[10], we assume that user association can be done through some signaling mechanisms. For example, a user can

submit its file request to its nearest BS and associates with its serving BS via the help of its nearest BS.
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C. Performance Metrics

In this paper, we study w.l.o.g. the performance of a typical user u0, which is located at the

origin. Suppose u0 requests file n and is associated with tier m. Let ℓ0 ∈ Φm denote the index

of the serving BS of u0. We denote Dm′,ℓ,0 and hm′,ℓ,0
d
∼ CN (0, 1) as the distance and the

small-scale channel between BS ℓ ∈ Φm′ and u0, respectively. For analytical tractability, as in

[9], [10], we assume all BSs are active for serving their own users.8 In this case, the SIR of u0,

denoted by SIRm,n,0, is given by [10]:

SIRm,n,0 =
D−α

m,ℓ0,0
|hm,ℓ0,0|

2

∑
ℓ∈Φm\{ℓ0}

D−α
m,ℓ,0 |hm,ℓ,0|

2 +
∑

j∈M\{m}

∑
ℓ∈Φj

D−α
j,ℓ,0 |hj,ℓ,0|

2 Pj

Pm

. (7)

Note that the distribution of SIRm,n,0 is affected by T.

We assume that file n delivered from tier m can be decoded correctly at u0 if SIRm,n,0 ≥ τm,

where τm represents a threshold for tier m [9]. Requesters are mostly concerned about whether

their desired files can be successfully received. In the following, we introduce the performance

metrics in the three cases of file popularity distribution.

Perfect file popularity distribution: When the exact value of a is known, we adopt the

probability that a randomly requested file by u0 is successfully transmitted, called the STP [10]:

q (a,T) ,
∑

m∈M

∑

n∈N

anAm,n (T) Pr [SIRm,n,0 ≥ τm]

=
∑

m∈M

∑

n∈N

anTm,n∑
l∈M θl,mTl,n + ηm

, (8)

as the performance metric,9 where θl,m and ηm are given by:

θl,m =
2λl

αλm

(
Pl

Pm

τm

) 2
α
(
B′

(
2

α
, 1−

2

α
,

1

1 + τm

)
− B

(
2

α
, 1−

2

α

))
+

λl

λm

(
Pl

Pm

) 2
α

, (9)

ηm =
∑

l∈M

2λl

αλm

(
Pl

Pm

τm

) 2
α

B

(
2

α
, 1−

2

α

)
, (10)

respectively. Here, B′(x, y, z) ,
∫ 1

z
ux−1(1 − u)y−1du and B(x, y) ,

∫ 1

0
ux−1(1 − u)y−1du

8This assumption corresponds to the worst-case interference strength for the typical user. The performance obtained under

this assumption provides a lower bound on the performance of the practical network where some void BSs may be shut down.

9Note that the STP with fixed STR thresholds can be interpreted as the STP under multicast at the high user density region [5],

[7], [10], and is a widely used performance metric in wireless caching [5], [7]–[10], as it is tractable and is also closely related

to some other important performance metrics, such as average transmission rate and average transmission delay.
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denote the complementary incomplete Beta function and the Beta function, respectively. Note

that q(a,T) is a linear function of a and a nonconcave function of T.

Imperfect file popularity distribution: When the exact value of a is not known except that it

falls within a known set A, we adopt the worst-case STP:

qwt(A,T) , min
a∈A

q(a,T), (11)

as the performance metric.10

Unknown file popularity distribution: When there is no prior information of a, but {πs(t) :

s ∈ U} can be obtained at each slot t for some U ⊆ Φu, we adopt the STP in the stochastic

form, called the stochastic STP:

qst(a,T) , E [q(ξ,T)] , (12)

as the performance metric, where ξn , I[π0(t) = n|π0(t) 6= 0] with I[·] denoting the indicator

function, ξ , (ξn)n∈N , and the expectation is take over ξ. Note that qst(a,T) = q(a,T) as

E [I[π0(t) = n|π0(t) 6= 0]] = Pr[π0(t) = n|π0(t) 6= 0] for all n ∈ N and t ∈ {1, 2, . . . }.

In Section III, Section IV and Section V, we shall maximize the STP, the worst-case STP and

the stochastic STP in the cases of perfect, imperfect and unknown file popularity distribution,

respectively, as shown in Fig 2.11

III. PERFORMANCE OPTIMIZATION FOR PERFECT FILE POPULARITY DISTRIBUTION

In this section, we consider the case of perfect file popularity distribution. In this case, we

would like to maximize the STP, by optimizing the caching probabilities. We formulate the

optimal random caching design problem as follows.

Problem 1 (Optimization for Perfect File Popularity Distribution):

q∗(a) , max
T

q (a,T)

s.t. (4), (5),

where q (a,T) is given by (8).

10Note that one of the major techniques for designing systems that are robust against modeling uncertainties is to optimize

the worst-case performance.

11Based on the solutions in this paper. we can obtain promising caching designs under multicast at the general usesr density

region using the method proposed in our previous work [5], [7].
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Fig. 2. The optimization problems and corresponding solutions in the cases of perfect, imperfect and unknown file

popularity distribution.

Problem 1 is equivalent to Problem 0 in [9]. It is non-convex (as the objective function is

non-convex in T), and in [9] a suboptimal solution of it is obtained by solving an approximate

convex problem. In the following, we extend the technique in [10] for the case of M = 2 to

the case of M ≥ 2, and develop an efficient parallel iterative algorithm to obtain a stationary

point of Problem 1 using parallel SCA. Different from the cyclic computation mechanism in

[10], the parallel computation mechanism here can speed up the computation, especially for

large M . Specifically, this algorithm updates the caching probabilities of the M tiers, i.e., Tm ,

(Tm,n)n∈N , m ∈ M, at each iteration in a parallel manner, by maximizing M approximate

functions of q (a,T).

For notation convenience, define:

qj (a,Tm,T−m) ,
∑

n∈N

anTj,n∑
l∈M θl,jTl,n + ηj

, (13)

where T−m , (Tj)j∈M,j 6=m
. Note that q(a,T) can be rewritten as:

q (a,Tm,T−m) ,
∑

j∈M

qj (a,Tm,T−m) .

