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Abstract

Relay cooperation and integrated microwave and millimeter-wave (mm-wave) dual-band communication are

likely to play key roles in 5G. In this paper, we study a two-user uplink scenario in such dual-bands, modeled

as a multiple-access relay channel (MARC), where two sources communicate to a destination assisted by a relay.

However, unlike the microwave band, transmitters in the mm-wave band must employ highly directional antenna

arrays to combat the ill effects of severe path-loss and small wavelength. The resulting mm-wave links are point-

to-point and highly directional, and are thus used to complement the microwave band by transmitting to a specific

receiver. For such MARCs, the capacity is partially characterized for sources that are near the relay in a joint sense

over both bands. We then study the impact of the mm-wave spectrum on the performance of such MARCs by

characterizing the transmit power allocation scheme for phase faded mm-wave links that maximizes the sum-rate

under a total power budget. The resulting scheme adapts the link transmission powers to channel conditions by

transmitting in different modes, and all such modes and corresponding conditions are characterized. Finally, we

study the properties of the optimal link powers and derive practical insights.

Index Terms

Fading multiple-access relay channel, Dual-band communication, Millimeter-wave band.

I. INTRODUCTION

Fueled by the ever increasing demand for bandwidth-hungry applications, global wireless traffic is

expected to continue its rapid growth [1]. However, due to scarce microwave bandwidth (i.e., sub-6 GHz

spectrum) current 4G technologies are unlikely to be able to support the anticipated massive growth

in traffic [2]. To tackle this challenge, several new technologies are being studied to be potentially

incorporated into 5G standards. Among these, a key technology is to integrate the vast bandwidth in

the 28− 300 GHz frequency range, referred to as the millimeter wave (mm-wave) band, with sub-6 GHz

spectrum [3]–[5], and provide cellular access jointly over these two bands.
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Transmission in the mm-wave band differs from that in the conventional microwave band in that

omnidirectional mm-wave transmission suffers from much higher power loss and absorption. Thus, a

transmitter must use beamforming via highly directional antenna arrays to reach a receiver [6]. Due to the

small wavelength at mm-wave frequencies and large path loss, beamforming typically creates links that

have a strong line-of-sight (LoS) component and only a few, if any, weak multi-path components. Such

mm-wave links are inherently point-to-point, and are well modeled as AWGN links [7]–[9]. Although mm-

wave links support high data rates due to their large bandwidths, they provide limited coverage, whereas

microwave links typically provide reliable coverage and support only moderate data rates. Thus, in a dual-

band setting, these two bands mutually complement each other: conventional traffic and control information

can be reliably communicated in the microwave band, and high data-rate traffic can be communicated via

the mm-wave links [3]–[5], [10]–[15].

In future 5G networks, access via dual microwave and mm-wave bands will likely be a key technology,

and hence they have been subject to much investigation recently. For example, studies as in [10]–[12],

[14] focus on improving network layer metrics such as the number of served users, throughput, and

link reliability, etc., while studies as in [16]–[18] focus on improving physical layer metrics such as the

achievable rates and outage probability. Moreover, the emergence of dual-band modems from Intel [19]

and Qualcomm [20], and practical demonstrations such as that in the 3 GHz-30 GHz dual-bands in [4]

clearly illustrate the immense potential of such networks. However, few studies have been reported on

the information-theoretic limits of multi-user dual-band networks [21], which are crucial in identifying

the limits of achievable rates, simplified encoding schemes, etc., in practical dual-band networks. For

example, the study on the two-user interference channel over such integrated dual-bands [13] has shown

that forwarding interference to the non-designated receivers through the mm-wave links can improve

achievable rates considerably. Moreover, relay cooperation, which already plays a key role in microwave

networks, will likely play a vital role in such dual-band networks as well, especially to offset impairments

such as blockage in the mm-wave band [8], [12], [22], [23].

Thus motivated, we study the two-user Gaussian multiple-access relay channel (MARC) over dual

microwave and mm-wave bands, which models uplink scenarios, e.g., fixed wireless access [24] which

is expected to eliminate last mile wired connections to end users. In this case, the base station will

communicate with a fixed access-point that is equipped with the hardware necessary for dual-band

communication including mm-wave beamforming, which will likely be located outside a building and

will provide high data rate access to users inside the building (end users). As such, the dual-band MARC
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can model relay-assisted uplink from two such fixed access-points located in nearby buildings. In the

future, when mobile handsets are equipped with dual-band communication capable hardware, the dual-

band MARC can also model relay-aided cellular uplink from mobile users.

In this MARC, two sources communicate to a destination with the help of a relay over dual microwave

and mm-wave bands. In the microwave band, transmissions from both sources are superimposed at the

relay and at the destination as in a conventional MARC (c-MARC) [24]. In contrast, since mm-wave links

are highly directional [7], when a transmitter in the mm-wave band transmits specifically to the relay or

the destination, the resulting mm-wave link causes minimal to no interference to the unintended receiver

[9], [25]. In fact, a mm-wave transmitter can create two parallel non-interfering links via beamforming,

and then communicate with both relay and destination simultaneously [6], [9], [25]. Therefore, in this

work a mm-wave transmitter is modeled as being able to create two such parallel non-interfering AWGN

links to simultaneously transmit to the relay and the destination, while a mm-wave receiver is modeled

as being able to simultaneously receive transmissions from multiple mm-wave transmitters via separate

mm-wave links [26] with negligible inter-link interference.

It is natural to ask whether a user (or source) in the mm-wave band should transmit to the relay, the

destination, or both. Depending on whether each of the two sources transmits to only the relay, only the

destination, both, or none, 16 different models are possible. The general model that includes all microwave

and mm-wave links is referred to as the destination-and-relay-linked MARC (DR-MARC), where the two

sources (S1 and S2) simultaneously communicate to the destination (D) via the mm-wave S1-D and

S2-D direct links as well as to the relay (R) via the mm-wave S1-R and S2-R relay links. Since all

other models with varying mm-wave link connectivity can be obtained from the DR-MARC by setting

the relevant transmit powers to zero, they are not defined explicitly. However, the model where transmit

powers in the mm-wave direct links are set to zero is an important one and referred to as the relay-linked

MARC (R-MARC).

In addition to mm-wave links, the dual-band MARC also consists of an underlying conventional

microwave band c-MARC. The capacity of such an individual c-MARC was partially characterized under

phase and Rayleigh fading [24], [27], and therefore, we assume that the dual-band MARC is subject to

a general ergodic fading where the phase of the fading coefficients are i.i.d. uniform in [0, 2π), similar

to phase and Rayleigh fading. The general fading contains phase and Rayleigh fading as special cases,

and can model a range of channel impairments. For example, phase fading models the effect of oscillator

phase noise in high-speed time-invariant communications [28], the effect of phase-change due to slight
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transmitter-receiver misalignment in LoS dominant links [29], etc., while Rayleigh fading models the

effect of rich scattering [30].

In [24], the conventional c-MARC was classified into the near c-MARC and the far c-MARC cases. In

the near c-MARC, the sources are near the relay in that the source-relay channels are stronger than the

source-destination channels in the sense of [24, Theorem 9], and thus the capacity of the near c-MARC

was characterized. Naturally, the far c-MARC case is complementary to the near case. Here, we similarly

classify the dual-band MARCs (DR-MARC and R-MARC) based on whether the underlying c-MARC in

the microwave band is a near or a far c-MARC in the sense of [24].

First, we consider the DR-MARC where the sources simultaneously transmit in both the mm-wave

relay and mm-wave direct links. We show that irrespective of whether the underlying c-MARC is a near

or a far c-MARC, its capacity can be decomposed into the capacity of the underlying R-MARC (that

consists of the c-MARC and the two mm-wave relay links) and the two mm-wave direct links. Hence,

it is sufficient to focus on the R-MARC. The capacity of the R-MARC with near underlying c-MARC

are characterized under the same conditions as in [24] and thus does not need additional conditions on

the mm-wave links. Therefore, we focus primarily on R-MARCs with far underlying c-MARC where

the mm-wave links play a key role, and for such R-MARCs, we find sufficient channel conditions under

which its capacity is characterized by an achievable scheme.

The DR-MARC is a building block for future dual-band multiuser networks. Since, its performance

will be significantly affected by the mm-wave links due to their large bandwidths [11], [18], [21], it is

useful to understand how allocating the mm-wave band resources optimizes the performance, similar to

other multiuser networks [8], [21], [31]. Hence, to quantify the impact of the mm-wave spectrum on the

performance of the DR-MARC, we study the power allocation strategy for the mm-wave direct and relay

links (subject to a power budget) that maximizes the achievable sum-rate.

The contributions of this paper is summarized as follows.

• We decompose the capacity of the DR-MARC into the capacity of the underlying R-MARC and

two direct links. This shows that irrespective of whether the underlying c-MARC is a near or a far

c-MARC, operating the R-MARC independently of the direct links is optimal.

• We derive an achievable region for the R-MARC. Then, for R-MARCs with far underlying c-MARC,

we obtain sufficient conditions under which this achievable scheme is capacity achieving.

• We characterize the optimal power allocation scheme (OA) for the mm-wave direct and relay links that

maximizes the sum-rate achievable on the DR-MARC with the aforementioned achievable scheme.
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For intuition, we partition the range of the total power budget (P) into several link gain regimes

(LGR) based on whether P satisfies certain channel conditions, and show that the OA allocates link

powers in different modes in each LGR. We obtain all such LGRs and modes of power allocation

which reveal useful insights.

We observe that for DR-MARCs with near underlying c-MARC, the OA allocates P entirely to the

direct links for all P ≥ 0. However, for DR-MARCs with far underlying c-MARC, we observe the

following:

(i) when P is smaller than a certain saturation threshold (Psat), for the direct and relay links

of each source, the OA allocates powers following a Waterfilling (WF) approach. Specifically, for

sufficiently small P, the OA allocates P entirely to the strongest of the direct and relay links of a

source, and as P increases, power is eventually allocated to the remaining links. Thus, for P < Psat,

each link-power either increases piecewise linearly with P, or remains zero.

(ii) when P ≥ Psat, saturation occurs where the relay link powers are constrained to satisfy a

certain saturation condition. As P increases beyond Psat, the direct link powers grow unbounded

with P, while the relay link powers vary with P as follows. There exists a threshold Pfin ≥ Psat,

such that (a) if one relay link is significantly stronger than the other (in a sense to be defined later),

then for all P ≥ Pfin, power in the stronger relay link remains fixed at a constant level and that in the

weaker relay link at zero, and (b) if the relay link is only stronger but not significantly stronger, for

all P ≥ Pfin, power in the stronger and the weaker relay links monotonically increase and decrease

respectively, and approach constant levels.

(iii) if the mm-wave bandwidth is large and the power received at the destination from the relay

via the mm-wave link is also large, allocating power as in the WF-like solution is optimal for all

practical P, and saturation only occurs for large values of P.

This paper is organized as follows. The system model is defined in Section II. The results on the DR-

MARC and the R-MARC are presented in Section III and Section IV respectively. The optimum sum-rate

problem is presented in Section V, while in Section VI insights are derived from the link gain regimes.

Finally, conclusions are drawn in Section VII.

Notation: The sets of real, non-negative real and complex numbers are denoted by R,R+ and C. Vectors

are generally denoted in bold (e.g., p) with p � 0 denoting that each pi ∈ R+. Random variables (RVs) and

their realizations are denoted by upper and lower cases (e.g., X and x). Specifically, Z ∼ CN(0, σ2) denotes

a circularly symmetric complex Gaussian (CSCG) RV with mean 0 and variance σ2, and Θ ∼ U[0, 2π)
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Fig. 1: (a) Example of the DR-MARC in a cellular uplink. (b) A 2-D geometry of the DR-MARC where the relay and

the destination are located on the x-axis, and the sources are located symmetrically on either side of the x-axis. The distance

between nodes m and t is denoted by dmt where m ∈ {1, 2,R}, t ∈ {D,R},m , t. (c) System model of the Gaussian DR-MARC:

solid line and dashed line denote microwave band and mm-wave band transmissions respectively.

denotes a uniformly distributed RV in [0, 2π). Also, E[.] denotes expectation, while ⌊x⌋ denotes the

greatest integer no larger than x, and C(p) := log(1 + p).

II. SYSTEM MODEL

We consider a relay-assisted two-user uplink scenario as in Fig. 1a which is modeled as the DR-MARC

as in Fig. 1c. Note that a bandwidth mismatch factor (BMF) α may exist between the two bands such that

for n accesses of the microwave band, the mm-wave band is accessed n1(n) := ⌊αn⌋ times. To communicate

a message Mk from source Sk , it is encoded into three codewords, Xn
k
(Mk), X̂

n1

k
(Mk) and X̄

n1

k
(Mk), of

lengths n, n1 and n1 respectively. Then, Xn
k
(Mk) is transmitted towards D by using the microwave (first)

channel n times, and due to the nature of this band, Xn
1
(M1) and Xn

2
(M2) superimpose at D and at R as

in the c-MARC [24]. Meanwhile, in the mm-wave (second) band, X̂
n1

k
(Mk) is transmitted to R through

the Sk-R relay link and X̄
n1

k
(Mk) to D through the Sk-D direct link simultaneously by using the links n1

times. The relay aids by creating codewords Xn
R

and X̄
n1

R
from its received signals and transmitting them

to D in both bands.

