
1

This paper was submitted for publication on the IEEE
Transactions on Communications on November 3, 2018 and
was assigned reference number TCOM-TPS-18-1223. It was
finally accepted for publication on June 20, 2019.

c©2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.”

ar
X

iv
:1

80
3.

02
22

5v
2 

 [
cs

.I
T

] 
 2

0 
Ju

n 
20

19



2
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Abstract—The problem of MIMO channel estimation at mil-
limeter wave frequencies, both in a single-user and in a multi-
user setting, is tackled in this paper. Using a subspace approach,
we develop a protocol enabling the estimation of the right (resp.
left) singular vectors at the transmitter (resp. receiver) side; then,
we adapt the projection approximation subspace tracking with
deflation and the orthogonal Oja algorithms to our framework
and obtain two channel estimation algorithms. We also present an
alternative algorithm based on the least squares approach. The
hybrid analog/digital nature of the beamformer is also explicitly
taken into account at the algorithm design stage. In order to
limit the system complexity, a fixed analog beamformer is used at
both sides of the communication links. The obtained numerical
results, showing the accuracy in the estimation of the channel
matrix dominant singular vectors, the system achievable spectral
efficiency, and the system bit-error-rate, prove that the proposed
algorithms are effective, and that they compare favorably, in
terms of the performance-complexity trade-off, with respect to
several competing alternatives.

Index Terms—Subspace tracking, MIMO Channel Estimation,
mmWave, clustered channel model

I. INTRODUCTION

The use of frequency bands in the range 10−100 GHz, a.k.a.
millimeter waves (mmWaves), for cellular communications, is
one of the main technological innovations brought by fifth
generation (5G) wireless networks [1]. Indeed, the scarcity of
available frequency bands in the sub-6 GHz spectrum has been
a strong thrust for considering the use of higher frequencies
for cellular applications. A recent research [2] has shown
that mmWaves, despite increased path-loss and atmospheric
absorption phenomena, can be actually used for cellular com-
munications over short-range distances (up to 100-200 meters),
provided that multiple antennas are used at both sides of
the communication link. It thus follows that multiple-input
multiple-output (MIMO) processing is one distinguishing and
key feature of mmWave systems. MIMO channels at mmWave
behave considerably different from MIMO channels at conven-
tional sub-6 GHz cellular frequencies [3], [4]. Indeed, while
at the latter frequencies the rich scattering environment leads
to channel matrices that result from the superposition of path-
loss effects, shadowing, and small-scale fading independently
distributed on each antenna element, at mmWave propagation
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happens through possible line-of-sight and/or through one-hop
reflected paths, and blockage effects are more frequent. Given
these differences, conventional MIMO channel estimation al-
gorithms developed for sub-6 GHz cellular frequencies are
not suited to perform channel estimation at mmWave, which
instead can leverage the sparse and parametric structure of
the channel. On top of this, complexity of the transceiver
hardware at mmWave has led to the adoption of hybrid
(HY) analog/digital beamforming structures [5], wherein the
number of RF transceiver chains is smaller than the number of
antenna elements, and this of course poses some constraints
on the signal processing algorithms that can be used in the
channel estimation algorithms [6]. The need to use the large
antenna arrays at mmWave frequencies makes the task of
channel estimation even more challenging, since this leads to
an increase of the size of the channel matrix to be estimated.

