
1

Wireless Networks Design in the Era of Deep
Learning: Model-Based, AI-Based, or Both?

Alessio Zappone, Senior Member, IEEE, Marco Di Renzo, Senior Member, IEEE, Mérouane Debbah, Fellow,
IEEE

(Invited Paper)

Abstract—This work deals with the use of emerging deep
learning techniques in future wireless communication networks.
It will be shown that data-driven approaches should not replace,
but rather complement traditional design techniques based on
mathematical models.

Extensive motivation is given for why deep learning based on
artificial neural networks will be an indispensable tool for the
design and operation of future wireless communication networks,
and our vision of how artificial neural networks should be
integrated into the architecture of future wireless communication
networks is presented.

A thorough description of deep learning methodologies is
provided, starting with the general machine learning paradigm,
followed by a more in-depth discussion about deep learning and
artificial neural networks, covering the most widely-used artificial
neural network architectures and their training methods. Deep
learning will also be connected to other major learning frame-
works such as reinforcement learning and transfer learning.

A thorough survey of the literature on deep learning for
wireless communication networks is provided, followed by a
detailed description of several novel case-studies wherein the use
of deep learning proves extremely useful for network design.
For each case-study, it will be shown how the use of (even
approximate) mathematical models can significantly reduce the
amount of live data that needs to be acquired/measured to
implement data-driven approaches.

Finally, concluding remarks describe those that in our opinion
are the major directions for future research in this field.

I. INTRODUCTION AND VISION

Our society is undergoing a digitization revolution, with a
dramatic increase of both Internet users and connected devices.
The fifth generation of wireless communication networks
will be rolled out shortly, featuring innovative technologies
such as infrastructure densification, antenna densification, use
of frequency bands in the mmWave range, energy-efficient
network management [1]–[3], which promise to achieve the
targets of 1000x higher data-rates and 2000x higher bit-per-
Joule energy efficiency compared to the previous wireless
generation [4]. However, as the 5G standardization phase is
ongoing, it appears doubtful that a single 5G technology will
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be able to achieve the desired requirements. Indeed, it is widely
believed that 5G will employ multiple technologies at the same
time. This points towards extremely complex systems, charac-
terized by an infrastructure that becomes denser and denser to
accommodate the exponentially increasing number of devices
demanding connections. As a consequence, operational expen-
ditures (OPEX) and capital expenditures (CAPEX), which are
already a major challenge in present wireless networks [5],
will significantly increase.

Moreover, global IP traffic will continue increasing in the
next years. Between 2020 and 2030, the Compound Annual
Growth Rate (CAGR) will rise by 55% annually, reaching 607
exabytes in 2025 and 5,016 exabytes in 2030 [6]. In addition,
another critical challenge for future wireless networks is the
extreme heterogeneity of the services to provide. Future wire-
less networks will have to support many innovative vertical
services, each with its own specific requirements [7], e.g.

• End-to-end latency of 1 ms and reliability higher than
99.999% for Ultra Reliable Low Latency Communica-
tions (URLLC).

• Terminal densities of 1 million of terminals per square
kilometer for massive Internet of Things (mIoT) applica-
tions.

• Per-user data-rate larger than 50 Mb/s for mobile broad-
band (mBB) applications.

• Terminal location accuracy of the order of 0.1 m for
Vehicular-to-X (V2X) communications.

These numbers are beyond what 5G networks have been
designed to handle, and the integration of such diverse ver-
tical services into the same network architecture calls for an
extremely flexible and adaptive architecture, which clashes
against today’s “one-size-fits-all” paradigm. Therefore, new
approaches to increase the network flexibility have recently
started attracting research attention, such as software networks
and the use of Unmanned Aerial Vehicless (UAVs).

Software networks are primarily based on the network
slicing paradigm, which proposes to logically separate the
control and data plane, thus effectively slicing the physical
network into multiple virtual networks co-existing over a
common shared physical infrastructure. Each network slice
constitutes a logically separate virtual network that can be
customized to meet the specific requirements of a specific
vertical service, by using techniques like Software Defined
Networking (SDN) [8] and Network Function Virtualization
(NFV) [9]. Network slicing applies to both the core and access
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network segments and paves the way for a new generation of
programmable and software-oriented wireless networks, that
are able to support flexible and on-demand network resources
provisioning, allowing service providers to tailor the use of
resources to the specific needs of the different classes of
services to be provided.

Besides increasing the flexibility of the network through
network slicing and reprogrammability, the use of UAVs is
meant to increase the flexibility of the physical network
infrastructure. UAVs like drones and other flying objects will
act as flying access points, that can be redeployed based
on heterogeneous traffic conditions to support on-demand
connectivity requests [10].

Thus, future wireless networks will be characterized
by an unprecedented level of complexity, which makes
traditional approaches to network deployment, design,
and operation no longer adequate. Every aspect of past
and present wireless communication networks is regulated by
mathematical models, that are either derived from theoretical
considerations, or from field measurement campaigns. Math-
ematical models are used for initial network planning and
deployment, for network resource management, as well as
for network maintenance and control. However, any model
is always characterized by an inherent trade-off between their
accuracy and their tractability. Very complex scenarios like
those of future wireless networks are unlikely to admit a
mathematical description that is at the same time accurate and
tractable. In other words, we are rapidly reaching the point at
which the quality and heterogeneity of the services we demand
of communication systems will exceed the capabilities and
applicability of present modeling and design approaches.

In order to face this complexity crunch challenge, for the
first time since the inception of wireless communications, it is
not enough to simply devise a more performing transmission
technology. Being simply able to transmit data at a faster
rate does not ensure the flexibility required to accommo-
date diverse classes of users with extremely heterogeneous
service requirements. Besides developing faster transmission
technologies, future research efforts should be aimed also at
improving the network infrastructure itself, making it intel-
ligent enough to flexibly and automatically adapt to sudden
wireless scenario changes and rapid traffic evolutions. In order
to provide end-users with a perceived seamless and limitless
connectivity, the re-configuration of network resources and/or
the re-deployment of network nodes in response to new data
demands, as well as to connectivity problems and/or failures
of hardware components, must be prompt and timely. To this
end, it is necessary to make the network fully self-organizing,
automating all management, operation, and maintenance tasks,
limiting direct human intervention as much as possible. This
is the concept of Self-Organzing Networks (SON), which is
not new to wireless networks, as it was introduced by the
Next Generation Mobile Networks (NGMN) alliance, and even
standardized by 3GPP for LTE networks. However, despite
having garnered much attention since its inception, SON failed
to achieve the expected end-goal of fully automated networks.
It was employed primarily for specific Radio Access Network
(RAN) applications, but without providing a true end-to-end

solution. In our opinion, this is mainly due to the lack of
intelligence and cognition in past and present networks. In
order to enable truly self-organizing networks, it is essential
to have an infrastructure capable of cognitive behavior. Intel-
ligence must be spread across all network segments, making
network nodes self-aware, self-organizing, and self-healing,
by sensing the surrounding environment and processing the
acquired data. These requirements have recently given rise to
the concept of smart radio environments, which is discussed
in detail in [11]. It is estimated that a fully automated and
self-aware network, with self-configuration and self-healing
capabilities would reduce CAPEX and OPEX by a factor 5
relative to 2010 levels [12], i.e. relative to a period when the
complexity and expected performance of wireless networks
were quite lower than today. Therefore, the gain compared to
the extremely more complex networks of the future is expected
to be significant.

A. AI-Based Wireless Networks
The need for an intelligent wireless network motivates to

endow each network segment with Artificial Intelligence
(AI) capabilities and to employ a data-driven paradigm in
which network nodes are able to determine the best policy
to employ based on the experience obtained by processing
previous data. On the one hand, this clearly reduces the
reliance on mathematical models as far as network design
and operation is concerned, but, on the other hand, it does
not necessarily imply that traditional mathematical-oriented
models and approaches should be dismissed. In fact, it is
our opinion that there is much to be gained by the joint
use of model-based and AI-based techniques and we envision
future wireless networks where model-based and AI-based
techniques are used in synergy. A major goal of this work
is to support this point, and indeed Section IV will present
specific approaches for cross-fertilization between these two
seemingly contrasting approaches, together with the related
quantitative analysis.

But how to develop artificially intelligent wireless networks?
A framework that enables this is machine learning, in partic-
ular through one of its techniques, namely deep learning.
Machine learning provides several techniques that endow
computers with the ability to learn from data, instead of being
explicitly programmed [13]. Machine learning techniques are
not new to communication systems, and indeed several ma-
chine learning approaches have been developed and proposed
to aid the design and operation of communication systems,
e.g. support vector machines, decision-tree learning, Bayesian
networks, genetic algorithms, rule-based learning, and induc-
tive logical programming, among others. Detailed surveys
and tutorials about machine learning and its applications to
wireless networks can be found in [14]–[18], and its use to
enable SON networks has been proposed in [19]. However,
deep learning [20]–[22], which is the most popular machine
learning technique in many fields of science, has started
attracting the attention of the communication community only
very recently.

Deep learning is a particular machine learning technique
that implements the learning process elaborating the data
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through Artificial Neural Networks (ANNs). As it will be
explained in more detail in Section II, the use of ANNs is
the key factor that makes deep learning more performing
than other machine learning schemes, especially when a large
amount of data is available. This has made deep learning the
first among the top ten AI technology trends of 2018 [23],
and the leading machine learning technique in many scientific
fields such as image classification, text recognition, speech
recognition, audio and language processing, robotics. Despite
all this, as already said, its use in communication systems has
been envisioned only very recently [24], and its potential is at
the moment almost untapped. In our opinion, this is mainly
due to the fact that, unlike other fields of science, commu-
nication engineers could traditionally rely on mathematical
models for system design, thereby making the use of data-
driven approaches not strictly necessary. However, as we have
described, this fundamental postulate is going to be weakened
in the near future, which puts forth the need for deep learning
in communication systems. Moreover, recent technological
advancements make deep learning a viable technology for
application to future communication networks. More precisely:

• In order to gain the most out of deep learning algorithms,
it is necessary to process large datasets. At present, ex-
actly the exponential increase of wireless devices results
in a corresponding growth of traffic data [25]–[27].

• Modern advancements in computing capacity makes it
possible to execute larger and more complex algorithms
much faster. In particular, Graphics Processing Units
(GPUs) can be repurposed to execute deep learning
algorithms at speeds many times faster than traditional
processor chips.

Recently, several leading telecommunication companies have
supported the use of deep learning for communications
[28], [29]. Moreover, initial steps towards the standardization
of intelligent wireless communication systems have already
been taken. European Telecommunications Standards Institute
(ETSI) activated an Industry Specification Group named Ex-
periential Network Intelligence, with the purpose to define a
cognitive network management architecture capable of using
AI techniques and context-aware policies to adjust the services
that are offered, based on changes in user needs, environmental
conditions, and business goals. Such a paradigm is referred
to as the observe-orient-decide-act control paradigm and rep-
resents the first standardization step towards the definition
of an experiential system, i.e. a system that learns from
previous experience to improve its knowledge of how to act
in the future. This is anticipated to help operators automate
their network configuration and monitoring processes, thereby
reducing their operational expenditure and improving the use
and maintenance of their networks. Similarly, a standardization
initiative for machine learning in future mobile networks has
been activated by the International Telecommunication Union
(ITU), with the aim of specifying an architectural framework
for machine learning in future networks, defining the integra-
tion of machine learning functionalities into the architecture of
future mobile networks, as well as identifying techniques for
network management in future wireless environments. More

specifically, the recently approved “ITU-T Y.3172 architectural
framework for machine learning in future networks including
IMT-2020” [30], constitutes another important component for
the adoption of machine learning to operate and optimize
wireless networks.

On the other hand, in order to make the vision of AI-based
wireless networks true, there are also some challenges that
must be overcome. In particular, two challenges appear today
as the most relevant ones:

• Data acquisition. As already mentioned, in order to
get the most out of deep learning algorithms, a large
amount of data is required. As stated above, this is
nowadays possible since the increase of traffic provides a
huge amount of data that can be collected and exploited.
However, the question remains of how to acquire the
necessary amount of data in a practical and cost-effective
way, e.g., by taking into account the overhead, time, and
energy costs, especially in scenarios with high mobility
and fast varying network conditions. In our opinion,
the first half of the solution lies in the pervasive use
of new, intelligent, materials, known as meta-materials,
which have communication as well as data storage and
processing abilities. As detailed in Section I-C, meta-
materials can provide the fabric for AI-enabled wireless
networks. As for the second half of the solution, in
our opinion it lies in the cross-fertilization between AI-
based and model-based techniques, which, as detailed
in Section IV, can significantly reduce the amount of
data that needs to be physically acquired through field
measurement campaigns.

• AI integration into communication networks. While
it appears clear that future communication networks will
have to rely on AI, it is not clear how ANNs should
be integrated into the architecture of communication
networks. Should the acquired data be stored at a cen-
tralized location, where a single ANN manages a large
network domain, or should each network device store
its own data and run a local ANN? Our answer to this
question is provided in Section I-D, where it is argued
that a decentralized paradigm is to be preferred, and two
possible approaches are described.

Before concluding this section, we believe it is important to
emphasize that machine learning is anticipated to be a game-
changing technology not only for mainstream wireless com-
munication networks, but also for emerging communication
technologies that are being investigated as a way to com-
plement traditional wireless approaches in specific scenarios.
Among others, we mention optical wireless communications
[31], [32], which promise very high data rates by commu-
nicating over the visible spectrum, and molecular communi-
cations, which are not based on electromagnetic waves but
exploit chemical signals as information carriers, thus enabling
communication through media where electromagnetic signals
do not propagate well, such as water, inside human bodies
or the walls of buildings [33], [34]. Both technologies have
garnered much interest in recent years, but they share the
main drawback of being difficult to be accurately described
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by tractable mathematical models. Therefore, model-less, AI-
driven approaches can provide a decisive contribution to the
practical implementation of wireless optical and molecular
communication systems, as, for example, observed in [35],
which employs deep learning to solve Schrödinger equations
in fiber-optic communications.

B. Contributions and Organization

The vast majority of survey contributions on machine learn-
ing focus on different fields than communication networks,
e.g. [13], [16], [20]–[22], [36], [37]. As far as communications
are concerned, most previous surveys discuss general machine
learning techniques [14], [17], [18], [38]–[40], without provid-
ing a dedicated analysis of deep learning. Only a few very
recent overview works focus specifically on deep learning
and ANNs for wireless communications [24], [41], [42]. All
these three previous contributions envision the use of deep
learning in future wireless networks, identifying AI as the
key technology of the future and identifying many use-cases
and scenarios in which deep learning has the potential of
simplifying the design and improving the performance. In
addition, none of the above works provides at the same time an
in-depth quantitative analysis of several applications of deep
learning for the design of wireless networks, an extensive
overview of wireless applications of deep learning, as well
as a self-contained mathematical treatment of deep learning
by ANNs that discusses the main types of ANNs and the
related training algorithms. Moreover, none of the above works
addresses possible approaches for cross-fertilization between
deep learning techniques and traditional mathematical model-
ing design approaches. In this context, our work provides the
following five major contributions (C.1-C.5):

(C.1) The connection between model-based and data-driven
methodologies is elaborated. A systematic framework to
embed the prior knowledge contained in available mathe-
matical models into deep learning techniques is described,
and is shown to significantly reduce the amount of train-
ing data that is needed to achieve good communication
performance.

(C.2) A possible network architecture based on the use of the
emerging technology of meta-materials is put forth. It
is shown in particular that it facilitates the acquisition
of the data required to train ANNs. Also, the issue
of managing and operating an AI-based communication
networks based on meta-materials is discussed.

(C.3) Several case-studies where deep learning is proved to be
useful are described. For each considered case-study, the
mathematical formulation of the problem, the specific
ANN architecture that is used, and the corresponding
analysis and numerical results are discussed.

(C.4) A solid and self-contained description of the theoretical
foundations of deep learning, the most relevant ANNs
architectures and training methods, as well as the most
widely-used guidelines for hyper-parameters tuning are
given.

(C.5) The connection between deep learning and other ma-
chine learning frameworks, such as deep reinforcement

learning, deep federated learning, and deep transfer
learning are discussed. Several case-studies where these
learning frameworks are jointly used are quantitatively
analyzed. Moreover, the approach of deep unfolding is
proposed as a way to map iterative algorithms to ANNs
architectures.

The rest of this work is organized as follows:

• The rest of this section elaborates on contribution C.2,
by discussing the potential and advantages of AI-based
wireless networks, for application to network deployment
and planning, resource management, and maintenance
and operation. Furthermore, our vision on data gathering
and management in AI-based networks is presented.

• Section II discusses in detail the connection between ma-
chine learning and deep learning. First, the fundamental
paradigms of supervised learning, unsupervised learning,
and reinforcement learning are introduced, and then the
role of deep learning and ANN in this general framework
is explained.

• Section III is focused, together with Section II, on
contribution C.4, providing the theoretical description
of deep learning, introducing the basic components of
ANNs, the most widely-used ANN architectures and
training methods. In addition, the connection between
deep learning, reinforcement learning, transfer learning,
and deep unfolding are explained, providing Contribution
C.5.

• Contributions C.1 and C.3 are addressed in Section IV.
First, a detailed overview of the applications and research
contributions of deep learning to wireless communica-
tions is provided. Next, several examples and use-cases
of practical interest are presented, in which the joint use
of mathematical models and deep learning methods are
shown to yield significant gains compared to state-of-the-
art approaches. For each use-case, a quantitative analysis
is explicitly carried out, by describing the design of an
ANN to tackle the problem and discussing the resulting
performance.

• Finally Section V concludes this paper by outlining the
major challenges to overcome in order to fully enable the
rise of AI-based wireless communication networks.

C. Deep Learning for Network Deployment and Planning

Future wireless networks will be more than allowing people,
mobile devices, and objects to communicate with each other
[43]. Future wireless networks will be turned into a distributed
intelligent wireless communication, sensing, and computing
platform, which, besides communications, will be capable of
sensing the environment to realize the vision of smart living
in smart cities by providing context-awareness capabilities, of
locally storing and processing information in order to accom-
modate the time critical, ultra-reliable, and energy efficient
delivery of data, of accurately localizing people and objects
in environments and scenarios where the global positioning
system is not an option. Future wireless networks will have
to fulfill the challenging requirement of interconnecting the
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Figure 1. Current networks vs. a smart radio environment (or smart wireless).

physical and digital worlds in a seamless and sustainable
manner [44], [45].

To fulfill these challenging requirements, we think that it
is not sufficient anymore to rely solely on wireless networks
whose logical operation is software-controlled and optimized
[46]. The wireless environment itself needs to be turned into
an intelligent software-reconfigurable entity [47], whose oper-
ation is optimized to enable uninterrupted connectivity. Future
wireless networks need a smart environment, i.e., a wireless
environment that is turned into a reconfigurable space that
plays an active role in transferring and processing information.
We refer to this emerging wireless future as “smart radio
environment” [11].

To better elucidate our notion of reconfigurable and
programmable wireless environment, let us consider the block
diagram illustrated in Fig. 1. Conceptually, the difference
between current wireless networks and a smart radio
environment can be summarized as follows. According to
Shannon [48], the system model is given and is formulated in
terms of transition probabilities (i.e., Pr {y|x}). According to
Wiener [49], the system model is still given, but its output is
feedback to the input, which is optimized by taking the output
into account. For example, the channel state is sent from a
receiver back to a transmitter for channel-aware beamforming.
In a smart radio environment, the environmental objects are
capable of sensing the system’s response to the radio waves
(the physical world) and feed it back to the input (the digital
world). Based on the sensed data, the input signal and the
response of the environmental objects to the radio waves
are jointly optimized and configured through a software
controller, respectively. For example, the input signal is
steered towards a given environmental object, which reflects
it towards the receiver by suitably-optimized phase shifts. In
turn, the receiver is also steered towards the incoming signal.

Different solutions towards realizing the vision of smart
radio environments are currently emerging [50]- [51]. Among
them, the use of reconfigurable meta-surfaces constitutes a
promising and enabling solution to fulfill the challenging
requirements of future wireless networks [52]. Meta-surfaces
are thin meta-material layers that are capable of modifying
the propagation of the radio waves in fully customizable
ways [53], thus having the potential of making the transfer
and processing of information more reliable [54]. Also, they
constitute a suitable distributed platform to perform low-
energy and low-complexity sensing [55], storage [56], and
analog computing [57]. In [51], in particular, the authors have
put forth a network scenario where every environmental object
is coated with reconfigurable meta-surfaces, whose response

Figure 2. Current cellular networks operation.

Figure 3. Cellular networks operation in a smart radio environment.

to the radio waves is software-programmed by capitalizing on
the enabling technology and hardware platform currently being
developed in [58].

An example of using reconfigurable meta-surfaces in a
cellular network scenario is sketched in Figs. 2 and 3. In Fig.
2, a mobile terminal (M) wants to connect to the Internet via a
cellular network. In the absence of environmental objects (O1,
O2, O3), BS1 is the base station that provides the best signal to
M. Due to the blocking object O1, however, the received signal
from BS1 is not sufficiently strong, and M connects to the
Internet via BS2, while BS1 is kept active to serve other users.
Since BS2 is far from M, its received signal is not sufficient
for high rate transmission. Because of the refractive object O2,
the signal emitted by BS1 generates strong interfering signals
in other locations. Also, the reflective object O3 generates
a strong reflected signal towards a malicious user (E) that
can intercept the signal from BS1. In Fig. 3, by contrast,
we illustrate the operation of cellular networks in a smart
radio environment. The objects O1, O2, O3 are now coated
with reconfigurable meta-surfaces that modify the radio waves
according to the generalized laws of reflection and refraction
[53]. Figure 3 shows how the operation of wireless networks
changes fundamentally. The link BS1-M is still obstructed
by O1. The responses of the reconfigurable meta-surfaces
on O2 and O3 are, however, appropriately controlled and
optimized: O2 refracts the signal from BS1 towards M and
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avoids interfering other users. O3 reflects the signal towards M
and protects BS1 against E. In contrast to Fig. 2, the reflected
and refracted signals at M allow it to reliably connect to the
Internet. Now, BS2 serves other users at, e.g., a higher speed.

Current research efforts towards realizing the vision of smart
radio environments are primarily focused on implementing
hardware testbeds, e.g., reflect-arrays and meta-surfaces, and
on realizing point-to-point experimental tests [50]- [51]. To the
best of the authors knowledge, on the other hand, there exist
no theoretic and algorithmic methodologies that provide one
with the ultimate performance limits of this emerging wireless
future, and with the algorithms and protocols for achieving
those limits. We argue, in addition, that the design of smart
radio environments is unlikely to be possible by relying solely
on conventional methods. We believe, on the other hand, that
deep learning and AI will play a major role in this context.
In the following two sections, we will first discuss in deeper
details the difference and potential advantages of smart radio
environments against current wireless network solutions, and
then discuss the importance of deep learning in this context.

1) Current Networks vs. Future Smart Radio Environments:
To better elucidate the difference and significance of smart
radio environments with respect to the most advanced tech-
nologies employed in wireless networks at present, let us
consider, as an example, a typical cellular network.

The distinguishable feature of cellular networks lies in the
users’ mobility. The locations of the base stations cannot,
in general, be modified according to the user’s locations.
Some exceptions, however, exist [59], [60], and we will
elaborate on this below. The mobility of the users throughout
a location-static deployment of base stations renders the user
distribution uneven throughout the network, which results in
some base stations to be severely overloaded and some others
to be under-utilized. This is a well-known issue in cellular
networks, and is tackled in different ways, among which
load balancing [61] and the densification of base stations
(ultra-dense networks). Network densification is certainly a
promising approach, but has its own limitations [62], [63]. It
is known, e.g., that network densification increases the network
power consumption as the number of base stations per square
kilometer increases. This is exacerbated even more with the
advent of the Internet of Things (IoT), where the circuit power
consumption increases with the number of users per square
kilometer [64], [65]. Ultra-dense network deployments, in
addition, enhance the level of interference, which needs to be
appropriately controlled in order to achieve good performance.
Furthermore, each base station necessitates a backhaul connec-
tion, which may not be always available. Other solutions based
on massive Multiple-Input-Multiple-Output (MIMO) schemes
could be employed, but they usually necessitate a large number
of individually controllable radio transmitters and advanced
signal processing algorithms [66]. Similar comments (i.e.,
power consumption, hardware complexity, blocking of links,
etc.) apply to using millimeter-wave communications [67],
[68]. It is worth mentioning that millimeter-wave systems can
take advantage of the presence of reconfigurable meta-surfaces
as a source of controllable reflectors that can overcome non-
line-of-sight propagation conditions, and enable the otherwise

impossible communication between the devices [69]. Without
pretending to be exhaustive, other relevant solutions that
are typically employed in wireless encompass retransmission
methods that negatively impact the network spectral efficiency,
the optimized deployment of specific network elements, e.g.,
relays, which increase the network power consumption as they
are made of active elements (e.g., power amplifiers), and that
either reduce the achievable link rate if operated in half-duplex
mode or are subject to severe self-interference if operated in
full-duplex mode [70]- [71].