Let T
(k)
m denote the caching probabilities of tier m obtained at iteration k, and denote T(k) ,

April 15, 2019 DRAFT
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(
T

(k)
m

)
m∈M

. At iteration k + 1, choose:

hm

(
a,Tm,T

(k)
)
,

qm

(
a,Tm,T

(k)
−m

)
+

∑

j∈M,j 6=m


qj

(
a,T(k)

m ,T
(k)
−m

)
−
∑

n∈N

anθm,jT
(k)
j,n

(
Tm,n − T

(k)
m,n

)

(∑
l∈M θl,jT

(k)
l,n + ηj

)2


 , (14)

as an approximation function of q(a,T) for updating Tm. Note that the strongly concave

component function of q
(
a,Tm,T

(k)
−m

)
, i.e., qm

(
a,Tm,T

(k)
−m

)
, is left unchanged, and the other

nonconcave (actually convex) component functions, i.e., qj
(
a,Tm,T

(k)
−m

)
, j ∈ M, j 6= m, are

linearized at Tm = T
(k)
m . This choice of the approximate function is beneficial from several

aspects [10]. Firstly, it can guarantee the convergence of the algorithm to a stationary point of

Problem 1, which will be shown in Theorem 1. Secondly, it usually leads to fast convergence of

the algorithm by exploiting the partial concavity of the objective function, which will be shown

in Fig. 3. Thirdly, it yields a closed-form optimal solution of the optimization problem for each

tier at each iteration, which will be shown in Lemma 1, and hence a low-complexity algorithm.

Specifically, at iteration k, we first solve the following problem for each tier m ∈ M separately,

in a parallel manner.

Problem 2 (Approximate Convex Problem of Problem 1 for Tier m at Iteration k):

T
(k)

m , argmax
Tm

hm

(
, a,Tm,T

(k−1)
)

s.t. 0 ≤ Tm,n ≤ 1, n ∈ N , (15)

∑

n∈N

Tm,n = Km. (16)

Problem 2 is a convex optimization problem and Slater’s condition is satisfied, implying that

strong duality holds. Based on KKT conditions, we can obtain a closed-form optimal solution

of Problem 2.

Lemma 1 (Optimal Solution of Problem 2): For all m ∈ M, the optimal solution of Problem 2
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Algorithm 1 Obtaining A Stationary Point of Problem 1

1: initialization: choose any feasible solution T
(0) of Problem 1 as the initial point, and set k = 1.

2: repeat

3: for all m ∈ M, compute T
(k)

m according to (17), and update T
(k)
m according to (18).

4: set k = k + 1.

5: until some convergence criteria is met.

is given by:

T
(k)

m,n =




1

θm,m

√√√√√√√√√√

an

(
∑

l∈M,l 6=m

θl,mT
(k−1)
l,n + ηm

)

ν
∗(k)
m +

∑
j∈M,j 6=m

anθm,jT
(k−1)
j,n(

∑
l∈M

θl,jT
(k−1)
l,n

+ηj

)2

−

∑
l∈M,l 6=m

θl,mT
(k−1)
l,n + ηm

θm,m




1

0

, (17)

where [x]10 , min {max{x, 0}, 1} and ν
∗(k)
m is the Lagrange multiplier that satisfies

∑
n∈N T

(k)

m,n =

Km.

Note that ν
∗(k)
m in Lemma 1 can be efficiently obtained by using bisection search which achieves

a desired accuracy ǫ with computational complexity O (M2N log(1/ǫ)). Then, we update the

caching probabilities of tier m by:

T(k)
m = (1− γ(k))T(k−1)

m + γ(k)T
(k)

m , (18)

where γ(k) is a positive diminishing stepsize satisfying

γ(k) > 0, lim
k→∞

γ(k) = 0,

∞∑

k=1

γ(k) = ∞,

∞∑

k=1

(
γ(k)
)2

< ∞. (19)

Finally, the details of the proposed parallel iterative algorithm are summarized in Algorithm 1.

Based on [25, Theorem 1], we can show the following result.

Theorem 1 (Convergence of Algorithm 1): If the stepsize {γ(k)} satisfies (19), then every limit

point of {T(k)} generated by Algorithm 1 is a stationary point of Problem 1.

Proof: Please refer to Appendix A.

IV. ROBUST OPTIMIZATION FOR IMPERFECT FILE POPULARITY DISTRIBUTION

In this section, we consider the case of imperfect file popularity distribution. In this case,

we would like to maximize the worst-case STP, by optimizing the caching probabilities. We

formulate the robust optimal random caching design problem as follows.
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Problem 3 (Robust Optimization for Imperfect File Popularity Distribution):

q∗wt , max
T

min
a∈A

q(a,T)
︸ ︷︷ ︸

=qwt(A,T)

s.t. (4), (5),

where q(a,T) is given by (8).

Problem 3 is a challenging maximin problem, which does not lie in the category of convex-

concave games that can be easily solved (as q(a,T) is a nonconcave function of T). In the

following, we solve it in two steps.

Firstly, we transform the maximin problem in Problem 3 to an equivalent maximization

problem. As the inner problem mina∈A q (a,T) is a linear programming (LP) with respect to

a and strong duality holds for LP, the inner problem mina∈A q (a,T) shares the same optimal

value with its dual problem. Thus, we can transform Problem 3 to the following equivalent

maximization problem by replacing the inner problem with its dual problem.

Problem 4 (Equivalent Problem of Problem 3):

q⋆wt , max
T,λ�0,µ�0,ν

∑

n∈N

(λnan − µnan)− ν

s.t. (4), (5),

∑

m∈M

Tm,n∑
l∈M θl,mTl,n + ηm

+ µn − λn + ν = 0, n ∈ N , (20)

where λ , (λn)n∈N and µ , (µn)n∈N .

Note that λ, µ and ν are dual variables for the dual problem of the inner problem, corre-

sponding to an ≥ an, an ≤ an, n ∈ N , and
∑

n∈N an = 1, respectively.

Lemma 2 (Equivalence between Problem 3 and Problem 4): Problem 3 and Problem 4 have

the same optimal value and optimal caching probabilities.

Proof: Please refer to Appendix B.