We now define the channel model of the Gaussian DR-MARC. As in [24], in the first band, the channel

outputs at D and R at the i-th use of the band are given by

YD,i = H1D,iX1,i + H2D,iX2,i + HRD,iXR,i + ZD,i (1)

YR,i = H1R,iX1,i + H2R,iX2,i + ZR,i, i = 1, . . . , n, (2)
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where Hmt,i ∈ C are channel fading coefficients from the transmitter at node m to the receiver at t,

m , t,m ∈ {1, 2,R}, t ∈ {R,D}, and input Xm,i ∈ C are block power constrained, 1
n

∑n
i=1 E[|Xm,i |2] ≤

Pm,m ∈ {1, 2,R}. Also, the noise RVs are ZR,i ∼ CN(0, 1), i.i.d., and ZD,i ∼ CN(0, 1), i.i.d.

In the second band, the outputs of the Sk -R relay links at the relay R are modeled as

ȲkR,ℓ = H̄kR,ℓ X̂k,ℓ + Z̄kR,ℓ, k ∈ {1, 2}, ℓ = 1, . . . , n1, (3)

and the outputs of the Sk-D direct links and the R-D link at D are modeled respectively as

ȲmD,ℓ = H̄mD,ℓ X̄m,ℓ + Z̄mD,ℓ, m∈ {1, 2,R}, ℓ=1, . . . , n1, (4)

where H̄kR,ℓ are the fading coefficients of the Sk-R relay links, while H̄kD,ℓ and H̄RD,ℓ are the same for

the Sk-D direct links and the R-D mm-wave link respectively. The input symbols, X̂k,ℓ ∈ C and X̄m,ℓ ∈ C,

are block power constrained as follows: 1
n1

∑n1

ℓ=1
E[|X̂k,ℓ |2] ≤ P̂k , 1

n1

∑n1

ℓ=1
E[|X̄m,ℓ |2] ≤ P̄m. Also, the noise

RVs are Z̄kR,ℓ ∼ CN(0, 1), k ∈ {1, 2}, i.i.d., and Z̄mD,ℓ ∼ CN(0, 1),m ∈ {1, 2,R}, i.i.d.

We assume that the DR-MARC is subject to an ergodic fading process where, across channel uses,

the phase of the fading coefficients are ∼ U[0, 2π) i.i.d. Specifically, the fading coefficients from node m

to node t, m ∈ {1, 2,R}, t ∈ {R,D},m , t, in the first band are denoted by Hmt,i :=
√

Gmt,ie
jΘmt,i , while

those in the second band by H̄mt,ℓ :=
√

Ḡmt,ℓe
jΘ̄mt,ℓ , with j :=

√
−1. Here, Θmt,i, Θ̄mt,ℓ ∼ U[0, 2π) i.i.d.,

and Gmt,i, Ḡmt,ℓ ∈ R+ are i.i.d. RVs that depend on the inter-node distance dmt , as well as the pathloss

exponent β1 (for the first band) and β2 (for the second band). For example, when specializing to phase

fading, we take Gmt,i := 1/dβ1

mt and Ḡmt,ℓ := 1/dβ2

mt to be constant, and for Rayleigh fading, we take

Gmt,i ∼ exp(1/dβ1

mt) and Ḡmt,ℓ ∼ exp(1/dβ2

mt) i.i.d., where exp(µ) is an exponential distribution with mean

µ.

We also assume that (i) the long term parameters, i.e., the distances and the pathloss exponents, are

known at all nodes; (ii) the instantaneous channel state information (CSI), i.e., the phase and magnitude

of the fading coefficients, are not available to any transmitter; and (iii) each receiver knows the CSI on

all its incoming channels, but has no CSI of other channels. This models practical scenarios where CSI

feedback to a transmitter is unavailable, while a receiver can reliably estimate the CSI. Also, this is less

restrictive than [31] where full or partial CSI is also available at a transmitter.

Note that given a BMF α, for n uses of the microwave band, the mm-wave band is used n1(n) := ⌊αn⌋

times, while for n1 uses in the mm-wave band, the microwave band is used n(n1) := ⌊n/α⌋ times. We

define a (2nR1, 2nR2, n, α) code for the DR-MARC that consists of (i) two independent, uniformly distributed

message sets Mk = {1, . . . , 2nRk}, k ∈ {1, 2}, one for each source; (ii) two encoders φ1 and φ2 such that
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φk : Mk → Cn×Cn1(n)×Cn1(n), k ∈ {1, 2}; (iii) a set of relay encoding functions, { fi}n
i=1

and { f̄ℓ}n1(n)
ℓ=1

, such

that xR,i = fi(yi−1
R
, {hi−1

kR
, ȳ

n1(i−1)
kR

, h̄
n1(i−1)
kR

}2
k=1

) and x̄R,ℓ = f̄ℓ(yn(ℓ−1)
R

, { ȳℓ−1
kR
, h̄ℓ−1

kR
, h

n(ℓ−1)
kR

}2
k=1

), xR,i, x̄R,ℓ ∈ C;

and (iv) a decoder ψ at D such that ψ : Cn × C3n1(n) × C3n × C3n1(n) → M1 ×M2.

The relay helps by computing {xR,i}n
i=1

and { x̄R,ℓ}n1(n)
ℓ=1

causally by applying functions { fi}n
i=1

and

{ f̄ℓ}n1(n)
ℓ=1

on its past received signals and CSI as above and transmitting them to D. A rate tuple (R1, R2) is

said to be achievable if there exists a sequence of (2nR1, 2nR2, n, α) codes such that the average probability of

error P
(n)
e := Pr[ψ(Y n

D
, {Ȳn1

mD
,Hn

mD
, H̄

n1

mD
}m∈{1,2,R}) , (M1, M2)] → 0 as n → ∞ [32, Chap. 15.3]. Finally, the

system model of the R-MARC is defined from that of the DR-MARC by setting X̄kD,l = ȲkD,l = ∅, k = 1, 2.

III. DECOMPOSITION RESULT ON THE DR-MARC

TWe show that the capacity of the DR-MARC with BMF α, denoted CDR(α), can be decomposed into

the capacity of the underlying R-MARC, denoted CR(α), and the two Sk-D direct links.

Theorem 1. CDR(α) is given by the set of all non-negative rate tuples (R1, R2) that satisfy

CDR(α) = {(R1, R2) : R1 ≤ r1 + αE[C(Ḡ1DP̄1)],

R2 ≤ r2 + αE[C(Ḡ2DP̄2)]},
where (r1, r2) ∈ CR(α), and the expectations are taken over the corresponding RVs.

The proof is relegated to Appendix A. For the special case of phase fading where ḠkD = 1/dβ2

kD

are constant, expectations in Theorem 1 are not needed, while for Rayleigh fading expectations are

over ḠkD ∼ exp(1/dβ2

kD
). Any (R1, R2) in the DR-MARC can be achieved by achieving (r1, r2) in the

underlying R-MARC and supplementing it with the capacity of the direct links. Hence, operating the

direct links independently of the R-MARC is optimal, which simplifies the transmission. Since CDR(α)

can be determined from CR(α), it is sufficient to focus on CR(α), considered next.

IV. CAPACITY OF A CLASS OF R-MARC

Unlike the DR-MARC where separating the operation of the underlying R-MARC from the mm-wave

direct links is optimal, in the R-MARC separating the underlying c-MARC and the mm-wave relay links

is suboptimal in general. In fact, capacity of the R-MARC is derived by operating the c-MARC jointly

with the relay links. First, we characterize an achievable rate region for the R-MARC.

Theorem 2. An achievable region of the R-MARC with BMF α, denoted C
R
(α), is given by the set of all

non-negative rate tuples (R1, R2) that satisfy

R1 < E[C(G1RP1)] + αE[C(Ḡ1RP̂1)], (5)
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R2 < E[C(G2RP2)] + αE[C(Ḡ2RP̂2)], (6)

R1 + R2 < E[C(G1RP1 + G2RP2)] + αE[C(Ḡ1RP̂1)] + αE[C(Ḡ2RP̂2)], (7)

R1 < E[C(G1DP1 + GRDPR)] + αE[C(ḠRDP̄R)], (8)

R2 < E[C(G2DP2 + GRDPR)] + αE[C(ḠRDP̄R)], (9)

R1 + R2 < E[C(G1DP1 + G2DP2 + GRDPR)] + αE[C(ḠRDP̄R)], (10)

where expectations are over the channel gains Gmt and Ḡmt , m , t,m ∈ {1, 2,R}, t ∈ {R,D}.

The achievable region C
R
(α) is obtained by performing block Markov encoding and backward decoding

for the relay, as outlined in Appendix B. Moreover, the same message is jointly encoded into codewords

that are transmitted simultaneously in both bands. Interestingly, the bounds in (8)-(10) can be interpreted

as that of the MAC from the sources to the destination aided by the relay.

In [24], the capacity of the near c-MARC, where the source-relay links can support higher rates than

source-destination links, was characterized. In contrast, for R-MARCs with far underlying c-MARC, if

the following conditions hold, then the scheme of Theorem 2 is also capacity achieving.

Theorem 3. If the channel parameters of the Gaussian R-MARC with BMF α satisfy

E[C(G1DP1 + GRDPR)] + αE[C(ḠRDP̄R)] ≤ E[C(G1RP1)] + αE[C(Ḡ1RP̂1)], (11)

E[C(G2DP2 + GRDPR)] + αE[C(ḠRDP̄R)] ≤ E[C(G2RP2)] + αE[C(Ḡ2RP̂2)], (12)

E[C(G1DP1 + G2DP2 + GRDPR)] + αE[C(ḠRDP̄R)] ≤ E[C(G1RP1 + G2RP2)] + α
∑2

k=1 E[C(ḠkRP̂k )],

(13)

then its capacity is given by the set of all non-negative rate tuples (R1, R2) that satisfy (8)-(10). Here, the

expectations are over channel gains Gmt , Ḡmt , m , t,m ∈ {1, 2,R}, t ∈ {R,D}.

While the proof is relegated to Appendix C, we discuss the key steps here. First, in the proof of

the outer bounds in steps (e)-(f) of (30), the cross-correlation coefficients between the source and relay

signals are set to zero. Since instantaneous CSI are not available to the transmitters and the phase of

the fading coefficients ∼ U[0, 2π), i.i.d., setting the cross-correlation to zero proves optimal, resulting in

outer bounds (8)-(10). Next, in Theorem 2, if conditions (11)-(13) hold, the achievable rates (8)-(10) for

the destination are smaller than those in (5)-(7) for the relay. Hence, the relay can decode both messages

without becoming a bottleneck to the rates. Thus, under (11)-(13), rates (8)-(10) are achievable and they

match the outer bounds.
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Fig. 2: (a) The ASR matches the OB if dSR ≤ d∗
SR

for both cases of dRD. (b) The source locations for which the scheme of

Theorem 2 achieves the capacity of the R-MARC (i.e., the locations at coordinates (x,±y) in the shaded regions).

Note that the rates in Theorem 2 are achieved by encoding jointly over both bands. Hence, while

capacity of the c-MARC is known only when the source-relay links are stronger in the microwave band

(near case), in the R-MARC, they only need to be stronger jointly over both bands. Thus, even if sources

are not near the relay in the microwave band, for sufficiently strong mm-wave relay links, they can become

“jointly near” over both bands, where the scheme of Theorem 2 achieves capacity.

The above result applies directly to phase and Rayleigh fading: for phase fading, Gmt and Ḡmt are

geometry determined constants, and thus the expectations in Theorem 2 are not needed, while for Rayleigh

fading, the expectations are over Gmt ∼ exp(1/dβ1

mt) and Ḡmt ∼ exp(1/dβ2

mt).

Numerical Examples: To illustrate the impact of mm-wave links on the capacity of the R-MARC, we

consider a two-dimensional topology as in Fig. 1b where R and D are located on the x-axis at (0, 0) and

(0, dRD), and S1 and S2 are located symmetrically at (−dSR cos φ,±dSR sin φ), with φ being the angle

between a source and R and dSD = (d2
SR
+ d2

RD
+ 2dSRdRD cos φ)1/2 the resulting source-destination

distance. We take both bands in the R-MARC to be under phase fading as in [24]. Hence, expectations

in conditions (11)-(13) and Theorem 2 are not needed, and observations can be interpreted in terms of

distances. Also, power constraints in the R-MARC are set to 10 and β1 = 2, β2 = 4.

First, note that under condition (13), the sum-rate outer bound (OB), given by the r.h.s. of (10), matches

the achievable sum-rate (ASR) in Theorem 2, given by the minimum of r.h.s. of (7) and (10). For ease

of exposition, we fix dRD, φ and BMF α. Hence, condition (13) is equivalent to dSR ≤ d∗
SR

(dRD, φ, α) for
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some threshold source-destination distance d∗
SR

(dRD, φ, α). We verify this for fixed φ = π/4 and α = 2

and two cases of dRD ∈ {1, 0.5} by plotting the ASR and the OB as functions of dSR ∈ (0, 2.5] in Fig. 2a.