Channel estimation and/or principal directions estimation
for MIMO mmWave channels has been a very active research
area in the last few years. The paper [7] was one of the first
to propose a channel estimation scheme taking into account
the sparse nature of the MIMO mmWave channel and the
presence of HY beamformers. In [8] the authors exploit the
time division duplex (TDD) protocol and adopt a subspace
approach, based on the Arnoldi iteration, to propose a new
channel estimation scheme. The papers [9], [10] propose sev-
eral algorithms for estimating signal subspaces based on low-
dimensional projections, a situation encountered in mmWave
channels wherein the use of analog combining schemes leads
to reduced-dimensionality observations. Channel estimation
for mmWave MIMO channels is also considered in [11],
wherein a fast channel estimation algorithm based on an
overlapped beam pattern design procedure is proposed, and
in [12], wherein a procedure for 3-D lens antenna arrays
is developed. The papers [13]–[15] focus instead on the
problem of channel estimation for the case in which low-
resolution analog-to-digital converters are used in place of
the analog combining stage. The sparse nature of the MIMO
channel at mmWave is exploited in papers [16]–[18], that
resort to compressed sensing techniques to perform beam
alignment; while [16] adopts the usual compressed sensing
approach based on the minimization of the `1-norm, papers
[17], [18] instead use the recently developed non-negative least
squares algorithm, which, under suitable conditions, implicitly
promotes the sparsity of the sought solution. In order to
circumvent the problems that arise due to the usual channel
angles quantization, paper [19] proposes an iterative super-
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resolution channel estimation scheme that, using the gradient
descent method, moves the angles estimates from the initial
on-grid value to better off-grid values. Finally, the paper [20]
considers the problem of mmWave MIMO channel estimation
in the presence of transmitter-receiver hardware impairments,
that are modeled as an additional Gaussian-distributed vector-
valued disturbance with power proportional to the transmit
power at each antenna.

Following on this research track, and building upon the
conference paper [21], this paper considers the problem of
estimating the principal left and right singular vectors of a
mmWave MIMO channel wherein HY analog/digital beam-
forming is used. The proposed algorithms are presented both
for the single-user and the multi-user scenario, wherein a base
station (BS) simultaneously learns the channel from several
mobile stations (MSs). The contribution of this paper can be
summarized as follows.

1) Using a subspace approach, we develop a protocol
enabling the estimation of the right (resp. left) sin-
gular vectors at the transmitter (resp. receiver) side;
then, we adapt the Projection Approximation Subspace
Tracking with deflation (PASTd) algorithm [22], and the
Orthogonal Oja (OOJA) algorithm [23] to our frame-
work and obtain two subspace-based channel estimation
algorithms.

2) Using the parametric structure assumption for the
mmWave channel matrix, we develop an LS approach
to the channel estimation.

3) We adapt the proposed algorithms in order to take into
account the HY analog/digital beamforming structure
usually employed in mmWave wireless links. In par-
ticular, we assume that both at the transmitter and at
the receiver the front-end RF modules are made by
an analog combining matrix whose columns correspond
to beam-steering array response vectors, and show that
the proposed channel estimation algorithms based on
subspace tracking can be applied in this scenario too.

4) We compare the proposed algorithms with other compet-
ing alternatives available in the open literature, namely
the Approximate Maximum Likelihood (AML) algorithm
in [9], [10], the Subspace Estimation using Arnoldi
iteration (ARN) in [8] and the Adaptive Estimation (AE)
algorithm in [7]. In this context, we also generalize the
AML algorithm – presented in [9], [10] for the case in
which the mobile station (MS) has just one antenna –
to the case in which the MS is equipped with multiple
antennas.

5) We also focus on the problem of joint multiuser MIMO
channel estimation using mmWave frequencies and the
TDD protocol. We develop a framework wherein first
the BS sends a suitable probing signal in order to let
the MSs estimate the dominant left channel eigenvectors;
then, the MSs, using the estimated vectors as pre-coding
beamformers, send pilot sequences to enable channel
estimation at the BS.

6) We also show how the proposed channel estimation
schemes can be used to implement a simple pilot-less

differential modulation scheme and the corresponding
symbol error probability (SER) is numerically evaluated.

This paper is organized as follows. Next section contains the
description of the channel model in the single user and mul-
tiuser scenarios; in Section III we explain the subspace-based
channel estimation in the single user scenario, using both the
approaches of fully digital (FD) and HY beamforming, and
introducing the PASTd and OOJA algorithms. In Section IV
we describe the LS channel estimation scheme for a single-
user scenario, while Section V is devoted to the generalization
of the proposed algorithms to the multiuser case. Section VI
is devoted to the definition of the performance measures used
in the paper and to the discussion of the numerical results.
Finally, concluding remarks are given in Section VII.