Based on Lemma 2, we can solve Problem 4 instead of Problem 3. Problem 4 is nonconvex,

as the constraints in (20) are nonconvex. In what follows, we show how to obtain a stationary

point of Problem 4 using SCA. We first rewrite ν as ν1 − ν2 with ν1, ν2 > 0, and define new
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variables x , (xm,n)m∈M,n∈N :12

xm,n =
M∑

l=1

θl,mTl,n + ηm, m ∈ M, n ∈ N . (21)

We also introduce a new variable y > 0 which serves as a lower bound of the objective function

of Problem 4:

y ≤
∑

n∈N

(λnan − µnan)− ν. (22)

Therefore, Problem 4 can be equivalently transformed to the following problem.13

Problem 5 (Equivalent Problem of Problem 4):

max
T,x,λ,µ≻0

ν1,ν2,y>0

y

s.t.
y +

∑
n∈N µnan + ν1∑

n∈N λnan + ν2
≤ 1, (23)

λn + ν2∑
m∈M Tm,nx−1

m,n + µn + ν1
≤ 1, n ∈ N , (24)

∑
l∈M θl,mTl,n + ηm

xm,n

≤ 1, m ∈ M, n ∈ N , (25)

Tm,n ≤ 1, m ∈ M, n ∈ N , (26)

∑

n∈N

Tm,n ≤ Km, m ∈ M. (27)

Note that the inequality constraints in (24), (25) and (27) are active at any optimal so-

lution of Problem 5, and hence can replace the equality constraints in (20), (69) and (5),

respectively. In Problem 5, a monomial is maximized subject to upper bounds on posynomi-

als (i.e., (25), (26) and (27)) and upper bounds on the ratios of posynomials (i.e., (23) and

(24)). Thus, Problem 5 is a CGP, and can be solved by the method proposed in [26], which

is based on SCA. The main idea is to solve a sequence of successively refined geometric

programmings (GPs), each of which is obtained by approximating the denominators of the

ratios of posynomials in (23) and (24) with monomials. Specifically, at iteration k, update

12Note that ηm > 0, as B
(

2
α
, 1− 2

α

)

> 0, and in most practical cases, θl,m > 0 [10]. Thus, in the rest of this paper, we

consider the case where xm,n > 0 for all m ∈ M and n ∈ N .

13For ease of analysis, in Problem 5, we consider T ≻ 0 instead of T � 0, which does not change the optimal value or affect

the numerical solution.
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(
T(k),x(k),λ(k),µ(k), ν1

(k), ν2
(k), y(k)

)
by solving the following approximate GP of Problem 5,

which is parameterized by
(
T(k−1),x(k−1),λ(k−1),µ(k−1), ν1

(k−1), ν2
(k−1)

)
obtained at iteration

k − 1.

Problem 6 (Approximate GP at Iteration k):

(
T(k),x(k),λ(k),µ(k), ν1

(k), ν2
(k), y(k)

)
, argmax

T,x,λ,µ≻0

ν1,ν2,y>0

y

s.t. (25), (26), (27),

y +
∑N

n=1 µnan + ν1

∏
n∈N

(
λnan

σ
(k)
n

)σ(k)
n

(
ν2

γ
(k)
1

)γ
(k)
1

≤ 1, (28)

λn + ν2

∏
m∈M

(
Tm,nx

−1
m,n

β
(k)
m,n

)β(k)
m,n

(
µn

γ
(k)
2,n

)γ
(k)
2,n
(

ν1

γ
(k)
3,n

)γ
(k)
3,n

≤ 1, n ∈ N , (29)

where

σ(k)
n ,

λ
(k−1)
n an∑

n∈N λ
(k−1)
n an + ν

(k−1)
2

,

β(k)
m,n ,

T
(k−1)
m,n

(
x
(k−1)
m,n

)−1

∑
m∈M T

(k−1)
m,n

(
x
(k−1)
m,n

)−1

+ µ
(k−1)
n + ν

(k−1)
1

,

γ
(k)
1 ,

ν
(k−1)
2∑

n∈N λ
(k−1)
n an + ν

(k−1)
2

,

γ
(k)
2,n ,

µ
(k−1)
n

∑
m∈M T

(k−1)
m,n

(
x
(k−1)
m,n

)−1

+ µ
(k−1)
n + ν

(k−1)
1

,

γ
(k)
3,n ,

ν
(k−1)
1

∑
m∈M T

(k−1)
m,n

(
x
(k−1)
m,n

)−1

+ µ
(k−1)
n + ν

(k−1)
1

.

Problem 6 is a standard GP, which can be readily transformed into a convex problem and solved

using standard convex optimization techniques, such as the barrier method which achieves a

desired accuracy ǫ with computational complexity O(M3N3 log(MN/ǫ)). The details for solving

Problem 5 are summarized in Algorithm 2. By the convergence result in [26, Proposition 3], and

by comparing the KKT conditions of Problem 4 and Problem 5, we have the following result.

Theorem 2 (Convergence of Algorithm 2):
(
T(k) , x(k), λ(k), µ(k), ν1

(k), ν2
(k), y(k)

)
obtained
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Algorithm 2 Obtaining A Stationary Point of Problem 5

1: initialization: choose any feasible solution
(
T

(0), x(0), λ(0), µ(0), ν1
(0), ν2

(0), y(0)
)

of Problem 5 as the initial

point, and set k = 1.

2: repeat

3: compute
(
T

(k), x(k), λ
(k)

, µ(k), ν1
(k), ν2

(k), y(k)
)

by transforming Problem 6 into a GP

in convex form, and solving it with standard convex optimization techniques.

4: set k = k + 1.

5: until some convergence criteria is met.

by Algorithm 2 converges to a stationary point of Problem 5, as k → ∞. Furthermore, the limit

point of
{(

T(k) , λ(k), µ(k), ν1
(k) − ν2

(k)
)}

is a stationary point of Problem 4.

Proof: Please refer to Appendix C.

V. STOCHASTIC OPTIMIZATION FOR UNKNOWN FILE POPULARITY DISTRIBUTION

In this section, we consider the case of unknown file popularity distribution. In this case, we

would like to maximize the stochastic STP, by optimizing the caching probabilities. We formulate

the stochastic optimal random caching design problem as follows.

Problem 7 (Stochastic Optimization for Unknown File Popularity Distribution):

max
T

E [q(ξ,T)]︸ ︷︷ ︸
=qst(a,T)

s.t. (4), (5),

where q (a,T) is given by (8).

Note that although E [q(ξ,T)] cannot be calculated without knowledge of the statistics of

ξ, it can be optimized using stochastic optimization.14 Problem 7 is a nonconvex stochastic

optimization problem, which is more challenging than a convex one. In the following, we

develop an efficient parallel iterative algorithm to obtain a stationary point of Problem 7, using

stochastic parallel SCA [27]. Similarly, the parallel computation mechanism here can speed

up the computation, especially for large M . Specifically, this algorithm updates the caching

probabilities of the M tiers, i.e., Tm , (Tm,n)n∈N , m ∈ M, at each slot t in a parallel manner,

by maximizing M approximate functions of qst(a,T).