We observe that the ASR matches the OB if dSR ≤ d∗
SR

with d∗
SR

≈ 1.41 for dRD = 1, and d∗
SR

≈ 0.91

for dRD = 0.5, otherwise the ASR is strictly smaller. As dRD reduces from 1 to 0.5, for condition (13) to

hold, d∗
SR

also reduces from d∗
SR

≈ 1.41 to ≈ 0.91.

Next, to illustrate the impact of the mm-wave links, in Fig. 2b we depict the source locations relative to

the relay and the destination for which all of conditions (11)-(13) are satisfied and therefore the scheme

of Theorem 2 achieves capacity. As such, we fix dRD = 1, vary φ ∈ (0, π) and dSR ∈ (0, 2) to vary

source locations, and plot the resulting regions: we overlay the region for the case without mm-wave links

(α = 0) on those with mm-wave links with BMF α ∈ {2, 4, 10} as well as α → ∞.

First, for the case without mm-wave links (α = 0), conditions (11)-(13) hold only when sources are

within the innermost black region in Fig. 2b. Noting that for each φ, the resulting threshold distance d∗
SR

(φ)

is at the boundary of this region, as φ increases from φ = 0 to φ = π, d∗
SR

(φ) decreases monotonically

from ≈ 1.2 to ≈ 0.47. We thus observe that conditions (11)-(13) hold for much larger threshold distance

d∗
SR

when sources are located far away from destination (i.e., φ ≈ 0), and threshold distance d∗
SR

reduces

considerably when sources are closer to the destination (i.e., φ ≈ π).

We note that the above trends continue to hold when mm-wave links are used (α > 0), however,

the resulting region (union of the inner black and outer gray regions) now extends much closer to the

destination. For example, for the region with α = 2, d∗
SR

reduces to only ≈ 0.96 near the destination,

compared to ≈ 0.47 with α = 0. Moreover, the resulting region grows with α but the growth saturates for

higher values of α, with α = 10 producing almost the same region as that for α → ∞.

V. THE OPTIMAL SUM-RATE PROBLEM

Since mm-wave links can have significantly larger bandwidth than the microwave links, they can

significantly affect the performance limits of the DR-MARC. To understand this impact, we study how

the sum-rate achievable on the DR-MARC (with the scheme of Theorem 2) is maximized by optimally

allocating power to the mm-wave direct and relay links. We observe that the resulting scheme allocates

power to the mm-wave links in different modes depending on whether certain channel conditions hold.

This characterization reveals insights into the nature of the scheme, and can serve as an effective resource

allocation strategy for such dual-band networks in practice.

For ease of exposition, the mm-wave band is assumed to be under phase fading while the microwave

band is assumed to be under the general fading of Section II. Here, phase fading is a good model for
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mm-wave links such as those in [7], as phase fading is a special case of the general fading model [33]

when the diffuse component associated with the non-LoS propagation is not present. Furthermore, this

simplification reveals useful insights into the optimal power allocation.

Under phase fading, the link gain in the Sk-D direct link (referred to as DLk) is ḠkD = 1/dβ2

kD
> 0, and

that in the Sk-R relay link (referred to as RLk) is ḠkR = 1/dβ2

kR
> 0, which are constants. For convenience,

we denote the link gains of DLk and RLk by dk := ḠkD and rk := ḠkR, k ∈ {1, 2}. We assume that the

transmit power in DLk (pk) and RLk (qk) from source Sk satisfy a total power budget

pk + qk = P, k ∈ {1, 2}. (14)

For a fixed power allocation (p1, q1, p2, q2), R is an achievable sum-rate of the DR-MARC iff

R ≤ min{ΣR, ΣD}. (15)

Here, ΣR and ΣD denote the sum-rates achievable at the relay and destination, and are given by

ΣR := σR + α
∑2

k=1 log(1 + rkqk) + log(1 + dk pk), (16)

ΣD := σD + α
∑2

k=1 log(1 + dk pk), (17)

where σD := E[C(G1DP1 + G2DP2 + GRDPR)] + αC(ḠRDP̄R) and σR := E[C(G1RP1 + G2RP2)], with

the expectations taken over the RVs involved. Note that ΣR and ΣD are obtained as follows. For direct

link powers (p1, p2), it follows from the decomposition result in Theorem 1 that the sum-rate of the

DR-MARC is given by the sum of the sum-rate of the R-MARC and the total rate of the direct links,

i.e., α
∑2

k=1 log(1 + dk pk). Now, for given relay link powers (q1, q2), the sum-rate of the R-MARC is

given by the minimum of r.h.s. of (7) and (10). Hence, ΣR is given by the sum of the r.h.s. of (7) and

α
∑2

k=1 log(1 + dk pk) as expressed in (16), while ΣD is obtained by the sum of the r.h.s. of (10) and

α
∑2

k=1 log(1 + dk pk), as given in (17).

The problem of maximizing R over the transmit powers (p1, q1, p2, q2) is then

[P1] maximize R

subject to R ≤ ΣR, (18)

R ≤ ΣD, (19)

pk + qk = P, k ∈ {1, 2} (20)

(p1, q1, p2, q2, R) � 0. (21)
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Note that [P1] is a convex optimization problem as the objective is linear, constraints in (20) are affine,

and those in (18)–(19) are convex. Hence, it can be solved by formulating the Lagrangian function of

[P1] by associating a Lagrange multiplier to each constraint in (18)-(21), and then deriving and solving

the KKT conditions [34]. See Appendix D for details.

A. Link Gain Regimes and Optimal Power Allocation

To gain insights, we derive the optimal power allocation in closed form, and describe it in terms of

link-gain regimes (LGR) which are partitions of the set of all tuples of link gains and power budget P,

found while solving the KKT conditions for [P1]. Specifically, we derive the KKT conditions and solve

for the optimal primal variables (i.e., transmit powers) and the optimal Lagrange multipliers (OLM). To

simplify the procedure, we consider the set of tuples of OLMs associated with inequality constraints in

(18), (19) and (21), and partition this set into a few subsets based on whether the OLMs in the set are

positive or zero, i.e., whether the associated primal constraints are tight or not (detailed in Appendix D).

For each resulting partition of the set of OLM tuples, we first derive the expression for the optimal powers

in closed form. However, the conditions that define these partitions are still characterized in terms of the

OLMs. Therefore, to express the optimal power allocation explicitly in terms of link gains (r1, r2, d1, d2)

and power budget P, we express the conditions that partition the set of the OLM tuples in terms of link

gains, P, and parameter γ, defined as

γ := 2(σD−σR)/α (22)

which models the effect of microwave band parameters, with σD and σR defined in (16)-(17).

Remark 1. The parameter γ in (22) is used only to simplify the exposition. When interpreting the

optimum transmit powers, we often compare ΣR and ΣD. Substituting their expressions in (16) and (17),

the comparison between ΣR and ΣD reduces to that between σR + α
∑2

k=1 log(1 + rkqk) and σD, i.e.,

equivalently between (1 + r1q1)(1 + r2q2) and 2(σD−σR)/α. We thus define γ = 2(σD−σR)/α.

As a result, the set of (r1, r2, d1, d2, γ, P)-tuples is partitioned into a few subsets (LGRs), each corre-

sponding to one and only one subset of OLM tuples. The conditions for each LGR is then simplified and

expressed as upper and lower bounds (threshold powers) on power budget P where the threshold powers

depend on (r1, r2, d1, d2, γ). This results in partitioning the power budget P ≥ 0 into a few intervals, each

describing an LGR. Specifically, we consider two cases σD ≤ σR and σD > σR, which are equivalent to

γ ≤ 1 and γ > 1 respectively.
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TABLE I: LGRs and corresponding optimal power allocation for the case with γ > 1.

Definition of LGR Optimal power allocation

Ad,d := {c : 0 ≤ P ≤ min(Pd,d, P̂d,d)} p1 = P, q1 = 0, p2 = P, q2 = 0

Ad,r := {c : 0 ≤ P ≤ min(P̂′
d,d
,Pd,d,Pd,r)} p1 = P, q1 = 0, p2 = 0, q2 = P

Ar,d := {c : 0 ≤ P ≤ min(P′
d,d
, P̂d,d,Pr,d)} p1 = 0, q1 = P, p2 = P, q2 = 0

Ar,r := {c : 0 ≤ P ≤ min(P′
d,d
, P̂′

d,d
,Pr,r)} p1 = 0, q1 = P, p2 = 0, q2 = P

Ard,d := {c : max(Pd,d,P
′
d,d

) < P ≤ min(P̂d,d,Prd,d)} p1 =
1

2

(

P +
1

r1
− 1

d1

)

, q1 =
1

2

(

P − 1

r1
+

1

d1

)

, p2 = P, q2 = 0

Ad,rd := {c : max(P̂d,d, P̂
′
d,d

) < P ≤ min(Pd,d,Pd,rd)} p1 = P, q1 = 0, p2 =
1

2

(

P +
1

r2
− 1

d2

)

, q2 =
1

2

(

P − 1

r2
+

1

d2

)

Ar,rd := {c : max(P̂d,d, P̂
′
d,d

) < P ≤ min(P′
d,d
,Pr,rd)} p1 = 0, q1 = P, p2 =

1

2

(

P +
1

r2
− 1

d2

)

, q2 =
1

2

(

P − 1

r2
+

1

d2

)

Ard,r := {c : max(Pd,d,P
′
d,d

) < P ≤ min(P̂′
d,d
,Prd,r)} p1 =

1

2

(

P +
1

r1
− 1

d1

)

, q1 =
1

2

(

P − 1

r1
+

1

d1

)

, p2 = 0, q2 = P

Ard,rd := {c : max(Pd,d, P̂d,d,P
′
d,d
, P̂′

d,d
) < P ≤ Prd,rd pk =

1

2

(

P +
1

rk
− 1

dk

)

, qk =
1

2

(

P − 1

rk
+

1

dk

)

, k ∈ {1, 2}

Sr,rd := {c : max(Pr,r,Pr,rd) < P ≤ min(Pr,rd,Pr,d)} p1 = 0, q1 = P, p2 = P − q2, q2 = r−1
2

(γ/(1 + Pr1) − 1)

Srd,r := {c : max(Pr,r,Prd,r) < P ≤ min(Prd,r,Pd,r)} p1 = P − q1, q1 = r−1
1

(γ/(1 + Pr2) − 1), p2 = 0, q2 = P

Srd,d := {c : r ∈ RS1,max(Pr,d,Prd,d,Prd,d) < P} p1 = P − (γ − 1)r−1
1
, q1 = (γ − 1)r−1

1
, p2 = P, q2 = 0

∪{c : r ∈ (R1 ∪ R2 ∪ RS2),max(Pr,d,Prd,d) < P < Prd,d}

Sd,rd := {c : r ∈ RS2,max(Pd,r,Pd,rd,Pd,rd) < P} p1 = P, q1 = 0, p2 = P − (γ − 1)r−1
2
, q2 = (γ − 1)r−1

2

∪{c : r ∈ (R1 ∪ R2 ∪ RS1),max(Pd,r,Pd,rd) < P < Pd,rd}

Srd,rd := p1 = P − q1,

{c : r ∈ (R1 ∪ R2),max(Prd,d,Pd,rd,Prd,r,Pr,rd,Prd,rd) < P} q1 = r−1
1

(

γ(Pr1 + r1d−1
1
+ 1)/(Pr2 + r2d−1

2
+ 1)

)1/2
− r−1

1
,

∪{c : r ∈ RS1,max(Pd,rd,Prd,r,Pr,rd,Prd,rd) < P ≤ Prd,d} p2 = P − q2,

∪{c : r ∈ RS2,max(Prd,d,Prd,r,Pr,rd,Prd,rd) < P ≤ Pd,rd} q2 = r−1
2

(

γ(Pr2 + r2d−1
2
+ 1)/(Pr1 + r1d−1

1
+ 1)

)1/2
− r−1

2

For γ ≤ 1, the set of all (r1, r2, d1, d2, γ, P)-tuples turn out to belong to a single LGR where the allocation

(p1, q1, p2, q2) = (P, 0, P, 0) is optimal for all P ≥ 0. Since γ ≤ 1 implies σD ≤ σR from (22), any feasible

allocation results in R = ΣD ≤ ΣR, with ΣD and ΣR in (16)-(17). Since R = ΣD only increases by increasing

p1 and p2, ΣD is maximized with p1 = p2 = P. Thus, P should always be entirely allocated to the direct

links.

For the case with γ > 1, the set of c := (r1, r2, d1, d2, P)-tuples is partitioned into 14 LGRs, and thus

the optimal power allocation (referred to as OA) is more involved. In Table I, we define the 14 LGRs
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TABLE II: Definition of the threshold powers in LGRs.