Notation: The following notation is used in the paper.
Bold lowercase letters (such as a) denote column vectors,
bold uppercase letters (such as A) denote matrices, non-
bold letters a and A denote scalar values. The transpose,
the inverse and the conjugate transpose of a matrix A are
denoted by AT , A−1 and AH , respectively. The trace of
the matrix A is denoted as tr(A). The i-th entry of the
vector a is denoted as [a]i and the (i, j)-th entry of the
matrix A is [A]i,j . The real part operator is denoted as R{·}.
The N -dimensional identity matrix is denoted as IN and
the N -dimensional diagonal matrix with elements α1, . . . , αN
is denoted as diag(α1, . . . , αN ). The statistical expectation
operator is denoted as E[·]; CN

(
µ, σ2

)
denotes a complex

circularly symmetric Gaussian random variable with mean µ
and variance σ2, while U(a, b) denotes a random variable that
is uniformly distributed in [a, b].

II. THE SYSTEM MODEL

We consider a single-cell multiuser mmWave wireless sys-
tem with one BS and K MSs. The time-division-duplex (TDD)
protocol is implemented, so that the BS-to-MS channel is
the conjugate transpose of the reciprocal MS-to-BS channel,
provided that the transmission time does not exceed the
channel coherence interval. We denote by NBS the number
of antennas at the BS, and by NMS the number of antennas at
the MSs. Although all of the techniques that will be presented
in the paper can be applied to transceivers using any antenna
array configuration, for the sake of simplicity, a bi-dimensional
model is assumed, and both the BS and the MS are assumed to
be equipped with a uniform linear array (ULA). The number of
parallel data streams, i.e. the multiplexing order, is denoted by
M , and is assumed to be the same for all the MSs; in particular,
the BS will send in parallel MK data streams to the MSs in the
same time-frequency slot, while, on the uplink, each MS will
send M parallel data streams. A schematic representation of
the considered system, for a single MS-BS link, is reported in
Figure 1. In particular, beamforming at both sides of the link is
of the HY type, in the sense that, in order to reduce hardware
complexity, analog signal combining is performed at RF in the
transceiver front-end in order to reduce the dimensionality of
the signals, and, then FD baseband combining is performed.
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Figure 1: Block scheme of the considered transceiver architecture.

We will denote by NRF
BS < NBS and NRF

MS < NMS the number
of RF chains at the BS and at each MS, respectively.

We denote by Hk the (NMS×NBS)-dimensional matrix rep-
resenting the channel from the BS to the k-th MS. Due to TDD
operation the reverse-link propagation channel is expressed as
HH
k . According to the popular narrowband clustered mmWave

channel model [24]–[26], the channel matrix Hk is expressed
as:

Hk = γ

Ncl∑
i=1

Nray,i∑
l=1

αi,l,k

√
L(ri,l,k)aMS(φMS

i,l,k)aHBS(φBS
i,l,k)

+Hk,LOS .
(1)

In Eq. (1), we are implicitly assuming that the propagation
environment is made of Ncl scattering clusters, each of which
contributes with Nray,i propagation paths, i = 1, . . . , Ncl, plus
a possibly present LOS component. We denote by φMS

i,l,k and
φBS
i,l,k the downlink angle of arrival (that coincides with the

uplink angle of departure) at the k-th MS and the downlink
angle of departure (that coincides with the uplink angle of de-
parture) at the BS of the lth ray in the ith scattering cluster for
the k-th MS, respectively. The quantities αi,l,k and L(ri,l,k)
are the complex path gain and the attenuation associated to
the (i, l)-th propagation path of the channel from the BS to
the k-th MS. The complex gain αi,l,k ∼ CN (0, σ2