Meta-surfaces-enabled smart radio environments are funda-
mentally different. The meta-surfaces are made of low-cost
passive elements that do not require any active power sources
for transmission [45]. Their circuitries can be powered with
energy harvesting modules, too [72]. They do not apply any
sophisticated signal processing algorithms (coding, decoding,
etc.), but primarily rely on the programmability and re-
configurability of the meta-surfaces and on their capability
of shaping the radio waves impinging upon them [73]. They
can operate in full-duplex mode without significant or any
self-interference, and do not need any backhaul connections.
Even more importantly, the meta-surfaces are deployed where
the issue naturally arises: where the environmental objects,
which, in current wireless networks, reflect, refract, distort, etc.
the radio waves in undesirable and uncontrollable ways, are
located. Since the input-output response of the meta-surfaces is
not subject to conventional Snell’s laws anymore, the locations
of the objects that assist a pair of transmitter and receiver
to communicate, and the functions that they apply on the
received signals can be chosen to minimize the impact of
multi-hop-like signal attenuation. In addition, the phase of
the many atomic elements (i.e. the scattering particles), that
constitute the meta-surfaces can be optimized to coherently
focus the waves towards the intended destination, thus ob-
taining a substantial beamforming gain without using active
elements. These functionalities, in addition, are transparent
to the users, as there is no need to change the hardware
and software of the devices. Furthermore, the number of
environmental objects can potentially exceed the number of
antennas at the endpoint radios, which implies that the number
of parameters for system optimization will exceed that of
current wireless network deployments [74]. The freedom of
controlling the response of each meta-surface and choosing
their location via a software-programmable interface makes,
in addition, the optimization of wireless networks agnostic
to the underlying physics of wireless propagation and meta-
materials. Despite the practical challenges of deploying robotic
(terrestrial) base stations capable of autonomously moving
throughout a given region [59], [60], experimental results
conducted in an airport environment, where the base stations
were deployed on a rail located in the ceiling of a terminal
building [75], showed promising gains. The possibility to
deploy mobile reconfigurable meta-surfaces is, on the contrary,
practically viable. The meta-surfaces can be easily attached to
and removed from objects (e.g., facades of buildings, indoor
walls and ceilings, advertising displays), respectively, thus
yielding a high flexibility for their deployment. The position of
small-size meta-surfaces on large-size objects, e.g., walls, can
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be adaptively optimized as an additional degree of freedom
for system optimization: Thanks to their 2D structure, the
meta-surfaces can be mechanically displaced, e.g., along a
discrete set of possible locations (moving grid) on a given
wall. It is apparent, therefore, that the concept of smart
radio environment can potentially impact wireless networks
immensely. First contributions that investigate the use of meta-
surfaces for the design of wireless networks have appeared in
[76], [77].

2) The role of deep learning in smart radio environments:
As discussed, the concept of smart radio environment is a
fundamental paradigm shift compared to the current designs
of wireless networks. But what is the interplay between smart
radio environments and AI-based communication networks?
We believe the two paradigms are intertwined, at the same
time enabling and being enabled by each other. As already
mentioned, besides the ability of improving the communica-
tion performance, meta-surfaces are expected to be equipped
with sensors that allow them to estimate the current conditions
of the environment. This equips them with the capability of
acquiring lots of data that can be locally stored and processed,
and/or sent to fusion centers. Thus, meta-surfaces provide the
fabric of future AI-based wireless networks. Thanks to the
pervasive use of meta-surfaces, smart radio environments will
be naturally able to acquire and harness a large amount of data
that travels over communication networks and that is required
to maximize the performance of deep learning algorithms
based on ANNs. In this sense, smart radio environments
constitute an enabler for the implementation of AI-based
communication networks.

On the other hand, the massive use of meta-surfaces,
reconfigurable reflect-arrays, reconfigurable large-intelligent
surfaces, provides a large number of degrees of freedom
whose optimization entails a large computational complexity.
By direct inspection of Fig. 1, it is apparent that smart
radio environments are much more difficult to optimize than
current wireless networks. In a smart radio environment, the
operation of each environmental object may be optimized,
besides the operation of the transmitter and receiver (the end
points of the network). Accurately modeling such an emerging
network scenario and optimizing it in real time and at a low
complexity is an open issue. Indeed, it is very challenging
to devise a model that is sufficiently accurate to account for
customizable reflections, refractions, blocking, displacements
of the surfaces, etc. Moreover, even if such a model could be
developed, it would be very unlikely amenable to optimization
due to the large number of variables to optimize and the
complexity of the resulting utility functions. Compared with
current network models, in addition, Fig. 1 highlights that
smart radio environments need much more context-aware
information for configuring and optimizing the operation of
all the environmental objects, which results in a larger feed-
back overhead that has a strong impact in applications with
high mobility. Unfortunately, in order to optimize such a
complex system, with so many degrees of freedom, typical
optimization-oriented approaches are not feasible, as they
would require a too high complexity overhead. Luckily, as
discussed in the the coming subsection I-D, deep learning

can be used to significantly simplify the resource management
task. In this sense, AI by deep learning and ANNs makes smart
radio environments practically implementable, especially when
model-based and AI-based approaches are used jointly, as
discussed in detail in Section IV.

D. Deep Learning for Network Resource Management

The goal of resource management is to allocate the avail-
able network resources in order to maximize one or more
performance metrics. Transmit powers, beamforming vectors,
receive filters, frequency chunks, computing power, memory
space, etc., can be scheduled among the network terminals
based on traffic demands, propagation channel conditions, ter-
minals requirements, so as to optimize the network throughput,
the communication latency, the energy efficiency, while at the
same time ensuring that all end-users experience the guaran-
teed quality-of-service (QoS). Formally speaking, denoted by
f the performance function to maximize and by x ∈ S the
resource to allocate, with S the set containing the admissible
values of x, the resource allocation problem can be cast as the
optimization program

max
x∈S

f(x) . (1)

Thus, the conventional approach to resource management is
based on the use of traditional optimization theory techniques.
However, as already mentioned, this approach only works if
one is able to come up with a suitable mathematical model
of the problem, i.e. with tractable, but accurate, formulas
describing the objective f and the feasible set S. This is typ-
ically not the case in interference-limited systems, where the
presence of multi-user interference makes most relevant radio
resource allocation problems NP-hard. For example, power
allocation for sum-rate maximization is known to be NP-hard
in interference-limited networks [78], which implies that also
beamforming problems and energy efficiency maximization
problems are NP-hard [3] as well. Moreover, even if we could
solve NP-hard problem with affordable complexity, the opti-
mal resource allocation will inevitably depend on the system
parameters, e.g. the users’ positions, the number of connected
users, the slow-fading or fast fading channel realizations.
Anytime one of these parameters changes, which occurs quite
frequently in mobile environments, the optimization problem
needs to be solved anew. This causes a significant complexity
overhead, that limits the real-time implementation of available
optimization frameworks, especially in large and complex
systems like future wireless communication networks. Clearly,
all of these issues become even more prominent in smart radio
environments where the number of variables to optimize will
far exceed conventional numbers. In this context, the use of
deep learning techniques based on ANNs can significantly
reduce the burden of system design, enabling true online
resource management. A first contribution that demonstrates
the use of deep learning for the design of a meta-surface-
enabled wireless network has appeared in [79].

Our proposed approach to solve resource allocation prob-
lems by deep learning is based on the observation that the
general resource allocation problem in (1) can be regarded as
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an unknown function mapping from the ensemble of all net-
work parameters of interest, denoted by c ∈ RN , with N the
number of system parameters of interest, to the corresponding
optimal resource allocation x∗ ∈ S. Formally, we can view
Problem (1) as the non-linear map

F : c ∈ RN → x∗ ∈ S ⊆ RN . (2)

Thus, our proposal is to convert Problem (1) into learning the
unknown map (2), a task that ANNs are able to tackle. Indeed,
as it will be discussed in Section II, ANNs are, under very mild
assumptions, universal approximators, i.e., if properly trained,
they are able to learn the input-output relation between the
system parameters and the desired resource allocation to use,
thus emulating the function F in (2). This means that we
can optimize a desired performance function for given system
parameters without explicitly having to solve any optimization
problem, but rather letting an ANN compute the resource
allocation for us. A detailed analysis of this approach will
be presented in Section IV.

With this in mind, the natural question that arises is how to
integrate ANN-based resource management into the topology
and architecture of a wireless network. Where should we store
the data required by the ANN tasked with network resource
management, and where should the related computations be
executed? Ideally, the optimal approach would be to have a
cloud-based approach in which an “artificial brain” placed in a
single point oversees all tasks related to resource management
across the whole network or at least a network segment. All
available data should be collected and stored in this artificial
brain which is tasked with executing all required computations
and with feeding back the resulting optimal resource allocation
policy to all other network terminals. Unfortunately, such a
centralized approach is not compatible with future wireless
networks due to at least three major reasons:

1) Latency. Some vertical sectors of future wireless net-
works, e.g. URLLC, require strict end-to-end commu-
nication latency requirements, lower than a millisecond.
Thus, for these applications, it is not possible to wait
for the cloud to perform the computations and then feed
the results back to the end-users. Instead, it would be
more convenient to perform the computations locally at
the users’ terminals.

2) Privacy. Unlike previous wireless networks generations,
future wireless networks will not be simply limited to
realizing faster mobile network or to providing richer
functions in smartphones. The integration of innovative
vertical services aims at making the vision of the “every-
thing connected world” true, but this comes with critical
privacy and security requirements. Accordingly, for some
vertical applications it is not desirable to share informa-
tion with the cloud, which makes cloud-based deep learn-
ing not a convenient approach. In this context, it should
be mentioned that, even if network security methods exist
and provide us with privacy, integrity, and authentication,
their use represents an overhead in terms of additional
complexity and additional data to transmit [80]. Indeed,
commercial solutions to privacy and/or authentication
require the use of specific cryptographic algorithms such

as Advanced Encryption Standard (AES) and Rivest-
Shamir-Adleman (RSA), which run on top of the physical
layer and require to execute finite fields operations on
each block of transmitted data. Moreover, data integrity is
typically guaranteed by the use of Hash codes, which also
require the execution of specific operations to generate the
Hash code for each packet of transmitted bits. Clearly,
this results in overheads that might significantly reduce
the communication performance of large-scale networks.
Moreover, the perceived level of trust by the end-users
will be inherently higher if no sensible data needs to be
transmitted.

3) Connectivity. Future wireless networks promise ubiqui-
tous service delivery. This means that a user terminal
should be able to operate also in areas or times in which
a poor connection to the cloud exists. This requirement is
not compatible with a pure cloud-based implementation,
but instead each user device should have some “local
intelligence” to be able to operate in these scenarios, too.

Therefore, in order to make deep learning compatible with fu-
ture wireless communication networks, the intelligence can not
be concentrated only in a centralized network brain. Instead,
some intelligence should be distributed across the network
mobile devices, implementing a Mobile AI architecture. It
is interesting to observe that this approach resembles the
way in which human knowledge is developed: like human
societies in which there is a collective intelligence that belongs
to everybody, and an individual intelligence, the mobile AI
paradigm envisions both a cloud intelligence, which every
node of the network can access by connecting to the cloud,
and a device intelligence specific to each network device.

In order to implement this mobile AI paradigm, a first
natural approach that we put forth is to regard each device
in the network as a rational and independent decision-maker,
which acquires its own local dataset and uses it to build its
own local ANN model. This technique does not require any
interaction between the network infrastructure and the edge
users, as far as data sharing and processing are concerned,
and has the potential of enabling the 5G vision of distributed,
self-managing networks true. On the other hand, due to limited
storage and processing capabilities, mobile devices might not
be able to develop accurate models on their own and the
resulting performance gap must be analyzed. Moreover, the
self-organizing nature of the devices poses questions about
reaching a stable network operating point and about the
efficiency of such a point. The Noble-prize-winner framework
of game theory appears as the natural way to answer at
least the last points, as it provides sophisticated mathematical
tools to analyze the interactions among independent decision-
makers [81]–[83]. Game theory has been already extensively
used for resource management in wireless communication
networks [18], [84], [85], although never in connection with
deep learning.

A second approach that we envision is based on the use
of the so-called federated learning technique [86], [87]. The
main idea of federated learning is to distribute the data and
computation tasks among a federation of local devices that
are coordinated by a central server. The server owns a global
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ANN model that is built by appropriately combining the local
models from the devices, which are developed based on local
datasets. The server, on the other hand, is updated only with
the updates of the global model, without the need of collecting
and processing the datasets themselves. By leveraging this
approach, the individual intelligence owned by each device
contributes to the collective intelligence of the whole fed-
eration of devices, which is maintained by the server. As a
refinement of this approach, [88] proposes not to exchange the
updates of the model, but rather the updates of the algorithm
that is used to compute the model. In other words, each local
model is computed by processing the local dataset by some
algorithm, and the devices do not communicate the model to
the server, but instead send only an update of the parameters
of the algorithm that is used to compute the global model.

Regardless of the specific approach that is employed, the
mobile AI paradigm comes with several fundamental open
problems. In a scenario where each wireless node has cognitive
abilities (i.e. its own ANN), and whose behavior is influenced
by its own local experience (i.e. local data), different wireless
devices will learn how to behave based on datasets that might
differ in both quantity (different nodes might have different
measurement and storage capabilities) and quality (different
nodes might experience different data perturbations due, for
example, to the non-ideality of the measurement sensors). This
could potentially lead to instabilities and, in the worst case,
could cause the communication network to collapse. Hence,
new control mechanisms are necessary in order to ensure
the correct evolution over time of AI-based communication
networks.

E. Deep Learning for Network Operation and Maintenance

Maintenance and operation of a wireless network is a
broad field that involves many different tasks, such as users’
localization, channel estimation, quality-of-service monitoring,
fault and anomaly detection, hand-over execution, intrusion
detection, etc. Although seemingly quite diverse, operation
and maintenance tasks have a common denominator, as they
both involve the acquisition of some measurable data, from
which the desired information must be extracted. Formally
speaking, all above tasks can be formulated as the task of
guessing the realization of some random vector x based on
the observation of another random vector y, that is somehow
correlated to x, i.e. that was generated from x through some
unknown transformation. Such a problem can be cast into
the framework of classical decision and estimation theory,
but classical detection and estimation methods require the
conditional distribution f(x|y) and the prior distribution f(x),
whose availability is strongly related to the availability of a
tractable model for the specific problem at hand. Even in
present wireless applications, this is an unrealistic assump-
tion for several operation and maintenance tasks. A notable
example is that of hand-overs of users moving along the
boundary of two cells, a crucial problem in cellular networks.
This is typically (and heuristically) handled by comparing
the users’ signal-to-noise ratio (SNR) towards the neighboring
cells over a given time window. However, deriving a statistical

model for this scenario that accounts for the users’ mobility
patterns is quite challenging, and indeed the optimization
of the thresholds for hand-overs is an open problem even
in present cellular networks. Given the foreseen complexity
increase in future wireless communication networks, statistical
approaches will become less and less practical.

A suitable way of coping with the lack of models and
statistical information about the random vectors x and y
is represented by machine learning. Indeed, operation and
maintenance is probably the field of wireless communications
in which machine learning approaches have been used first.
Recent surveys on applications of machine learning for main-
tenance tasks have appeared in [89]–[92], and have shown
how machine learning performs well even without any statis-
tical distribution information. Specifically, available solutions
assume that a training set containing examples of correct
matches between the realizations of x and y is available,
e.g. based on observing and storing previous traffic data. By
processing the training set according to specific procedures
called training algorithms, machine learning methods are able
to learn a rule for predicting the value of x corresponding to
unobserved values of y.

As far as the integration of deep learning for network
maintenance into future wireless architectures is concerned,
it is our opinion that it could be carried out following a
more centralized approach than for the resource management
scenario described in Section I-D. Indeed, most operation and
maintenance tasks (e.g. fault and anomaly detection, hand-
overs, intrusion detection) are inherently centralized in the
sense that all computations are executed by network infras-
tructure nodes and do not require any specific information
exchange with edge-users. On the other hand, in case of very
large datasets and very demanding computations to perform,
we envision the use of a distributed or federated learning
approach, but only among dedicated network nodes. More
in detail, a suitable approach consists of sharing storage and
computation tasks among a cluster of fixed infrastructure
nodes connected by high-speed links and deployed in different
points of the network. In this case, each node of the cluster
could either be tasked with operating and maintaining only a
specific part of the network, or the data and computing power
of each cluster node could be jointly exploited via a federated
learning approach.

II. MACHINE LEARNING AND DEEP LEARNING

The term machine learning broadly refers to algorithmic
techniques able to perform a given task without running a
fixed computer program explicitly written and designed for
the problem at hand, but instead processing available data and
progressively learning from it. Formally speaking, a computer
program is said to learn from experience E with respect to a
task T and performance measure P, if its performance at task
T, as measured by P, improves with experience E [93].

The tasks that can be solved by machine learning are
very diverse. In general, machine learning techniques prove
extremely useful to execute tasks for which no explicit and/or
viable programming approach exists to date, e.g. classification,
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regressions, pattern recognition, automatic language transla-
tion, anomaly detection, etc. As diverse as the task to perform
may be, a machine learning algorithm can be mathematically
described by the map

F : x ∈ X ⊆ Rn → y ∈ Y ⊆ Rm , (3)

wherein x is a data vector whose components are the features
describing the task to be solved, y is the output produced by
the machine learning algorithm representing the answer to the
problem at hand, X and Y are the sets in which x and y may
vary. It is important not to confuse the task performed by a
machine learning technique with the action of learning. The
former is the final objective of the algorithm, while the latter
is the method that is used to carry out the task.

In order to evaluate the ability of a machine learning algo-
rithm to solve the assigned task, i.e. to produce output vectors
close to the desired ones, a performance criterion P must
be defined. Several performance measures can be considered
and typically the best choice is application-dependent. Typical
choices are the mean squared error (MSE) or the cross-entropy
functions, which will be formally introduced in Section III-C,
where the training procedure for ANNs is described.

The last component of a machine learning algorithm to
be introduced is the experience E, i.e. the knowledge and
data that the algorithm can exploit to carry out the task.
Machine learning algorithms typically experience a set of data
points STR, called training set. Depending on the information
contained in S, machine learning algorithms can be grouped
into two main categories:
• Unsupervised learning: the experienced data training

set STR contains only input features, i.e. STR =
{x1, . . . ,xN}. Based on STR, the machine learning algo-
rithm must be able to extrapolate the statistical structure
of the input or any other information needed to carry out
the desired task.

• Supervised learning: the experienced data training set
STR contains both input features and the corresponding
desired outputs, referred to as labels or targets, i.e. S =
{(x1,y1), . . . , (xN ,yN )}. Thus, in supervised learning,
the training set provides a series of examples to instruct
the algorithm how to behave when some specific inputs
are considered.

In both supervised and unsupervised learning, the available
dataset is fixed. This models a scenario in which the algo-
rithm does not directly interact with the environment where
it operates. Instead, a different machine learning paradigm
that does not fall in the categorization above is that of
reinforcement learning [94]. The approach of reinforcement
learning is to enable a feedback loop between the algorithm
and the environment, allowing the algorithm to experience a
dataset that changes over time as a result of the interaction
with the surrounding environment. The focus of this work
will be primarily on supervised learning, which is the typical
approach in deep learning. Reinforcement learning will also
be considered, primarily considering its integration with deep
learning tools, which leads to the recently introduced paradigm
of deep reinforcement learning [95], [96].

Before continuing, it is important to remark that, while the
setting described above bears some resemblance to the general
problem of classical decision/estimation theory, a fundamental
difference exists. Classical decision/estimation theory assumes
that the probability distributions of the output vector given the
input p(y|x) and that of the input vector p(x) are known.
Instead, machine learning does not need this assumption and is
able to operate based only on some realizations of the under-
lying distributions, even though the distributions themselves
are not known.

A. Overfitting and Underfitting

Any machine learning algorithm experiences a training set
STR that contains some input features x1, . . . ,xN . In the
supervised scenario, each input feature is also accompanied
by the corresponding desired output. While this information
is essential to configure the learning scheme, the key problem
of any machine learning algorithm is to perform well on
previously unseen inputs. This means that the algorithm needs
to be able to grasp from STR a general rule to produce a
suitable output y also when x̃ /∈ X . This is referred to as the
algorithm generalization capability. During the training phase,
the information in the training set is used to set the algorithm
parameters in order to minimize any desired performance
metric. As it will be detailed in the sequel, this amounts to
solving an optimization problem. Machine learning however, is
fundamentally different from optimization theory: its ultimate
goal is to make the algorithm able to generalize well to new
data inputs. In order to evaluate its generalization capability,
after the algorithm has been designed as a result of the training
phase, its performance is tested over a new set of different
inputs ST , called the test set. For any given error measure, the
error evaluated over the test set is called generalization error
or test error. Similarly, the error evaluated over the training set
is called the training error. Clearly, in order for the algorithm
to generalize well, the data samples in the training set STR and
in the test set ST need to be drawn from the same distribution,
called data generating distribution, even though they should
be drawn independently of each other. Clearly, the expected
generalization error will be larger than the expected training
error, and the gap between the two is called the generalization
gap. Thus, minimizing the training error can be regarded as
a necessary but not sufficient condition to obtain also a low
generalization error. A machine learning algorithm is said to
be:
• Underfitting if it is not able to make the error over the

training set small.
• Overfitting if it is not able to make the gap between the

training and test error small.
The factor that controls whether overfitting or underfitting
occurs is the capacity of the algorithm, i.e. the ability of
the algorithm to properly fit the training set. Intuitively, the
capacity of the algorithm is related to the degrees of freedom
or parameters that can be chosen when designing the algo-
rithm. If the algorithm does not have enough free parameters,
it will not have enough degrees of freedom to capture the
structure of the training set and the algorithm will underfit.
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Instead, the overfitting scenario is subtler. One may think that
increasing the number of free parameters will always lead to
better performance, and that an upper limit is represented only
by the computational complexity that we can sustain. This is,
however, not the case. If the algorithm has too many degrees
of freedom, it will learn the structure of the training set too
well, memorizing specific properties that are peculiar only to
the training set, but that do not hold in general. As a result,
there is an optimal capacity that a machine learning algorithm
should have to minimize the generalization gap.

Underfitting Overfitting

Algorithm Capacity

Training Error

Test Error

Figure 4. Typical behaviors of the training and test errors.

As shown in Fig. 4, the training error decreases with the al-
gorithm capacity, asymptotically reaching its minimum value.
Instead, the test error has a U-shaped behavior, following the
training error up to a capacity value, and then increasing,
thereby originating the generalization gap. Fundamental results
from statistical learning theory have established that the gen-
eralization gap is bounded from above, with the upper bound
increasing for larger model capacity, and decreasing for larger
training sets [97]–[100]. On the other hand, a lower-bound to
both the training and test error is given by the well-known
Bayes error, i.e. the error obtained by an oracle with access
to the true underlying distribution sampling from which the
training and test set are obtained.