14The basic idea of stochastic optimization is to optimize a function in the presence of randomness based on the fact that

realizations of random parameters can be obtained.
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Let T
(t)
m denote the caching probabilities of tier m obtained at slot t, and denote T(t) ,

(
T

(t)
m

)
m∈M

. At slot t, choose:

ĥm

(
ξ(t),Tm,T

(t−1)
)
= ρ(t)

(
qm

(
ξ(t),Tm,T

(t−1)
−m

)
−

∑

j∈M,j 6=m

∑

n∈N

ξ
(t)
n θm,j,Kj

T
(t−1)
j,n

(
Tm,n − T

(t−1)
m,n

)

(∑
l∈M θl,j,Kj

T
(t−1)
l,n + ηj,Kj

)2

)
+ (1− ρ(t))

∑

n∈N

(
Tm,n − T (t−1)

m,n

)
f (t−1)
m,n (30)

as an approximation function of qst(a,T) for updating Tm. Here, ξ
(t)
n ,

∑
s∈U I

[
π
(t)
s =n

]

∑
s∈U I

[
π
(t)
s 6=0

] ,15 ξ(t) ,

(ξ
(t)
n )n∈N , ρ(t) is a positive diminishing stepsize satisfying:

ρ(t) > 0, lim
t→∞

ρ(t) = 0,

∞∑

t=1

ρ(t) = ∞,

∞∑

t=1

(
ρ(t)
)2

< ∞, (31)

and f
(t)
m,n is given by:

f (t)
m,n = (1− ρ(t))f (t−1)

m,n + ρ(t)




ξn∑
l∈M θl,mT

(t)
l,n + ηm

−
∑

j∈M

ξnθm,jT
(t)
j,n(∑

l∈M θl,jT
(t)
l,n + ηj

)2


 , (32)

where f
(0)
m,n = 0 , m ∈ M, n ∈ N .

Note that the strongly concave component function of q
(
ξ(t),Tm,T

(t−1)
−m

)
, i.e., qm

(
ξ(t),Tm,

T
(t−1)
−m

)
, is left unchanged, and the other nonconcave (actually convex) component functions,

i.e., qj
(
ξ(t),Tm,T

(t−1)
−m

)
, j ∈ M, j 6= m, are linearized at Tm = T

(t−1)
m . In addition, note that

the approximation of an at each slot t, i.e., ξ
(t)
n , becomes more accurate as

∑
s∈U I

[
π
(t)
s 6= 0

]

increases, and the approximation of ∇Tm,n
qst

(
a,T(t)

)
based on accumulated instantaneous file

requests {πs(t) : s ∈ U}, t ∈ {1, 2, . . . , t− 1}, i.e., f
(t)
m,n, becomes more accurate as t increases.

This choice of the approximate function, ĥm

(
ξ(t),Tm,T

(t−1)
)

, given in (30), is beneficial for

similar reasons as in the case of perfect file popularity distribution.

Specifically, at slot t, we first solve the following problem for each tier m ∈ M separately,

in a parallel manner.

15We consider a simple way of making use of instantaneous file requests at each slot without assuming any apriori information

of the file popularity distribution. Our focus here is to optimize random caching design using stochastic optimization, instead

of pure estimation of file popularity.
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Problem 8 (Approximate Convex Problem of Problem 7 for Tier m at Slot t):

T̂(t)
m , argmax

Tm

ĥm

(
ξ(t),Tm,T

(t−1)
)

s.t. (15), (16)

Problem 8 is a convex optimization problem and Slater’s condition is satisfied, implying that

strong duality holds. Based on KKT conditions, we can obtain a closed-form optimal solution

of Problem 8.

Lemma 3 (Optimal Solution of Problem 8): For all m ∈ M, the optimal solution of Problem 8

is given by:

T̂ (t)
m,n =




1

θm,m

√√√√√√√√√√

ρ(t)ξ
(t)
n

(
∑

l 6=m,l∈M

θl,mT
(t−1)
l,n + ηm

)

ν
∗(t)
m + ρ(t)

∑
j 6=m
j∈M

ξ
(t)
n θm,jT

(t−1)
j,n(

∑
l∈M

θl,jT
(t−1)
l,n

+ηj

)2 − (1− ρ(t))f
(t−1)
m,n

−

∑
l 6=m
l∈M

θl,mT
(t−1)
l,n + ηm

θm,m




1

0

,

(33)

where [x]10 , min {max{x, 0}, 1} and ν
∗(t)
m is the Lagrange multiplier that satisfies

∑
n∈N T̂

(t)
m,n =

Km.

Note that ν
∗(t)
m in Lemma 3 can be efficiently obtained by using bisection search which achieves

a desired accuracy ǫ with computational complexity O (M2N log(1/ǫ)). Then, we update the

caching probabilities of tier m by:

T(t)
m = (1− ω(t))T(t−1)

m + ω(t)T̂(t)
m , (34)

where ω(t) is a positive diminishing stepsize satisfying:

ω(t) = 0, lim
t→∞

ω(t) = 0,
∞∑

t=1

ω(t) = ∞,
∞∑

t=1

(
ω(t)
)2

< ∞, lim
t→∞

ω(t)

ρ(t)
= 0. (35)

Finally, the details of the proposed stochastic parallel iterative algorithm are summarized in

Algorithm 3.16 Based on [27, Theorem 1], we can show the following result.

Theorem 3 (Convergence of Algorithm 3): If the stepsizes {ρ(t)} and {ω(t)} satisfy (31) and

16Although we assume i.i.d. file request, Algorithm 3 can be applied in the case of time-variant statistics without convergence

guarantee.
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Algorithm 3 Obtaining A Stationary Point of Problem 7

1: initialization: choose any feasible solution T
(0) of Problem 7 as the initial point, and set t = 1.

2: repeat

3: observing {πs(t) : s ∈ U}, and for all m ∈ M, compute T̂
(t)
m according to (33), and

update T
(t)
m according to (34).

4: set t = t+ 1.

5: until some convergence criteria is met.

(35), respectively, then every limit point of {T(t)} generated by Algorithm 3 is almost surely a

stationary point of Problem 7.

Proof: Please refer to Appendix D.

VI. NUMERICAL RESULTS

In this section, we show the convergence of the proposed algorithms and compare the proposed

algorithms with baseline schemes. We choose M = 3, N = 500,17 α = 3, τ1 = 1, τ2 = 10−0.6,

τ3 = 10−1.4, λ1 = 3.2 × 10−7, λ2 = 8 × 10−6, λ3 = 8 × 10−4, P1 = 103P3 and P2 = 101.4P3.

For the case of perfect file popularity distribution, we assume the file popularity follows Zipf

distribution, i.e., an = n−γ
∑

n∈N n−γ , n ∈ N , where γ is the Zipf exponent. For the case of imperfect

file popularity distribution, we assume the estimated file popularity is a Zipf distribution, i.e.,

ân = n−γ̂
∑

n∈N n−γ̂ , n ∈ N , where γ̂ is the Zipf exponent, and choose εn = ǫan, n ∈ N for some

ǫ ∈ (0, 1). For the case of unknown file popularity distribution, we assume that file requests

follow the Zipf distribution, i.e., an = n−γ
∑

n∈N n−γ , n ∈ N , as in the case of perfect file popularity.