α,i), with
σ2
α,i = 1 [24]. The factors aMS(φMS

i,l,k) and aBS(φBS
i,l,k) repre-

sent the normalized receive and transmit array response vectors
evaluated at the corresponding angles of arrival and departure;
for a ULA with half-wavelength inter-element spacing we

have aBS(φ) =
1√
NBS

[1 e−jπ sinφ . . . e−jπ(NBS−1)]T . A

similar expression can be also given for aMS(φMS
i,l,k). Finally,

γ =

√
NBSNMS∑Ncl

i=1Nray,i

is a normalization factor ensuring that

the received signal power scales linearly with the product
NBSNMS, and accounting for the fact that the number of
possible transmitter-receiver path in a multiantenna system is
proportional to the product of the number of transmit and
receive antennas. Regarding the LOS component, denoting
by φMS

k,LOS, φBS
k,LOS, the downlink arrival and departure angles

corresponding to the LOS link, we assume that

Hk,LOS = Ik,LOS(dk)
√
NMSNBSL(dk)ejθk

×aMS(φMS
k,LOS)aHBS(φBS

k,LOS) .
(2)

In the above equation, θk ∼ U(0, 2π), dk is the distance be-
tween the BS and the k-th MS, while Ik,LOS(dk) is a random
variate indicating if a LOS link exists between transmitter and

receiver. A detailed description of all the parameters needed
for the generation of sample realizations for the channel model
of Eq. (1) is reported in [27], and we refer the reader to
this reference for further details on the channel model. We
also assume that the BS-to-MS channels H1, H2, . . . HK

are statistically independent, a reasonable assumption provided
that there are no close MSs and they have random orientations.

III. SUBSPACE-BASED CHANNEL ESTIMATION IN A
SINGLE-USER SCENARIO

We start by considering a single BS-to-MS link, that may
be representative either of a single-user wireless link, or of a
BS - MS link in a wireless cellular system using an orthogonal
multiple access scheme. In the following, we will thus refer
to the channel model (1) by omitting, for ease of notation,
the index k. The consideration of the single-user case permits
a gentle (and with simplified notation) introduction to the
multiuser case, to be considered in the sequel of the paper.
Given the structured (parametric) channel model in (1), and
given the use of the TDD protocol, we are actually interested
only to the dominant left and right singular vectors of the
channel matrix itself; it is also quite easy to realize that these
singular vectors tend to coincide, in the limit of large number
of antennas, with the ULA array responses at the angles
corresponding to the rays associated with the complex gain
with the largest norm.

A. FD beamforming architecture

We start by considering the case of FD beamforming, i.e.
no analog beamforming is performed and the number of
RF chains coincides with the number of antennas, both at
the BS and at the MS. The proposed protocol for channel
estimation consists of two successive phases. In phase (a), the
BS transmits a suitable probing signal and the MS estimates
the dominant left eigenvectors of the channel matrix; then,
in phase (b), the MS transmits a suitable signal and the
BS estimates the dominant right eigenvectors of the channel
matrix.

With regard to phase (a), let sBS(n), with n = 1, . . . , PBS,
be a sequence of NBS-dimensional random column vectors
with identity covariance matrix1. These vectors are transmitted
by the BS at (discrete) time n = 1, . . . , PBS; the signal
received at the MS at time n is expressed as the following
(NMS × 1)-dimensional vector:

1As an example, a sequence of random uniform binary-valued antipodal
symbols can be used.
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(a) . (b) .

Figure 2: Simulation diagrams for the proposed channel estimation algorithms in the single-user scenario. Subspace-based channel estimation
in subfigure (a) and LS channel estimation in subfigure (b).

rMS(n) = HsBS(n) + wMS(n) , (3)

where wMS(n) is the NMS-dimensional additive white Gaus-
sian noise (AWGN) vector, modeled as CN (0, σ2

n) indepen-
dent random variates (RVs). Letting H = UΛVH denote
the singular value decomposition of the channel matrix, the
covariance matrix of the received signal is expressed as

RMS = E
[
rMS(n)rHMS(n)

]
= UΛ2UH + σ2

nINMS . (4)