Another way to interpret the phenomenon of overfitting
is to observe that any finite training set will also contain
atypical realizations of the underlying distribution, that should
be overlooked or given little importance when adjusting the
algorithm parameters. However, if too many parameters to
optimize are available, the algorithm will try to perfectly
fit the complete training set, thus originating the overfitting
phenomenon. This concept is illustrated in the example shown
in Fig. 5, where it is assumed that a machine learning classifier
must output a decision boundary to separate objects belonging
to two different classes. It can be seen how a linear decision
boundary is not able to properly separate the samples in the
training set, thus causing underfitting. On the other hand,
having enough degrees of freedom, one can design a complex
boundary to perfectly separate the samples in the training set,
even those samples that happen to be surrounded by samples
of the other class. However, this leads to including in both
decision regions areas that are likely to contain samples from
the wrong class, thus causing overfitting. Instead, the curved,
but more regular, decision region in the middle better captures
the structure of the underlying distribution.

Underfitting Overfitting

Algorithm Capacity

Training Error

Test Error

Underfitting OverfittingSuitable Capacity

Figure 5. Three possible decision boundaries for a classification problem.
The left and right figures show the underfitting and overfitting scenarios. The
middle figure shows classifier with the proper capacity.

It is interesting to observe that choosing the decision bound-
ary in the middle illustration of Fig. 5 is in agreement with
the Occam’s razor principle, stating that among different and
equally motivated explanations of a phenomenon, one should
choose the simplest one. Of course one should also be careful
not to oversimplify the model, so as not to underfit.

As mentioned above, one of the fundamental features that
distinguishes machine learning theory from classical decision
theory is the fact that the distribution underlying the task
to perform is not known. This could lead to the belief that
machine learning algorithms are universal, in the sense that the
attainable performance depends only on how the parameters
of the algorithm are set and on the size of the training set,
but not on the properties of the underlying distribution, and,
thus, not on the task to perform. Unfortunately, this belief is
disproved by a fundamental result of machine learning, known
as the no free lunch theorem, which states that the test error
of any machine learning algorithm is the same when averaged
over all possible underlying distributions. This means that
there exists no machine learning algorithm that outperforms
any other algorithm at every possible task. Instead, different
algorithms will achieve different performance when tackling
different tasks, i.e. when the underlying distribution varies.

B. Hyperparameters and Validation Set

Besides the parameters that are to be optimized by the
training procedure, machine learning algorithms also have
hyperparameters, i.e. parameters that are not directly set during
the training phase, either because they are difficult to optimize,
or because they should not be learnt from the training set. The
latter case corresponds to the optimization of the parameters
that directly affect the capacity of the model. In fact, if
a parameter that affects the model capacity is tuned based
only on the training set, the result will be that it will be
chosen in order to minimize the training error as much as
possible. However, we have seen how this would lead to a
poor generalization error, due to overfitting.

To be more specific, anticipating some notions about ANNs
to be discussed in the next section, an ANN is composed
of several nodes whose input-output relationship is defined
by some weights and bias terms, which are the parameters
to be tuned during the training phase. On the other hand,
the total number of nodes in the network and the way in
which the nodes are interconnected are hyperparameters that
are considered fixed while the training algorithm is executed.
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Besides the difficulty to optimize these discrete parameters, a
critical problem is that the number of nodes in an ANN is
directly related to the capacity of the network, since more
nodes imply more degrees of freedom. Therefore, if we
optimized the number of nodes based only on the training set,
the optimum would be to use as many nodes as physically
possible, thus causing overfitting.

On the other hand, it is also not possible to use the test set
to tune the hyperparameters, because all choices pertaining
to the algorithm design must be independent of the data
set that is used to assess the performance of the algorithm.
Otherwise, the estimation of the generalization error will
be biased. This implies that we need a third data set for
hyperparameter tuning, the validation set. The validation set
is typically obtained by partitioning the training data into the
training set and the validation set. The training procedure
fixes some values of the hyperparameters and optimizes the
network parameters based only on the training set. Afterwards,
an estimate of the generalization error obtained with the
considered hyperparameter configuration is obtained through
the validation set. This procedure is repeated for different
hyperparameter configurations to identify the best model to
use. After both the parameters and hyperparameters have been
set, the true generalization error is computed by using the test
set. The main steps of the whole procedure are summarized
in Algorithm 1.

Algorithm 1 Hyperparameter and parameters tuning
while Error on validation set not satisfactory do

Choose a set of hyperparameters;
Given the chosen hyperparameters run

the learning procedure for parameter
optimization using the training set;

Evaluate the error on the validation
set;
end while

While Algorithm 1 provides one with a systematic proce-
dure for training a machine learning algorithm, it does not
address how to update the hyperparameter configuration in
each loop. In general, there is no simple, algorithmic way
to do this, and indeed hyperparameter tuning is more an art
than a science. In particular, manual hyperparameter tuning is
specific to the task to carry out and some guidelines will be
discussed for application to deep learning in Section III-C2.
Nevertheless, three systematic approaches for automated hy-
perparameter selection, which are general enough for many
machine learning techniques, can be identified as follows:

• If the complexity of running the training procedure for a
given hyperparameter configuration allows it, the hyper-
parameters can be learnt by means of a grid search.

• As a variation of the grid search, a random search has
been shown to provide good performance, while at the
same time significantly reducing the overall complexity
[101].

• A nested learning procedure can be used, in which a
second machine learning algorithm is wrapped around

the algorithm to be trained, with the task of learning the
best hyperparameters for the inner algorithm.

C. Beyond classical machine learning

So far, the general principles at the basis of machine learn-
ing have been introduced, and some well-established machine
learning algorithms have been mentioned. The rest of this
section elaborates on their inherent limitations, motivating why
a different approach is needed, especially when the complexity
of the task increases.

The main challenge of machine learning is to learn how
to generalize in response to previously unseen inputs. In
order to reduce the generalization error, one could train the
algorithm over a larger amount of data. In fact, increasing
the size of the training set is surely helpful, but there is a
limit in terms of computation and storage capacity, to the
amount of data that can be processed. Therefore, an essential
component of machine learning is the performance of the
different algorithms as a function of the size of the training set.
Deep learning will be formally introduced in the next section,
but Fig. 6 anticipates how deep learning is able to improve the
performance at a much faster rate than other machine learning
techniques, as the dimension of the training data increases.

Amount of Training Data

Performance

Deep Learning

Classical Learning

Figure 6. Performance of classical and deep learning algorithms as a function
of the training set size.

It has to be stressed that, instead, for small-to-medium
training set sizes, the relation among deep learning and other
machine learning techniques is not well-defined, and in many
cases it turns out that classical machine learning algorithms
can slightly outperform deep learning.

How can we explain the behavior in Fig. 6? The key
phenomenon to consider is the so-called curse of dimension-
ality, which refers to the fact that the number of distinct
configurations of a set increases exponentially with the number
of variables describing each element of the set. Recalling the
formal description of a learning algorithm as formulated in the
map in (3), we emphasize that the dimensionality here does
not directly refer to the size of the training set, but instead
to the number of features n describing each element x in
the set of possible inputs X . Nevertheless, it is clear that as
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n increases, we need more training samples to successfully
learn the structure of X , thus devising a map F that is able
to achieve a low generalization error. Conventional machine
learning algorithms cope with the curse of dimensionality by
using one of the following two approaches:

• Assuming prior beliefs about the structure that a good
function F should have, such as the smoothness prior, i.e.
assuming that the function F does not change drastically
when evaluated at two neighboring points x1 and x2.
However, in high-dimensional spaces even a very smooth
function can vary at a different scale along different
dimensions. Moreover, even assuming that all the deriva-
tives of the function are similar in the different directions,
the smoothness assumption is reasonable only when the
points x1 and x2 are sufficiently close to each other.
Depending on the magnitude of the derivatives this may
require an unfeasible amount of training data.

• Incorporating task-specific assumptions to perform man-
ual feature selection, i.e. deciding which components
of x are relevant to the specific problem at hand and
performing a customized processing of these features.
However, this process requires the analysis of a realistic
mathematical model for the problem at hand, which may
not be available. Moreover, the settings used for one task
are not general in the sense that they may not apply to
other problems.

Deep learning adopts quite a different approach. It assumes
that the data has been generated by a composition of factors
with a hierarchical order and develops a learning method
that is able to automatically understand the structure of the
underlying distribution, extracting directly from the data the
features that are important to devise a good map F . In other
words, deep learning assumes that some correlations exist
among the behavior of F over different regions of space,
as a result of the structure of the underlying distribution
of the data. This is clearly a more general assumption than
the smoothness prior, which constraints the local behavior
of F in the neighborhood of each point. This has been
shown to enable deep learning to generalize non-locally [102].
Moreover, deep learning is able to understand the structure
of the underlying distribution, without requiring task-specific
assumptions, thus enabling more general-purpose algorithms.
These improvements are possible thanks to the use of ANNs,
which constitute the tool used by deep learning to implement
the learning process.

III. DEEP LEARNING BY ARTIFICIAL NEURAL NETWORKS

As anticipated at the end of the previous section, ANNs are
the enablers of deep learning [37], [103], thanks to their ability
to learn, directly from the observed data, complex input-output
relationships and statistical structures. ANNs are organized
hierarchically in layers of elementary processing units, called
neurons. More in detail, an ANN is characterized by:

• An input layer, which forwards the input data to the rest
of the network.

• One or more hidden layers, which process the input data.

• An output layer which applies a final processing to the
data before outputting it.

• Weights and bias terms that model the strength of the
connections among the neurons.

If the network has only one hidden layer, it is referred to as
a shallow network, whereas if it has more than one hidden
layer, it is referred to as a deep network, hence the name
deep learning. As discussed in Section III-A, deep networks
are preferred, since they usually require a lower number of
neurons to achieve a given accuracy. It is probably the use
of deep architectures in which multiple neurons process the
information and propagate the result that has motivated the
analogy between ANNs and natural neural networks, i.e. the
human brain, which is also composed of a network of elemen-
tary processing units, the neurons, that elaborate information
and then propagate the results to other neurons.

A first broad classification of ANNs is based on how the
information flows from the input to the output. Specifically:
• Feed-forward Neural Networks (FNN) are neural net-

works in which each neuron is connected only to the
neurons in the following layer and thus the input data
can only propagate forward, from the input layer to the
output layer, without the possibility of any feedback loop.

• Recurrent Neural Networks (RNN) are neural networks
in which feedback loops are allowed, and the output of a
neuron can become the input of the same neuron, as well
as of other neurons in the same or in a previous layer.

Several neural networks architectures exist within each of the
two main categories introduced above. A notable example is
that of Convolutional Neural Networks (CNNs), described in
Section III-A1, which have been extensively used for image
processing and pattern recognition [104]. In this work, we
have decided to adopt the broad classification above, because
the differences with other neural networks architectures are
somewhat blurry, since different kinds of layers can co-exist in
the same neural network. Instead, a more specific classification
can be made by considering the types of layers composing the
ANN. The most common types of layers are the following:
• Fully-connected layer. It is the typical layer employed

in FFNs, which is characterized by the fact that each
neuron of the layer receives an input from all neurons
of the preceding layer, and is connected to all neurons
of the following layer. The input data is first linearly
processed, then passed through a non-linearity, and finally
propagated to the following layer.

• Convolutional layer. It is another kind of layer used in
FFNs, and more precisely in CNNs. Similarly to a fully-
connected layer, it filters the input by a linear operation,
namely a convolution, then applies a non-linearity, and
finally forwards the result. However, each neuron needs
not be connected to all neurons in the following layer.

• Pooling layer. It is a layer usually used in CNNs which
operates by dividing the input data into blocks, and then
selecting either the maximum element of each block, or
computing the average of the elements within each block.

• Recurrent layer It is the typical layer of RNNs. After
performing an affine combination of the input and passing
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Hidden layerInput layer Output layer

Figure 7. Scheme of a deep ANN with L hidden layers and N` neurons in
layer `, for all ` = 1, . . . , L.

it through a non-linearity, the output is not just propagated
forward, but a feedback loop is also present.

More details on the operation of the different kinds of layers
are provided in the rest of this section.

A. Feedforward Neural Networks

The focus of this section is on FFNs with fully-connected
layers, which is the quintessential ANN architecture. Instead,
convolutional layers will be discussed in Section III-A1.

The general structure of a FFN is depicted in Fig. 7. An N0-
dimensional input vector x0 is fed to the network through the
N0 neurons of the input layer. Afterwards, it passes through
L hidden layers, with Layer ` having N` neurons. Finally, the
(NL + 1)-dimensional output is retrieved from the NL + 1
neurons of the output layer. To elaborate, let us denote by
x`−1 the input to the `-th layer of the network. Then, for all
` = 1, . . . , L + 1 and n = 1, . . . , N`, the output x`(n) of
neuron n in layer ` is obtained as:

x`(n) = fn,`(zn,`) , zn,` = wT
n,`x`−1 + bn,` , (4)

wherein wn,` ∈ RN`−1 with wn,`(k) being the weight of the
link between the k-th neuron in layer `−1 and the n-th neuron
in layer `, bn,` ∈ R is the bias term of neuron n in layer `,
while fn,` is the so-called activation function of neuron n in
layer `. Thus, the processing performed by each neuron can
be viewed as a two-step procedure in which first an affine
combination of the inputs is computed with weights wn,` and
bias term bn,`, yielding the intermediate term zn,`. Then, the
final output is obtained by applying the activation function
fn,` to zn,`.

As for the choice of the activation functions, over the years
several functions have been considered. The first choice was
to use sigmoidal functions

σ(zn,`) =
1

1 + e−zn,`
, (5)

or hyperbolic tangent functions

tanh(zn,`) =
ezn,` − e−zn,`
ezn,` + e−zn,`

. (6)

The sigmoid function is able to produce feasible probability
values, being limited between zero and one, and for this
reason nowadays it is typically used as activation function

of the output layer for applications that require to estimate a
probability. However, its use for the hidden layers is no longer
recommended, due to the fact that it saturates for a significant
portion of its domain, thus having derivatives very close to
zero when the argument is large in modulus. This causes the
so-called vanishing gradient problem, which slows down the
convergence of gradient-based training algorithms. Another
way of looking at the problem is to say that sigmoid activation
functions are able to learn only when the input is around zero,
i.e. in their (approximately) linear region, where the output of
the sigmoid function is sensitive to variations of the input.
Instead, in other regions of its domain the sigmoid function
saturates and the output tends to be approximately constant
even in response to significant changes of the input, which
does not yield much useful learning information. Similar
considerations also apply to the hyperbolic tangent function,
which is linked to the sigmoid function by the relation:
tanh(zn,`) = 2σ(2zn,`)− 1.

Nowadays, the most widely-used choice for the activation
function of the hidden layers is the Rectified Linear Unit
(ReLU) function [105]–[107], defined as:

ReLU(zn,`) = max(0, zn,`) . (7)

ReLU functions are linear whenever the neuron is active,
which makes them easier to optimize. Whenever the neuron
produces a non-zero output, the gradient of the activation
function is constantly equal to one, and no second-order effects
are present. The drawback is that the ReLU function does
not provide any useful learning information when its input
is negative. To overcome this issue, some refinements of the
ReLU function have introduced a non-zero slope also for
negative inputs, considering the function:

fn,`(zn,`) = max(0, zn,`) + cmin(0, zn,`) . (8)

The Leaky ReLU function sets c = 0.01 as proposed in
[108]; the absolute value rectification approach proposed in
[105] considers c = −1, while the parametric ReLU approach
proposed in [109] treats c as a parameter to be optimized
during the training process.

Another generalization of the ReLU is the exponential linear
unit (ELU), which behaves like the ReLU for positive inputs,
but outputs

fn,`(zn,`) = α(ezn,` − 1) , (9)

when the input x is negative, with α a scalar typically set to
1, [110].

The properties of the ReLU function and its generalizations
seem to lead to the conclusion that the best activation functions
are linear functions. In fact, linear activation functions can be
used at the output layer to perform specific operations such
as computing arithmetic averages. However, their use in the
hidden layers is not encouraged, as they might prevent the
network from learning non-linear maps. For example, in the
extreme case in which all activation functions were linear,
the input-output relation of the FNN would reduce to being
always linear, when instead one of the strengths of ANNs
lies in their ability to combine multiple non-linearities to
emulate virtually any input-output map. This fact was formally
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established in [111], where it is stated that any deterministic
continuous function over a compact set can be approximated
arbitrarily well by a single fully-connected layer with enough
neurons and sigmoidal activation functions1. This fundamental
result is known as the universal approximation theorem of
ANNs and was later extended to a broader class of activation
functions, including the ReLU function and its generalizations
[112]. Nevertheless, despite its high theoretical importance the
universal approximation theorem is not constructive, because:
• it does not establish the number of neurons that are

required in order to obtain the desired level of approxi-
mation accuracy.

• it does not establish whether it is more convenient to use
a shallow or deep architecture in order to improve the
approximation accuracy or reduce the number of required
neurons.

• it does not establish how to configure the ANN in order
to obtain the desired approximation accuracy.

An answer to the first question was provided in [113], which
provides bounds for the number of neurons in shallow ANNs
in order to obtain a given approximation accuracy. Unfor-
tunately, the bounds show that, in general, an exponential
number of nodes is required.

As for the second issue, deep architectures seem to require
a lower number of neurons, even though a formal proof
of this result in a general setting is still an open problem.
Nevertheless, some available results prove that certain classes
of functions can be represented more efficiently by increasing
the network depth, i.e. the number of layers. In [114], for
example, it is shown that the number of regions of a piece-
wise linear function that can be reliably represented scales
exponentially with the number of layers L. Moreover, many
empirical results have shown that deep architectures provide
lower generalization errors than shallow architectures [20, Sec.
6.4.1].

Finally, the third issue is perhaps the most problematic.
Although the universal approximation theorem ensures that
there exists an FNN able to learn the desired map, it provides
no indication as to how to configure the weightswn,` ∈ RN`−1

and bias bn,` ∈ R of each neuron. This shows that configuring
the parameters of an ANN represents the most critical step
when employing deep learning. The training process of ANNs
will be addressed in Section III-C.

1) Convolutional neural networks: CNNs are FFNs that
have established themselves as the main tool for image pro-
cessing, and, in general, for processing data with a spatial
structure. The main ingredient of CNNs is the 3D-convolution
operation, which amounts to a particular linear processing of
the input data. For this reason, CNNs can be considered as a
sub-category of FFNs.

When using a CNN, the input data is assumed to be
organized in a multi-dimensional matrix X with dimensions
N × N × Nc, where the parameter Nc is called the number
of channels and is typically equal either to Nc = 3 when
color images are processed, or to Nc = 1 when black-and-

1The result is proved assuming squashing activation functions, which
include sigmoid functions as special cases.
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Figure 8. 3D-convolution in convolutional neural networks. The input data is
arranged in an N×N×Nc matrix, which is filtered by a sliding F×F×Nc

matrix, yielding a N − F + 1×N − F + 1 output matrix.

white images are processed. Each node of a convolutional layer
is also represented as a multi-dimensional matrix W with
dimensions F ×F ×Nc (with F ≤ N ) containing the weights
of the neuron. The 3D-convolution operation outputs a bi-
dimensional matrix Y , with dimensions N−F+1×N−F+1,
obtained by sliding the weight matrix over the input matrix,
and by computing each time the cross-correlation between
the weight matrix and the corresponding chunk of the input
matrix, as depicted in Fig. 8. Mathematically, the (`−m)-th
element of the output matrix Y is expressed as:

Y `,m =

F∑
i=1

F∑
j=1

Nc∑
k=1

W i,j,kXi+`,j+m,k , (10)

It can be seen that, as already mentioned, each element
of the output matrix is obtained through a cross-correlation
rather than a convolution, even though the term convolution is
universally used in the ANN jargon to refer to the operation
in (10). In the following, we embrace this terminology. After
computing (10) for all ` and m, the output of the node is
obtained by first summing a scalar bias term b and then ap-
plying an activation function to each component of Y , like in
a traditional fully-connected layer. Finally, the bi-dimensional
output of each node in the layer are stacked together to form a
new matrix with dimensions N−F+1×N−F+1×NF , with
NF the number of nodes in the convolutional layer, which is
the input of the next layer of the CNN.

It is interesting to observe that (10) can be rewritten as a
scalar product similar to a fully-connected layer, upon vector-
izing the input and weight matrices. For example, denoting
by x and w the N2Nc × 1 and F 2Nc × 1 vectors obtained
by vectorizing X and W , the output element Y 1,1 can be
obtained as

Y 1,1 = xT w̃ , (11)

wherein w̃ = [w 0(N2−F 2)Nc ]. All other elements of Y can
be obtained in a similarly way, upon considering suitably zero-
padded version of w. As a result, each node of a convolutional
layer is equivalent to (N − F + 1)2 nodes of a fully-
connected layer, in which the weights of many connections
are permanently set to zero. This sparsity of the connections
is one of the major strengths of CNNs, since it enables to
process very large data using a relatively small number of
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parameters, which helps avoid overfitting. On the other hand,
the underlying assumption that justifies the use of CNNs is
the presence of strong spatial correlations in the input. Only
if this is fulfilled, as is in image processing, it is possible to
apply the same filter to different parts of the input matrix, thus
avoiding unnecessary connections among the neurons.

The operation defined in (10) is the normal convolution
employed in CNNs. In some cases, it can be slightly modified
by applying padding and stride.
• Padding. When computing (10), the components at the

border of the input matrix X are used less frequently
than the components in the middle. In order to avoid this,
it is possible to apply (10) to a zero-padded version of
X , in which P rows and columns of zeros are appended
to X . Then, the resulting zero-padded input matrix has
dimensions N+2P ×N+2P , and the output matrix has
dimensions (N + 2P − F + 1)× (N + 2P − F + 1). If
F is odd, choosing

P = (F − 1)/2 , (12)

yields an output with the same dimensions as the input.
• Stride. The convolution operation in (10) slides the

weight matrix W over the input matrix moving by one
position at each step. This can be generalized by sliding
the weight matrix by S positions at each step, where S
is called the stride parameter. In this case, assuming a
padding P is used as well, the output matrix will have
dimensions:⌊

N + 2P − F
S

+ 1

⌋
×
⌊
N + 2P − F

S
+ 1

⌋
. (13)

While the convolution operation is the defining feature of
CNNs, another widely used operation in a CNN is the Pooling.
Unlike the convolution, which is individually performed by
each neuron of a layer before the different bi-dimensional
matrices are combined together, the pooling is performed at
the layer level and operates separately on each channel of the
input matrix X . Two types of pooling are commonly used:
• Max Pooling. For each channel of the input matrix
X , say Xnc = X(:, :, nc), a max pooling layer with
parameter F selects the maximum element out of each
F × F sub-matrix of Xnc .

• Average Pooling. For each channel of the input matrix
X , say Xnc = X(:, :, nc), an average pooling layer with
parameter F computes the arithmetic average of each F×
F sub-matrix of Xnc .

In both cases, a stride S can also be used, which implies that
the sliding window over which the maximum or average are
computed moves by S positions each time. An example of
pooling with S = 1 is shown in Fig. 9.

As a final remark before concluding this section, it is worth
mentioning that practical FFNs are composed of a mixture of
convolutional, pooling, and fully-connected layers, normally
performing convolutions and pooling in the first layers, thus
decreasing the size of the data, and employing fully-connected
layers at the end once the dimension of the data is more
manageable.

Y1,1

Y2,1

Y1,2

Figure 9. Pooling with S = 1 of a single channel of a 4× 4×Nc input by
a 2× 2 filter. From each 2× 2 sub-matrix of the input, either the maximum
element or the average are computed.

B. Recurrent neural networks
If CNNs are more suited to processing data exhibiting

spatial correlations, RNNs are designed to work on temporal
sequences of data with correlated samples. As already an-
ticipated, the main difference compared to FFNs is that the
information does not only propagate forward, but loops are
allowed. More in detail, each layer of a RNN may receive as
input its own activation value. To elaborate, using a similar
notation as in Section III-A, the output x

[t]
` (n) of neuron n in

layer ` at time t is obtained as:

a
[t]
` (n) = fn,`(w

T
n,`x

[t]
`−1 + w̃T

n,`a
[t−1]
` + bn,`) (14)

x
[t]
n,` = gn,`(w̄

T
n,`a

[t]
` + b̄n,`) , (15)

wherein fn,` and gn,` are neuron-dependent activation func-
tions. Thus, each neuron in a recurrent layer combines with
different weights not only the current input, but also the
intermediate vector a` that is obtained in the previous step.
This introduces a correlation among the different computations
that is beneficial to exploit the temporal correlations hidden
in the input sequence. Moreover, a recurrent layer has two
activation functions, f and g. Popular choices here are to use
the hyperbolic tangent or the ReLU for f and the sigmoid
function for g.