Pd,d := r−1
1

− d−1
1
, P′

d,d
:= −Pd,d,

P̂d,d := r−1
2

− d−1
2
, P̂′

d,d
:= −P̂d,d,

Pr,d := (γ − 1)r−1
1
, Pd,r := (γ − 1)r−1

2
,

Pr,r := ̺[(1 + xr1)(1 + xr2) − γ],

Prd,d := (2γ − 1)r−1
1

− d−1
1
, Pd,rd := (2γ − 1)r−1

2
− d−1

2
,

Pr,rd := ̺[(1 + r2d−1
2
+ xr2)(1 + xr1) − 2γ], Prd,r := ̺[(1 + r1d−1

1
+ xr1)(1 + xr2) − 2γ],

Prd,rd := ̺[(1 + r1d−1
1
+ xr1)(1 + r2d−1

2
+ xr2) − 4γ],

Pr,rd := ̺[(1 + r2/d2 + xr2)(1 + xr1)2 − γ(1 + r1/d1 + xr1)], Prd,r := ̺[(1 + r1/d1 + xr1)(1 + xr2)2 − γ(1 + r2/d2 + xr2)],

Prd,d := (γ − 1 + γr2d−1
2

− r1d−1
1

)/(r1 − γr2), Pd,rd := (γ − 1 + γr1d−1
1

− r2d−1
2

)/(r2 − γr1).

and present the optimal powers for each LGR. Here, r := (r1, r2), and the threshold powers for the LGRs

are defined in Table II, with ̺[f(x)] denoting the positive root of polynomial f(x).

For LGRs Ax,y, x, y ∈ {d, r, rd}, x and y denote the transmission status in the mm-wave links of sources

S1 and S2 respectively: for each source, d, r and rd denotes that the OA transmits in the direct link only, in

the relay link only and in both links, respectively. For example, in LGR Ard,d the OA transmits in both links

of source S1 and only in the direct link of source S2. While LGRs S(.,.) can be similarly interpreted, S(.,.)

and A(.,.) are associated with two distinct properties of the OA discussed shortly. Moreover, the threshold

powers P(.,.), P̂(.,.),P
′
(.,.), P̂

′
(.,.) and P(.,.) follow the same notation as the LGRs, with P′

(.,.) := −P(.,.). Also,

while P(.,.) are used for LGRs S(.,.) only, all other threshold powers are used for both type of LGRs A(.,.)

and S(.,.).

Note that all LGRs in Table I are mutually exclusive in that, for a given tuple c = (r1, r2, d1, d2, P),

the condition for one and only one LGR holds. For example, suppose a tuple c ∈ Ad,d, hence it satisfies

min(Pd,d, P̂d,d) ≥ P ≥ 0. From Table II, since P′
d,d

:= −Pd,d, P̂′
d,d

:= −P̂d,d the condition (Pd,d, P̂d,d) � 0

for Ad,d requires (P′
d,d
, P̂′

d,d
) � 0, i.e., Ar,r = Ar,d = Ad,r = Ar,rd = Ard,r = ∅. Next, c < Ard,d as

condition Pd,d < P for Ard,d violates condition Pd,d ≥ P for Ad,d; similarly c < Ad,rd and c < Ard,rd.

Also, c < Srd,d as condition Prd,d < P for Srd,d violates Pd,d > P for Ad,d since Pd,d < Prd,d; similarly

c < Sd,rd. We can also show that c < Sr,rd, c < Srd,r and c < Srd,rd via simple algebraic manipulations.

Similarly any other LGR-pair can be shown to be mutually exclusive.

B. Properties of the OA

We observe that the OA has two underlying properties. First, there exists a certain saturation threshold

Psat such that for power budget P < Psat, the OA allocates powers as follows:
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• if P is sufficiently small (i.e., P satisfies the condition of one of Ax,y, x, y ∈ {d, r}), for each source

the OA transmits only in the strongest of the relay and direct links from that source.

• as P increases, for at least one source, the OA transmits in both the relay and direct links of that

source, and the OA thus transmits in 3 of the 4 mm-wave links. As P increases further, depending on

link gains, the OA may eventually transmit in the only remaining link as well. Thus, for P < Psat,

all link powers are either zero, or increase piecewise linearly with P.

This property of the OA resembles the Waterfilling (WF) [32, Chap. 10.4] property for parallel AWGN

channels and thus is referred to as the WF-like property. All LGRs satisfying this property are denoted by

LGRs Ax,y, x, y ∈ {d, r, rd}. Specifically, depending on the direct and relay link gains, the OA transmits

in one of the following sets of links: (i) DL1 and DL2 if d1 ≥ r1, d2 ≥ r2, (ii) RL1 and RL2 if r1 > d1,

r2 > d2, (iii) DL1 and RL2 if d1 ≥ r1, r2 > d2, and (iv) DL2 and RL1 if d2 ≥ r2, r1 > d1. Clearly, the

corresponding LGRs are Ad,d, Ar,r, Ad,r and Ar,d.

Since the marginal return from transmitting only in the strongest link of each source diminishes as

P increases, for sufficiently large P (that is below Psat) the OA transmits in one additional link. For

example, consider a given (r1, r2, d1, d2, P)-tuple such that for P < min(Pd,d, P̂d,d), the OA transmits in

links DL1 and DL2 only as in Ad,d. Now, if Pd,d < P̂d,d holds, then for Pd,d ≤ P ≤ min(P̂d,d,Prd,d), the

OA transmits in relay link RL1 for source S1 as well following the allocation in LGR Ard,d. Note that

through LGRs Ad,d and Ard,d, the powers p1 and q1 increase piecewise linearly with P, while p2 = P

increasing linearly with P and q2 = 0, as per the WF-like property.

Similar to Ard,d, LGRs Ad,rd, Ar,rd and Ard,r follow the WF-like property as well. Specifically, the

intuition behind LGR Ad,rd follows by swapping the roles of the sources as in Ard,d, whereas the intuition

behind Ar,rd and Ard,r follow from Ad,rd and Ard,d respectively by exchanging the roles of the relay and

direct links. Finally, in Ard,rd the OA transmits in all 4 links as in WF.

While for P < Psat, the OA follows the WF-like property, for P ≥ Psat, the OA limits the relay link

powers such that (1+r1q1)(1+r2q2) = γ, i.e., the saturation condition, holds. Thus, as P increases beyond

Psat, q1 and q2 can no longer both increase with P. However, the direct link powers pk = P−qk, increase

unbounded with P. This property is referred to as the saturation property and is clearly unlike WF. The

5 LGRs satisfying this property are denoted by S(.,.) in Table I. Given a (r1, r2, d1, d2, γ)-tuple, saturation

first occurs in one of LGRs S(.,.), called the saturation LGR, which is determined by how the resulting

threshold powers compare. In either case, Psat is given by the lower bound on P in the respective LGR

S(.,.) in Table I, e.g., if the saturation LGR is Sr,rd, then Psat = max(Pr,r,Pr,rd).
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To understand saturation, suppose that for a given link gain tuple, saturation occurs in some LGR

S(.,.) for P larger than the corresponding Psat. Also, recall that the objective of the OA is to maximize

R = min{ΣR, ΣD}. Note that at P = 0 the resulting allocation pk = qk = 0 achieves ΣR = σR and ΣD = σD,

and since γ > 1 implies σR < σD from (22), at P = 0 only R = ΣR < ΣD is achieved.

As P increases, and consequently pk and qk increase following the WF-like property, ΣR and ΣD in

(16)-(17) increase differently. As P increases, the resulting increase in pk increases ΣR and ΣD equally, and

hence R = ΣR ≤ ΣD is maintained and the sum-rate-gap ∆R := ΣD−ΣR ≥ 0 is not affected by the increase

in pk . However, as P increases, the resulting increase in qk increases only ΣR, and thus ∆R decreases

gradually. Naturally, at some P = Psat, q1 and q2 are alloted enough power such that R = ΣR = ΣD,

i.e., ∆R = 0 or equivalently (1 + r1q1)(1 + r2q2) = γ is achieved. For all P ≥ Psat, q1 and q2 are then

constrained to maintain R = ΣR = ΣD, and the rest of the budget, i.e., pk = P− qk are alloted to the direct

links.

As earlier noted, for a given (r1, r2, d1, d2, γ)-tuple, saturation first occurs in one of 5 LGRs S(.,.), and

in each case, the optimal powers vary differently. Specifically, in Sr,rd, as P increases, q1 = P increases

linearly with P, and thus p1 = P−q1 = 0. However, due to saturation, q2 = (γ/(1+Pr1)−1)/r2 decreases

non-linearly with P, and thus p2 = P − q2 increases non-linearly. The same trend is found in Srd,r where

the role of the two sources are swapped as compared to Sr,rd. In Srd,rd, as P increases, if r1 ≥ r2 (resp.

r1 < r2), q1 and q2 (resp. q2 and q1) monotonically increase and decrease non-linearly with P, while both

p1 and p2 increase non-linearly. Finally, in Srd,d, as P increases, q1 =
γ−1

r1
and q2 = 0 remain fixed, and

all additional increments of P are allotted entirely to the direct links, whereas in Sd,rd, the same trend is

followed with roles of the sources swapped.

Moreover, for a given (r1, r2, d1, d2, γ)-tuple, while saturation first occurs in one of LGRs S(.,.) for

P ≥ Psat associated with that LGR, as P increases further, one or more other LGRs S(.,.) may become

optimal where saturation continues to hold. Specifically, there exists a threshold Pfin ≥ Psat such that

for all P ≥ Pfin, a specific LGR S(.,.), denoted the final LGR, remain active. To be more precise, we

partition the relay link gains r := (r1, r2) into subsets RS1 := {r : r1 ≥ γr2}, R1 := {r : γr2 > r1 ≥ r2},

R2 := {r : γr1 > r2 > r1}, and RS2 := {r : r2 ≥ γr1}. Intuitively, in RS2, relay link RL2 is significantly

stronger than RL1 (i.e., r2 ≥ γr1) while in R2, it is only stronger (i.e., r2 > r1) but not significantly

stronger (i.e., r2 < γr1). The intuitions for RS1 and R1 follow similarly. We observe that for a given

(r1, r2, d1, d2, γ)-tuple, if

• r ∈ R1 or R2: Pfin=max(Prd,d,Pd,rd,Prd,r,Pr,rd, Prd,rd), and the final LGR is Srd,rd.
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• r ∈ RS1: Pfin = max(Pr,d,Prd,d,Prd,d), and the final LGR is Srd,d.

• r ∈ RS2: Pfin = max(Pd,r,Pd,rd,Pd,rd), and the final LGR is Sd,rd.

Naturally, for some link gain tuples, the saturation and the final LGRs are the same; thus Pfin = Psat.

VI. EVOLUTION OF LINK GAIN REGIMES WITH THE POWER BUDGET

In Table I, the LGRs are defined as partitions of the set of the power budget P. Since the threshold

powers in Table II are functions of link gains, for a given (r1, r2, d1, d2, γ)-tuple and P, it is easy to

determine which LGR is active (i.e., according to which LGR, the OA allocates the link powers). It is

evident that, as P increases, the active LGR changes as well, and thus the OA follows a set of active

LGRs, called a LGR-path, which reveals useful insights on the optimal power allocation.

Given a link gain tuple, the saturation can occur in one of Sr,rd,Srd,r,Srd,rd,Srd,d and Sd,rd, which leads

to a vast number of LGR-paths and makes it difficult to interpret interesting insights. To simplify the

exposition, we now assume the direct links to be symmetric, i.e., d := d1 = d2. Although this causes some

loss of generality, the resulting paths are simplified. For example, under this assumption, for r ∈ R2,

LGRs Ar,d = Ard,d = Ar,rd = Sr,rd = Srd,d = Sd,rd = ∅, and saturation can occur in either Srd,r or Srd,rd

only. Nonetheless, the paths for the case with d1 , d2 can be similarly derived.

In this section, we discuss the paths for r ∈ R2 and r ∈ RS2 only, as the paths for r ∈ R1 and r ∈ RS1

can be derived from those of r ∈ R2 and r ∈ RS2, by exchanging the roles of relay links RL2 and RL1

as well as direct links DL2 and DL1.

A. Case r ∈ R2

In this case, we have 7 LGR-paths denoted [S1], . . . , [S7] and presented in Table III with their underlying

conditions, and the interval of P for each LGR in the path.

Initial LGR: While [S1], [S2], [S3] originate from the initial LGR Ar,r, [S4] originates from Ad,d, and

[S5], [S6], [S7] from Ad,r. The initial LGRs vary based on how d compares to r1 and r2. For example, if

d ≥ r2 ≥ r1 ⇐⇒ 0 ≤ P̂d,d ≤ Pd,d (i.e., each DLk is stronger than RLk), following the WF-like property,

the OA transmits only in the direct links as in LGR Ad,d. On the other hand, if r2 ≥ r1 > d ⇐⇒ 0 ≤

P′
d,d

≤ P̂′
d,d

(i.e., each RLk is stronger than DLk), following the WF-like property, the OA transmits only

in the relay links as in Ar,r. Furthermore, depending on how P′
d,d
, P̂′

d,d
and Pr,r compare, the OA follows

one of the paths [S1], [S2], [S3], as in Table III.

Similarly, for the case of r2 > d > r1 ⇐⇒ (Pd,d, P̂
′
d,d

) � 0, the OA transmits in the two stronger links

RL2 and DL1 as in Ad,r. Also, based on how Pd,d, P̂
′
d,d

and Prd,r compare, one of paths [S5], [S6], [S7]
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TABLE III: LGR paths for r ∈ R2. Table II provides the threshold powers in terms of link gains and γ. Each path originates

from one of three initial LGRs Ar,r,Ad,d or Ad,r, and they terminate at the final LGR Srd,rd.