Given (4), it is thus easily seen that we can estimate the
M dominant left singular vectors of the channel matrix
by estimating the M dominant directions of the subspace
spanned by the received vectors rMS(n), with n = 1, . . . , PBS.
The signal processing literature is rich of adaptive subspace
tracking algorithms that can be straightforwardly applied at
the MS to obtain an estimate of the principal left singular
vectors of the channel matrix. Deferring later the specification
of the adopted subspace tracking algorithms, let DMS be the
(NMS×M)-dimensional matrix containing the estimate of the
M dominant singular vectors of RMS; the matrix DMS will
be used at the MS as a precoder during data transmission and
as a combiner when receiving data from the BS. After PBS

symbol intervals, phase (a) is over and phase (b) starts. The
MS now transmits random independent vectors with identity
covariance matrix in order to enable estimation at the BS of
the dominant right eigenvectors of the channel matrix H. More
precisely, let sMS(n), with n = PBS + 1, . . . , PBS + PMS, be
a sequence of zero-mean M -dimensional random vectors with

identity covariance matrix and assume that the MS transmits
the following NMS-dimensional data vectors

xMS(n) = DMSsMS(n) . (5)

The received discrete-time signal at the BS is represented by
the following NBS-dimensional vector:

rBS(n) = HHxMS(n) + wBS(n) , (6)

where wBS(n) is the NBS-dimensional AWGN vector, mod-
eled as CN (0, σ2

n) independent RVs2. Similarly to phase (a),
under the assumption of negligible errors in the estimation of
the left singular vectors of the channel matrix, the covariance
matrix of the received signal at the BS is approximately3

expressed as

RBS = E
[
rBS(n)rHBS(n)

]
≈ VΛ2VH + σ2

nINBS , (7)

thus implying that the the M dominant right singular vectors
of the channel matrix can be estimated by running adaptive
subspace tracking algorithms at the BS. We will denote by
DBS is the (NBS × M)-dimensional matrix containing the
estimates of the M dominant singular vectors of RMS.

A simulation diagram for the outlined subspace-based chan-
nel estimation procedure in the single-user scenario is reported
in subfigure (a) of Figure 2.

2Note that in phase (b) the MS is already using the estimated precoder
DMS; the illustrated procedure also works if the MS does not use the precoder
and sends NMS-dimensional random vectors.

3The approximation stems from the fact that we are assuming that
DMSD

H
MS ≈ INMS

.
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B. HY beamforming architecture

In the previous section a FD beamforming structure has
been assumed. We now examine the case in which, for com-
plexity reasons, a HY beamforming architecture is adopted.
The front-end processing consists of an analog RF combining
matrix aimed at reducing the number of RF chains needed
to implement the base-band processing. From a mathematical
point of view, the beamforming matrices at the MS and at the
BS can be expressed as

DMS = DMS,RFDMS,BB , and
DBS = DBS,RFDBS,BB ,

(8)

respectively. In (8), DMS,RF is an (NMS×NRF
MS)-dimensional

matrix with unit-norm entries, while DMS,BB is an (NRF
MS ×

M)-dimensional matrix with no constraint on its entries. Sim-
ilarly, DBS,RF is an (NBS × NRF

BS )-dimensional matrix with
unit-norm entries, and DBS,BB is an (NRF

BS ×M)-dimensional
baseband combining matrix. The design of HY analog/digital
combiners is a vastly explored research topic; most papers try
to find the HY combiner that best approximates, according
to some criterion, the optimal FD combiner. In this paper, we
use a simpler and different approach. We assume that DMS,RF

and DBS,RF have a fixed structure and in particular contain
on their column the ULA array responses corresponding to
a grid of discrete angles spanning the range [−π/2, π/2]. In
particular, letting

ϑMS
i =

(
−π2 + π(i−1)

NRF
MS

)
, i = 1, . . . , NRF

MS ,

ϑBS
i =

(
−π2 + π(i−1)

NRF
BS

)
, i = 1, . . . , NRF

BS ,
(9)

the RF combiners have the following structure:

DBS,RF =
[
aBS

(
ϑBS
1

)
, . . .aBS

(
ϑBS
NRF

BS

)]
,

DMS,RF =
[
aMS

(
ϑMS
1

)
, . . .aMS

(
ϑMS
NRF

MS

)]
.