The architecture described above is the general architecture
of recurrent layers. Several variants exist that are commonly
used in real-world RNNs. In addition, we stress that, typically,
a deep RNN has just a few recurrent layers, and it is possible
to have hybrid architectures composed of some initial recurrent
layers, followed by feed-forward layers. More details on spe-
cific RNNs architectures can be found in specialized references
on ANNs, like [20].

C. Training Neural Networks
For ease of notation, and without loss of generality, this

section focuses on FFNs with fully connected layers. Results
directly apply to CNNs and can be extended to RNNs with
minor modifications. Training a neural network is the process
that tunes the parameter wn,` ∈ RN`−1 and bn,` ∈ R in a
supervised learning fashion in order for the FNN to learn
the desired input-output relation. To elaborate, let us consider
a training set composed of NTR input samples with the
corresponding desired output, namely

STR =
{(

x
(1)
0 ,x

(1)
L+1

)
, . . . ,

(
x
(NTR)
0 ,x

(NTR)
L+1

)}
. (16)
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For each layer ` = 1, . . . , L+1, let us stack the weight vectors
into the N`−1×N` matrixW ` and the bias terms into the N`×
1 vector b`, respectively defined as W ` = [w1,`, . . . ,wN`,`]

and b` = [b1,`, . . . , bN`,`]
T . The actual output of the FNN

when the input is the nt-th training sample x
(nt)
0 depends on

the network weights and bias terms, and is denoted as:

x̂
(nt)
L+1

(
{W `, b`}L`=1

)
, ∀ nt = 1, . . . , NTR . (17)

The goal of the training algorithm is to optimize the ANN
weights and bias terms in order to minimize the loss incurred
between the actual output x̂

(nt)
L+1 in (17), and the desired

output x
(nt)
L+1 defined by the training set in (16), for all

nt = 1, . . . , NTR, as quantified by the loss function

L
(
{W `, b`}L`=1

)
=

1

NTR

NTR∑
nt=1

L
(
x
(nt)
L+1, x̂

(nt)
L+1

(
{W `, b`}L`=1

))
,

(18)
wherein L(x

(nt)
L+1, x̂

(nt)
L+1) is a loss function that models the error

between x̂
(nt)
L+1 and the desired output x

(nt)
L+1. A natural and

common choice for the loss function is the MSE, namely:

L(x, x̂) = MSE(x, x̂) =

N`+1∑
i=1

(x(i)− x̂(i))2 . (19)

The MSE has the advantage of being applicable to virtu-
ally any scenario, and enables a simple computation of its
derivatives. However, in some cases it can slow down the
learning algorithm. Instead, faster convergence of the learning
algorithm is typically observed by using the cross-entropy loss
function, defined as

L(x, x̂)=H(x, x̂)=−
N`+1∑
i=1

x(i)log(x̂(i))+(1−x(i))log(1−x̂(i)).

(20)
However, the applicability of (20) is not so wide as that of the
MSE function. Indeed, clearly (20) applies only to those cases
in which both the desired and actual output data belong to the
interval [0, 1], and thus can be interpreted as distributions of
random variables. A notable case in which this holds true is
when sigmoid activation functions are used in the output layer,
aiming at estimating a probability distribution. Assuming that
both x and x̂ have entries in [0, 1], the cross entropy in (20)
represents a measure of the divergence between x and x̂, since
the cross entropy of two distributions p and q is equal to the
Kullbach-Leibler divergence between p and q plus the entropy
of p [115]. Applying this result, (20) can be rewritten as

H(x, x̂)=−
N`+1∑
i=1

x(i)log(x̂(i))+(1−x(i))log(1−x̂(i))

= −
N`+1∑
i=1

x(i) log

(
x̂(i)

x(i)

)
+(1−x(i)) log

(
1−x̂(i)

1−x(i)

)

= −
N`+1∑
i=1

x(i) log(x(i)) + (1− x(i)) log(1− x(i))

=

N`+1∑
i=1

KL(x(i), x̂(i)) +Hb(x(i)) , (21)

with KL(·, ·) and Hb(·) denoting the Kullbach-Leibler di-
vergence and binary entropy, respectively. Then, since Hb(x)
does not depend on the network parameters, minimizing the
cross-entropy in (20) is equivalent to minimizing the Kullbach-
Leibler divergence between the desired and actual outputs.

In any case, regardless of the loss function that is chosen,
the training process mathematically amounts to solving the
optimization problem2

min
1

NTR

NTR∑
nt=1

L
(
x
(nt)
L+1, x̂

(nt)
L+1 (W , b)

)
(22a)

s.t. W ` ∈ RN`−1×N` , ∀ ` = 1, . . . , L+ 1 (22b)

b` ∈ RN`×1 , ∀ ` = 1, . . . , L+ 1 , (22c)

wherein W = {W `}L`=1, b = {b`}L`=1. However, as men-
tioned in previous sections, the goal of deep learning is not so
much to minimize the cost function in (22), i.e. the training
error, but rather to ensure a low generalization gap. Tuning
the parameters of the network to achieve a low training error
is a prerequisite to achieving a low test error, but an equally
important task is that of tuning the network hyperparameters,
(e.g. the number of layers L, the number of neurons per layer
N`, the size of the training set NTR), to fit the training data,
avoiding both underfitting and overfitting. The coming Section
III-C1 discusses the design of suitable algorithms to tackle (22)
in an efficient and effective way, while Section III-C2 provides
some guidelines for hyperparameter tuning in FNNs.

1) Parameter tuning - Tackling (22): Traditionally, in
optimization theory, convexity is the critical property that
marks the watershed between problems that can be solved
with affordable complexity, and problems that require an
unfeasible complexity. A convex problem, defined as a prob-
lem whose objective and constraint functions are convex in
the optimization variables [116]–[118], enjoys several useful
properties, among which the following two have played a
critical role in enabling the development of a consolidated
theory of convex optimization, and practical algorithms with
theoretical optimality guarantees:
• [P.1]: Every stationary point of a convex function is

a global minimum, i.e. the minimization of a convex
function can be performed by simply looking for a
point where the gradient of the function vanishes. This
property establishes that first-order optimality conditions
are necessary and sufficient for convex functions.

• [P.2]: For any ε > 0, the complexity required to find an
ε-optimal solution of a generic convex problem with n
variables scales, in the worst case, as the fourth power
of n and as log

(
1
ε

)
[118, Section 5]. This property

establishes that convex problems can be solved with
polynomial complexity in the number of variables.

Unfortunately, neither of the two properties above holds for
Problem (22) because the objective function is not convex with
respect to the optimization variables, due to the presence of
multiple layers combining several non-linear activation func-
tions. This implies that the cost function of Problem (22) might

2In case of RRNs, an additional sum over the time dimension is present to
account for the loss over time of each training sample.
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have stationary points that are either local minima, or local
maxima, or saddle points, a circumstance that becomes more
and more likely as the dimensionality of the problem increases.
In fact, it is quite typical for fairly deep model to have a
very large number of points where the gradient vanishes,
but that are not global minima. Moreover, the complexity
required in order to find the global solution of Problem (22)
is not guaranteed to be polynomial, since it scales in general
exponentially with the number of variables, which is equal to∑L+1
`=1 N`(N`−1+1). As a result, finding the global solution of

Problem (22) turns out to be a very challenging task, especially
considering that realistic ANNs have a fairly large number of
neurons and layers.

Based on these considerations, it might seem hopeless to
perform an effective and efficient training of any reasonably-
sized FNNs. Fortunately, this is not the case and several effi-
cient algorithms to effectively train FNNs exist. To understand
why the non-convexity of (22) does not pose a fundamental
problem, one must recall that, although the training process
amounts to solving an optimization problem, machine learning
differs from pure optimization theory, in that the ultimate goal
is not so much to minimize the training error, but rather to
minimize the generalization error. As discussed in Section
III, the training error lower bounds the generalization error,
but there is no guarantee that a lower training error also
results in a lower generalization error. Actually, aiming for a
very low training error typically causes overfitting. Therefore,
when tackling Problem (22), it is surely desirable to find a
configuration of parameters that yields a low training error, so
as to avoid underfitting, but it is also not necessary to pursue
the global minimization of the training error, which would
most likely lead to overfitting. Any training algorithm will
aim at progressively reducing the training error, stopping as
soon as the generalization error evaluated over the validation
set is below a desired threshold, regardless of the value of the
training error. It is not uncommon that a training algorithm
stops when the training error is relatively large compared to
its global minimum.

As a result, the presence of stationary points of the cost
function of Problem (22) would be a major issue only if
the training algorithm were likely to converge to a subop-
timal point yielding a too high training error, thus causing
underfitting. A definitive formal proof that this does not occur
in practice is still an open research problem, but extensive
experimental evidence has shown that, for ANNs with a
sufficient amount of neurons, most local minima lead to a
satisfactory training error [119]–[122]. In addition, especially
in higher-dimensional spaces, local minima and local maxima
of random functions are much less frequent compared to
saddle points [120]. This phenomenon has been proved for
some specific shallow ANNs [123], while some theoretical
arguments as well as experimental evidence that a similar
behavior holds also in deep ANNs is provided in [119], [120],
[122]. Therefore, the main issue related to the non-convexity of
Problem (22) is not mainly related to local minima, but rather
to the presence of saddle-points. In this respect, empirical
evidence provided in [121] shows that first-order methods
based on gradient descent are able to escape saddle points.

This behavior can be theoretically justified by observing that
gradient-based methods are not explicitly designed to find
point with zero gradient. Rather, they are designed to reduce
the cost function moving in the direction of maximum decrease
which is pointed by the gradient. Of course, this implies that
the algorithm stops if a point with rigorously zero gradient is
reached, but it makes the algorithm capable of moving away
from the neighborhood of a saddle point even for relatively
small step-sizes. On the other hand, second-order methods like
Newton’s method do not share this property, having a higher
probability of being stuck around saddle points. A training
algorithm based on an approximate Newton’s method with
a regularization strategy is the Levenberg-Marquardt method
[124], [125], which yields good performance as long as the
negative eigenvalues of the Hessian of the cost function are
relatively close to zero. Instead, a recent modification of
Newton’s method, designed to be more robust to the saddle-
point problem in FNNs, has been introduced in [120]. Despite
enjoying stronger convergence properties in the convex case,
at present the use of second-order methods to tackle the non-
convex Problem (22) is not so well-established as the use of
first-order methods based on gradient descent algorithms. For
this reason, the rest of this section is focused on presenting
the main first-order training methods for FNNs.

Backpropagation algorithm. The first problem that we
encounter towards the implementation of a gradient-based
training algorithm for FNNs is the complexity related to
the computation of the gradient. In large ANNs with many
neurons and large training sets, the direct computation of the
derivatives of the training error in (22a) with respect to all net-
work weights and bias terms would require an unmanageable
complexity. Luckily, a fast algorithm to compute the gradient
of the training error was developed in [126]. It makes a clever
use of the chain rule from multivariable calculus, and was
called backpropagation algorithm, for reasons that will become
clear after describing its working operation.

To begin with, let us observe that the derivative of (22a)
is written as the average of the derivatives of the loss func-
tion L(xL+1, x̂L+1(W , b)) over the training set. In fact, the
backpropagation algorithm provides a way of computing the
derivatives of L(xL+1, x̂L+1(W , b)). Specifically, given a
training input sample x0, the first step of the backpropaga-
tion algorithm is to compute the corresponding actual output
x̂L+1(W , b). This step is referred to as forward propagation
because it propagates the input forward through the network,
by computing (4) for all n and `.

After completing the forward propagation, the derivative of
the cost function with respect to zn,L+1 can be computed as

∂L
∂zn,L+1

=
∂L

∂xL+1(n)
f
′

n,L+1(zn,L+1) , ∀ n = 1, . . . , NL+1

(23)
The next step consists of computing the derivatives of the loss
function with respect to zn,`, for all ` = L,L − 1, . . . , 1,
in a recursive way. This is the step that gives the name to
the algorithm, since the derivatives are computed backwards,



19

proceeding from the last to the first layer. Specifically, it holds3

∂L
∂zn,`

=

N`+1∑
k=1

∂L
∂zk,`+1

∂zk,`+1

∂zn,`

=

N`+1∑
k=1

∂L
∂zk,`+1

wk,`+1(n)f
′
(zn,`) , (24)

which can be easily computed based on the derivatives with
respect to zk,`+1, k = 1, . . . , N`+1 obtained from Layer `+1.
Finally, based on (24) and recalling (4), the derivatives with
respect to the weights and bias terms are readily obtained as:

∂L
∂wn,`(k)

=
∂L
∂zn,`

x`−1(k) , (25)

∂L
∂bn,`

=
∂L
∂zn,`

. (26)

Thus, the backpropagation procedure can be stated as in
Algorithm 2.

Algorithm 2 Backpropagation Algorithm.
for nt = 1→ NTR do

Training input x
(nt)
0 with desired

output x
(nt)
L+1;

Forward Propagation: Compute the actual
output x̂

(nt)
L+1 by (4) for all ` = 1, . . . , L+ 1;

Backward Propagation: Compute ∂L
∂zn,`

by (23)
and (24) for all ` = L+ 1, . . . , 1;

Compute (25) and (26) for every weight
wn,`(k) and bias term bn,`;
end for
∇W L(W , b) = 1

NTR

∑NTR
nt=1∇W L(x

(nt)
L+1, x̂

(nt)
L+1(W , b));

∇bL(W , b) = 1
NTR

∑NTR
nt=1∇bL(x

(nt)
L+1, x̂

(nt)
L+1(W , b));

Its strength lies in exploiting the recursive structure of
the derivatives to compute, which enables to obtain them by
simply computing a forward pass through the network, plus
the corresponding backward pass, that has a similar complexity
as the forward pass. In contrast to the backpropagation algo-
rithm, the direct computation of the derivatives requires the
evaluation of the loss function for each derivative to compute,
thus having to perform a number of forward passes equal to
the number of weights and bias in the ANN, which, for large
networks, leads to an unfeasible computational complexity.

Stochastic Gradient Descent. While the backpropagation
algorithm is computationally more convenient compared to the
direct computation of the derivative, its complexity scales with
the size of the training set. In order to implement Algorithm 2,
one must forward-propagate and backward-propagate all NTR
samples of the training set. This poses a complexity issue since
typically large training sets are used by ANNs. In more general

3Recall that the derivative with respect to x of the function g(y(x)),
with y(x) = [y1(x), . . . , yI(x)], is given by

∑I
i=1(∇yg)T Jxy, where

Jx denotes the Jacobian operator with respect to x.

terms, any algorithm that tried to compute the true gradient
of the loss function of Problem (22), i.e.

∇L(W , b) =
1

NTR

NTR∑
nt=1

∇L
(
x
(nt)
L+1, x̂

(nt)
L+1 (W , b)

)
, (27)

would have a complexity proportional to NTR. To address this
issue, state-of-the-art training algorithms for FNNs employ a
variant of the gradient descent algorithm known as Stochastic
Gradient Descent (SGD) [127]. While the standard (or de-
terministic) implementation of the gradient descent requires
computing (27), the stochastic variant of the gradient descent
algorithm computes an estimate of (27) based on a randomly-
selected subset of the entire training set, called mini-batch.
More precisely, denoting by SSGD the set of indexes associ-
ated to the selected mini-batch, and by NS the cardinality of
SSGD, an estimate of the gradient is given by:

∇̂L (W , b) =
1

NS

∑
nt∈SSGD

∇L
(
x
(nt)
L+1, x̂

(nt)
L+1 (W , b)

)
. (28)

Each time a gradient descent step is taken, the estimated
gradient in (28) is evaluated based on a new, randomly selected
set SSGD, and is used in place of the true gradient. The overall
procedure is provided in Algorithm 3.

Algorithm 3 Stochastic Gradient Descent for FNNs training.
Set ε > 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (28) by Algorithm 2;
W = W − α∇̂L(W , b);
b = b− α∇̂L(W , b);

end while

In Algorithm 3, α is usually referred to as the learning
rate in the machine learning context, and it controls how fast
the algorithm reduces the cost function, and thus learns. The
learning rate is a key parameter of the SGD algorithm and
must be carefully selected. While traditional gradient descent
algorithms can use a fixed α and converge as long as α is not
too large, the SGD uses a variable αk to be used in iteration
k, due to the inherent deviation of (28) from the true gradient.
More formally, a sufficient condition for the convergence of
Algorithm 3 is:

∞∑
k=1

αk =∞ ,

∞∑
k=1

α2
k <∞ (29)

A common approach is to update αk for the first t iterations
according to the formulas:

αk =

(
1− k

t

)
α0 +

k

t
αt , for k ≤ t , (30)

while keeping α constant after the t-th iteration. Typically,
αt should be roughly one hundredth of α0, but in practice the
parameters t, αt, and α0 are typically chosen by trial and error
methods that monitor the error obtained over the validation set
for different configurations of parameters.
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Remark 1: The computational complexity of SGD depends
on the size NS of the mini-batches. If NS = NTR the
algorithm reduces to standard gradient descent, also called
deterministic or batch gradient descent. Instead, if NS = 1, the
algorithm is referred to as online gradient descent. Typically,
SGD uses 1 < NS < NTR and the choice is also dictated
by the particular hardware where the algorithm runs, since
too low values of NS may underutilize modern multi-core
architectures. Also, some architectures, e.g. GPUs are more
efficient when NS = 2n, with n an integer number.

Remark 2: Since the SGD operates based only on an esti-
mate of the true gradient, it typically requires more iterations
than its deterministic counterpart to converge. However, each
iteration is computationally much faster and the total number
of computations required to reach convergence is much lower
compared with the deterministic gradient descent method.
In particular, SGD has a complexity per update that does
not scale with the total size of the training set NTR, since
it might converge also without having to pass through the
entire training set. On the other hand, typically several passes
through the training set, called epochs, are required to achieve
satisfactory training results.

Momentum for Stochastic Gradient Descent. A drawback
of SGD is that learning can be sometimes slow due to the
fact that only an estimate of the gradient is computed in each
iteration. The method of momentum is a general strategy in
optimization theory [128], that can be used to accelerate the
learning process. The basic idea of the momentum algorithm
is to perform the gradient update by an exponentially decaying
moving average, as stated in Algorithm 4.

Algorithm 4 Stochastic Gradient Descent with Momentum for
FNNs training.
Set ε > 0, v � 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (28) by Algorithm 2;
v = δv − α∇̂L(W , b);
W = W + v;
b = b+ v;

end while

Algorithm 4 introduces the new parameter v, which is called
velocity, in analogy with the fact that it controls the velocity
with which the updates move through the parameter space.
Due to the presence of the velocity term and to the exponential
average of multiple gradient points, the magnitude of the
step depends on the magnitude of the sequence of gradients,
and also on how aligned these gradients are. This tends to
smooth out the oscillations of the standard SGD algorithm.
The velocity v represents the cumulative effect of the past
gradients, while the term δ weighs the relative importance of
the current gradient with respect to the cumulated gradient.
The larger δ ∈ [0, 1) is with respect to α, the more the
past gradients affect the direction of the update. If all the
gradients of the sequence were equal to ∇̂L̄, the updates would
accelerate in the direction of the common negative gradient

until reaching a limit velocity

v∞ =
ε‖∇̂L̄‖
1− δ . (31)

Thus, the parameter δ determines the relative speed of the
updates compared to the SGD method without momentum.
Common values of δ are 0.5, 0.9, and 0.99, and it is also
desirable to adapt δ as well as α iteration after iteration,
similarly to what is done for the basic SGD method.

Nesterov Momentum for Stochastic Gradient Descent.
A variant of the momentum for SGD appeared in [129].
Following the approach of Nesterov’s gradient method [130],
the idea is to compute an estimate of the gradient taking into
account the velocity term, as shown in Algorithm 5.

Algorithm 5 Stochastic Gradient Descent with Nesterov’s
Momentum for FNNs training.
Set ε > 0, v � 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (28) evaluated at W + δv and b+

δv by Algorithm 2;
v = δv − α∇̂L(W + δv, b+ δv);
W = W + v;
b = b+ v;

end while

Nesterov’s momentum enjoys several convenient properties
when applied to convex functions, such as a quadratic conver-
gence rate. However, these advantages are not guaranteed to
hold in non-convex scenarios, which is the usual case when
training FNNs.

AdaGrad algorithm. The AdaGrad algorithm belongs to
the class of gradient-descent algorithms that adapt the learning
rate based on the cumulated gradient evaluated over multiple
mini-batches. Specifically, the AdaGrad scales the learning
rate by a factor that is inversely proportional to the sum of
the gradients of all used mini-batches [131]. The effect of this
strategy is that the parameters with larger partial derivatives
of the loss function decrease more rapidly than the parameters
with smaller partial derivatives. The AdaGrad algorithm is
reported in Algorithm 6, with the parameter δ being a small
number (typically of the order of 10−7), which is introduced
to avoid a division by zero when updating the parameters.

Algorithm 6 AdaGrad algorithm for FNNs training.
Set ε > 0, β > 0, r = 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (28) by Algorithm 2;
r = r + ∇̂L(W , b)� ∇̂L(W , b);
W = W − α

β+
√
r ∇̂L(W + δW , b+ δb);

b = b− α
β+
√
r ∇̂L(W + δW , b+ δb);

end while

RMSProp algorithm. AdaGrad algorithm enjoys several
pleasant properties in the convex case. However, when dealing
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with non-convex problems, it has been empirically observed
that summing over all squared gradients used in the training
process can cause a premature and excessive decrease of the
learning rate. As a consequence, the learning rate might have
become already too small when the algorithm finally finds
a region around a (local) minimum of the loss function.
The RMSProp algorithm aims at improving this drawback
of AdaGrad, by introducing a moving weighted average of
the gradients to reduce the relevance of gradients observed
many iterations before. The formal procedure is reported in
Algorithm 7 and can be readily modified to include the use of
Nesterov’s momentum to accelerate convergence.

Algorithm 7 RMSProp Algorithm for FNNs training.
Set ε > 0, β > 0, ρ ∈ (0, 1), r = 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (28) by Algorithm 2;
r = ρr + (1− ρ)∇̂L(W , b)� ∇̂L(W , b);
W = W − α

β+
√
r ∇̂L(W + δW , b+ δb);

b = b− α
β+
√
r ∇̂L(W + δW , b+ δb);

end while

Adam algorithm. The Adam algorithm was introduced
in [132], and is based on the application of momentum to
the RMSProp method. However, the momentum technique is
used with a different flavor from the conventional momentum
approach. Specifically, the Adam algorithm employs both the
first and second moment of the gradient estimated in each
mini-batch. Moreover, Adam applies a correction term to
both first and second moments, scaling them by a factor
approaching one as the algorithm progresses. The procedure
is formally stated in Algorithm 8.

Algorithm 8 Adam Algorithm for FNNs training.
Set ε > 0, β > 0, ρ1, ρ2 ∈ (0, 1), s = 0, r = 0, t = 0,
W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (28) by Algorithm 2;
t = t+ 1;
s = ρ1s+ (1− ρ1)∇̂L(W , b);
r = ρ2r + (1− ρ2)∇̂L(W , b)� ∇̂L(W , b);
ŝ = s

1−ρt1
;

r̂ = r
1−ρt2

;

W = W − αŝ
β+
√
r̂
∇̂L(W + δW , b+ δb);

b = b− αŝ
β+
√
r̂
∇̂L(W + δW , b+ δb);

end while

As far as Adam algorithm is concerned, the suggested
value for β is 10−8, whereas the two weighting parameters
ρ1 and ρ2 are suggested to be initialized to 0.9 and 0.999.
Although Adam is usually quite robust to the choice of the
hyperparameters, sometimes the default values need to be
adjusted to obtain good convergence properties.

Parameters initialization. A critical issue of any train-
ing algorithm is the initialization of the parameters, and in
particular of the weights4 W . Given the non-convexity of
the problem, the training algorithm will converge to some
suboptimal point, and thus a suitable initialization point can
make the difference between converging to an efficient or inef-
ficient suboptimal point. Unfortunately, the design of efficient
initialization strategies for ANNs is a little understood topic.
Consolidated approaches from pure optimization theory should
be applied with caution, since they focus on obtaining a low
loss function, i.e. a low training error, but there is no guarantee
that this will also result in a low generalization error.