In addition, we choose Pr[πs(t) 6= 0] = 0.9. Note that in the simulation, we focus on serving

only cached files. When Km/N , m ∈ M are small, file availability in the M-tier network is

low, leading to small STPs.

A. Convergence

First, we show the convergence of the proposed algorithms. Fig. 3 illustrates the STP, worst-

case STP and stochastic STP versus the number of iterations. Although the number of iterations

of our proposed algorithms cannot be analytically characterized, from Fig. 3, we can observe

that our proposed algorithms terminate in a few iterations. Note that different form Algorithm 1

and Algorithm 2, which are based on the perfect and imperfect popularity distributions at the

17Although we choose file number N = 500 for ease of simulation, numerical results show that the computational time of

each proposed algorithm increases approximately linearly with N , demonstrating its applicability in practical networks.
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Fig. 3. STP, Worst-case STP and stochastic STP versus number of iterations in the three cases with K1 = 80,

K2 = 60, K3 = 40, γ = γ̂ = 0.55 and ǫ = 0.25. We choose the same initial point for all the algorithms.

initial stage, Algorithm 3 can make use of instantaneous file requests observed at each slot and

gradually improve the random caching design. In addition, note that Problem 1 and Problem 3

share the same sets of optimal solutions and stationary points, as E [q(ξ,T)] = q(a,T). Hence,

the converged STPs of Algorithm 1 and Algorithm 3 are similar and are larger than the STP of

Algorithm. 2. In addition, Algorithm 3 with a larger U converges faster, as at each slot more

observations for file requests can be used to approximate the file popularity distribution and the

gradient of the stochastic STP.

B. Performance

Next, we compare the STP of Algorithm 1 (obtained using 20 iterations), the STP of Al-

gorithm 2 (obtained using 30 iterations) and the STP of Algorithm 3 with U = 200 (obtained

using 200 iterations (slots)) with those of three baseline schemes. Baseline 1 (most popular)

refers to the design in which each BS in tier m stores the Km most popular files [15] according

to a in the case of perfect file popularity distribution, â in the case of imperfect file popularity

distribution, and the estimated file popularity ã , (ãn)n∈N in the case of unknown file popularity

distribution, where ãn ,

∑L
t=1

∑
s∈U I

[
π
(t)
s =n

]

∑L
t=1

∑
s∈U I

[
π
(t)
s 6=0

] , n ∈ N , are obtained based on the accumulated file

requests within L slots. Baseline 2 (i.i.d. file popularity) refers to the design in which each BS

in tier m randomly stores Km files, in an i.i.d. manner [17] with file n being selected with

probabilities an in the case of perfect file popularity distribution, ân in the case of imperfect file

popularity distribution, and ãn in the case of unknown file popularity distribution. Baseline 3

(suboptimal) refers to the suboptimal caching solution proposed in [9] based on an in the case
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(a) cache size K3 at γ = 0.55, K1 = K3 + 40,

K2 = K3 + 20.
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40.

Fig. 4. STP versus cache sizes and Zipf exponent γ in the case of perfect file popularity distribution.

of perfect file popularity distribution, ân in the case of imperfect file popularity distribution, and

ãn in the case of unknown file popularity distribution. In addition, we compare with Algorithm 1

based on â in the case of imperfect file popularity distribution, referred to as Alg. 1 (imperfect),

and with Algorithm 1 based on ã in the case of unknown file popularity, referred to as Alg. 1

(stochastic).18

Fig. 4(a), Fig. 5(a) and Fig. 6(a) illustrate the STP, the worst-case STP and the stochastic STP

versus the cache sizes, respectively. From Fig. 4(a), Fig. 5(a) and Fig. 6(a), we can observe that

as the cache sizes Km, m ∈ M increase, the STP of each scheme increases. This is because

as Km, m ∈ M increase, each BS can cache more files, and the probability that a randomly

requested file is cached at a nearby BS increases. In addition, note that for each scheme, its STP

in Fig. 4(a) is very close to its stochastic STP in Fig. 6(a), since under the same file popularity

distribution, its stochastic STP converges to its STP as the number of iterations goes to infinity.

Fig. 4(b), Fig. 5(b) and Fig. 6(b) illustrate the STP, the worst-case STP and the stochastic STP

versus the Zipf exponents, respectively. From Fig. 4(b), Fig. 5(b) and Fig. 6(b), we can observe

that as the Zipf exponent γ (γ̂) increases, the STP of each scheme increases. This is because

when γ̂ (γ) increases, the tail of the Zipf distribution becomes small, and hence, the probability

that a randomly requested file is cached at a nearby BS increases for each scheme. Similarly,

18Please note that although Baseline 1 (most popular) and Baseline 2 (i.i.d. file popularity) are not optimization-based, they

are widely used as baseline schemes in existing works on wireless caching [4], [5], [7]–[10]. In addition, note that the proposed

solutions in [8] and [10] are for the case of uniform SIR threshold and for a two-tier network, respectively, and hence cannot

be applied in our setup.
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(c) Error bound parameter ǫ at γ̂ = 0.55, K1 =

80, K2 = 60, K3 = 40.

Fig. 5. Worst-case STP versus cache sizes, Zipf exponent γ̂, and error bound parameter ǫ in the case of imperfect

file popularity distribution.

note that for each scheme, its STP in Fig. 4(b) is very close to its stochastic STP in Fig. 6(b).

Fig. 5(c) illustrates the worst-case STP versus the error bound parameter ǫ in the case of

imperfect file popularity. From Fig. 5(c), we can see that as ǫ increases, the worst-case STP of

each scheme decreases. The reason is that as ǫ increases, the possible estimation error increases,

and the worst-case STP decreases. In addition, we can observe that the decrease rates of the

worst-case STPs of all schemes are different, as the estimation error has different impacts on

these schemes. Finally, the STP gaps between Algorithm 2 and the other schemes increase with

the error bound parameter, as those schemes do not consider the uncertainty in the file popularity

estimation. This reveals the value of robust caching optimization in the case of imperfect file

popularity distribution.

Fig. 6(c) illustrates the stochastic STP versus the number of slots L which is used for estimating
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Fig. 6. Stochastic STP versus cache sizes, Zipf exponent γ and number of time slots L in the case of unknown file

popularity distribution.