LGR path Condition Interval of P in the respective LGRs in the path

[S1] : Ar,r → Ard,r → Ard,rd → Srd,rd 0 ≤ P′
d,d

≤ P̂′
d,d

≤ Pr,r [0,P′
d,d

) , [P′
d,d
, P̂′

d,d
) , [P̂′

d,d
,Prd,rd) , [Prd,rd,∞)

[S2] : Ar,r → Ard,r → Srd,r → Srd,rd 0 ≤ P′
d,d

≤ Pr,r ≤ P̂′
d,d

[0,P′
d,d

) , [P′
d,d
,Prd,r) , [Prd,r,Prd,r) , [Prd,r,∞)

[S3] : Ar,r → Srd,r → Srd,rd 0 ≤ Pr,r ≤ P′
d,d

≤ P̂′
d,d

[0,Pr,r) , [Pr,r,Prd,r) , [Prd,r,∞)

[S4] : Ad,d → Ad,rd → Ard,rd → Srd,rd 0 ≤ P̂d,d ≤ Pd,d [0, P̂d,d) , [P̂d,d,Pd,d) , [Pd,d,Prd,rd) , [Prd,rd,∞)

[S5] : Ad,r → Ard,r → Ard,rd → Srd,rd 0 ≤ Pd,d ≤ P̂′
d,d

≤ Prd,r [0,Pd,d) , [Pd,d, P̂
′
d,d

) , [P̂′
d,d
,Prd,rd) , [Prd,rd,∞)

[S6] : Ad,r → Ard,r → Srd,r → Srd,rd 0 ≤ Pd,d ≤ Prd,r ≤ P̂′
d,d

[0,Pd,d) , [Pd,d,Prd,r) , [Prd,r,Prd,r) , [Prd,r,∞)

[S7] : Ad,r → Ad,rd → Ard,rd → Srd,rd 0 ≤ P̂′
d,d

≤ Pd,d [0, P̂′
d,d

) , [P̂′
d,d
,Pd,d) , [Pd,d,Prd,rd) , [Prd,rd,∞)

is followed. Nevertheless, the conditions in Table III are indeed mutually exclusive and exhaustive for

r ∈ R2.

Saturation cases: In this case, saturation first occurs in either LGR Srd,rd or LGR Srd,r as follows.

Saturation occurs in Srd,rd if the condition of one of the paths [S1], [S4], [S5] or [S7] is met. Here,

Psat = Prd,rd, and for all P ≥ Prd,rd, as P increases, q2 increases and q1 decreases and approach constants

qk → q̄k :=
√

γ/rlrk − r−1
k
> 0, as P → ∞. Intuitively, since in Srd,rd, (1 + r1q1)(1 + r2q2) = γ must hold,

as P increases, q1 and q2 both cannot increase. Since RL2 is stronger than RL1, as P increases, the OA

achieves the best rate by increasing q2 and decreasing q1. However, since RL2 is not significantly stronger

than RL1, the OA should transmit in both relay links for all P ≥ Prd,rd. Thus, q1 and q2 both remain

non-zero and approach constant levels as P → ∞.

On the other hand, saturation first occurs in LGR Srd,r if the condition of one of the paths [S2], [S3] or

[S6] holds. Here, Psat = max(Prd,r,Pr,r), and Srd,r is active for only max(Prd,r,Pr,r) ≤ P ≤ Prd,r. In Srd,r,

for source S2, the OA allocates (p2, q2) = (0, P). It shows that RL2 is significantly stronger than DL2 in

the sense that transmitting only in RL2, as opposed to both in RL2 and DL2, provides the best rate. For

source S1, the OA allocates (p1, q1) = (P − q1,
1
r1
( γ

1+Pr2
− 1)). This indicates that neither of RL1 and DL1

is significantly stronger than the other in that transmitting in both links results in the best rate. Clearly,

as P increases, q2 = P increases and q1 =
1
r1
( γ

1+Pr2
− 1) decreases, and hence the OA follows the same

trend as in Srd,rd.

Final LGR: For P ≥ Pfin = max(Prd,rd,Prd,r), all paths terminate at the final LGR Srd,rd.
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LGR-paths: We discuss path [S2] in detail and use the obtained insights to interpret the other paths.

Note that path [S2] is followed if 0 ≤ P′
d,d

≤ Pr,r ≤ P̂′
d,d

, which can be interpreted as follows:

(i) Since RLk is stronger than DLk , i.e., 0 ≤ P′
d,d

≤ P̂′
d,d

, for P ∈ [0,P′
d,d

), the OA allocates P entirely

to RL1 and RL2 as in Ar,r (WF). Thus, q1 = q2 = P increase with P, while p1 = p2 = 0.

(ii) As P increases, the return from transmitting only in the relay links decreases. Here, DL1 is stronger

than RL1 in that 0 ≤ P′
d,d

≤ Pr,r. Hence, for P ∈ [P′
d,d
,Prd,r), the OA achieves the best rate by transmitting

in both DL1 and RL1 as in LGR Ard,r, as opposed to only in RL1. Hence, for P ∈ [P′
d,d
,Prd,r), the OA

allocates power as in Ard,r where p1, q1 and q2 increase with P, and p2 = 0.

(iii) On the other hand, here DL2 is weak enough compared to RL2 in the sense of 0 ≤ Pr,r ≤ P̂′
d,d

.

Hence, for P ∈ [Prd,r,Prd,r), the best rate is achieved by transmitting only in RL2, as opposed to sharing

P with DL2. Meanwhile, saturation occurs at P = Psat = Prd,r and LGR Srd,r becomes active. Then, for

P ∈ [Prd,r,Prd,r), p1 and q2 increase with P, while q1 decreases and p2 is p2 = 0.

(iv) Finally, for P ≥ Prd,r, LGR Srd,rd becomes active.

Path [S1] is similar to [S2] except that DL2 is now strong enough compared to RL2 in the sense of

0 ≤ P̂′
d,d

≤ Pr,r, which is opposite to that in [S2]. Hence, instead of transmitting only in RL2 as in [S2],

the OA now achieves the best rate by transmitting in both DL2 and RL2 as in LGR Ard,rd. Finally, as P

increases, saturation occurs in LGR Srd,rd, which remains active for P ≥ Psat = Prd,rd.

Path [S3] is similar to [S2] except that both direct links are weaker than the relay links in that Pr,r ≤

P′
d,d

≤ P̂′
d,d

. Hence, as P increases, instead of transmitting in DL1 as in [S2], the best rate is achieved by

transmitting only in the relay links. Thus, Ard,r is skipped as compared to [S2]. As P increases further,

saturation occurs in Srd,r at P = Psat = Pr,r, and for P ≥ Prd,r LGR Srd,rd is active.

Path [S4] is complementary to [S2] in that each DLk is now stronger than RLk , i.e., 0 ≤ P̂d,d ≤ Pd,d.

Here, the OA follows Ad,d, Ad,rd, and Ard,rd according to the WF-like property, and then follows Srd,rd

according to the saturation property as in Table III, and thus the details are omitted.

Finally, for the case of r2 > d > r1, where DL1 is stronger than RL1 and DL2 is weaker than RL2, the

OA follows [S5], [S6] and [S7] similarly to [S1], [S2] and [S4] respectively. For P ∈ [0,min(Pd,d, P̂
′
d,d

)),

the OA transmits only in DL1 and RL2 as in LGR Ad,r, and then transmits in another link following Ad,rd

or Ard,r. Then, for large enough P, depending on whichever achieves the best rate, either Srd,r (saturation)

or Ard,rd (WF fashion) becomes active as in path [S6] or [S5], [S7]. Eventually, for large enough P, Srd,rd

is active. The details are omitted to avoid repetition.



21

TABLE IV: LGR paths for r ∈ RS2. Table II provides the threshold powers in terms of link gains and γ. Each path originates

from one of three different LGRs Ar,r,Ad,d or Ad,r, and they terminate at the final LGR Sd,rd.

LGR path Condition Interval of P in each LGR respectively

[T3] : Ar,r → Srd,r → Srd,rd → Sd,rd 0 ≤ Pr,r ≤ P′
d,d

≤ P̂′
d,d
,Prd,r ≤ Pd,r [0,Pr,r), [Pr,r,Prd,r), [Prd,r,Pd,rd), [Pd,rd,∞)

[N1] : Ar,r → Srd,r → Sd,rd 0 ≤ Pr,r ≤ P′
d,d

≤ P̂′
d,d
,Prd,r > Pd,r [0,Pr,r), [Pr,r,Pd,r), [Pd,r,∞)

[T4] : Ad,d → Ad,rd → Ard,rd → 0 ≤ P̂d,d ≤ Pd,d ≤ Pd,rd [0, P̂d,d), [P̂d,d,Pd,d), [Pd,d,Prd,rd),

Srd,rd → Sd,rd [Prd,rd,Pd,rd), [Pd,rd,∞)

[N2] : Ad,d → Ad,rd → Sd,rd 0 ≤ P̂d,d ≤ Pd,rd ≤ Pd,d [0, P̂d,d), [P̂d,d,Pd,rd), [Pd,rd,∞)

[T5] : Ad,r → Ard,r → Ard,rd → 0 ≤ Pd,d ≤ P̂′
d,d

≤ Prd,r ≤ Pd,r [0,Pd,d), [Pd,d, P̂
′
d,d

), [P̂′
d,d
,Prd,rd),

Srd,rd → Sd,rd [Prd,rd,Pd,rd), [Pd,rd,∞)

[T6] : Ad,r → Ard,r → Srd,r → 0 ≤ Pd,d ≤ Prd,r ≤ P̂′
d,d

≤ Pd,r, or [0,Pd,d), [Pd,d,Prd,r), [Prd,r,Prd,r)

Srd,rd → Sd,rd 0 ≤ Pd,d ≤ Prd,r ≤ Pd,r ≤ P̂′
d,d

[Prd,r,Pd,rd), [Pd,rd,∞)

[T7] : Ad,r → Ad,rd → Ard,rd → 0 ≤ P̂′
d,d

≤ Pd,d ≤ Pd,r, or [0, P̂′
d,d

), [P̂′
d,d
,Pd,d), [Pd,d,Prd,rd)

Srd,rd → Sd,rd 0 ≤ P̂′
d,d

≤ Pd,r ≤ Pd,d ≤ Pd,rd [Prd,rd,Pd,rd), , [Pd,rd,∞)

[N3] : Ad,r → Ard,r → Srd,r → Sd,rd 0 ≤ Pd,d ≤ Pd,r ≤ Prd,r ≤ P̂′
d,d

[0,Pd,d), [Pd,d,Prd,r), [Prd,r,Pd,r), [Pd,r,∞)

[N4] : Ad,r → Ad,rd → Sd,rd 0 ≤ P̂′
d,d

≤ Pd,r ≤ Pd,rd ≤ Pd,d [0, P̂′
d,d

), [P̂′
d,d
,Pd,rd), [Pd,rd,∞)

[N5] : Ad,r → Sd,rd 0 ≤ Pd,r ≤ min(P̂′
d,d
,Pd,d) [0,Pd,r), [Pd,r,∞)

B. Case r ∈ RS2

In this case, we have 10 paths, denoted [T3], . . . , [T7] and [N1], . . . , [N5] and given in Table IV. Paths

[T3], . . . , [T7] are the counterparts of paths [S3], . . . , [S7] in Table III with Sd,rd appended as the final

LGR, and thus are denoted in this manner. Also, paths [S1] and [S2] do not have any counterparts here,

and thus [T1] and [T2] are not defined. Moreover, paths [N1], . . . , [N5] are valid exclusively for r ∈ RS2.

Initial LGR: While [T3] and [N1] originate from the initial LGR Ar,r, [T4] and [N2] originate from

LGR Ad,d, and [T5], . . . [N5] originate from LGR Ad,r. The initial LGRs vary depending on how d

compares to r1 and r2 as in the case of r ∈ R2, hence is not repeated here.

Saturation cases: Saturation first occurs in one of LGRs Srd,rd, Sd,rd and Srd,r.

Saturation first occurs in Srd,rd if the condition of one of the paths [T4], [T5] or [T7] is met. Here,

Psat = max(Prd,r,Prd,rd). Unlike in case r ∈ R2, LGR Srd,rd is now active only for the finite range

max(Prd,r,Prd,rd) ≤ P ≤ Pd,rd. Intuitively, RL2 is now significantly stronger than RL1 (i.e., r2 > γr1),

hence transmitting in both relay links as in Srd,rd is optimal only for this finite range.

Saturation first occurs in Srd,r if the condition of one of the paths [T3], [N1], [T6] or [N3] hold. Here,
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Psat = max(Prd,r,Pr,r), and Srd,r is active for the range max(Prd,r,Pr,r) ≤ P ≤ min(Prd,r,Pd,r).

Finally, saturation first occurs in Sd,rd when the condition of one of the paths [N2], [N4] or [N5]

hold. Here, for all P ≥ Psat = max(Pd,r,Pd,rd,Pd,rd), LGR Sd,rd is active. In Sd,rd, as P increases,

q2 = (γ −1)/r2 > 0 and q1 = 0 are fixed, and all additional increments of P are allotted to the direct links

only. Intuitively, since RL2 is significantly stronger than RL1, for all P ≥ Psat, the best rate is achieved

by transmitting only in RL2.