At present, two general rules are widely used for the
initialization of the ANN parameters:
• Two hidden nodes connected to the same input and with

the same activation function should have different initial
parameters. This is needed to avoid any redundancy, since
otherwise any deterministic algorithm would update the
parameters of these two nodes in the same way.

• All matrices W ` should be initialized to full-rank matri-
ces, since otherwise some patterns might be lost in the
parameters null-space.

These two guidelines motivate a random initialization of the
parameters. Accordingly, initialization values are typically
chosen as independent random variables, following either the
Gaussian or uniform distribution, but a critical issue is how
to choose the parameters of these distributions. These choices
affect the initial scale of the parameters, which can have a
significant impact on the generalization error. Larger initial
weights are able to suppress redundancy more effectively,
but might cause vanishing gradients due to the saturation
of sigmoidal activation functions, as well as other numerical
problems. In [133] it is proposed to initialize the weights of
Layer ` with values drawn from a uniform distribution in
[− −6

N`+N`−1
, −6
N`+N`−1

]. Instead, [119] recommends initializing
the weights to random orthogonal matrices, that are scaled by a
specific gain factor depending on the particular non-linearity
used in each layer. In [134], it is shown that, by properly
choosing the gain factor, the orthogonality assumption of the
weight matrices can be relaxed. In [135], a sparse initialization
strategy is proposed in which each unit is initialized to have
a pre-defined number of non-zero weights. In contrast to
these methods, we show, in Section IV, that the weights
and biases can be initialized by using prior knowledge about
the system, which can be obtained from (even inaccurate)
analytical models.

Regularization. When training an FNN it should always
be kept in mind that the ultimate goal is to minimize the test
error, rather than the training error. To this end, an essential
technique is to perturb the training process so as to reduce the
capacity of the ANN, thus avoiding overfitting. Any strategy
aimed at reducing the test error at the expense of the training
error is a regularization strategy. Empirical results have shown
that applying regularization strategies to ANNs with high
capacity is a more effective strategy compared with directly

4The initialization of the bias terms b has been found to have a more limited
impact on the final performance.
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tuning the number of neurons and layers. Over the years,
several regularization methods have been proposed, and the
most widely used ones are discussed in the following.

a) Lp regularization. A major regularization approach is to
add a perturbation term proportional to the p-th power of the
Lp norm of the weights, namely modifying (22) into

Lr(W , b) = L(W , b) + φ‖W ‖pp , (32)

wherein φ ∈ [0,∞) is a hyperparameter that weighs the
relative contribution of the norm penalty term relative to
the standard cost function. It should be stressed that the
regularization term depends only on the weights and not also
on the bias terms. This is because the weights have a more
significant impact on the test error, as they directly link the
input and output of a node, whereas the bias terms only
directly affect the output. Thus, regularizing the weights is
expected to be more important than regularizing the bias terms,
which would only add to the complexity of the training process
without bringing much improvement. This intuition has been
experimentally confirmed in many research works over the
years and motivates the current practice in neural networks to
perform only weights regularization.

Among the different norms that can be considered in
(32), the most widely used is the L2 norm. This type of
regularization is also called weight decay because it can be
seen to reduce the magnitude of the weights, especially for
larger φ. This results in limiting the impact of many network
connections on the final output, thereby reducing the network
capacity. Moreover, reducing the magnitude of the weights
causes sigmoidal or hyperbolic tangent activation functions to
operate in their linear regions, thus retaining the advantages
of a linear model.

Another widely used regularization norm is the L1 norm.
In comparison to L2 regularization, L1 regularization tends
to produce a more sparse weight matrix W , in which many
connections in every layer are effectively turned off. Besides
reducing the network capacity, this also reduces the memory
required to store the model.

b) Early stopping. Perhaps the simplest form of regulariza-
tion is represented by the early stopping technique. All training
algorithms are designed to minimize the training error in (22)
iteration after iteration. However, recalling also Fig. 4, the
validation error initially decreases together with the training
error, but at some point tends to increase again. Thus, the
idea of early stopping is to stop the training phase when the
validation error reaches its minimum value. In practice, the
network parameters are saved after each gradient update and
when the validation error has not improved for a pre-specified
number of iterations, the training algorithm stops and the
parameters corresponding to the lowest observed validation
error are returned. It is observed in [136] and [137] that
limiting the number of training iterations t reduces the volume
of parameter space reachable from the initial parameters,
thereby reducing the capacity of the ANN and acting as a
regularizer.

c) Dropout. The idea of dropout is to introduce a perturba-
tion by randomly changing the topology of the neural network
every time a new data sample is used [138]. Specifically, for

each data sample, each neuron in the ANN has a probability
p of being included in the network and if it is not included
the corresponding weights are not updated in that particular
iteration of the algorithm. Dropout is an effective regularizer
due to two main reasons:
• By randomly removing a subset of connections each time,

dropout is actively weakening the coupling among neigh-
boring neurons. This reduces the possibility of performing
too complex operations, which could cause overfitting.

• Each time a subset of neurons is randomly disconnected,
a different reduced network is being trained. As a result,
using dropout effectively trains a large number of differ-
ent, random ANNs, and then averages the results, which
tends to reduce the net effect of overfitting.

Batch Normalization. One issue when working with
gradient-based methods, is the different scale that the features
in the input vector, as well as the activation values of each
layer, might have. In the presence of vectors with components
that have very different magnitude with one another, numerical
problems can arise and gradient descent can be slow. In order
to avoid this issue, [139] has proposed to normalize the input
data and/or the activation values of each layer in the network.

Formally speaking, let us consider the training data points
x
(1)
0 , . . . ,x

(NTR)
0 . Then, batch normalization modifies the op-

eration performed by the input layer, which will not simply
forward the input vector, but will apply the transformation:

x̃
(nt)
0 =

x
(nt)
0 − µ0

Ψ + σ0
, ∀ nt = 1, . . . , NTR , (33)

wherein the division is meant component-wise, Ψ is a vector
with positive components of the order of 10−8, whose purpose
is to avoid dividing by zero, while µ0 and σ0 are mean and
standard deviation vectors defined as

µ0 =
1

NTR

NTR∑
nt=1

x
(nt)
0 (34)

σ0 =

√√√√ 1

NTR

NTR∑
nt=1

(x
(nt)
0 − µ0)� (x

(nt)
0 − µ0) , (35)

where the square root operation is meant component-wise.
Denoting by z(nt)` the N`-dimensional vector of activation

values of layer ` when x
(nt)
0 is the input of the network, a

similar normalization technique can be applied to the vectors
{z(1)` , . . . ,z

(NS)
` } in each mini-batch, thus changing the ar-

guments of the activation functions of the `-th layer to be:

z̃` =
z
(nt)
` − µ`
Ψ + σ`

, ∀ nt = 1, . . . , NS , (36)

with µ` and σ` having similar definitions as in (34) and (35).
In addition, when applied to a hidden layer, it is common to
further modify the input to the activation functions in (36) as:

z̃` = γ` � z̃` + β` , ∀ nt = 1, . . . , NS , (37)

with γ` and β` being N`-dimensional parameters to be learnt
during the training phase. The operation in (37) is aimed
at preserving the representational power of the ANN, which
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would be significantly diminished by constraining each layer
to have zero-mean and unit-variance activation inputs. This
approach might seem counterintuitive, since it seems to defeat
the purpose of applying the normalization step in (36) in the
first place. The advantage of using (37) lies in the fact that γ`
and β` are parameters to be learnt based on the normalized
values in z̃`, which are more conveniently handled by gradi-
ent descent algorithms. Moreover, while batch normalization
increases the number of parameters to optimize during the
training phase, applying (37) makes the bias terms in each
node useless. In other words, when using batch normalization,
it should be set b` = 0 for any normalized layer, since the
role of b` is played by β`. As a consequence, the only new
parameters to be trained are the vectors γ` for the layers where
normalization is applied.

It is also important to mention that batch normalization has
a regularization effect, too, due to at least two main reasons:
• Since µ` and σ` are computed on each mini-batch,

they will be slightly different for each mini-batch. This
introduces a slight perturbation that has a regularizing
effect on the overall ANN, similarly to the dropout
technique.

• The fact that batch normalization reduces the variability
of the input data to each layer weakens the coupling
among different layers, which results in a similar effect
as the dropout technique.

So far, batch normalization has been described as a tech-
nique to aid the training process. However, since it modifies
the structure and operation of the ANN, it also affects the
network use at test time. In other words, if an ANN is
trained using batch normalization, at test time (37) needs to be
computed in each layer, by employing the trained parameters
γ and β. However, the issue of this approach is that at test
time the dataset at our disposal may not be sufficiently large
to compute reliable estimates of mean an variance for each
activation input. This problem is typically solved by computing
an exponentially-weighted average that accounts for the means
and variances computed during the training phase on each
mini-batch, in addition to the new data sample at test time.

2) Hyperparameter tuning - Fitting the data: So far, many
techniques have been presented to tune the parameters of an
FNN in order to achieve a low generalization error. However,
the performance of all algorithms that have been presented
depends on several hyperparameters, which are not directly
tuned during the training phase. Examples of hyper-parameters
are the number of layers and neurons per layer, the size of the
training set and of each mini-batch, the learning rate, the reg-
ularization coefficient, etc. Moreover, other choices that have
a significant impact on the overall performance are related to
the training algorithm that is used, to the initialization point
that is adopted, to the regularization strategy to use, whether
or not to use batch normalization, etc.

As discussed in Section II-B, hyperparameter tuning can
be performed either manually or in an automated way. The
three automated methods introduced in Section II-B, i.e.
grid-search, random search, hyperparameter optimization, are
general enough for application not just to deep learning, but
to machine learning in general. However, grid search and
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Figure 10. Scheme for manual hyperparameter setting in ANNs.

hyperparameter optimization are rarely used in the context of
deep learning. The former is deemed practical only when three
or fewer hyperparameters need to be tuned. In this case, a log-
arithmic search scale is used to span a wider range of values.
The latter is problematic due to the lack of an expression of
the loss function with respect to some hyperparameters, as
well as because any hyperparameter optimization algorithm in
turn has its own hyperparameters to set, even though they are
typically less problematic to tune. Instead, random search is
considered to be a more feasible solution, and has been shown
to reduce the validation error to acceptable values much faster
than grid search [101].

Along with these automated methods, manual hyperpa-
rameter setting represents an effective way to achieve the
desired performance at an affordable complexity. Nevertheless,
compared to automated approaches, the manual tuning of the
hyperparameters requires a higher degree of experience, and is
typically carried out by monitoring both training and validation
error during the training phase, thereby determining whether
the network is underfitting or overfitting, and modifying the
hyperparameters to adjust the network capacity accordingly.
To this end, in general a trial and error procedure is required,
since it is very challenging to know in advance the optimal
configuration of hyperparameters for the specific problem at
hand. Nonetheless, some general guidelines can be identified,
recalling that the capacity of an ANN depends on three main
factors: 1) the ability of the network to represent the problem
at hand; 2) the ability of the learning algorithm to successfully
minimize the loss function during the training phase; 3) the
degree to which the training procedure regularizes the model,
thus avoiding overfitting.

As shown in Fig. 10, when configuring an ANN, the first
issue to take care of is to make sure that the network does
not underfit. If the performance on the training set is not
good enough, it means that the ANN can not fit the available
training data and thus it is usually useless to gather more data.
In this case, a good approach is to improve the optimization
algorithm and the most important hyperparameter to this end is
the learning rate. Unfortunately, each task has its own optimal
learning rate, and trial and error is the de facto approach to
find a learning rate that yields a low enough training error for
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the task at hand.
Apart from the learning rate, other strategies to increase the

network capacity are to tune the other hyperparameters of the
algorithm in use or to consider more sophisticated optimization
algorithms. Widely-used choices are SGD with momentum,
RMSProp, or Adam, possibly coupled with Nesterov’s mo-
mentum. Moreover, batch normalization can be included if the
training error does not decrease as desired. If these strategies
are not effective, the problem could be in the size of each
mini-batch, which might be too small to provide a reliable
estimate of the gradient. Finally, another conceptually simple
way to increase the network capacity is to use more neurons
and layers. This is a powerful approach to avoid underfitting,
but comes at the expense of a larger complexity and its
applicability depends on the available computational resources.
If none of these strategies work, the problem might just be in
the quality of the training data, which might be too noisy
and/or might not include the most appropriate features to
represent the problem at hand. In this case, it may be needed
to collect different data and to use a different training set.

Once a low enough training error is obtained, the validation
error needs to be checked. If it is unsatisfactory, then it is likely
that overfitting is the issue. In this case, the most effective
strategy is to just gather more data. However, gathering more
data can be costly and requires higher storage and processing
capabilities. A simpler way of reducing the network capacity
is to employ a regularization technique. It is advisable to use
early stopping as the first approach, while other regulariz-
ing techniques could be included during the training phase.
Finally, a third approach consists of manually reducing the
model size, limiting the number of neurons and layers. If these
approaches do not work even after a careful tuning of their
hyperparameters, then gathering more data remains the only
possible approach to avoid overfitting.

Finally, it is worth emphasizing once again that the valida-
tion error is an estimate of the test error and the discussion
above assumes that such an estimate is reliable. If the test
error is high but the validation error is low, then the most
effective approach is to increase the size of the validation set.
However, if increasing the size of the validation set does not
help, then either the validation procedure is not appropriate, or
the problem might lie in a more fundamental issue. Typically,
the loss function used for training and validation might not
be appropriate for the task at hand, or the ANN model is not
properly designed to learn the target objective, or there is a
mismatch between validation data and real testing conditions.

D. Deep Reinforcement Learning

This section presents the framework of deep reinforcement
learning, which merges deep learning with reinforcement
learning [95], [96]. The framework of reinforcement learn-
ing is not directly related to deep learning, but rather it is
a different machine learning approach that implements the
learning procedure in an adaptive way, namely by interacting
with the environment by taking actions and receiving feedback
on the result of the actions that have been taken. Nevertheless,
recently it has been observed that deep learning can be used

to improve and facilitate the implementation of reinforcement
learning techniques, which has motivated the cross-fertilization
between these two machine learning frameworks, leading to
the development of the framework of deep reinforcement
learning. The first part of this section provides a short intro-
duction to reinforcement learning, whose purpose is to define
basic terminology and provide a brief mathematical descrip-
tion of the typical scenarios where reinforcement learning is
employed. For a dedicated and comprehensive treatment of the
reinforcement learning framework, we refer the reader to [94].

Reinforcement learning applies to scenarios that can be
mathematically described by a Markov Decision Process
(MDP). An MDP is defined by the following quantities:
• S, the set of possible states.
• A, the set of possible actions that an agent can take.
• P , the set of transition probabilities, with P (st, st+1, at)

the probability of moving from state st to state st+1 by
taking action at.

• R, the set of rewards, with R(st, at) = E [Rt+1|st, at],
and Rt+1 the reward obtained at step t+ 1.

• γ ∈ [0, 1], a discount factor adjusting the weight of more
recent actions.

Based on this notation, it is possible to define the long-term
reward as

Gt =

+∞∑
k=0

γkRt+k+1 , (38)

and a (stationary) policy as the probability of taking action a
at time t, when being in state s, namely:

π(s, a) = P (At = a|St = s) , (39)

where the word stationary refers to the fact that the probability
of taking action a when in state s does not depend on time.

A key concept when analyzing an MDP is that of action-
value function, measuring the value, in terms of expected
reward, of being in state s and taking action a, following policy
π, namely:

Qπ(s, a) = Eπ [Gt|St = s,At = a] (40)

The action-value function can be also rewritten as the sum of
the reward at step t+ 1, plus the long-term reward from t+ 1
to ∞, namely:

Qπ(s, a) = (41)

Eπ

[
Rt+1 +

+∞∑
k=1

γkRt+k+1|St = s,At = a

]
=

Eπ

[
Rt+1 + γ

+∞∑
k=0

Rt+k+2|St = s,At = a

]
. (42)

Reinforcement learning provides several approaches to de-
termine the optimal sequence of actions to be taken in order
to maximize the long-term reward. These approaches can be
broadly classified in three main categories, namely,
• Value-based approaches, which aim at estimating the

action-value function.
• Policy-based approaches, which aim at estimating the

policy function.
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• Actor-critic approaches, which exploit an estimate of
both the action-value and the policy function.

Thus, regardless of the particular technique that is chosen,
reinforcement learning requires full knowledge about the
environment in order to estimate the action-value or the
policy functions, which is not realistic in several applications.
Moreover, in some cases, the complexity of the estimation
rapidly increases with the cardinality of the action-state space,
which makes reinforcement problems unfeasible by standard
methods when the number of possible states and actions grow
too large.

In this context, thanks to their universal function approxi-
mation ability, ANNs provide an efficient way to estimate the
action-value and/or the policy functions, thereby enabling the
practical solution of complex reinforcement learning problems
in the realistic scenario in which the statistics and parameters
of the environment are not fully known.

1) Deep Q-Network. Estimating the action-value function:
The goal of the Q-learning method is to compute the optimal
action-value function, defined as

Q∗(s, a) = max
π

Qπ(s, a) . (43)

Solving (43) for each pair (s, a) provides a full character-
ization of the MDP problem, and allows determining the
best policy to follow for each possible state and action. To
this end, several methods are available, depending on the
information available on the MDP. An optimality condition for
Problem (43) is the so-called Bellman’s optimality equation,
which however requires full knowledge of the MDP model
and parameters to be solved.

However, in practical scenarios, assuming complete knowl-
edge of the MDP model is often unrealistic. Typically, only
the response from the environment is observable, but no
information is available as to the statistics regulating the MDP
process, such as the transition probabilities, which makes
it impossible to compute the value of the Q function for
any pair (s, a). In these cases, a possible approach is to
obtain the values of the Q function from experience, i.e. by
initiating the process from each possible (s, a) pair, and then
following different policies, observing the rewards returned by
the environment at each step. However, this approach has the
clear drawback of requiring a high computational complexity,
especially when the number of possible (s, a) pairs is large. A
similar drawback is suffered by all other alternative methods
aimed at building a table collecting the possible values Q(s, a),
for all possible s ∈ S and a ∈ A.

In scenarios with a very large (possibly even infinite)
number of (s, a) pairs, the state-of-the-art approach is that
of Q-learning. As the name implies, this approach is based on
learning the values of the Q function. More specifically, Q-
learning algorithms assume a functional form for the function
Q(s, a), namely:

Q(s, a) ≈ Q̂(s, a,w) , (44)

with Q̂ a known function, and w a set of parameters to
be determined by any machine learning method, with the
goal of improving the accuracy of the approximation. More

specifically, Q-learning methods assume that some points
of the Q function, say {Q(si, ai)}NTi=1, have been already
determined, for example by trying some actions and observing
the response of the environment. Then, the parameters in the
vector w are determined so as to minimize the mean squared
error between the samples {Q(si, ai)}NTi=1 and the model (44).

Traditional Q-learning approaches typically employ a linear
model for Q̂, but more recently it has been proposed to adopt
an ANN with weights w, that takes as input a pair (s, a)
and outputs the corresponding value Q(s, a). The parameters
w are trained by using the samples {Q(si, ai)}NTi=1 as the
training set. This implementation of Q-learning is referred to
as the Deep Q-Network approach [95], [96], which can be
considered an algorithm belonging to the family of Q-learning
methods, with the peculiarity that the approximate function
Q̂(s, a,w) is specified through an ANN. Thus, compared with
other Q-learning methods, deep reinforcement learning has the
significant advantage of not specifying a-priori the functional
form of Q̂, leaving to the ANN the task of determining
the best functional form to use. Since ANNs are universal
function approximators, they will be able to approximate the
true function Q(s, a) within any desired tolerance, provided a
proper training phase is performed.

2) Deep Policy Iteration. Estimating the policy function:
While the deep Q-network method aims at learning the action-
value function, policy iteration methods aim at determining
directly the policy function π(a, s). To this end, the policy
function is parametrized as

π(s, a) = π̂(s, a,θ) , (45)

with θ a vector of parameters to be learnt. Standard policy
iteration methods assume a fixed functional form π̂(·), and
design θ in order to maximize the average reward function,
defined as

J(θ) =
∑
s∈S

dπ̂θ
(s)
∑
a∈A

π̂(s, a,θ)R(s, a) , (46)

wherein dπ̂θ
denotes the stationary distribution of π̂(s, a,θ).

The maximization of J(θ) with respect to θ is carried out by
means of the gradient ascent method, wherein an expression of
the gradient of (46) is provided by the policy gradient theorem,
which proves that:

∇θJ(θ) =
∑
s∈S

dπ̂θ
(s)
∑
a∈A

Qπ̂(s, a)π̂(s, a)∇θ log(π̂(s, a)) .

(47)
In order to implement the gradient ascent algorithm, a standard
approach is the so-called Monte-Carlo policy gradient, also
known as the REINFORCE method [140], which employs
stochastic gradient ascent wherein the instantaneous return
observed from the environment provides an unbiased sample
of the unknown function Qπ̂(s, a).

Similarly to the Deep Q-Network case, instead of assuming
a fixed functional form for π(s, a), an ANN can be trained
to output an estimate of the values π(s, a). Specifically, it
is possible to use an ANN that takes as input a state s,
outputs π(s, a) for any action a ∈ A, and is trained by
samples collected according to the target policy. In other
words, the training set is built adaptively: given an input state,
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a realization of the output distribution π(s, a) is sampled and
used as training label. Next, the sampled action is performed
and the reward obtained from the environment is used to weigh
the training loss function in order to refine the training. Also,
the action that is taken brings the agent into a new state and
the whole procedure is iterated.

3) Deep Actor-Critic. Estimating the action-value and pol-
icy functions: Instead of employing the instantaneous returns
as an estimate for the action-value function Qπ̂(s, a), deep
actor-critic approaches improve purely policy-based methods
by merging them with a Deep Q-Network that provides an
estimate of Qπ̂(s, a). Thus, in order to maximize (47), actor-
critic approaches assume both the models in (44) and (45),
using a first ANN, called the critic ANN, to estimate the value
Qπ̂(s, a,w), and a second ANN, called the actor ANN, to
estimate the policies π̂(s, a,θ).

Actor-critic methods typically perform better than purely
policy-based methods and during the last years several im-
provements have been proposed. A notable example is the
use of a so-called advantage function to reduce the estimation
variance by subtracting it from the value function [141].
Namely, the method exploits the fact that:

∇θJ(θ) =
∑
s∈S

dπ̂θ
(s)
∑
a∈A

Qπ̂(s, a)π̂(s, a)∇θ log(π̂(s, a))

=
∑
s∈S

dπ̂θ
(s)
∑
a∈A

[Qπ̂(s, a)−B(s)]π̂(s, a)∇θ log(π̂(s, a)) ,

(48)

since∑
a∈A

π̂(s, a)∇θ log(π̂(s, a)) = ∇
(∑
a∈A

π̂(s, a)

)
= 0 , (49)

wherein Aπ̂(s, a) = Qπ̂(s, a)−B(s) is the advantage function.
Other improvements of the actor-critic approach have been

proposed in [142], [143], and [144]. In [142] the so-called
asynchronous advantage actor-critic (A3C) approach is in-
troduced, in which multiple actors and critics are deployed.
The critics learn the action-value function while the actors are
trained in parallel, being synchronized with each other with
global parameters from time to time. A deterministic version
of the A3C method, called synchronous advantage actor-critic
(A2C) is also proposed, in which all critics are synchronized
with the global parameters at the same time, hence the name
“synchronous”. In [143], a deterministic version of the deep
actor critic approach, the deep deterministic policy gradient
(DDPG) is presented, in which the policy is no longer modeled
as a distribution over actions, but rather as a deterministic
function a = π(s). The authors of [143] merge deep learning
with the DPG approach, first introduced in [145]. Finally,
in [144] the DDPG approach is extended to multi-agent
environments, i.e. to scenarios in which multiple decision-
makers coordinate among themselves to complete tasks based
only on local information.