ã in the case of unknown file popularity. From Fig. 6(c), we can see that as L increases, the

stochastic STPs of all schemes except for Algorithm 3 increase. The reason is that as L increases,

the estimation of the file popularity distribution becomes more accurate. In addition, we can

observe that the stochastic STP of Algorithm 3 is not adaptive to L, as the proposed solution

can be continuously improved by accumulating new file requests. Finally, the STP gaps between

Algorithm 3 and the other schemes increase as the number of slots L used for estimating ã

decreases, revealing the value of stochastic caching optimization in the case of unknown file

popularity distribution.

Finally, from Fig 4, Fig 5 and Fig 6, we can observe that our proposed solutions outperform

the baseline schemes in all three cases. This is because in each case, the properties of the file

popularity distribution are appropriately captured when formulating the optimal caching design
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problem, and a stationary point of the challenging optimization problem is obtained using the

proposed algorithm. Note that each point corresponding to the proposed solution in Fig 4, Fig 5

and Fig 6 is obtained with an arbitrary initial point, showing that the performance of a stationary

point is promising at least under our setup.

VII. CONCLUSION

In this paper, we considered optimal random caching designs for perfect, imperfect and

unknown file popularity distributions in large-scale multi-tier wireless networks. First, in the case

of perfect file popularity distribution, we formulate the successful transmission probability (STP)

optimization problem, which is nonconvex. We propose an efficient parallel iterative algorithm to

obtain a stationary point. Then, in the case of imperfect file popularity distribution, we formulate

the worst-case STP maximization problem. This is a challenging robust optimization problem,

and we propose an efficient iterative algorithm to obtain a stationary point. Next, in the case

of unknown file popularity distribution, we formulate the stochastic STP (i.e., the STP in the

stochastic form) maximization problem. This is a challenging nonconvex stochastic optimization

problem, and we develop an efficient iterative algorithm to obtain a stationary point. Finally,

by numerical results, we show that the proposed solutions achieve notable gains over existing

schemes in all three cases.

APPENDIX A: PROOF OF THEOREM 1

We show that the assumptions in [25, Theorem 1] are satisfied.

• It is clear that hm

(
a,Tm,T

(k)
)

is continuously differentiable for any given a and T(k). It

remains to show that hm

(
a,Tm,T

(k)
)

is strongly convex in Tm. Note that the Hessian of

hm

(
a,Tm,T

(k)
)

is ∇
2
Tm

hm

(
a,Tm,T

(k)
)
,

(
∂2hm

(
a,Tm,T(k)

)
∂Tm,n∂Tm,n′

)
n∈N ,n′∈N

, where

∂2hm

(
a,Tm,T

(k)
)

∂Tm,n∂Tm,n′

=





−2anηmθm,m(
θm,mTm,n+

∑
l∈M,l 6=m θl,mT

(k)
l,n

+ηm

)3 , n′ = n,

0, n′ 6= n.

(36)

Thus, ∇2
Tm

hm

(
a,Tm,T

(k)
)
� −bE, where b , min

n∈N

2anηmθm,m(
θm,m+

∑
l∈M,l 6=m θl,mT

(k)
l,n

+ηm

)3 , and E is

the identity matrix. That is, hm

(
a,Tm,T

(k)
)

is uniformly strongly concave with constant

b > 0. Thus, the first assumption of [25, Theorem 1] is satisfied.
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• By (14), we have ∇Tm
hm

(
a,Tm,T

(k)
)
= ∇Tm

q
(
a,T

)
for all m ∈ M. Thus, the second

assumption of [25, Theorem 1] is satisfied.

• It is clear that hm

(
a,Tm,T

(k)
)

is smooth on the constraint set determined by (4) and (5)

for any given a and Tm, and hence its derivative is Lipschitz continuous. Thus, the third

assumption of [25, Theorem 1] is satisfied.

Therefore, Theorem 3 readily follows from [25, Theorem 1].

APPENDIX B: PROOF OF LEMMA 2

Firstly, the inner problem of Problem 3, mina∈A q∞ (a,T), can be rewritten as follows.

Problem 9 (Inner LP of Problem 3):

min
a

q(a,T)

s.t. an ≤ an, n ∈ N , (37)

an ≤ an, n ∈ N , (38)

∑

n∈N

an = 1. (39)

It is clear that Problem 9 is an LP with respect to a for any given T, satisfying (4) and (5).

From [28, pp.225], we obtain its dual problem as below.

Problem 10 (Dual Problem of Inner LP of Problem 3):

max
λ,µ,ν

∑

n∈N

(λnan − µnan)− ν

s.t. (20),

λn ≥ 0, n ∈ N , (40)

µn ≥ 0, n ∈ N , (41)

where λ, µ and ν are the Lagrange multipliers corresponding to (37), (38) and (39), respectively.

As strong duality holds for LP, the dual problem in Problem 10 and the primal problem in

Problem 9 share the same optimal value, which can be viewed as a function of T. Thus, the

maximin problem in Problem 3 can be equivalently converted to the maximization problem in

Problem 4, by replacing the inner LP problem in Problem 9 with its dual problem in Problem 10.
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APPENDIX C: PROOF OF THEOREM 2

By [26, Proposition 3], it can be easily shown that Algorithm 2 converges to a stationary point

of Problem 5. Let (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆, ν2

⋆, y⋆) denote a stationary point of Problem 5, which

satisfies the KKT conditions of Problem 5. It remains to show that (T⋆ , λ⋆, µ⋆, ν1
⋆ − ν2

⋆) is

a stationary point of Problem 4, which satisfies the KKT conditions of Problem 4.

First, we derive the KKT conditions of Problem 5 based on its equivalent form given as

follows.