Final LGR: For P ≥ Pfin = max(Pd,rd,Pd,rd,Pd,r), all paths terminate at the final LGR Sd,rd.

LGR-paths: Since paths [T3], . . . , [T7] can be interpreted similarly to paths [S3], . . . , [S7], they are not

detailed here. Hence, we only discuss paths [N1], . . . , [N5] briefly.

Path [N1] is similar to [T3] with Srd,rd skipped. Compared to [T3], here RL2 is sufficiently stronger

than RL1 in that Pd,r < Prd,r. Hence, and for P > Pd,r, the best rate is achieved by transmitting only in

RL2 as in Sd,rd as compared to transmitting in both RL1 and RL2 as in Srd,rd. Hence, Srd,rd is skipped.

Path [N2] is similar to [T4] with Ard,rd and Srd,rd skipped. The conditions for [N2] simplifies to

r2 ≥ r1(2γ − 1). It shows that RL2 is so much stronger than RL1 that, for all P ≥ 0, the best rate is

achieved by transmitting solely in RL2 and not transmitting in RL1 at all. Thus, compared to [T4] where

non-zero power is allocated to RL1 in LGRs Ard,rd and Srd,rd, these LGRs are skipped here.

Likewise, [N3] is similar to [T6] with Srd,rd skipped, [N4] to [T7] with Ard,rd and Srd,rd skipped,

and [N5] to [N4] with Ad,rd skipped. The conditions for these paths can be interpreted as RL2 being

sufficiently stronger than RL1 in a sense similar to paths [N1] and [N2], so that for large enough P the

OA skips LGRs that allocate non-zero power to RL1 (e.g., Srd,rd, Ard,rd or Ad,rd).

Numerical Examples: We now illustrate examples of paths [S5] and [T5] in Fig. 3a and Fig. 3b

respectively by plotting the optimal link powers against budget P for parameters (r1, r2, d, γ) as noted

in the respective figures. In each example, the analytical expression of powers (marker-line) indeed match

their numerically computed counterparts (solid line) using CVX [35]. We also verify that the OA follows

the respective paths by labeling the active LGRs in the relevant intervals.

In Fig. 3a, we verify path [S5] where Psat = Pfin = Prd,dr = 0.62. Here, LGR Ad,r is first active for

0 ≤ P < Pd,d, where p1 = q2 = P, while q1 = p2 = 0. Then, for Pd,d ≤ P < P̂d,d, LGR Ard,r becomes

active where, in addition to p1 and q2, q1 increases with P as well. As P increases, for P̂′
d,d

≤ P < Psat,

LGR Ard,rd is active where all 4 powers increase with P. Finally, for P ≥ Psat, saturation occurs in Srd,rd

where q2 increases and q1 decreases towards limits q̄2 = 0.67 and q̄1 = 0.02 (not shown in Fig. 3a), while

p1, p2 grow unbounded with P.
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(a) Path [S5] with (r1, r2, d, γ) = (1, 2.9, 1.3, 3).
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(b) Path [T5] with (r1, r2, d, γ) = (1, 4, 1.52, 3).

Fig. 3: (a) Path [S5]: for P < Psat = 0.62, all link powers follow the WF-like property. At P = Psat, saturation occurs in

LGR Srd,rd and it remains active for all P ≥ Psat. (b) Path [T5]: saturation first occurs at P = Psat = 0.49 and LGR Srd,rd

becomes active. Then, for P ≥ Pfin = 1.34, LGR Sd,rd is active where q2 = 0.5 and q1 = 0 remain fixed.

We similarly verify [T5] in Fig. 3b and omit the details since in [T5], the first 4 LGRs are the same as

those of [S5] in Fig. 3a. Nevertheless, for [T5] while saturation occurs at Psat = Prd,rd = 0.49 in Srd,rd,

unlike in [S5], the final LGR is Sd,rd where q2 = 0.5, q1 = 0 are fixed for all P ≥ Pfin = 1.34.

C. Special Cases and Further Insights

1) Symmetric case: For the symmetric case with d = d1 = d2 and r = r1 = r2, the symmetric power

allocation (p, q, p, q) is sum-rate optimal. Here, the OA follows one of the 3 LGR-paths:

(i) if d ≥ r (i.e., direct links are stronger than relay links): for P ∈ [0, 1
r
− 1

d
), the OA transmits only in

the direct links as in Ad,d, then for P ∈ [1
r
− 1

d
,

2γ1/2−1

r
− 1

d
) the OA transmits in all 4 links as in Ard,rd,

and finally for P ≥ 2γ1/2−1

r
− 1

d
, saturation occurs in Srd,rd where q =

γ1/2−1

r
is fixed.

(ii) if d < r ≤ dγ1/2 (i.e., relay links are stronger but not significantly stronger): as opposed to Ad,d

above, now Ar,r is active for P ∈ [0, 1
d
− 1

r
), and then Ard,rd and Srd,rd become active as above.

(iii) if r > dγ1/2 (relay links are significantly stronger): for P ∈ [0, γ
1/2−1

r
) the OA transmits only in

relay links as in Ar,r until they saturate, and then for P ≥ γ1/2−1

r
Srd,rd becomes active.

2) Large mm-wave bandwidth: In this regime (i.e., α → ∞), γ → (1 + ḠRDP̄R)2, hence the saturation

threshold is now a function of the mm-wave parameters only. We now examine how the optimal power

allocation simplifies in two extreme scenarios. If ḠRDP̄R ≫ 1 (i.e., γ ≫ 1), saturation occurs for very

large values of the power budget P. Hence, for practical finite P, when P ≥ max(Pd,d,P
′
d,d
, P̂d,d, P̂

′
d,d

),

transmitting in all 4 links as in LGR Ard,rd based on the WF-like property is optimal.
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Fig. 4: For the 2-D network topology of the DR-MARC of Section VI-C3, the source locations are at coordinates (x,±y).

The set of source locations depicted here are partitioned into several regions, and for each regions the optimal transmission

mode for the mm-wave links are labeled.

Alternatively, if ḠRDP̄R ≪ 1 (i.e., γ ≈ 1), saturation occurs for small values of P. Since allocating only

a small proportion of P to the relay links achieves saturation, as P increases the remaining power (i.e.,

almost all of P) is allotted to the direct links, resulting in an allocation similar to Ad,d.

3) Optimum power allocation in a 2-D topology: We now illustrate how the mode of optimal link

powers varies as the source locations vary according to the 2-D topology of Fig. 1b, where R and D are

located on the x-axis at (0, 0) and (0, dRD), while the sources are located at (−dSR cos φ,±dSR sin φ) with φ

being the angle between the sources and the relay. Due to symmetric source placement, the resulting link

gains are symmetric, i.e., d = d1 = d2 and r = r1 = r2, which simplifies the power allocation. Moreover,

like the numerical section in Section IV, we assume that both bands are under phase fading. Thus, the

channel gains from node s to t in the microwave band are Gst = 1/dβ1

st
and the mm-wave relay and direct

link gains are r = 1/dβ2

SR
and d = 1/dβ2

SD
.

For illustration, we take the following parameters Pk = 10, k ∈ {1, 2,R}, P̄R = 1, β1 = 2, β2 = 4, α = 2,

while the power budget is P = 10. We then plot the source locations in Fig. 4 by varying φ ∈ (0, π)

and dSR ∈ (0, 4) for fixed dRD = 1 unit, and partition this space based on which mode of mm-wave

transmission is optimal. First, in region L1, sources are much closer to the relay than the destination in

that σR ≥ σD (i.e., γ ≤ 1), with σR, σD and γ defined in (16), (17) and (22). Therefore, for sources

located in L1, it is optimal to transmit only in the direct links for all P ≥ 0.

All regions except L1, correspond to the case of γ > 1, and depending on the budget P and source
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Fig. 5: Optimum transmit powers versus power budget P for problems [P1] and [P2].

locations (i.e., the resulting direct and relay links gains), the optimal transmission mode in different regions

vary. For example, the sources in the region labeled Ar,r are not as close to the relay as in L1 but are

sufficiently close to the relay such that 0 < P ≤ d
β2

SD
− d

β2

SR
holds. Hence, for these source locations,

allocating the budget P entirely to the relay links is optimal. On the other hand, the sources in the region

labeled Ad,d are sufficiently close to the destination in that 0 < P ≤ d
β2

SR
− d

β2

SD
holds. Hence, it is

optimal to allocate the budget P entirely to the direct links. As opposed to these two regions, the sources

in the region labeled Ard,rd are at an intermediate distance from the relay and the destination in that

P < (2γ1/2 − 1)dβ2

SR
− d

β2

SD
holds. Here, transmitting in all 4 links as in Ard,rd is optimal. Finally, sources

in the region Srd,rd are such that P ≥ (2γ1/2 − 1)dβ2

SR
− d

β2

SD
hold. Here, saturation occurs, and allocating

power as in Srd,rd is optimal. Clearly, for fixed (dSR, dSD, γ), as P increases, the region Srd,rd grows.

4) A joint optimum sum-rate problem over the integrated microwave and mm-wave dual-bands: As

opposed to [P1] where the microwave link powers are fixed, it may also be interesting to study the optimum

sum-rate problem when the total transmission power is to be shared by all mm-wave and microwave links

to see whether the transmission powers have the same structure as in [P1]. Nevertheless, sharing the power

budgets for the microwave band and the mm-wave band may not be viable from practical and regulatory

perspectives. Regulatory guidelines typically designate specific transmit power limits for each frequency

band, and a transmit power scheme resulting from such a joint optimization may fail to comply with these

limits. Moreover, the radio frequency chain of each frequency band is typically deployed separately and

driven by dedicated power amplifiers, each with its own maximum power limit. A brief numerical study

is presented below which demonstrates that the structure found in [P1] is not present when the problem
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is formulated with a sum-power constraint over mm-wave link and microwave link powers.

For a given total power budget P, the problem of jointly optimizing the sum-rate is formulated as

[P2] maximize R

subject to R ≤ ΣR, (23)

R ≤ ΣD, (24)

∑

k∈{1,2}
pk + qk +

∑

k∈{1,2,R}
Pk + P̄R = P, (25)

(p1, q1, p2, q2, P̄R, P1, P2, PR, R) � 0. (26)

where ΣR and ΣD are defines in (16) and (17) respectively. Problem [P2] turns out to be a convex problem

[34], and hence we are able to solve it numerically using the CVX package [35].

To understand the general behavior of the optimal powers of [P2], we numerically solve [P2] for a

simplified setting where both bands are subject to phase fading, the mm-wave parameters are taken to be

d1 = d2 = 1.5, r1 = r2 = 1, ḠRD = 1 and α = 2, and the microwave band parameters are G1D = G2D =

G1R = G2R = GRD = 1. For reference, we also solve [P1] for the same setting as that for [P2], with the

fixed transmission powers P1 = P2 = PR = P̄R = 1.

The resulting optimal powers for [P1] and [P2] are plotted against the power budget 0 ≤ P ≤ 5

in Fig. 5a and Fig. 5b respectively. As expected, the transmit powers for [P1] follow the Waterfilling

(WF) property for P ≤ 1.3, and for P > 1.3 the relay link powers are saturated to a constant value

q1 = q2 ≈ 0.52. In contrast, the transmit powers for [P2], depicted in Fig. 5b, follow only the WF

property: for P ≤ 2.6, the entire budget is shared between the direct links only, whereas for P > 2.6

power is allocated to all other mm-wave links and the microwave links from both sources. Notably, unlike

in [P1], the relay link powers in [P2] are not saturated. Moreover, solving [P2] for a larger range of

0 ≤ P ≤ 100 shows that none of the link transmit powers saturate. This indicates that the optimum power

allocation in [P2] does not follow the saturation property in general.

VII. CONCLUSION

We considered the fading MARC over dual microwave and mm-wave bands where the mm-wave links

to the relay and the destination are modeled as non-interfering AWGN links. We showed that the capacity

of the DR-MARC can be decomposed into the capacity of the underlying R-MARC and the two mm-wave

direct links, hence the direct links can be operated independently of the R-MARC without compromising

optimal rates. Then, we characterized an achievable region for the R-MARC. Focusing on R-MARCs
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with underlying far c-MARC, sufficient conditions were found under which the aforementioned achievable

scheme is capacity achieving. This shows that even if the sources are not near in the underlying c-MARC

in the microwave band, for sufficiently strong source-relay mm-wave links, they become jointly near over

both bands such that capacity is achieved.

Next, the optimal power allocation over the phase faded mm-wave links was found that maximizes the

achievable sum-rate. The resulting scheme allocates power in different modes depending on the power

budget P and the link gains (i.e., active LGR), and all such modes were characterized. When the budget

P is sufficiently small, it is entirely allocated only to the strongest of the relay and direct links, and

as P increases but remains below the saturation threshold, power is allocated to other links as in WF

solution. However, for P above the saturation threshold, if one relay link is stronger but not significantly

stronger than the other, power in the two links respectively increases and decreases with P and approach

non-zero levels as P → ∞. Otherwise, power in the significantly stronger relay link is fixed at a constant

while that in the other is zero. Moreover, for large mm-wave bandwidth, the saturation threshold depends

only on mm-wave parameters, and in addition, if the received power at the destination from the relay

via the mm-wave band is large, the saturation threshold becomes large, and therefore allocating powers

as in WF is optimal for all practical values of P. These results illustrate the impact of high bandwidth

point-to-point mm-wave links on the performance of the dual-band MARC, and can be useful in practical

resource allocation in dual-band uplink scenarios.