E. Deep unfolding

As discussed, one of the issues of ANNs is to determine the
number of neurons and layers to use. However, in some cases

(x,�(0)) �(1) �(2) �(K) y

Figure 11. K + 1 iterations of an iterative algorithm are unfolded onto the
K hidden layers and onto the output layer of an ANN. The output of each
layer is equal to the output produced by one iteration of the algorithm, and
the output of the last layer is equal to the output of the last iteration of the
algorithm.

it is possible to match the iterations of iterative algorithms to
the layers of an ANN by a technique called deep unfolding
[146]. This provides a systematic approach to determine the
hyperparameters of an ANN that implement a given number
of iterations of a recursive algorithm.

To elaborate, the idea of deep unfolding applies to all
algorithms that take as input a vector x = [x1, . . . , xN ] and
produce as output a vector y = [y1, . . . , yM ] expressed by

yi = gi(x,φ,θ) , ∀ i = 1, . . . ,M , (50)

wherein θ is a vector containing all the parameters of the
algorithm, while φ = [φ1, . . . , φN ] is iteratively updated
according to the formula

φ
(k)
i = fi(x,φ

(k−1),θ) , (51)

with k the iteration index and φ(0) the initial value. This
formalism applies to detection tasks [147], as well as to the
computation of posterior probabilities by the belief propaga-
tion method, or to inference techniques aimed at estimating a
distribution by minimizing its divergence from an approximate
distribution [146].

The main idea of deep unfolding lies in the observation
that (50) can be regarded as the input-output relationship of an
ANN, with (51) being the input-output relationship of Layer k,
and θ representing the parameters of the ANN, i.e. all weights
and bias of each layer. Then, the iterative algorithm can be
unfolded by mapping each iteration onto one layer of the ANN,
which takes as inputs x and φ0, compute φ(k) at the output
of the k-th hidden layer, and finally produce y as output, as
displayed in Fig. 11.

Two main points are to be highlighted:
• In deep unfolding, in contrast to typical ANNs, the

number of nodes and layers is determined by the particu-
lar algorithm that is unfolded. Specifically, the number
of layers is fixed by the number of iterations of the
algorithm, while the number of nodes in each layer is
fixed by the sizes of the vectors x, φ, and y.

• The advantage of unfolding an algorithm onto an ANN
rather than implementing it directly, lies in the fact that
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the parameters θ of the algorithm are determined by an
ANN, instead of being set by more conventional meth-
ods. Moreover, once the parameters are determined, the
ANN can be directly used as an alternative and efficient
implementation of the iterative algorithm to compute y
based on the chosen parameters θ.

In the context of jointly exploiting model-based and AI-
based methods, deep unfolding, in combination with deep
transfer learning described in the next section, offers the
possibility of initializing a model-based ANN by unfolding
the model onto the layers of the ANN, and then refining it
by using empirical data. This approach has the advantage of
not requiring the tuning of the number of layers and neurons,
as they are obtained by directly unfolding the model on the
ANN architecture.

F. Deep Transfer learning

Deep transfer learning is another recent framework that
combines deep learning with another machine learning frame-
work, namely transfer learning. In the broadest sense, transfer
learning studies how to transfer the knowledge that is used in
a given context to execute a given task, into a different, but
related context, to execute another task. Formally speaking,
four fundamental components can be identified in a transfer
learning problem:

• A source task, TS , i.e. the original task for whose
execution the knowledge to be transferred was developed.

• A source domain, DS , i.e. the context in which the task
TS was executed.

• A target task, TT , i.e. the new task to be executed thanks
to the knowledge transfer.

• A target domain, DT , i.e. the new context in which the
task TT must be executed.

Clearly, such a problem formulation is very general, and
need not be related to any deep learning problem. However,
transfer learning can be successfully used to facilitate the
implementation of deep learning algorithms, especially by
reducing the amount of data to be acquired for training and
validation purposes. Indeed, the availability of large quantities
of data is a prerequisite for deep learning to outperform other
machine learning methods, but in the context of wireless
communication networks the acquisition of large amount of
data can be too expensive and/or not practical. In these
cases, transfer learning can be used by transferring knowledge
from other related scenarios in which data acquisition has
been already performed. For example, datasets for similar
communication systems can be used, and/or datasets generated
according to (possibly inaccurate) mathematical models can
be used. Concrete examples about the latter approach are
analyzed in the next section.

Despite being a relatively recent approach, many techniques
for deep transfer learning have already appeared in the lit-
erature and it is difficult to provide a general taxonomy.
Here, following the taxonomy by the recent tutorial [148], we
categorize transfer learning techniques into four main classes.

1) Instance-based transfer learning: This approach as-
sumes to have data from both the source domain DS and target
domain DT . Then, the idea is to exploit both datasets to carry
out the target task TT , by assigning a different weight to each
instance of the source and target data. Otherwise stated, data
from the source domain is used to augment the data from the
target domain, but it must be weighted differently to ensure
that instances that are specific to the source domain are given
less or no importance during the training process. After this
re-weighting step, the augmented data set is used as training
set for the target task by any traditional training algorithm,
with the re-weighting factors acting as hyperparameters to be
adjusted during the validation process.

In principle, this method does not require having labeled
data, in the sense that, once the new dataset has been built, it
can be used in conjunction with any machine learning method.
However, as far as training a neural network is concerned,
it is required that the training set be labelled in order to
implement available training algorithms. Recently, instance-
based transfer learning has proved effective when employed in
conjunction with the AdaBoost training algorithm, addressing
both classification and regression problems [149], [150].

2) Mapping-based transfer learning: Mapping-based
transfer learning redefines the training cost function in order
to account for the presence of data from both the source and
target domains. Specifically, the cost function used during the
training phase is defined as:

L(W , b) = LS(W , b) + λLT (W , b) +R2(W , b) , (52)

wherein LS is the cost function for the source task, taking
as input training samples from the source domain, LT is
the cost function for the target task, taking as input training
samples from the target domain, λ is a non-negative term
weighting the relative importance of the two cost functions,
and R is a regularization function that accounts for the
differences between source and target domains. More in detail,
the regularizer R is typically chosen as the maximum mean
discrepancy function between the source and target domains,
with respect to a generic representation φ(·), namely [151]

MMD =

∥∥∥∥∥ 1

|XS |
∑
x∈XS

φ(x)− 1

|XT |
∑
x∈XT

φ(x)

∥∥∥∥∥ , (53)

wherein XS and XT denote the source and target available
datasets. Thus, this approach requires having labelled data
from both the source and target domains. Based on (52), any
standard training algorithm can be executed, exploiting all
available labeled data.

Recent studies on mapping-based transfer learning have
focused on analyzing the performance when other regularizers
are used. In [152] it is proposed to use a multiple kernel variant
of the MMD (MK-MMD), while in [153] it is proposed to use
the joint maximum mean discrepancy as regularizer. Finally,
we mention [154], where Wasserstein’s distance is used as
regularizer and is shown to achieve better performance than
the MDD in some cases.

3) Network-based transfer learning: Network-based deep
transfer learning implements the transfer of knowledge by first
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training an ANN to execute the source task TS in the source
domain DS , and then reusing and/or refining the obtained
network configuration to execute the target task TT in the
target domain DT . This general concept can be applied in
several different ways. For example, it is possible to identify
a part of the ANN that extracts general features that describe
both the source and target tasks. Then, after training the
ANN in the source domain, the part of the ANN that applies
to both source and target tasks need not be trained again.
This approach is taken in [155], where a language processing
application is considered, and it is proposed to divide the
ANN in two parts. The former extracts language-independent
features, which can be reused for all languages, while the
latter is language-specific and needs to be trained for each
new language.

Nevertheless, a more common approach is to perform a two-
step training. At first, the ANN is trained to execute the source
task, yielding a tentative configuration of the network param-
eters. Next, a second training phase is performed in the target
domain, which uses the configuration of the weights and bias
from the first phase as the initialization point for the training
algorithm. This approach is very useful in all situations in
which a lot of training data is available in the source domain,
whereas only a few labeled training samples are available
(or are difficult/expensive to obtain) in the target domain. As
described in Section IV, this is the typical scenario in wireless
communications, and indeed Section IV will present several
case-studies wherein this particular transfer learning method
proves extremely useful. Techniques inspired to network-based
transfer learning have been recently proposed for resource
allocation in wireless communications in [156], [157].

4) Adversarial-based transfer learning: The main idea
of adversarial transfer learning is to identify the common
features between source and target tasks through the use of
an another deep neural network, called generative adversarial
network (GAN) [158]. The first step of the approach is to
divide the ANN that implements the source task into two
segments, one that extracts the salient features of the source
domain, and one that exploits these features to carry out the
source task. Then, the output of the first segment of the ANN
is also fed to another ANN, the GAN, which has the task
of discriminating whether the input comes from the source
domain or from the target domain. The two ANNs are trained
together as if they were a single ANN, even though they have
competing goals: the adversarial ANN aims at minimizing the
error in the discrimination between target and source inputs,
while the main ANN aims at minimizing the error on the
source task, while at the same time aiming at maximizing
the error that the adversarial ANN makes in discriminating
between data coming from the source or target domain. If
the adversarial ANN is not able to distinguish between source
and target domains, then the first segment of the main ANN
has determined a representation of the source domain that is
virtually indistinguishable from the target domain, and thus
the main ANN can be used to execute both the source and
target tasks. The contrasting goals during the training process

are modeled by defining the overall training cost function as:

L(W , b,V , c) = Lm(W , b)− λLa(W , b,V , c) , (54)

wherein Lm is the error on the source task, La is the error
in discriminating between source and target inputs, λ is a
factor weighting the relative importance of these two errors,
W and b are the weights and bias terms of the main network,
while V and c are the weights and bias of the adversarial
ANN, and the overall cost function needs to be minimized
with respect to W , b, and maximized with respect to V , c.
By minimizing (54) with respect to W , b, the primary ANN
minimizes Lm while at the same time maximizing La. Instead,
by maximizing (54) with respect to V and c the adversarial
network is minimizing La. As a result, unlike typical training
procedures that aim at minimizing the training cost function,
the goal here is to determine a saddle point of (54), which
can be accomplished by several saddle-point algorithms based
again on stochastic gradient descent techniques, as in regular
training procedures [159], [160]. It is to be stressed that, in
order to find a saddle point of (54), it is not required to
know the desired output for each training sample. Indeed,
each training sample must simply carry a label discriminating
whether the sample comes from the source or target domain,
but the desired output is required only if the sample comes
from the source domain. This means that adversarial training
can be used for ANN training even when the available target
data is not labeled.

IV. APPLICATIONS TO WIRELESS COMMUNICATIONS

After presenting the main concepts and tools of the deep
learning framework, this section describes practical appli-
cations to the design of wireless communication systems.
First, a literature survey is performed, reviewing available
contributions about the application of deep learning to wireless
communication systems, and then several novel applications
are presented.

A. State-of-the Art Review

The application of deep learning to the design of the
physical layer of wireless communication networks has started
attracting research attention only very recently, mostly in the
last couple of years. For this reason, fewer contributions have
appeared than in other areas of wireless communications.
Nevertheless, two main research directions can be identified:
• deep learning to operate the physical layer, simplifying

the execution of tasks such as data detection, decoding,
channel estimation, localization, etc.

• deep learning to manage the physical layer, simplifying
radio resource allocation tasks.

1) Operation of the physical layer: The first area of appli-
cation of deep learning at the physical layer of wireless net-
works has been the use of ANN to simplify the implementation
of detection and/or estimation operations such as information
decoding, channel estimation, localization, etc. [161]–[187].

In [161], the authors use deep FFNs to emulate the transmit-
ter and the receiver of point-to-point communication systems,
while assuming the communication channel is known. The
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end-to-end system is modeled as a deep ANN composed of
the cascade of an ANN implementing the data transmission
process, one layer implementing the known channel (whose
parameters are fixed and not trainable), and another ANN im-
plementing the reception process. The overall network receives
as input the information signal and provides as output the
corresponding symbol estimate. This architecture is referred
to as an auto-encoder, since the goal of the network is to
reproduce the input data at the output. It is shown that,
without having any information about the implementation
of the transmitter/receiver chains, the auto-encoder is able
to outperform traditional approaches that design the system
based on (approximate) mathematical models of the trans-
mitter/receiver chains. The work in [161] paved the way for
many subsequent studies that exploited ANNs at the physical
layer of wireless devices. In [162] it is proposed to use an
auto-encoder to jointly minimize the system bit error rate
and peak to average power ratio, and again an improvement
over traditional methods is obtained. Deep learning is used for
data detection in MIMO systems in [163], [164], in decode-
and-forward relay channels [165], and for equalization and
synchronization in OFDM systems in [166].

In all of these works, perfect knowledge about the commu-
nication channel is assumed. Several subsequent works have
tried to relax this assumption. In [167] a two-stage approach
is taken. At first, a synthetic channel model is used to provide
a first training of the ANN. Next, this initial training is refined
at the receiver based on the true channel characteristics. GANs
are used in [168]–[170], by exploiting a surrogate channel for
training purposes. A combination of supervised training and
reinforcement learning is used in [171] to remove the need
of channel knowledge. In [172], the auto-encoder approach
is further extended to the case in which no channel state
information is available by exploiting a stochastic perturbation
approach. A similar scenario is considered in [173], where the
auto-encoder approach is used for data detection without any
channel knowledge, considering molecular communications as
a main application scenario. The use of fully connected ANNs
for molecular communications is also investigated in [174].

In [175] it is shown that a deep neural network can reliably
learn the MMSE channel estimator, while in [176] convo-
lutional neural networks are successfully used to implement
a fingerprinting-based scheme for user localization. Channel
estimation through neural networks is successfully demon-
strated in [177] and also in [178], where an FDD massive
MIMO system is considered, and the channels are assumed
to be representable by a finite-size dictionary. Experiments
showing the performance of deep learning methods for users
localization in outdoor environments are provided in [179],
showing that even simple ANNs architectures can achieve sat-
isfactory performance. In [180] it is shown that deep learning
can be successfully used to implement error correction tasks,
while [181] shows that machine learning is able to provide
reliable channel estimation from compressed measurements.
Channel estimation in rapidly time-varying environments is
discussed in [182], and it is shown that deep architectures are
able to cope with this more challenging setup, while [183]
proposes a deep learning approach for joint equalization and

decoding in wireless networks. Surveys on the use of ANNs
to implement encoding/decoding operation as well as channel
estimation tasks with limited side information have appeared
in [184], [185]. An information-theoretic study of the mutual
information between input and output of a shallow neural
network is provided in [186]. Channel estimation and signal
detection are also performed through deep learning in [187],
showing that similar performance as traditional methods can
be achieved, but with a much lower computational complexity.

2) Management of the physical layer: A second emerg-
ing application area is the use of deep learning to perform
radio resource allocation at the physical layer, with minimum
complexity and/or side-information requirements [156], [188]–
[198].

The works [188] and [189] put forward the idea of us-
ing ANNs for network resource management, providing an
overview of potential applications of AI for network re-
source management in future 5G wireless networks, and
discussing supervised, unsupervised, and reinforcement learn-
ing. In [192], a fully connected FNN is used for sum-rate
maximization in interference-limited networks, by learning the
input-output map of each iteration of the iterative weighted
MMSE power control algorithm [199]. The proposed approach
is able to mimic the performance of the weighted MMSE
resource allocation algorithm, while at the same time signifi-
cantly reducing the computational complexity. In [156], [200],
the problem of energy efficiency maximization in wireless
interference networks by a fully connected FNN is tackled.
Unlike [192], in [156], [200] the FNN is directly trained
based on the optimal energy-efficient power allocation, which
can be computed offline using the novel global optimization
procedure also proposed in [200]. The results indicate that
the optimal performance can be approached with limited
online complexity, thus enabling an online implementation.
A similar approach is proposed in [194], [195] for power
control and user-cell association in massive MIMO multi-
cell systems. Instead, a different approach is taken in [197],
where a fully connected ANN is trained to solve the sum-
rate maximization problem subject to maximum power and
minimum rate constraints. In order to reduce the complexity
of building the training set, the authors propose to train the
ANN using directly the system sum-rate as training cost
function. The results show a gain compared with previous low-
complexity optimization methods.

In [191] a cloud-RAN system with caching capabilities
is considered. Echo-state neural networks, an instance of
RNNs, are used to enable base stations to predict the content
request distribution and mobility pattern of each user, thus
determining the best content to cache. It is shown that the use
of deep learning increases the network sum effective capacity
of around 30% compared with baseline approaches based
on random caching. In [190], deep reinforcement learning is
used to develop a power control algorithm for a cognitive
radio system in which a primary and secondary user share
the spectrum. It is shown that both users can meet their
QoS requirements despite the fact that the secondary user
has no information about the primary user’s transmit power.
The use of deep reinforcement learning is also considered in
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[196], where it is used to develop a power control algorithm
for weighted sum-rate maximization in interference channels
subject to maximum power constraints. The proposed algo-
rithm exhibits fast convergence and satisfactory performance.
A decentralized robust precoding scheme in a network MIMO
system is developed in [198] by ANNs. In [201], online
power allocation policies for a large and distributed system
with energy-harvesting nodes are developed by merging deep
reinforcement learning and mean field games. It is shown that
the proposed method outperforms all other available online
policies and suffers a limited gap compared to the use of non-
causal offline policies.

B. Learning to optimize

The rest of this section describes several applications,
primarily focusing on the most recent area of ANN-based
physical layer resource allocation. In this context, a promising
approach is to develop methodologies to embed prior available
(expert) knowledge about the problem to solve into deep
learning, rather than using only empirical data. The motivation
for this approach lies in the consideration that purely data-
driven approaches may become too complex for large-scale
applications, due to the large amount of required data, and
to the related processing complexity. Expert-knowledge-aided
deep learning is an emerging topic even in fields of science
where data-driven deep learning techniques are a consolidated
reality. In [202], image processing for object position detection
in robotics applications is considered, and it is observed
that augmenting a small training set of real images with a
large dataset of synthetic images significantly improves the
estimation accuracy with respect to processing only the small
dataset of real images. Similar results have been obtained in
[203] with reference to speech recognition applications.

In the context of wireless communications, leveraging data-
driven techniques based on deep learning, with expert knowl-
edge coming from (even approximate) theoretical models
holds an even greater potential. Indeed, despite their possible
inaccuracy or cumbersomeness, theoretical wireless models
provide important prior information compared to what is
available in other fields of science. In our opinion, this clear
advantage of wireless communications should not be wasted.
More specifically, when performing resource allocation, de-
pending on the system complexity, one is faced with one of
the four cases shown in Tab. I:

C1: An accurate and tractable theoretical model is available (e.g.  
point-to-point  channel capacity and bit-error rates.
C2: An accurate, but intractable theoretical model is available (e.g. 
achievable sum-rate in interference-limited systems).
C3: A tractable, but inaccurate model is available (e.g. dense 
networks deployment, energy consumption, hardware impairments). 

C4: Only inaccurate and intractable models are available (e.g. 
molecular communications, end-to-end wireless communications).

Table I
SCENARIOS FOR RESOURCE MANAGEMENT IN WIRELESS NETWORKS

While, it is clear that C.1 and C.4 should be handled
by traditional model-based approaches, and fully data-driven
techniques, respectively, the most appropriate way of tackling
C.2 and C.3 is an open issue. Indeed, C.2 and C.3 offer
the possibility of a cross-fertilization between model-aided
and data-driven approaches, due to the fact that a model
is available, even though it is inaccurate or cumbersome to
optimize. Moreover, C.2 and C.3 are the typical situations
in wireless communications, where models and optimization
algorithms are usually available, despite being the result of
some approximations and simplifications.

In order to tackle C.2 and C.3, we propose the following
two methodological approaches:
• Optimizing a model. In Case C.2, an analytical expres-

sion of the performance metric to optimize is available.
Then, an ANN can be trained to learn the map between
the system parameters and the corresponding optimal
resource allocation, following the technique anticipated
in Section I-D. This approach is depicted in Fig. 12.

• Refining a model. In Case C.3, a two-step approach can
be exploited. In the first step, an ANN is trained based
on synthetic data generated from the approximate model.
Next, a second training phase based on true, measured
data can be used to refine the ANN configuration. This
approach is depicted in Fig. 13.

As it will become clear from the applications illustrated in the
sequel, the main advantages of the proposed approaches are:
• The significant complexity reduction compared to purely

model-based methods, thus enabling real-time resource
allocation with near-optimal performance.

• The significant reduction of the amount of empirical data
compared to purely data-driven methods, thus dispensing
with expensive and unpractical measurement campaigns.

With the exception of one case-study related to the auto-
encoder approach, all applications described in the following
address resource allocation problems by using one of the two
methodologies described above.
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Figure 12. Optimizing a model. An ANN is trained based on data generated
from the theoretical models. No measurement campaign is needed.
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Figure 13. Refining a model. An ANN is first trained based on data generated
from the approximate theoretical models, and then refined based on a small
dataset of measured data.
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1) Physical layer design: Optimizing the receiver of a
molecular communication system: In this section, we consider
the typical case study of optimizing the receiver of a commu-
nication system. As an example, we focus our attention on
a molecular communication system, where chemical signals
instead of electromagnetic signals are used to convey infor-
mation [204]. The motivation of this choice is the complexity
of modeling molecular communication systems, and the possi-
bility of leveraging data-driven methods in this context [205].
A similar approach can be used to design and optimize the
receivers of different communication systems. The objective is
to prove that, by assuming that the system model is accurate,
model-based and data-driven methods yield the same optimal
receiver designs if they are both appropriately designed.

As a practical case study, we consider a molecular com-
munication system where diffusion is employed for allowing
information particles to propagate from a transmitter to a
receiver. Due to the intrinsic characteristics of diffusion, the
resulting transmission channel is usually affected by a non-
negligible Inter-Symbol Interference (ISI), which, if not taken
into account for system optimization, may severely degrade the
system performance. For this reason, we focus our attention
on optimizing the receiver operation in the presence of ISI.
In particular, we consider a threshold-based demodulator and
denote by τ the demodulation threshold. Let s̄i be the estimate
of symbol si at time-slot i, a threshold-based demodulator
operates as follows:

s̄i =

{
0, ri ≤ τ
1, ri > τ

(55)

where ri is the number of molecular received at time-slot i.
Under the typical operating conditions discussed in detail

in [206] for a binary modulation scheme, the error probability
as a function of τ can be formulated as follows:

Pe(τ) =
1

2L

∑
si−1

Pe(si−1, τ) (56)

where:

Pe(si−1, τ) =
1

2
[Q(λ0T +

L∑
j=1

si−jCj , dτe)

+ 1−Q(λ0T +

L∑
j=1

si−jCj + C0, dτe)]
(57)

and Q(λ, n) =
∑∞
k=n

e−λλk

k! is the incomplete Gamma func-
tion, L is the memory of the chemical channel, i.e., the length
of the ISI, λ0 is the background noise power per unit time, T
is the duration of the time-slot, and Cj is the average number
of received information particles at the jth time-slot.

In order to obtain appropriate performance and, thus, reduce
the error probability, the detection threshold, τ , needs to be
appropriately chosen and optimized. In Fig. 14, we depict the
error probability as a function of τ for a typical system setup.
We observe that an optimal value of τ exists that minimizes
the error probability and that depends on the time slot duration
T , i.e., the amount of ISI for a given channel.
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Figure 14. Error probability as a function of τ (the signal-to-noise-ratio is
equal to 30 dB) for two different durations of the time-slot (amount of ISI).

In mathematical terms, the optimal threshold that minimizes
the error probability can be formulated as follows:

τ∗ = arg min
τ

Pe(τ) (58)

Due to the analytical complexity of (56), it is not possible
to compute τ∗ explicitly, but it can be obtained numerically
at an affordable complexity.

An alternative approach is to employ a data-driven approach
that does not rely on any model but uses only empirical
data, e.g., a large set of values for rj . More precisely, we
consider an ANN whose aim is to demodulate the transmitted
data by minimizing the error probability. An ANN-based
demodulator is a system whose input is the number of received
information particles, ri at the ith time-slot, and the outputs
are the probabilities that the transmitted bit is 0 or 1, i.e.,
Pi(si = 0|ri) and Pi(si = 1|ri), respectively. Since, Pi(si =
1|ri) + Pi(si = 0|ri) = 1, only one of the two probabilities
is needed. We use the notation Pi = Pi(si = 1|ri). Based on
the outputs, the ANN demodulate the received bits as follows:

s̄i =

{
0, Pi ≤ 0.5
1, Pi > 0.5

(59)

where the threshold 0.5 accounts for the fact that the bits are
equiprobable.