Problem 11 (Equivalent Form of Problem 5):

min
T,x,λ,µ,ν1,ν2,y

− y

s.t. (40), (41),

y −
∑

n∈N

(λnan − µnan) + (ν1 − ν2) ≤ 0 (42)

λn − µn − (ν1 − ν2)−
∑

m∈M

Tm,nx
−1
m,n ≤ 0, n ∈ N , (43)

(
∑

l∈M

θl,mTl,n + ηm

)
x−1
m,n ≤ 1, m ∈ M, n ∈ N , (44)

Tm,n ≥ 0, m ∈ M, n ∈ N , (45)

Tm,n ≤ 1, m ∈ M, n ∈ N , (46)

∑

n∈N

Tm,n ≤ Km, m ∈ M. (47)

The Lagrangian function of Problem 11 is given by:

L
(
T,x,λ,µ, ν1, ν2, y, ν̃1, ν̃2, λ̃0, λ̃, µ̃, κ̃1, κ̃2, ι̃

)
= −y +

∑

n∈N

ν̃1,n(−λn) +
∑

n∈N

ν̃2,n(−µn)

+ λ̃0

(
y −

∑

n∈N

(λnan − µnan) + (ν1 − ν2)

)
+
∑

n∈N

λ̃n

(
λn − µn − (ν1 − ν2)−

∑

m∈M

Tm,nx
−1
m,n

)

+
∑

m∈M

∑

n∈N

µ̃m,n

((
∑

l∈M

θl,mTl,n + ηm

)
x−1
m,n − 1

)
+
∑

m∈M

ι̃m

(
∑

n∈N

Tm,n −Km

)

+
∑

m∈M

∑

n∈N

κ̃1,m,n(−Tm,n) +
∑

m∈M

∑

n∈N

κ̃2,m,n(Tm,n − 1), (48)

where ν̃1 , (ν̃1,n)n∈N , ν̃2 , (ν̃2,n)n∈N , λ̃0, λ̃ , (λ̃n)n∈N , µ̃ , (µ̃m,n)m∈M,n∈N , κ̃1 ,
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(κ̃1,m,n)m∈M,n∈N , κ̃2 , (κ̃2,m,n)m∈M,n∈N and ι̃ , (ι̃m)m∈M are the Lagrange multipliers

corresponding to (40), (41), (42), (43), (44), (45), (46) and (47), respectively.

Next, as (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆, ν2

⋆, y⋆) is a stationary point of Problem 5, there exists a dual

point (ν̃⋆
1 , ν̃

⋆
2, λ̃⋆

0, λ̃
⋆
, µ̃

⋆
, κ̃

⋆
1, κ̃

⋆
2, ι̃

⋆) together with (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆, ν2

⋆, y⋆) satisfies the

following KKT conditions:

• Feasibility: The primal point (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆, ν2

⋆, y⋆) satisfies the primal constraints

in (40), (41), (42), (43), (44), (45), (46) and (47), and the dual point (ν̃⋆
1 , ν̃

⋆
2, λ̃⋆

0, λ̃
⋆
, µ̃

⋆
,

κ̃
⋆
1, κ̃

⋆
2, ι̃

⋆) satisfies the dual constraints.

ν̃⋆
1,n, ν̃

⋆
2,n, λ̃

⋆
0, λ̃

⋆
n, µ̃

⋆
m,n, κ̃

⋆
1,m,n, κ̃

⋆
2,m,n, ι̃

⋆
m ≥ 0, m ∈ M, n ∈ N . (49)

• Complementary slackness: (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆, ν2

⋆, y⋆) and (ν̃⋆
1 , ν̃

⋆
2, λ̃⋆

0, λ̃
⋆
, µ̃

⋆
, κ̃

⋆
1, κ̃

⋆
2,

ι̃
⋆) satisfy:

ν̃⋆
1,nλ

⋆
n = 0, n ∈ N , (50)

ν̃⋆
2,nµ

⋆
n = 0, n ∈ N , (51)

λ̃⋆
0

(
y⋆ −

∑

n∈N

(λ⋆
nan − µ⋆

nan) + (ν⋆
1 − ν⋆

2)

)
= 0, (52)

λ̃⋆
n

(
λ⋆
n − µ⋆

n − (ν⋆
1 − ν⋆

2)−
∑

m∈M

T ⋆
m,n(x

⋆
m,n)

−1

)
= 0, n ∈ N , (53)

µ̃⋆
m,n

((
∑

l∈M

θl,mT
⋆
l,n + ηm

)
(x⋆

m,n)
−1 − 1

)
= 0, m ∈ M, n ∈ N , (54)

κ̃⋆
1,m,nT

⋆
m,n = 0, m ∈ M, n ∈ N , (55)

κ̃⋆
2,m,n(T

⋆
m,n − 1) = 0, m ∈ M, n ∈ N , (56)

ι̃⋆m

(
∑

n∈N

T ⋆
m,n −Km

)
= 0, m ∈ M. (57)

• Zero derivative:

∂L
(
T⋆,x⋆,λ⋆,µ⋆, ν1

⋆, ν2
⋆, y⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
0, λ̃

⋆
, µ̃⋆, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂y
= λ̃⋆

0 − 1 = 0, (58)

∂L
(
T⋆,x⋆,λ⋆,µ⋆, ν1

⋆, ν2
⋆, y⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
0, λ̃

⋆
, µ̃⋆, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂λn
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= −ν̃⋆
1,n − λ̃⋆

0an + λ̃⋆
n = 0, n ∈ N , (59)

∂L
(
T⋆,x⋆,λ⋆,µ⋆, ν1

⋆, ν2
⋆, y⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
0, λ̃

⋆
, µ̃⋆, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂µn

= −ν̃⋆
2,n + λ̃⋆

0an − λ̃⋆
n = 0, n ∈ N , (60)

∂L
(
T⋆,x⋆,λ⋆,µ⋆, ν1

⋆, ν2
⋆, y⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
0, λ̃

⋆
, µ̃⋆, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂ν1
= λ̃⋆

0 −
∑

n∈N

λ̃⋆
n = 0, (61)

∂L
(
T⋆,x⋆,λ⋆,µ⋆, ν1

⋆, ν2
⋆, y⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
0, λ̃

⋆
, µ̃⋆, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂xm,n

= −
λ̃⋆
nT

⋆
m,n

x⋆
m,n

+
µ̃⋆
m,n

x⋆
m.n

(
∑

l∈M

θl,mT
⋆
l,n + ηm

)
= 0, m ∈ M, n ∈ N , (62)

∂L
(
T⋆,x⋆,λ⋆,µ⋆, ν1

⋆, ν2
⋆, y⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
0, λ̃

⋆
, µ̃⋆, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂Tm,n

= −λ̃⋆
n(x

⋆
m,n)

−1 +
∑

l∈M

µ̃⋆
l,nθm,l(x

⋆
l,n)

−1 − κ̃⋆
1,m,n + κ̃⋆

2,m,n + ι̃⋆m = 0, m ∈ M, n ∈ N .