APPENDIX A

PROOF OF THEOREM 1

Outer Bounds: Assume that source Sk transmits Mk, k ∈ {1, 2}. Since the destination knows (Hn
D
, H̄

n1

D
)

where HD,i := {HmD,i}m∈{1,2,R}, i = 1, . . . , n, H̄D,ℓ := {H̄mD,ℓ}m∈{1,2,R}, ℓ = 1, . . . , n1, from Fano’s inequality

nR1 − nǫn

≤ I(Xn
1 , X̂

n1

1
, X̄

n1

1
;Yn

D, Ȳ
n1

RD
, Ȳ

n1

1D
,Hn

D, H̄
n1

D
)

(a)
≤ I(Xn

1 , X̂
n1

1
, X̄

n1

1
;Yn

D, Ȳ
n1

RD
, Ȳ

n1

1D
|Hn

D, H̄
n1

D
)

(b)
≤ I(Xn

1 , X̂
n1

1
;Yn

D, Ȳ
n1

RD
|Hn

D, H̄
n1

RD
) +

n1
∑

ℓ=1

h(Ḡ1/2
1D,ℓ

e jΘ̄1D,ℓ X̄1,ℓ + Z̄1D,ℓ |Ḡ1D,ℓ, Θ̄1D,ℓ) − h(Z̄1D,ℓ)

(c)
≤ I(Xn

1 , X̂
n1

1
;Yn

D, Ȳ
n1

RD
|Hn

D, H̄
n1

RD
) +

n1
∑

l=1

E[log(1 + Ḡ1DP̄1,l)]

(d)
≤ I(Xn

1 , X̂
n1

1
;Yn

D, Ȳ
n1

RD
|Hn

D, H̄
n1

RD
) + n1E[C(Ḡ1DP̄1)] (27)
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where (a) follows since (Xn
1
, X̂

n1

1
, X̄

n1

1
) ⊥⊥ (Hn

D
, H̄

n1

D
); (b) follows by first expanding (a) into 4 I(.; .)

terms using chain rule where two I(.; .) terms turn out to be zero due to Markov chains (MC) X̄
n1

1
→

(Xn
1
, X̂

n1

1
,Hn

D
, H̄

n1

RD
) → (Yn

D
, Ȳ

n1

RD
), and (Xn

1
, X̂

n1

1
,Hn

D
, H̄

n1

RD
,Yn

D
, Ȳ

n1

RD
) → (X̄n1

1
, H̄

n1

1D
) → Ȳ

n1

1D
; the last two terms

follow from the Gaussian model and applying chain rule and unconditioning to one of the remaining

I(.) terms; (c) follows from maximizing the first h(.) term in (b) by using X̄1,ℓ ∼ CN(0, P̄1,ℓ) where

1
n1

∑n1

ℓ=1
P̄1,ℓ ≤ P̄1 and expectations are over Θ̄1D,ℓ ∼ U[0, 2π) i.i.d., Ḡ1D,ℓ i.i.d.; (d) follows by applying the

Jensen’s inequality. Bounding R2 similarly, the following bounds

Rk ≤ 1

n
I(Xn

k , X̂
n1

k
;Yn

D, Ȳ
n1

RD
|Hn

D, H̄
n1

RD
) + n1

n
E[C(ḠkDP̄k )],

are found for k ∈ {1, 2}, where expectations are over ḠkD. Taking n → ∞ such that n1/n → α and ǫn → 0,

then gives the bounds in Theorem 1, for some empirical probability mass function (pmf) distributed as

∏2

k=1
p(xn

k, x̂
n1

k
, x̄

n1

k
)
∏n

i=1
p(yR,i, yD,i |x1,i, x2,i, xR,i)

∏n

i=1
p(xR,i |yi−1

R , { ȳn1(i−1)
kR

, hi−1
kR , h̄

n1(i−1)
kR

}2
k=1)

∏n1

ℓ=1
p(x̄R,ℓ |yn(l−1)

R
, { ȳl−1

kR , h
n(l−1)
kR

, h̄l−1
kR }2

k=1)p(ȳRD,ℓ | x̄R,ℓ)
∏n1

ℓ=1
p(ȳ1D,ℓ | x̄1,ℓ)p(ȳ2D,ℓ | x̄2,ℓ)p(ȳ1R,ℓ | x̂1,ℓ)p(ȳ2R,ℓ | x̂2,ℓ). (28)

Achievability: We pick integers (n, n1) and a distribution that factors as (28), and then code over t blocks

of symbols together. Define Uk := (Xn
k
, X̂

n1

k
) and Ūk := X̄

n1

k
where U1 ⊥⊥ U2, and Ūk = X̄

n1

k
∼ CN(0, P̄k )

i.i.d., k = 1, 2. To encode Mk ∈ Mk , we generate 2tnRk i.i.d. sequences ut
k
(Mk) and ūt

k
(Mk), distributed

according to p(ut
k
) = ∏t

i=1 p(uk,i) =
∏t

i=1 p(xin
k,(i−1)n+1

, x̂
in1

k,(i−1)n1+1
) and p(ūt

k
) = ∏t

i=1 p(ūk,i), k = 1, 2. To

communicate Mk , we transmit ut
k
(Mk) and ūt

k
(Mk) through the underlying RL-MARC and the Sk -D direct

links respectively. The relay assists each (n, n1) block of symbols, by producing codewords according to

the relay-distribution in (28), and forwarding them. The destination then decodes Mk from the received

signals, (Ynt
D
, Ȳ

n1t

RD
, Ȳ

n1t

kD
), using the CSI (Hn

D
, H̄

n1

D
). Applying standard random coding techniques as in [32,

Ch. 8.7], the achievable rates are found to satisfy

Rk <
1

n
I(Xn

k , X̂
n1

k
;Yn

D, Ȳ
n1

RD
|Hn

D, H̄
n1

RD
) + n1

n
E[C(ḠkDP̄k )], (29)

for k ∈ {1, 2}. Finally, an achievable rate pair on the RL-MARC is given by the first term in (29), and

its capacity CRL(α) is the closure of the union of sets of all achievable rate pairs where the union is over

all (n, n1) and pmfs factoring as (28) with ȳkD,ℓ = x̄k,ℓ = ∅, k = 1, 2.
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APPENDIX B

PROOF OF THEOREM 2

The achievable region is obtained by performing block Markov encoding over B + 1 blocks with i.i.d.

CSCG codewords and backward decoding at destination as follows (see [24], [29] for details).

Encoding: Encoding for block b ∈ {1, . . . , B+1} proceeds as follows: (i) the block lengths (n, n1), and the

input distributions pm(x), p̄m(x̄) and p̂k(x̂),m ∈ {1, 2,R}, k ∈ {1, 2} are chosen; (ii) the message Mk,b ∈ Mk

from Sk is encoded into codewords xn
k
(Mk,b) and x̂

n1

k
(Mk,b), generated according to

∏n
i=1 pk(xk,i(Mk,b)) and

∏n1

ℓ=1
p̂k(x̂k,ℓ(Mk,b)), k ∈ {1, 2}, and transmitted; (iii) assuming that the relay estimated (M1,b−1, M2,b−1)

in block b − 1 correctly, they are encoded into codewords xn
R
(M1,b−1, M2,b−1) and x̄

n1

R
(M1,b−1, M2,b−1),

generated according to
∏n

i=1 pR(xR,i(M1,b−1, M2,b−1)) and
∏n1

ℓ=1
p̄R(x̄R,ℓ(M1,b−1, M2,b−1)), and transmitted.

The messages Mk,0 and Mk,B+1 are known at the destination, k ∈ {1, 2} as in [24], [29].

Decoding at the Relay: Assume that the message pair (M1,b−1, M2,b−1) was correctly decoded in block

b − 1. The relay then uses the side information xn
R
(M1,b−1, M2,b−1) and x̄

n1

R
(M1,b−1, M2,b−1) and the CSI

at block b, i.e., {Hn
kR
(b), H̄n1

kR
(b)}2

k=1
, and estimates (M1,b, M2,b) from the signals received in block b as

in [32, Ch. 14.3.1]. Such decoding yields certain rate constraints on R1, R2 and R1 + R2 which are then

maximized by using i.i.d. CSCG codewords Xm ∼ CN(0, Pm), X̂k ∼ CN(0, P̂k ),m ∈ {1, 2, 3}, k ∈ {1, 2}.

Finally, the achievable rates are obtained by averaging the resulting rate constraints over i.i.d. squared-

magnitudes of fading coefficients GkR and ḠkR (since rate constraints are independent of the phases), as

given in (5)-(7).

Decoding at the Destination (Backward decoding): Assuming that (M1,b+1, M2,b+1) were decoded cor-

rectly in block b + 1, the decoder estimates (M1,b, M2,b) from the signals received in blocks b and b + 1

as in [32, Ch. 14.3.1] by using the side information xn
k
(Mk,b+1) and x̂

n1

k
(Mk,b+1), k ∈ {1, 2}, and CSI in

blocks b and b+ 1, ({Hn
mD

(ℓ), H̄n1

RD
(ℓ)}b+1

ℓ=b
,m ∈ {1, 2,R}). The resulting rate constraints are maximized by

the same i.i.d. CSCG codewords as for the relay, and achievable rates are obtained by taking expectation

over GkD and ḠRD, as given by (8)-(10).

APPENDIX C

PROOF OF THEOREM 3

For notational convenience, define U ⊆ {1, 2} and Uc := {1, 2} \ U such that XU := {Xk, k ∈ U}.

We derive the outer-bounds by applying the cut-set bounding technique (see [32, Ch. 14.10] for details).
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Assume that source Sk transmits the message Mk, k ∈ {1, 2}. Since the destination knows Hn
D

and H̄
n1

RD

where HD,i := {HmD,i}m∈{1,2,R}, i = 1, . . . , n, by Fano’s inequality,

∑

k∈U nRU − nǫn

(a)
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D, Ȳ
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RD
,Hn

D, H̄
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, MUc )
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D
,Hn

D
, H̄

n1

RD
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D
,Hn

D
, H̄

n1

RD
, MU, MUc, XU,i, XUc,i, XR,i)

+

n1
∑

l=1

h(ȲRD,l |Ȳ l−1
RD

,Yn
D
,Hn

D
, H̄

n1

RD
, MUc ) − h(ȲRD,l |Ȳ l−1

RD
,Yn

D
,Hn

D
, H̄

n1

RD
, MUc, MU, X̄R,l)

(d)
=

n
∑

i=1

h( ∑
k∈U

G
1/2
kD

e jΘkD,i Xk,i + G
1/2
RD

e jΘRD,i XR,i + ZD,i |{GmD,i,ΘmD,i},m ∈ {1, 2,R}) − h(ZD,i)

+

n1
∑

l=1

h(Ḡ1/2
RD

e jΘ̄RD,l X̄R,l + Z̄RD,l |ḠRD,l, Θ̄RD,l) − h(Z̄RD,l)

(e)
≤

n
∑

i=1

E[log
(

1 + GRDPR,i +
∑

k∈U
(GkDPk,i + 2G

1/2
kD

G
1/2
RD
Re{e j(ΘkD−ΘRD)E[Xk,i X

∗
R,i
]})

)

]

+

n1
∑

l=1

E[log(1 + ḠRDP̄R,l)]

( f )
≤

n
∑

i=1

E[log(1 + ∑

k∈U
GkDPk,i + GRDPR,i)] +

n1
∑

l=1

E[log(1 + ḠRDP̄R,l)]

(g)
≤ nE[log(1 +∑k∈U GkDPD + GRDPR)] + n1E[log(1 + ḠRDP̄R)] (30)

where (a) follows since including MUc does not reduce information; (b) follows by applying chain rule

and noting that I(MU ;Hn
D
, H̄

n1

RD
, MUc ) = 0 due to MU ⊥⊥ (Hn

D
, H̄

n1

RD
, MUc ); (c) follows from chain rule and

the fact that conditioning with XU,i(MU) and XUc,i(MUc ) (deterministic functions of MU and MUc ) do

not alter entropy, while conditioning the negative h(.) terms with XR,i and X̄R,l does not decrease entropy;

(d) follows from (c) by first unconditioning, next applying the MCs due to the memoryless system model,

(Y i−1
D

,H
n\i
D
, H̄

n1

RD
, MU, MUc ) → (XU,i, XUc,i, XR,i,HD,i) → YD,i and (Ȳ l−1

RD
,Yn

D
,Hn

D
, H̄

n1\l
RD

, MU, MUc ) → (X̄R,l, H̄RD,l) → ȲRD,l

, where a vector Fm\j := {Fi}mi=1
\Fi, and finally using the fading Gaussian model; (e) follows by maximizing

the first h(.) term of (d) by using Xk,i ∼ CN(0, Pk,i) [24], with Pk,i := E[|Xk,i |2], k ∈ {1, 2}, and E[Xk,i X
∗
R,i
]

being the cross-correlation between Xk,i and XR,i where the expectation are over column i of the codebook,

and Re(.) denotes the real part; the third h(.) term in (d) is similarly maximized by X̂k,l ∼ CN(0, P̂k,l);

the outer expectation is over the i.i.d. fading magnitudes and phases; (f) follows since in the first term of

(e), Θ̃ := ΘkD − ΘRD ∼ U[0, 2π), and thus each summand can be upper bounded by using E
Θ̃,G,B log(1 +

G + 2G1/2B1/2
R{e jΘ̃ρ}) ≤ EA log(1 +G) when Θ̃ ∼ U[0, 2π), ρ ∈ C [24]; and (g) follows from applying

Jensen’s inequality as in steps (c)-(d) of (27).
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Thus as n, n1 → ∞, we have

RU ≤ E[C( ∑
k∈U

GkDPD + GRDPR)] + αE[C(ḠRDP̄R)] (31)

for U ⊆ {1, 2}, from which individual bounds on R1, R2 and R1 + R2 are obtained by choosing U = {1},

U = {2} and U = {1, 2}. Finally, under condition (11)-(13), the achievable region of Theorem 2 reduces

to bounds in (8), (9) and (10) which match the respective outer bounds, and thus achieves the capacity.