In order to train the ANN, we consider a supervised learning
approach, i.e., we compute the parameters (e.g., the bias
factors and the weights) of the ANN by using a known
sequence of transmitted bits. In particular, we use the Bayesian
regularization back propagation technique, which updates the
weights and biases by using the Levenberg-Marquardt opti-
mization algorithm. The set of parameters to train and operate
the ANN are as follows: The number of layers is 10, the
learning rate is 0.01, the training epoch is 200, the number
of validation bits is 100000, and the replication time is 50. In
particular, the training is performed in a batch mode, and the
replication time denotes the number of batches each of which
is 1000-bit long.



32

15 20 25 30 35 40
SNR

100

101

102

103
Th

re
sh

ol
d 

va
lu

e

ANN-based scheme equivalent threshold (slot length is 30 T)
Optimal theoretical threshold (slot length is 30 T)
ANN-based scheme equivalent threshold (slot length is 50 T)
Optimal theoretical threshold (slot length is 50 T)

Figure 15. Demodulation thresholds: Model-based vs. data-driven for two
different durations of the time-slot (amount of ISI).
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Figure 16. Bit error probability of the ANN-based demodulator vs. the
analytical framework - T = 30∆T .

In Fig. 15, we compare the optimal threshold computed
numerically from (58) as a function of the signal-to-noise-
ratio, and the demodulation threshold that is learnt by the
ANN-based demodulator. In the latter case, the threshold
is obtained, after completing the training of the ANN, and
identifying the input, i.e., the number of information particles,
for which the output probability is equal to 0.5. We observe
that the ANN-based implementation is capable of learning the
demodulation threshold in a very accurate manner.

In Fig. 16 and Fig. 17, we compare the bit error probability
of the ANN-based demodulator against the bit error probability
in (56) by considering a short symbol time (small ISI) and
a long symbol time (large ISI), respectively. As for the
analytical model, the optimal threshold is estimated from (58)
for each value of the signal-to-noise-ratio. We note a very good
agreement even with only 10 layers.

In summary, this section shows that an optimal receiver
design can be obtained by relying solely on data-driven
methods and that the resulting ANN can be used for system
optimization, e.g., to optimize the demodulation threshold.

2) Optimizing a model: power control in wireless networks:
This application focuses on the maximization of the bit-per-
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Figure 17. Bit error probability of the ANN-based demodulator vs. the
analytical framework - T = 50∆T .

Joule energy efficiency in interference-limited networks. The
importance of the energy efficiency as a key performance met-
ric in communication systems has emerged recently, motivated
by the need to provide 1000x higher data rates compared to
present systems, while at the same time halving the energy
consumption. Already 5G wireless networks are requested to
increase the bit-per-Joule energy efficiency by a factor 2000
compared to previous wireless networks [2], [4].

Traditional approaches for energy efficiency maximization
in wireless networks are based on the theory of fractional
programming, the branch of optimization theory that focuses
on the optimization of fractional functions. A tutorial on
fractional programming methods for energy efficiency max-
imization in wireless networks is available in [3]. Therein, it
is observed that achieving the global maximum of the energy
efficiency metric requires exponential complexity whenever
the communication system is interference-limited. Here, we
will show how the global maximum of the energy efficiency
can be approached with limited complexity by using ANNs.

To elaborate, let us consider an interference-limited network
in which K single-antenna transmitters communicate with M
receivers, each equipped with N antennas. Denote by hk,m
the N × 1 channel from transmitter k to receiver m, by pk
the transmit power of transmitter k, by ck the N × 1 receive
vector used by the receiver associated to transmitter k, and by
σ2
m the received noise power at receiver m. Then, the signal

to interference plus noise ratio (SINR) enjoyed by transmitter
k at its associated receiver mk is expressed as:

γk =
pk|cHk hk,mk |2

σ2 +
∑
j 6=k pj |cHk hj,mk |2

=
pkdk,k

σ2 +
∑
j 6=k pjdk,j

,

(60)
with dk,j = |cHk hj,mk |2, for all k and j.

Based on (60), the network weighted sum energy efficiency
(WSEE) is given by

WSEE =

K∑
k=1

wk
B log2(1 + γk)

Pc,k + µkpk
[bit/Joule] , (61)

wherein B is the communication bandwidth, Pc,k is the
hardware static power consumed to operate the k-th communi-
cation link, µk the inverse of the power amplifier efficiency of
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transmitter k, and wk is a non-negative weight modeling the
priority given to the energy efficiency of user k. It is important
to stress that Pc,k depends on system parameters such as the
number of antennas and the efficiency of the system hardware
components, but it is assumed not to depend on the transmit
powers, and therefore the specific model expressing Pc,k as a
function of the system hardware components is inessential as
far as maximizing (61) as a function of the transmit powers
is concerned.

Thus, the power control problem is stated as the maximiza-
tion of the weighted sum energy efficiency (WSEE) subject to
power constraints, namely

max
{pk}Kk=1

WSEE(p1, . . . , pK) (62a)

s.t. Pmin,k ≤ pk ≤ Pmax,k ,∀ k = 1, . . . ,K (62b)

with Pmax,k and Pmin,k being the maximum feasible and
minimum acceptable transmit powers for user k. The challenge
in tackling (62) lies both in the fact that the numerators
of (62a) are not concave functions of p = {pk}Kk=1 due
to the presence of multi-user interference, and to the sum-
of-ratios functional form, which is regarded as the hardest
fractional problem to tackle. Therefore, showing that an ANN
can be used to solve (62) makes a very strong case towards
the development of ANN-based solutions of generic energy-
efficient resource allocation problems. To solve (62), global
optimization methods are required to find the optimal power
allocation, while more practical approaches guarantee only
first-order optimality with a polynomial complexity. Moreover,
Problem (62) needs to be solved anew whenever the chan-
nel realizations {h`,mk}k,` change. This represents a critical
drawback, especially considering that the resource allocation
process must be completed well before the end of the channel
coherence time in order for the optimized power vector to be
practically useful. This observation makes it difficult to employ
even polynomial-complexity algorithms to perform resource
allocation in real-time, i.e. following the small-scale variations
of the channel coefficients.

In oder to address this issue and enable real-time resource
allocation, it is possible to resort to deep ANNs paired with the
use of energy efficiency models and traditional optimization
approaches. Specifically, this case study is an instance of C.2
of Table I, since a model is available and has allowed us to
formulate Problem (62). However, the model is too complex
(for practical implementations) to be optimized by directly
using traditional optimization methods. The idea is, therefore,
to exploit the model by using it to train an ANN in order
to learn the map between the system parameters, and the
corresponding optimal power allocation. To elaborate, let us
observe that Problem (62) can be regarded as an unknown
function mapping from the coefficients {dk,`}k,` and the
maximum/minimum transmit powers Pmax and Pmin, to the
optimal power allocation vector p∗, namely

F : d = {dk,`, Pmin,k, Pmax,k}k,` ∈ RK(M+2) → p∗ ∈ RK
(63)

Since ANNs are universal function approximators, it is pos-
sible to train an ANN so that its input-output relationship

reproduces the unknown map (63). This leads to considering
an ANN with K(M + 2) input nodes and K output nodes, to
be trained so that it outputs the optimal K × 1 power vector
p∗ corresponding to a given K(M + 2) × 1 input of system
parameters d. This enables to update the resource allocation
without having to solve any optimization problem every time
that the system parameters change, but by simply feeding the
new vector d to the ANN, and obtaining the corresponding
power allocation as the output of the ANN.

It is important to emphasize that this entails a negligible
computational complexity compared to using sophisticated
numerical optimization algorithms. Indeed, once all the param-
eters and hyperparameters of the ANN are fixed, the ANN pro-
vides a closed-form expression of its input-output relationship,
whose complexity amounts to computing

∑L+1
`=1 N`−1N` real

multiplications5 and evaluating
∑L+1
`=1 N` activation functions,

with N` denoting the number of neurons in Layer ` in
accordance with the notation of Section III-A.

Instead, a higher complexity is required to generate a
suitable training set, because this requires to consider many
different system parameters realizations {dnt}NTnt=1, and to
compute the corresponding desired power allocation vector
{p∗nt}NTnt=1 by solving (62) NT times. At a first sight, this
might seem to result in a complexity overhead that defeats
the purpose of using ANNs to reduce the computational
complexity of resource allocation problems. However, this is
not the case for at least two major reasons that make the
generation of the training set fundamentally different from
solving Problem (62) in real-time:
• The training set can be generated and used offline to train

the ANN. Thus, a higher complexity can be afforded and
real-time constraints do not apply.

• The training set needs to be updated at a much longer
time-scale than that with which the network parameters
change.

In other words, the training process needs not be executed each
time a system parameter changes, and the solution needs not
be obtained within the channel coherence time. Thus, the use
of traditional optimization theory to generate the training set
does not defeat the practicality of the proposed ANN-based
approach. On the contrary, the use of mathematical models to
formulate the optimization problem and the use of traditional
optimization techniques to build the training set, represent
the expert knowledge that is exploited to facilitate the use
of ANNs for real-time power control in wireless networks.
In addition, we mention that recently a more efficient branch-
and-bound solution to globally solve energy-efficient problems
has been proposed in [200], which further facilitates the global
solution of Problem (62).

Numerical performance analysis. Consider the uplink of
a wireless interference network with K = 4 single-antenna
user equipments (UEs) placed in a square area with edge 2 km
and communicating with 4 access points placed at coordinates
(0.5, 0.5) km, (0.5, 1.5) km, (1.5, 0.5) km, (1.5, 1.5) km, and
equipped with nR = 2 antennas each. The path-loss is

5The complexity related to additions is negligible compared to that related
to multiplications



34

modeled following [207], with carrier frequency 1.8 GHz and
power decay factor equal to 4.5, while fast fading terms are
modeled as realizations of zero-mean, unit-variance circularly
symmetric complex Gaussian random variables. Moreover,
Pc,k = 1 W and µk = 4 for all k = 1, . . . ,K, respectively,
while the noise power at each receiver is σ2 = FN0B,
with F = 3 dB the receiver noise figure, B = 180 kHz the
communication bandwidth, and N0 = −174dBm/Hz the noise
spectral density. All users have the same maximum transmit
powers Pmax,1 = . . . = Pmax,K = Pmax, while Pmin,k = 0
for all k = 1, . . . ,K.

The proposed ANN-based solution of Problem (62) is
implemented through a feedforward ANN with L + 1 fully-
connected layers, with the L = 5 hidden layers having 128,
64, 32, 16, 8 neurons, respectively. The training set has been
generated by solving Problem (62) for different realizations
of the vector d. When doing this, due to numerical reasons,
the parameter vectors d and the optimal output powers in the
training set have been expressed in logarithmic units rather
than in a linear scale. On the other hand, the use of logarithms
may cause numerical problems when the optimal transmit
powers are very close to zero. For this reason, logarithmic
values approaching −∞ have been clipped at −M for M > 0.
In our experiments, M = 20 worked well.6 Summarizing, the
considered normalized training set is

ST = {(log10 dn,max{−20, log10 p̃∗n}) |n = 1, . . . , NT },
where all functions are applied element-wise to the vectors in
the training set.

The activation functions have been set as follows. The first
hidden layer has an ELU activation, the other hidden layers
alternate ReLU and ELU activation functions, while the output
layer uses a linear activation function. The use of a linear
activation in the output layer is motivated by the consideration
that it allows the ANN to produce low training error as a
result of a proper configuration of the hidden layers, instead
of artificially reducing the output error thanks to the use of cut-
off levels in the activation function. In other words, a linear
output activation function allows the ANN to learn whether the
present configuration of weights and biases is truly leading to
a small output error.

The ANN is implemented in Keras 2.2.4 [208] with Ten-
sorFlow 1.12.0 [209] as backend, using Glorot uniform ini-
tialization [133], the Adam training algorithm with Nesterov
momentum, and the mean squared error as the loss function.
The training is obtained by solving Problem (62) for 102,000
independent and identically distributed (i.i.d.) realizations of
UEs’ positions and propagation channels, and different values
of Pmax. In each scenario, the UEs are associated to the
access point towards which they enjoy the strongest effective
channel. A validation and a test set of 10,200 and 510,000
samples, respectively, were also generated following a similar
procedure.

Considering training, validation, and test sets, 622,200 data
samples were generated, which required solving the NP-hard

6Note that, although using a logarithmic scale, the transmit powers are not
expressed in dBW, since the logarithmic values are not multiplied by 10. Thus
−M = −20, corresponds to −200 dBW.

Problem (62) 622,200 times. This has been accomplished by
the newly proposed branch-and-bound method developed in
[200], which required 8.4 CPU hours to solve all 622,200 in-
stances of the WSEE maximization problem, on Intel Haswell
nodes with Xeon E5-2680 v3 CPUs running at 2.50GHz. This
strongly supports the argument that the offline generation of a
suitable training set for ANN-based power control is quite
affordable. Finally, all performance results reported in the
sequel have been obtained by averaging over 10 realizations of
the network obtained by training the ANN on the same train-
ing set with different initialization of the underlying random
number generator.7 The average training and validation losses
for the final ANN are shown in Figure 18. It can be observed
that both errors quickly decrease and approach a very small
value, thus showing that the adopted ANN configuration is
able to properly fit the training data, without underfitting or
overfitting.
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Figure 18. Training and validation losses versus training epoch number. It is
seen that after the training phase, the ANN neither underfits nor overfits.

Next, we present the performance of the proposed method
over the test set. Specifically, we have compared the proposed
ANN-based method with the following benchmarks:
• SCAos: A first-order optimal method from [200] that

leverages sequential convex approximation methods. For
each value of Pmax, the algorithm initializes the transmit
power to pi = Pmax, for all k = 1, . . . ,K.

• SCA: Again the first-order optimal method based on
sequential convex approximation developed in [200],
but with a double-initialization approach. Specifically,
at Pmax = −30 dBW maximum power initialization is
used. However, for all values of Pmax > −30 dBW, the
algorithm is run twice, first with the maximum power
initialization, and then initializing the transmit powers
with the optimal solution obtained for the previous Pmax
value. Then, the power allocation achieving the better
WSEE value is retained.

• Max. Power: All UEs transmit at maximum power, i.e.
pk = Pmax, for all k = 1, . . . ,K. This strategy is known
to perform well in interference networks for low Pmax
values.

• Best only: Only one UE is allowed to transmit, specifi-
cally that with the best effective channel. This approach is

7Note that this is not equivalent to model ensembling [210, Sect. 7.3.3] or
bagging [20, Sect. 7.1].
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motivated for high Pmax values, as a naive way of nulling
out multi-user interference.

The results are shown in Figure 19 and indicate that the ANN-
based approach outperforms all other practical approaches.
The only benchmark that performs comparably with the ANN-
based approach is the SCA algorithm with the more sophis-
ticated initialization rule, which requires to solve the WSEE
maximization problem twice and for the complete range of
Pmax values. Thus, this SCA approach is quite more complex
than the ANN-based method, but, despite this, it performs
slightly worse. In conclusion, we can argue that the ANN
approach strikes a much better complexity-performance trade-
off than state-of-the-art approaches, and thus it enables online
power allocation in wireless communication networks.
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Figure 19. WSEE performance of the proposed ANN-based method compared
to the global optimum and to several state-of-the-art algorithms.

3) Optimizing a model: user-cell association in massive
MIMO networks: This application has a similar flavor as
that in Section IV-B2, with the difference that instead of
allocating the users’ transmit powers, the problem consists of
deciding the assignment between transmitters and receivers
in an interference network. This means that, while the case-
study in Section IV-B2 tackles a continuous resource allocation
problem, and thus can be regarded as a regression problem,
here the focus is on a discrete resource allocation problem,
which can be viewed as a classification problem. To elaborate,
consider a massive MIMO multi-cell network with K single-
antenna users and M base stations equipped with N antennas
each. Also, assume that each user can be associated to only
one access point, and that each access point m can serve at
most am users. In this context, the user-cell association sum-

rate maximization problem is cast as:

max
ρ

K∑
k=1

M∑
m=1

ρk,mdk,m (64a)

s.t.
M∑
m=1

ρk,m ≤ 1 , ∀ k = 1, . . . ,K (64b)

K∑
k=1

ρk,m ≤ am , ∀ m = 1, . . . ,M (64c)

M∑
m=1

ρk,mdk,m ≥ Rmin,k , ∀ k = 1, . . . ,K (64d)

ρk,m ∈ {0, 1} , ∀ m = 1, . . . ,M , ∀ k = 1, . . . ,K ,
(64e)

wherein dk,m = log2(1 + γk,m) is the spectral efficiency
enjoyed by transmitter k if associated to receiver m, with γk,m
the corresponding SINR accounting for typical massive MIMO
impairments such as pilot contamination and imperfect chan-
nel state information, ρk,m is a binary variable taking value 1
when transmitter k is served by receiver m, ρ = {ρk,m}k,m,
and B is the communication bandwidth. Constraints (64b)
and (64c) ensure that each transmitter can be associated to
only one receiver and that each receiver can serve at most
am transmitters, while Constraint (64d) guarantees minimum
QoS for each transmitter, and Constraint (64e) is due to the
integrality of the association variables.

Typical approaches to solve linear programs such as (64)
resort to branch-and-cut techniques, which require solving a
series of continuous relaxations of (64). In some special cases,
i.e. when Rmin,k is integer for all k, the constraint matrix of
Problem (64) can be shown to be totally uni-modular, which
enables to solve (64) through just one continuos relaxation.
Nevertheless, this still requires to employ numerical optimiza-
tion algorithms, whose complexity might still be quite high,
especially in large networks. Moreover, as in the power control
example of Section IV-B2, the optimal association rule needs
to be computed in real-time, thus implying that Problem (64)
needs to be solved anew each time any of the coefficients
{dk,m}k,m changes. Moreover, in order to be useful, the
solution needs to be obtained well before the coefficients
{dk,m}k,m change again.

In order to reduce the complexity of the resource allocation
process, we observe that the considered problem is again an
instance of C.2 in Table I, since a model is available and
has allowed us to formulate Problem (64). Then, following
a similar approach as in Section IV-B2, the optimization
program in (64) can be seen as the problem of determining
the unknown map:

F :d={dk,m,Rmin,k,am}k,m∈RKM+K+M→ρ∗∈{0, 1}KM,
(65)

which can be tackled by resorting again to a fully-connected
FFNs, taking (KM + K + M)-dimensional inputs and pro-
ducing KM -dimensional outputs, with similar implementation
and complexity considerations as those in Section IV-B2.

Numerical performance analysis. Consider the uplink of
a massive MIMO system wherein 4 base stations (BSs) are
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deployed in a square area with edge 1 km at points with coordi-
nates (250, 250) m, (250, 750) m, (750, 250) m, (750, 750) m,
serving 40 users randomly placed in the coverage area. Each
BS is equipped with NR = 64 antennas, while all mobile users
have a single antenna. A uniform uplink power p of 20 dBm is
considered for all users, while a common receive noise power
σ2 of −94 dBm is assumed for all BSs. The communication
bandwidth is 20 MHz and the propagation channels follow the
local scattering model [211].

A training set of NT = 155000 samples has been generated
by considering independent realizations of the users’ positions
in the service area, and solving the corresponding instance
of Problem (64), with am = 15 for all m. Out of these NT
samples, 140000 have used as training set, while the remaining
15000 have been used as validation set for hyperparameter
tuning. The considered ANN architecture is composed of L =
3 fully connected layers with 128, 64, 64 neurons, respectively,
plus an output layer with KM = 40 neurons. Layers 1 and 3
have a ReLU activation function, while Layer 2 and the output
layer have a sigmoidal activation function. The Adam training
algorithm with Nesterov’s momentum has been employed for
training, using the mean squared error as loss function.

The training and validation MSEs are reported in Tab.
II versus the training epoch number. The result show that
the considered ANN architecture fits well the training data,
without underfitting or overfitting.

Table II
TRAINING AND VALIDATION ERRORS VERSUS TRAINING EPOCH.

Training MSE Validation MSE
Epoch 1 0.0116 0.0113
Epoch 5 0.0100 0.0116
Epoch 10 0.0093 0.0104
Epoch 15 0.0091 0.0096
Epoch 20 0.0090 0.0091
Epoch 25 0.0089 0.0089
Epoch 30 0.0087 0.0092
Epoch 35 0.0085 0.0087
Epoch 40 0.0083 0.0089
Epoch 45 0.0082 0.0087
Epoch 50 0.0081 0.0090

After training and validation, the performance of the re-
sulting ANN has been evaluated over a test set of 15000
data samples that have been generated independently from
the training and validation samples. For each test sample,
denoting by ρANN = {ρk,m}k,m the ANN output, user k
has been associated to BS m̄ if m̄ = arg maxm ρk,m, and
then the resulting sum-rate performance has been compared
to the optimal solution of Problem (64).

Fig. 20 shows the cumulative distribution function (CDF)
of the average users’ rate over the test set for the following
schemes:
• ANN-based association with MMSE reception.
• Optimal association with MMSE reception.
• ANN-based association with MR reception.
• Optimal association with MR reception.

It is seen that in all cases the ANN-based method performs
similarly as the optimal user-cell association, while requiring a
much lower computational complexity. Thus, once again, this

motivates the use of ANN-based resource allocation methods.
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Figure 20. CDF of the average users’ rate over the testset for the ANN-based
approach and the optimal allocation, with MMSE and MR reception.

4) Refining a model by deep transfer learning - Cellular
networks beyond the Poisson point process: In this section,
we consider the case study in which an analytical model exists
and is analytically tractable, but it is not considered to be
sufficiently accurate for system optimization. We assume, in
addition, that more accurate network models are difficult to
develop and/or are not suitable for system optimization. As a
practical example, we consider the optimization of the Energy
Efficiency (EE) [64] in non-Poisson cellular networks [212],
which is known to be an intractable optimization problem
because of the analytical complexity of the utility function
to optimize.

As discussed in Section I-C, we propose to solve this
issue by relying on deep transfer learning. Our proposed idea
consists of jointly exploiting model-based and data-driven
optimization. The approach consists of first optimizing the
network using a mismatched, but simpler for optimization,
model, and then refining the result with (few) empirical data.
Let us assume, as a practical example, that the mismatched
(approximated) model is the Poisson model. More precisely,
we assume that the only inaccuracy of the system model is
the spatial distribution of the cellular base stations, while all
the other parameters and modeling assumptions as considered
to be accurate. More general system setups can be considered,
and another example is studied in the next section. In detail,
the approximated model is assumed to be the Poisson point
process model, while the “exact” point process model is
assumed to be the square grid model [213]. This is a simple
example that is chosen in order to shed light on our proposed
approach, and that is also easy to simulate and reproduce.

From [64], we know that the EE in Poisson cellular
networks is available in closed-form and is amenable to
optimization. Thus, a large dataset of optimal values for the
EE as a function of any system parameters can be readily
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obtained. This dataset is used to train a (mismatched) ANN
with the desired accuracy. The issue, as mentioned, is that the
original network model is non-Poisson. We assume, however,
that the considered cellular network deployment is equipped
with a sensing platform, e.g., by using the meta-surfaces
discussed in Section I-C, that can sense and report some
contextual data about the network, which is used to obtain
a dataset of just a few empirical but optimal values of the
EE, which account for the actual non-Poisson spatial model.
This dataset is used to tune the ANN and to correct the
mismatch. The intuition behind this proposed approach is
that, despite mismatched, the initial ANN embeds the most
important features of the cellular network already, and thus
less data is needed compared with the case study in which
no pre-training is performed. The objective of this section is
to study the amount of empirical samples that the proposed
approach based on transfer learning, which jointly combines
model and data, requires to achieve similar performance as a
pure data-driven method. If the amount of empirical data is not
that large, the proposed approach will be successful and will
also reduce the amount of overhead, to collect the empirical
samples, that is needed for network optimization.

In the rest of this section, we discuss both pure model-based
and data-driven approaches, and then combine them together
based on transfer learning principles, and, more precisely on
network-based transfer learning.