(63)

Then, based on the KKT conditions of Problem 5, we show that the primal point (T⋆ , x⋆,

λ⋆, µ⋆, ν1
⋆ − ν2

⋆) and the dual point (ν̃⋆
1 , ν̃

⋆
2, λ̃

⋆
, κ̃

⋆
1, κ̃

⋆
2, ι̃

⋆) satisfy the KKT conditions of

Problem 4, implying that (T⋆ , λ⋆, µ⋆, ν1
⋆ − ν2

⋆) is a stationary point of Problem 4. Note that

the Lagrangian function of Problem 4 is given by:

L
(
T,λ,µ, ν, ν̃1, ν̃2, λ̃, κ̃1, κ̃2, ι̃

)
= −

∑

n∈N

(λnan − µnan) + ν

+
∑

n∈N

ν̃1,n(−λn) +
∑

n∈N

ν̃2,n(−µn) +
∑

n∈N

λ̃n

(
λn − µn − ν −

∑

m∈M

Tm,n(∑
l∈M θl,mTl,n + ηm

)
)

+
∑

m∈M

∑

n∈N

κ̃1,m,n(−Tm,n) +
∑

m∈M

∑

n∈N

κ̃2,m,n(Tm,n − 1) +
∑

m∈M

ι̃m

(
∑

n∈N

Tm,n −Km

)
. (64)

Now, we prove that the primal point (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆ − ν2

⋆) and the dual point (ν̃⋆
1 , ν̃

⋆
2,

λ̃
⋆
, κ̃

⋆
1, κ̃

⋆
2, ι̃

⋆) satisfy the following KKT conditions.

• Complementary slackness: It is clear that (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆ − ν2

⋆) and (ν̃⋆
1 , ν̃

⋆
2, λ̃

⋆
, κ̃

⋆
1,

κ̃
⋆
2, ι̃

⋆) satisfy (50), (51), (55) and (56).
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• Zero derivative: Substituting λ̃⋆
0 = 1 into (59), (60) and (61), we have:

∂L
(
T⋆,λ⋆,µ⋆, ν⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂λn

= −ν̃⋆
1,n − an + λ̃⋆

n = 0, n ∈ N , (65)

∂L
(
T⋆,λ⋆,µ⋆, ν⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂µn

= −ν̃⋆
2,n + an − λ̃⋆

n = 0, n ∈ N . (66)

∂L
(
T⋆,λ⋆,µ⋆, ν⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂ν
= 1−

∑

n∈N

λ̃⋆
n = 0. (67)

Substitute λ̃⋆
0 = 1 into (59), we have λ̃⋆

n = an + ν̃⋆
1,n > 0. By λ̃⋆

n > 0 and (62), we have

µ̃⋆
m,n =

λ̃nT
⋆
m,n(∑

l∈M θl,mT ⋆
l,n + ηm

) > 0. (68)

In addtion, by µ̃⋆
m,n > 0 and (54), we have

x⋆
m,n =

(
∑

l∈M

θl,mT
⋆
l,n + ηm

)
. (69)

Substituting (68) and (69) into (63), we have:

∂L
(
T⋆,λ⋆,µ⋆, ν⋆, ν̃⋆

1, ν̃
⋆
2, λ̃

⋆
, κ̃⋆

1, κ̃
⋆
2, ι̃

⋆
)

∂Tm,n

= −λ̃⋆
n∇Tm,n

T ⋆
m,n(∑

l∈M θl,mT ⋆
l,n + ηm

) − κ̃⋆
1,m,n + κ̃⋆

2,m,n + ι̃⋆m = 0, m ∈ M, n ∈ N . (70)

Note that (65), (66), (67) and (70) are the zero derivative conditions of Problem 4.

• Feasibility: Given (40), (41), (45), (46) and (49), to show that (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆ − ν2

⋆)

and (ν̃⋆
1 , ν̃

⋆
2, λ̃

⋆
, κ̃

⋆
1, κ̃

⋆
2, ι̃

⋆) satisfy the feasibility conditions of Problem 4, it remains to

show:

∑

m∈M

T ⋆
m,n∑

l∈M θl,mT ⋆
l,n + ηm

+ µ⋆
n − λ⋆

n + ν⋆
1 − ν⋆

2 = 0, n ∈ N , (71)

∑

n∈N

T ⋆
m,n = Km, m ∈ M. (72)

Note that (71) can be easily shown by λ̃⋆
n > 0, (53) and (69). Now, we show (72) as

below. If κ̃⋆
2,m,n 6= 0 for all n ∈ N , by (56), we have T ⋆

m,n = 1 for all n ∈ N , implying
∑

n∈N T ⋆
m,n = N , which is contradictory with

∑
n∈N T ⋆

m,n ≤ Km. Thus, there exists n ∈ N ,
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such that κ̃⋆
2,m,n = 0. Substituting κ̃⋆

2,m,n = 0 into (70), we have:

ι̃⋆m = λ̃⋆
n∇Tm,n

T ⋆
m,n(∑

l∈M θl,mT ⋆
l,n + ηm

) + κ̃⋆
1,m,n > 0.

By ι̃⋆m > 0 and (57), we have (72).

Therefore, (T⋆ , x⋆, λ⋆, µ⋆, ν1
⋆ − ν2

⋆) and (ν̃⋆
1 , ν̃

⋆
2, λ̃

⋆
, κ̃

⋆
1, κ̃

⋆
2, ι̃

⋆) satisfy the KKT conditions

of Problem 4.

APPENDIX D: PROOF OF THEOREM 3

We show that the assumptions in [27, Theorem 1] are satisfied.

• The constraint set of Problem 7 determined by (4) and (5) is compact and convex. Thus,

Assumption a) in [27, Theorem 1] is satisfied.

• It is clear that qm(ξ,T) is smooth on the constraint set of Problem 7 for any given ξ,

and hence it is continuously differentiable and its derivative is Lipschitz continuous. Thus,

Assumption b) in [27, Theorem 1] is satisfied.

• Random variables ξ0, ξ1, . . . are bounded and identically distributed. Thus, Assumption c)

in [27, Theorem 1] is satisfied.

Therefore, Theorem 3 readily follows from [27, Theorem 1].
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[15] E. Baştuğ, M. Bennis, and M. Debbah, “A transfer learning approach for cache-enabled wireless networks,” in 2015 13th

International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), May 2015,

pp. 161–166.

[16] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and S. Chouvardas, “Placing dynamic content in caches

with small population,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer

Communications, April 2016, pp. 1–9.

[17] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based approach to caching in heterogenous small cell

networks,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1674–1686, April 2016.

[18] B. Chen and C. Yang, “Caching policy for cache-enabled d2d communications by learning user preference,” IEEE Trans.

Commun., pp. 1–1, 2018.

[19] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching through online learning,” IEEE Transactions on

Multimedia, vol. 18, no. 12, pp. 2503–2516, Dec 2016.

[20] A. Liu and V. Lau, “Exploiting base station caching in MIMO cellular networks: Opportunistic cooperation for video

streaming,” IEEE Trans. Signal Process., vol. 63, no. 1, pp. 57–69, Jan 2015.
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