APPENDIX D

SOLUTION OF THE PROBLEM [P1]

The KKT Conditions: We denote a feasible point by x := (p1, q1, p2, q2, R) ∈ R5
+

, and use the equiv-

alent objective, minimize −R. Note that the objective is linear, and the equality constraints in (20) are

affine. Moreover, the constraint in (18) is convex as its Hessian is a positive semidefinite matrix with

ακ
2
(d2

1
/(1 + d1p1)2, r2

1
/(1 + r1q1)2, d2

2
/(1 + d2p2)2, r2

2
/(1 + r2q2)2, 0) on its leading diagonal. Similarly,

constraint (19) is also convex. Furthermore, the feasible set is compact, and x̃ :=
(

P − ǫ, ǫ, P − ǫ, ǫ, σR

)

is strictly feasible for sufficiently small ǫ > 0. Hence [P1] is a convex optimization problem over a

compact set that satisfies Slater’s condition [34], therefore it is solved using KKT conditions as in [34,

Chap. 5.5.3]. The Lagrangian function for [P1] is given by

L = −R + λ1(R − ΣR) + λ2(R − ΣD) + µ1(p1 + q1 − P) + µ2(p2 + q2 − P) − ρ1p1 − ρ2q1 − ρ3p2 − ρ4q2 − ρ5R,

where {λk }2
k=1
, {µk }2

k=1
and {ρi}5

i=1
are Lagrange multipliers corresponding to constraints (18)-(19), (20),

and (p1, q1, p2, q2, R) � 0 respectively, with ΣR and ΣD in (16)–(17). With slight abuse of notation, we

denote the optimal primal variables by (p1, q1, p2, q2, R), and the optimal Lagrange multipliers (OLM) by

(λ1, λ2, ρ1, ρ2, ρ3, ρ4) and (µ1, µ2), which satisfy the following KKT conditions

λ1 + λ2 = 1, (32)

ρ1 = µ1 −
α

2

d1

1 + d1p1

, ρ2 = µ1 −
α

2

λ1r1

1 + r1q1

, ρ3 = µ2 −
α

2

d2

1 + d2p2

, ρ4 = µ2 −
α

2

λ1r2

1 + r2q2

, (33)

p1 + q1 = P, p2 + q2 = P, (34)

R − ΣR ≤ 0, R − ΣR ≤ 0,

λ1(R − ΣR) = 0, λ2(R − ΣD) = 0, (35)

ρ1p1 = 0, ρ2q1 = 0, ρ3p2 = 0, ρ4q2 = 0, (36)

(p1, q1, p2, q2, R) � 0, (λ1, λ2, ρ1, ρ2, ρ3, ρ4) � 0. (37)
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TABLE V: Set of (ρ,λ)-tuples are partitioned into 18 subsets and the LGR corresponding to each subset is provided.

λ ∈ L1 λ ∈ L2 λ ∈ L1 λ ∈ L2 λ ∈ L1 λ ∈ L2

ρ ∈ I1 ∩ J1 Ar,r Ãr,r ⊆ Ar,r ρ ∈ I1 ∩ J2 Ar,d Ãr,d ⊆ Ar,d ρ ∈ I1 ∩ J3 Ar,rd Sr,rd

ρ ∈ I2 ∩ J1 Ad,r Ãd,r ⊆ Ad,r ρ ∈ I2 ∩ J2 Ad,d Ãd,d is invalid ρ ∈ I2 ∩ J3 Ad,rd Sd,rd

ρ ∈ I3 ∩ J1 Ard,r Srd,r ρ ∈ I3 ∩ J2 Ard,d Srd,d ρ ∈ I3 ∩ J3 Ard,rd Srd,rd

with ρ5 = 0 since R ≥ min(σD, σR) > 0.

Partitioning the set of OLMs: We now partition the set of all (ρ,λ)-tuples where ρ := (ρ1, ρ2, ρ3, ρ4)

� 0 and λ := (λ1, λ2) � 0, into 18 subsets. First, the set of (ρ1, ρ2)-tuples is partitioned into 3 subsets,

I1 := {(ρ1, ρ2) : ρ1 > 0, ρ2 = 0}, I2 := {(ρ1, ρ2) : ρ1 = 0, ρ2 > 0}, and I3 := {(ρ1, ρ2) : ρ1 = 0, ρ2 = 0},

since subset I4 := {(ρ1, ρ2) : ρ1 > 0, ρ2 > 0} violates (34) by requiring p1 = q1 = 0. The set of (ρ3, ρ4)-

tuples is similarly partitioned into 3 subsets Jk, k ∈ {1, 2, 3}. Finally, the set of λ-tuples is partitioned into 2

subsets L1 := {λ : λ1 = 1, λ2 = 0} and L2 := {λ : λ1 > 0, λ2 > 0}, since subset L3 := {λ : λ1 = 0, λ2 = 1}

violates the assumption γ > 1 in the OA by requiring ΣD < ΣR, and L4 := {λ : λ1 = 0, λ2 = 0} violates

(18)–(19) by requiring R < min(ΣD, ΣR). Thus, the set of (ρ,λ)-tuples are now partitioned into 18 subsets

Ik ∩ Jl ∩Lm, k, l ∈ {1, 2, 3},m ∈ {1, 2}. Note that a (ρ,λ)-tuple now satisfies the KKT conditions as well

as the condition of the subset to which it belongs. When all conditions on (ρ,λ) are expressed in terms

of (P, r1, r2, d1, d2, γ), each subset leads to an LGR as presented in Table V. However, only 14 LGRs are

valid, since 3 are subsumed into an existing LGR (Ã(.,.) ⊆ A(.,.)), and Ãd,d is invalid as it violates the

assumption γ > 1.

Power Allocation in LGRs: Next, we express the conditions on (ρ,λ) in each LGR in terms of P and

threshold powers in Table II. We also derive the expression of optimal powers in this process.

LGR Ar,r: Here, ρ ∈ I1 ∩ J1 and λ ∈ L1. For ρ ∈ I1 ∩ J1, we have ρ1 > 0, ρ2 = 0, ρ3 > 0, ρ4 = 0,

which require p1 = 0, q1 = P, p2 = 0, q2 = P from (34), (36)-(37). Now, λ ∈ L1 requires ΣR < ΣD that

results in P < Pr,r from (35). The conditions for ρ1 > 0, ρ3 > 0 are derived by substituting ρ2 = ρ4 = 0

in (33) and eliminating (µ1, µ2). Hence, the conditions for Ar,r are given by P ≤ P′
d,d
= d−1

1
− r−1

1
, P ≤

P̂′
d,d
= d−1

2
− r−1

2
, and P < Pr,r.

The conditions of the counterpart Ãr,r (with λ ∈ L2 instead of λ ∈ L1) is valid only for a set of

measure zero at P = Pr,r but the optimum powers are the same as in Ar,r, thus it is subsumed in Ar,r.

LGR Ad,rd and Sd,rd: In Ad,rd, ρ ∈ I2 ∩ J3 and λ ∈ L1. For ρ ∈ I2 ∩ J3, we have ρ1 = 0, ρ2 >

0, ρ3 = 0, ρ4 = 0, which require p1 = P, q1 = 0, p2 ≥ 0, q2 ≥ 0 from (34), (36)-(37). First, by substituting

ρ3 = ρ4 = 0, λ1 = 1 in (33), we obtain p2 = 0.5(P+ r−1
2

− d−1
2
) and q2 = 0.5(P+ d−1

2
− r−1

2
), and conditions

(p2, q2) � 0 require P ≥ P̂′
d,d
, P ≥ P̂d,d. The condition for ρ2 > 0, found by substituting ρ1 = 0, λ1 = 1 in
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(33), requires P ≤ Pd,d = r−1
1

− d−1
1

. Finally, λ ∈ L1 requires ΣR < ΣD, i.e., P < Pd,rd = (2γ −1)r−1
2

− d−1
2

.

Thus, the conditions for Ad,rd are min(Pd,d,Pd,rd) ≥ P ≥ max(P̂d,d, P̂
′
d,d

).

In Sd,rd, ρ ∈ I2 ∩ J3, which still requires p1 = P, q1 = 0, p2 ≥ 0, q2 ≥ 0. However, now λ ∈ L2, i.e.,

(λ1, λ2) � 0, which requires ΣR = ΣD, resulting in q2 = (γ − 1)r−1
2

, and p2 = P − (γ − 1)r−1
2

. Due to

γ > 1, we have q2 > 0, but p2 > 0 additionally requires P > Pd,r = (γ − 1)r−1
2

. Since λ1 + λ2 = 1 in (32),

(λ1, λ2) � 0 is equivalent to 1 > λ1 > 0. Solving for λ1 by substituting (p2, q2) above and ρ3 = ρ4 = 0 in

(33), the condition 1 > λ1 > 0 requires P > Pd,rd. The condition for ρ2 > 0, found by substituting ρ1 = 0

in (33), requires P > Pd,rd if r ∈ RS2, and P < Pd,rd otherwise. Therefore, the conditions of Sd,rd are

P ≥ max(Pd,r,Pd,rd,Pd,rd), if r ∈ RS2, and max(Pd,r,Pd,rd) ≤ P < Pd,rd, otherwise.

LGR Ard,r and Srd,r: In Ard,r, ρ ∈ I3 ∩ J1 and λ ∈ L1. For ρ ∈ I3 ∩ J1, we have ρ1 = 0, ρ2 = 0, ρ3 >

0, ρ4 = 0, which require p1 ≥ 0, q1 ≥ 0, p2 = 0, q2 = P from from (34), (36)-(37). First, by substituting

ρ1 = ρ2 = 0, λ1 = 1 in (33) we find p1 = 0.5(P + r−1
1

− d−1
1
) and q1 = 0.5(P + d−1

1
− r−1

1
), and (p1, q1) � 0

require P ≥ P′
d,d

and P ≥ Pd,d. The condition for ρ3 > 0, found by substituting ρ4 = 0, λ1 = 1 in (33),

requires P ≤ P̂′
d,d

. Also, λ ∈ L1 (i.e., ΣR < ΣD) requires P < Prd,r. Thus, the conditions for Ard,r are

given by P ≥ max(Pd,d,P
′
d,d

), and P ≤ min(P̂′
d,d
,Prd,r).

In Srd,r, ρ ∈ I3 ∩ J1 still requires p1 ≥ 0, q1 ≥ 0, p2 = 0, q2 = P, but λ ∈ L2 now requires ΣR = ΣD,

from which we solve for λ1. Then, using λ1 and ρ1 = ρ2 = 0 in (33), we find p1 = P−r−1
1
(γ/(1+Pr2)−1)

and q1 = r−1
1
(γ/(1 + Pr2) − 1), and (p1, q1) � 0 require Pd,r > P > Pr,r. Conditions (32) and λ ∈ L2

simplify to 1 > λ1 > 0 which requires P > Prd,r whereas the condition for ρ3 > 0 requires P < Prd,r.

Thus, the conditions for Srd,r are min(Pd,r,Prd,r) ≥ P ≥ max(Pr,r,Prd,r).

LGR Srd,rd: Here, ρ ∈ I3 ∩ J3, i.e., ρ = 0, and λ ∈ L2: this require ΣR = ΣD, from which we solve for

λ1. Conditions (32) and λ ∈ L2 simplify to 1 > λ1 > 0 which requires P > Prd,rd. Using the expression of

λ1 and ρ = 0 in (33), we find q2 and q1 as in the last and third to last rows of Table I. From (34) we have

pk = P−qk , and pk > 0, k = 1, 2, requires P > max(Pr,rd,Prd,r). Finally, depending on the relay link gains,

condition qk > 0, k = 1, 2, simplify to either max(Prd,d,Pd,rd) < P for r ∈ R2 ∪ R1, Prd,d < P < Pd,rd for

r ∈ RS2, or Pd,rd < P < Prd,d for r ∈ RS1, as in Table I.

The optimal powers and conditions for Ard,d,Srd,d,Ar,rd and Sr,rd are derived from Ad,rd,Sd,rd,Ard,r

and Srd,r by exchanging the roles of the direct and relay links, while those for Ad,d, Ad,r, Ar,d and Ard,rd

are derived through similar tedious algebraic manipulations. The details are omitted here.
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