Model-based optimization. From [64], the EE in Poisson
cellular networks can be formulated as follows:

EE (λBS) =
SE (λBS)

Pgrid (λBS)
(66)

where

SE (λBS) = BWlog2 (1 + γD)
λBSL (λMT/λBS)

1 + ΥL (λMT/λBS)

×Q (λBS,Ptx, λMT/λBS)

(67)

Pgrid (λBS) = λBSPtxL (λMT/λBS)

+ λMTPcirc + λBSPidle (1− L (λMT/λBS))
(68)

are the spectral efficiency and the power consumption of the
cellular network, respectively.

Equations (67) and (68) depend on many parameters,
which are all defined in [64]. As far as the present paper
is concerned, we are interested in four main parameters:
λBS, which is the deployment density of the base stations,
Ptx, which is the transmit power of the base stations, Pcirc,
which is the circuit power consumption of the base stations,
and Pidle, which is the idle power consumption of the base
stations. In this section Pcirc and Pidle are assumed to be
fixed, and they are further analyzed in the next section. The
objective is to identify the optimal deployment density of the
base stations, λBS, given some values of the transmit power
Ptx. In [64], it is proved that this optimization problem has a
unique solution, which is formulated as the unique root of a
non-linear equation. Therefore, the optimal density of the base
stations that maximizes the EE can be computed efficiently,
for any given values of the transmit power. By solving

this optimization problem, we can easily obtain the optimal
pairs

(
Ptx, λ

(opt)
BS

)
, where λ(opt)BS = arg maxλBS

{EE (λBS)}.
These pairs can then be used to train an ANN, with Ptx as
the input, and λ(opt)BS as the output.

Data-driven optimization. Let us assume now that we
cannot rely on any analytical models and that the EE needs to
be estimated by collecting empirical samples from the cellular
network, from which the optimal cellular network deployment
needs to be inferred. In particular, the spectral efficiency
and the power consumption can be estimated, respectively, as
follows:

PSE (•) =
1

AreaNet

∑
Cell(1)∈Net

∑
NMT∈Cell(1)

{
BW

NMT
log2 (1 + γD) 1

(
SIR ≥ γD,SNR ≥ γA

)}
(69)

Pgrid (•) =
1

AreaNet

 ∑
Cell(0)∈Net

Pidle

+
∑

Cell(1)∈Net

Ptx + Pcirc

∑
NMT∈Cell(1)

NMT


(70)

These two formulas can be interpreted as follows. Let us
consider the spectral efficiency as an example. Each mobile
terminal in the cellular network determines, based on the
received signal, whether it is in coverage. This is performed
by measuring the average signal-to-noise-ratio during the cell
association phase and the signal-to-interference-ratio during
data transmission (if the first phase was successful). This
condition corresponds to the term 1

(
SIR ≥ γD,SNR ≥ γA

)
,

where 1 (·) is the indicator function. Each mobile terminal,
reports whether it is in coverage or not to a network controller
(one bit of information). Based on the number of mobile
terminals that are in coverage on a given cell (say NMT),
the corresponding base station equally allocates the available
spectrum (say BW) among them, and transmit data with
a fixed rate BW

NMT
log2 (1 + γD). Based on the information

gathered by all the mobile terminals, it is possible to identify
the base stations that have at least one mobile terminal in
their corresponding cells (say Cell (1)) and to compute the
number of mobile terminals that lie in each of them for
each network realization. The spectral efficiency can then be
estimated by summing the rates all of active base stations and
by normalizing by the area of the network under analysis. It
is worth mentioning that in order to identify, e.g., the optimal
deployment density of the base stations, we need to repeat this
procedure by considering all possible combinations of base
station patterns, given the number of base stations actually
deployed. If the optimization variable is the transmit power
of the base stations, all possible values of transmit power
need to be tested and the value corresponding to the optimal
EE needs to be recorded and used to train an ANN, similar to
the approach discussed for model-based optimization. Based



38

0 10 20 30 40 50

Epoch number. 300 empirical samples
10-3

10-2

10-1

100
R

el
at

iv
e 

M
SE

0 10 20 30 40 50

Epoch number. 600 empirical samples
10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
M

SE

0 10 20 30 40 50

Epoch number. 1500 empirical samples
10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
M

SE

0 10 20 30 40 50

Epoch number. 2100 empirical samples
10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
M

SE

0 10 20 30 40 50

Epoch number. 3000 empirical samples
10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
M

SE

Training with model and empirical data
Validation with model and empirical data
Training only with empirical data
Validation only with empirical data

Figure 21. Learning and validation relative MSE vs. training epochs for x
= 300, 600, 1500, 2100, and 3000 samples. For each case, the performance
with and without PPP-based samples is reported. It is seen how the use of
PPP-based data significantly improves the performance.

on this simple description, we can readily understand that the
amount of empirical data that is necessary to train an ANN
may not be negligible, and, in any case, may strongly affect
the overhead for network optimization.

Network-based transfer learning optimization. Network-
based transfer learning is a solution to overcome the limi-
tations of model-based and data-driven approaches, since it
is apparent that both have advantages and limitations. As
already mentioned, the idea is to first train and optimize
an ANN by using a model-based approach, and then refine
the obtained ANN by using some empirical data (data-driven
approach). Once the first model-based ANN is obtained, in
particular, we consider that its configuration, i.e., the number
of layers, neurons, weights, and biases, constitute the initial
configuration of the second ANN that is refined based on
empirical data. In our case study, we assume that, during
the refinement phase, the number of layers and neurons are
not modified, while the weights and biases are finely-tuned in
order to account for the empirical data and to capture those
features of the actual network setup that the assumed model,
in order to keep its complexity at a low level, is not capable
of doing.

In Figures 21 and 22, we illustrate some numerical ex-
amples that compare the performance of the three proposed
approaches. A feed-forward ANN architecture with fully-
connected layers and ReLU activation functions is considered.
Specifically, after trying many different ANN configurations,
we found that an ANN with three hidden layers equipped with
8, 8, and 2 neurons, respectively, yields comparable perfor-
mance as a much larger ANN that contains six hidden layers
with 64, 32, 16, 8, 4, 2 neurons, respectively. Thus, in all our
experiments, we have adopted the 8, 8, 2 ANN configuration,
since it provides the best complexity-performance trade-off
among all ANN architectures we tested.

Figure 21 shows the training and validation relative MSE
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Figure 22. Comparison between model-based, data-driven, and deep transfer
learning based optimization - Optimal deployment.

versus the number of training epochs for the following ap-
proaches:
• the proposed deep transfer learning technique that em-

ploys both model-based and empirical data samples.
• the baseline approach, where only empirical data samples

are used.
As for the first approach, the size of the training set is always
set equal to 30,000 samples, out of which x samples follow
the true base station distribution (square grid model), and
(30,000-x) samples follow the Poisson distribution. As for the
second approach, the adopted training set contains only the x
empirical samples. Thus, this comparison is fair in terms of
number of empirical data samples employed and is aimed at
showing the performance that can be obtained by augmenting a
small dataset of empirical data with a larger dataset of model-
based data. For both approaches, the results for the values x =
300, 600, 1500, 2100, and 3000 are shown, and, for each value
of x, it is seen that the proposed deep transfer learning method
achieves much lower training and validation errors compared
to the baseline approach.

This result is confirmed also in the testing phase. Fig.
22 shows the density of base stations as a function of their
transmit power, considering a test set of 8,000 new transmit
powers, which were not used during the training phase. Four
schemes are compared:
• the optimal density computed through exhaustive search
• the density predicted by means of deep transfer learning,

where 3,000 empirical samples are used in the second
training step

• the density obtained without transfer learning and per-
forming the training by using only 3,000 empirical sam-
ples

• the density obtained without transfer learning and per-
forming the training by using only 30,000 model-based
samples

Notably, we observe that using only the 3,000 empirical
samples yields inaccurate estimates of the optimal deploy-
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ment density of the base stations. Instead, combing model-
based data with the same 3,000 samples of empirical data
provides one with near-optimal performance. This highlights
the relevance of performing the model-based pre-training be-
fore employing actual measurements for system optimization,
while overcoming their inherent limitations. Moreover, it is
interesting to observe that using only the 30,000 model-
based samples does not lead to satisfactory performance,
thus showing that it is necessary to merge model-based and
empirical samples to obtain accurate performance.

In summary, based on the results reported in Figs. 21 and
22, we conclude that the proposed approach based on transfer
learning constitutes a suitable approach to take the best of both
model-based and data-driven methods.

5) Refining a model by deep transfer learning - Cellular
networks with inaccurate power consumption models: In this
section, we consider a similar optimization problem as in the
previous section. Rather than focusing on the impact of the
spatial distribution of the cellular base stations, we focus our
attention on the power consumption model of the base stations.
More precisely, we assume that the Poisson point process
is sufficiently accurate to account for the distribution of the
cellular base stations. As far as the power consumption model
of the cellular base stations is concerned, on the other hand, we
assume a model based on a uniform distribution for Pcirc and
Pidle, while the empirical model is assumed to be based on the
Gaussian distribution. The optimization problem that we are
interested in is still concerned with identifying the optimal
deployment density of the base stations, but as a function
of three variables: Ptx, Pcirc, and Pidle. The model-based,
the data-driven, and the transfer learning based approach are
obtained by using the same approach as the one described in
the previous section. As far as the architecture of the ANN is
concerned, on the other hand, we consider a different ANN
architecture, which is made of six layers and four neurons.
The adopted ANN is, therefore, more complicated because
three input parameters instead of one are considered in this
case study.

For this scenario, the ANN configuration with the best
complexity-performance trade-off has been found to be one
with five hidden layers equipped with 8 neurons each,
and ReLU activation functions. Remarkably, the performance
granted by this ANN architecture is slightly worse than that of
a much more complex ANN with 128-64-32-16-8 neurons in
the five hidden layers. The training and validation performance
of the adopted ANN are reported in Figure 23, and similar
considerations as for Figure 21 apply. Thus, also in this case
the proposed network-based transfer learning approach is a
promising alternative to bridge the critical tension between
modeling accuracy, optimization complexity, and sensing over-
head for network optimization.

6) Deep reinforcement learning for power control in
energy-harvesting wireless systems: As a last case-study, we
consider the use of deep reinforcement learning, in the context
of energy-harvesting communication systems.

Specifically, consider a time-slotted energy-harvesting node
transmitting its data over block fading channels to an access
point powered by traditional energy sources. Denote by gn ∈ G
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Figure 23. Learning and validation relative MSE vs. the training epochs
for x=300, 600, 1500, 2100, and 3000. For each case, the performance with
and without empirical samples is reported. The use of model-based data
significantly improves the performance.

the fading complex channel gain between the transmitter and
the access point in time-slot n, by en the energy harvested
during time-slot n, which is modeled as a realization of a
random variable with unknown distribution, and by Bn the
energy stored in the transmitter battery at time-slot n. The
battery is assumed to be perfectly efficient, with maximum
capacity Bmax. At the transmitter, only causal information
about energy arrivals and communication channels is assumed,
i.e. neither the distribution of the energy arrival and channel
processes, nor their future realizations are known at each time-
slot n. Also, denote by pn ≤ Pmax the transmit power in
the n-th time-slot, with Pmax the maximum feasible transmit
power.

In this context, the goal is to maximize the system long-term
achievable rate, by solving the following problem:

max
{pn}n

lim inf
N→∞

1

N

N∑
n=1

log
(

1 + pn
gn
σ2

)
(71a)

s.t. 0 ≤ Tpn ≤ min{Bn, TPmax} , (71b)

wherein σ2 is the receive noise power, T is the time-slot
duration, and the battery state evolves as

Bn+1 = min{[Bn + en − Tpn]+, Bmax} . (72)

Constraint (71b) captures the fact that the maximum energy
that can be used in time-slot n is limited by the minimum
between the amount of energy available in the battery, Bn,
and the maximum allowed transmit energy TPmax.

Since the information about the random energy arrivals
and the channel realizations is only causally available,
and the battery evolves in a Markovian fashion, accord-
ing to (72), Problem (71) is a stochastic control prob-
lem which could be formulated as a MDP, with state
space S = {(B, g) ∈ [0, Bmax]× G}, action space A =
{pn ∈ [0,min{Bn, TPmax] , n = 1, . . . , N}, and reward at
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time-slot n given by Rn = log
(
1 + pn

gn
σ2

)
. Thus, in prin-

ciple, upon discretization of the state space, standard MDP
techniques can be used to solve (71). However, this poses at
least the following three major challenges:
• Large feedback overhead, since global information about

the battery and channel states of each network node is
needed for the operation of the policy.

• The solution of the MDP requires statistical information
about the energy-harvesting process and the wireless
channel, which is often difficult to obtain.

• In order to obtain a good solution, a fine discretization
step needs to be employed, which results in very large
state and action spaces, thus further increasing the prob-
lem complexity.

These reasons motivate the use of deep reinforcement learning
to tackle Problem (71).

Numerical performance analysis. Consider an energy-
harvesting system in which the transmitter harvests energy
according to a non-negative truncated Gaussian distribution8

with mean m and variance v. The harvested energy is stored
in a battery with capacity Bmax = 0.2 J and the maximum
feasible transmit power in each time slot is Pmax = 0.15 W.

The Deep Q-Network method is implemented by an ANN
with 10 hidden layers equipped with 60, 60, 58, 58, 56, 56,
54, 54, 52, 52 neurons, respectively. The input layer contains 3
neurons, the output layer contains 150 neurons, which implies
that a discretization of the feasible transmit power levels with
step 10−3 has been considered. All hidden layers have ReLU
activation functions, while the output layer employs linear
activations, motivated by similar considerations as in previous
case-studies. The Q-learning algorithm adopts a forgetting
factor of γ = 0.99 and the performance of the three following
algorithms has been compared:
• The deep reinforcement learning method that employs the

deep Q-Network described above.
• The solution of the MDP. This approach yields, in

principle, the optimal online policy, but on the other hand
requires a complexity that increases proportionally with
the number of considered power levels. For the problem
at hand, the complexity of the MDP approach becomes
unfeasible when the same discretization step of 10−3 as in
the deep reinforcement learning case is used. Therefore,
a discretization step of 10−2 has been used for the MDP
approach.

• An offline policy that assumes non-causal knowledge of
the channels and energy-harvesting realizations. Clearly,
this approach is not practically implementable, and is
considered only as a performance upper-bound of any
online method.

Table III shows the performance of the three schemes above,
with mean m = 10 and different values of the variance v. The
results indicate that the deep Q-Network method is able to
achieve performance very close to that of the offline policy
that exploits non-causal information, while outperforming the
MDP-based solution. It is worth mentioning that the latter

8The energy-harvesting distribution is not assumed known at the design
stage.

Table III
PERFORMANCE OF DEEP REINFORCEMENT LEARNING ONLINE POLICY
FOR A POINT-TO-POINT LINK WITH m = 10 IN COMPARISON WITH THE
MDP-BASED SOLUTION AND WITH THE OFFLINE SOLUTION. THE DEEP
REINFORCEMENT LEARNING USES A DISCRETIZED ACTION SPACE WITH

STEP 10−3 , WHILE THE MDP USES A DISCRETIZATION WITH STEP 10−2 ,
DUE TO ITS HIGHER COMPLEXITY.

Variance

(v)

Offline Policy

(nats/s)

DQN Policy

(Percentage )

MDP Policy

(Percentage )

1 2.0434 95.56% 83.32%

2 2.0375 95.24% 83.60%

3 2.0372 98.11% 83.32%

4 2.0347 96.54% 83.37%

5 2.0310 95.28% 83.29%

6 2.0284 98.18% 83.21%
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Figure 24. Convergence of the deep reinforcement learning algorithm in terms
of time-slots.

result is due to the fact that deep reinforcement learning
enables a finer discretization step compared to the MDP-based
solution, thanks to its much lower computational complexity.

Finally, Figure 24 shows the convergence of the considered
deep reinforcement learning method in terms of number of
time slots until the value of the system throughput stabilizes,
for m = 7 and m = 10. It is seen that a few thousands of
time-slots are required to reach convergence.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The complexity of future wireless communication networks
makes deep learning an indispensable design tool. Moreover,
recent technological advancements in the area of computer
processing units and distributed data storage make the use of
deep learning more practical than ever. Nevertheless, research
in this field has just started, and a great deal of open problems
must be solved before ANN-based wireless communication
networks can be deployed.

The first challenge to be overcome is represented by the
large amount of data that ANN need in order to ensure
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satisfactory performance. As remarked in Section II, deep
learning outperforms other machine learning techniques in
the large data regime. However, while this might not be an
obstacle in other fields of science, the acquisition of large
datasets in wireless networks requires measurement campaigns
that could be too expensive and/or not practical. In addition,
wireless networks are very dynamic, especially in outdoor en-
vironments, and it may be difficult to gather new accurate data
within the coherence time of the channel of the environment
itself [11].

As shown in this work, the most promising approach
to overcome this challenge is the joint use of data-driven
and model-based approaches. The transfer learning approach
developed in Section IV demonstrates how even approximate
mathematical models contain useful prior information that,
if successfully transferred into deep learning techniques, can
significantly reduce the amount of data required to achieve the
desired performance. Nevertheless, this represents only the tip
of the iceberg, and many open issues remain to be investigated.
As far deep transfer learning is concerned, it is not clear how
to set the hyperparameters (e.g. the amount of model-based
data, the number of ANN layers and neurons, etc.) to prevent
a negative transfer, i.e. that the ANN tuned with empirical
data provides worse performance than the model-based ANN.
Moreover, other transfer learning techniques remain to be
explored, as well as other ways of embedding expert knowl-
edge into ANNs, based for example on the deep unfolding
and deep reinforcement learning methods. As an example,
embedding some prior information into a deep reinforcement
learning algorithm could potentially speed up its convergence.
In addition, a research direction that could provide guidance to
achieve a cross-fertilization between mathematical models and
deep learning is aimed at deriving a theoretical explanation
of how ANNs work and how to configure them to perform
a certain task. Opening the black box of ANNs in order to
understand the information-theoretic principles that regulate
their behavior is surely a major topic for future investigation.
A recent contribution in this direction is [214], which employs
the so-called information bottleneck approach.

The second challenge to be overcome is the integration
of ANN into future wireless network architectures. As mo-
tivated in this work, deep learning should be implemented
in a distributed fashion. However, this poses several issues
that need to be overcome in the next years. Integrating AI
into distributed wireless networks will not only affect the
transmission technologies, but it will also significantly impact
the way the network is controlled through feedback signals to
avoid instability and malfunctioning. A distributed network in
which each node has its own ANN, that is trained based on
a dataset acquired from local measurement and experience,
inevitably leads to different nodes having different learning
capabilities. Each distributed dataset might differ in size,
since different nodes might have different measurement and
storage capabilities, as well as quality, since different nodes
might experience different data perturbations due to the non-
ideality of the measurement sensors. This could potentially
lead to instabilities and, in the worst case, cause the wireless
network to collapse. Moreover, another issue to be addressed

in distributed setups is the possibility for each node to optimize
its own performance, rather than the system-wide utility, which
might cause a device to learn how to cheat for individual gain.
Thus, security mechanisms must be put in place to ensure
the correct evolution of a distributed, ANN-based wireless
communication network.

A third challenge to be overcome is to make deep learning
robust against corrupted data. Indeed, due to inevitable errors
over feedback channels or in the storage process of data into
memory banks, the datasets used to train ANNs might be
corrupted and possibly lead to undesirable training results.
Techniques that are able to make the training process robust
to these events are warranted, especially in light of the
distributed implementation of ANN-based wireless networks,
which makes the overall network highly prone to inconsisten-
cies and failures.

In conclusion, it is apparent that deep learning is a promis-
ing tool to “make things work”. However, lots of data (for
deep learning) or time (for reinforcement learning) is needed
to achieve the desired performance. Compared with other
fields of research, wireless is unique, since decades of re-
search allowed us to gain deep expert knowledge. This prior
information can be used to “initialize” deep learning, in order
to reduce the amount of data, the computational complexity,
the energy, and the overhead that are needed to achieve these
gains. Communications theory still has a fundamental role in
the era of deep learning.
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[92] J. Granjal, E. Monteiro, and J. Sá Silva, “Security for the internet of
things: A survey of existing protocols and open research issues,” IEEE
Communications Surveys and Tutorials, vol. 17, no. 3, pp. 1294–1312,
2015.

[93] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[94] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd Edition Draft. MIT Press, 2017.
[95] Y. Li, “Deep reinforcement learning: An overview,”

https://arxiv.org/abs/1701.07274, 2017.
[96] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,

“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, November 2017.

[97] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” Theory of
Probability and Its Applications, vol. 16, pp. 264–280, 1971.

[98] A. Blumer, A. Ehrenfeucht, and D. H. M. K. Warmuth, “Learnability
and the Vapnik-Chervonenkis dimension,” Journal of the ACM, vol. 36,
no. 4, pp. 865–929, 1989.

[99] V. N. Vapnik, Estimation of Dependences Based on Empirical Data.
Springer-Verlag, 1982.

[100] ——, The nature of Statistical Learning Theory. Springer, 1995.
[101] J. Bergstra and Y. Bengio, “Random search for hyperparameter opti-

mization,” Journal of Machine Learning Research, vol. 13, pp. 281–
305, 2012.

[102] Y. Bengio, H. Larochelle, and P. Vincent, “Non-local manifold parzen
windows,” NIPS, MIT Press, 2005.

[103] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural
network design. Martin Hagan, 2014.

[104] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012.

[105] K. Jarret, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recogntion?” in International
Conference on Computer Vision, 2009.

[106] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on Machine Learn-
ing, 2010.

[107] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on International Conference of
Artificial Intelligence and Statistics, 2011.

[108] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier non linearities
improve neural network acoustic models,” in International Conference
on Machine Learning, 2013.

[109] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: surpassing human-level performance on ImageNet classification,”
https://arxiv.org/abs/1502.01852, 2015.

[110] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (ELUs),”
https://arxiv.org/abs/1511.07289, 2015.

[111] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[112] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Networks 6, vol. 6, pp. 861–867,
1993.

[113] A. E. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Transactions on Information Theory, vol. 39,
no. 3, pp. 930–945, 1993.

[114] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in Neural Information
Processing Systems, 2014.



44

[115] T. Cover and J. Thomas, Elements of information theory. Wiley, 2006.
[116] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge

University Press, 2004.
[117] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[118] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-

tion: Analysis, Algorithms, Engineering Applications. MPS-SIAM
Series on Optimization, 2001.

[119] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,” in
International Conference on Learning Representation, 2013.

[120] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization,” in Neural Information
Processing Systems, 2014.

[121] I. J. Goodfellow, O. Vinyals, and A. M. Saxe, “Qualitatively char-
acterizing neural network optimization problems,” in International
Conference on Learning Representations, 2015.

[122] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surface of multilayer networks,” in Artificial Intelligence and
Statistics, 2015.

[123] P. Baldi and K. Hornik, “Neural networks and principal component
analysis: Learning from examples without local minima,” Neural
Networks, vol. 2, pp. 53–58, 1989.

[124] K. Levenberg, “A method for the solution of certain non-linear
problems in least squares,” Journal of Applied Mathematics, Second
Quarter, no. 2, pp. 164–168, 1944.

[125] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society of Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[126] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, 1986.

[127] L. Bottou, Online algorithms and stochastic approximations, D. Saad,
Ed. Cambridge University Press, Cambridge, UK, 1998.

[128] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[129] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
Conference on Machine Learning 2013, 2013.

[130] Y. Nesterov, Introductory lectures on convex optimization : a basic
course, ser. Applied optimization. Boston, Dordrecht, London: Kluwer
Academic Publisher, 2004.

[131] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, 2011.

[132] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representation, 2015.

[133] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS’2010, 2010.

[134] D. Sussillo and L. F. Abbott, “Random walks: Training very
deep nonlinear feed-forward networks with smart initialization,”
https://arxiv.org/abs/1412.6558v3, 2015.

[135] J. Martens, “Deep learning via Hessian-free optimization,” in Twenty-
seventh International Conference on Machine Learning, 2010.

[136] C. M. Bishop, “Regularization and complexity control in feed-forward
networks,” in International Conference on Artificial Neural Networks,
1995.
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