(10)

Now, focus on the scheme in Figure 1 and consider the cascade
of the BS analog beamformer, the channel H and the MS ana-
log beamformer; it is straightforward to show that this cascade
can be modeled through the matrix H̃ = DH

MS,RFHDBS,RF,
of dimension NRF

MS × NRF
BS . As a consequence, the channel

estimation scheme outlined in the previous section under the
assumption of FD beamforming can be now re-applied on the
(reduced-dimension) composite channel H̃.

C. Subspace tracking algorithms

We now adapt two well-known subspace-tracking algo-
rithms to our context. We start with the PASTd, introduced in
[22]; one of its most popular applications deals with the design
of blind multiuser detection for code-division multiple access
system, as detailed in the highly-cited paper [28]. In order
to illustrate this algorithm, let r be an (N × 1)-dimensional
random vector with autocorrelation matrix C = E

[
rrH

]
.

Consider the scalar function

J (W) = E
[
‖r−WWT r‖2

]
= tr(C)− 2tr(WTCW) + tr(WTCWWTW),

(11)

with a (N ×M)-dimensional matrix argument W, with M <
N . It is shown in [22] that

- the matrix W is a stationary point of J (W) if and only
if W = TMQ, where TM is a (N ×M)-dimensional
matrix contains any M distinct eigenvectors of C and Q
is any (M ×M)-dimensional unitary matrix.

- All stationary points of J (W) are saddle points except
when TM contains the M dominant eigenvectors of C.
In that case, J (W) attains the global minimum.

Therefore, for M = 1, the solution of minimizing J (W) is
given by the most dominant eigenvector of C. In practical
applications, only sample vectors r(i) are available and so
the statistical average in (11) is replaced by an exponentially-
windowed time-average, i.e.:

J [W(n)] =

n∑
i=1

βn−i‖r(i)−W(n)W(n)T r(i)‖2, (12)

where β is the forgetting factor. The key trick of the PASTd
approach is to approximate W(n)T r(i) in (12), the unknown
projection of r(i) onto the columns of W(n), by y(i) =
W(i − 1)T r(i), which can be calculated for i = 1, . . . n at
sampling time n. This results in a modified cost function

J̃ [W(n)] =

n∑
i=1

βn−i‖r(i)−W(n)y(n)‖2, (13)

The recursive least squares (RLS) algorithm can then be used
to solve for W(n) that minimizes the exponentially weighted
least squares criterion (13). When there is the need to track
the M dominant eigenvectors with M > 1, the PASTd
algorithm adopts the deflation technique and its basic idea is
as follows: for M = 1, by minimizing J̃ [W(n)] in (13) the
dominant eigenvector is updated; then, the contribution from
this estimated eigenvector is removed from r(n) itself, and
the second most dominant eigenvector can be now extracted
from the data. This procedure is applied repeatedly until
the M dominant eigenvectors are sequentially estimated. The
complete PASTd procedure to be implemented at the MS for
the estimation of the M dominant left singular vectors is
reported4 in Algorithm 1.

A simulation diagram for the outlined subspace-based chan-
nel estimation procedure in the single-user scenario is reported
in subfigure (a) of Figure 2.

Another possible subspace tracking algorithm is the OOJA
algorithm, that was introduced in [23], building upon the minor
subspace extraction algorithm of Oja originally proposed in
[29]. Focusing again on phase (a), and letting W(n) denote the
estimate of the beamformer DMS available at time epoch n,
the complete algorithm’ recipe to be run at the MS is reported
in Algorithm 2.

IV. LS CHANNEL ESTIMATION IN THE SINGLE-USER
SCENARIO

We now exploit an LS approach [30].

4The procedure to be implemented in phase (b) at the BS resembles that
carried out in phase (a) and is omitted for brevity.
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Algorithm 1 The PASTd Algorithm to be implemented during
phase (a) at the MS.

1: Set β = 0.995
2: for n = 1 : PBS do
3: x1(n) = rMS(n)
4: for m = 1 : M do
5: ym(n) = uHm(n− 1)xm(n)
6: λm(n) = βλm(n− 1) + |ym(n)|2
7: um(n) = um(n − 1) +

[xm(n)−um(n− 1)ym(n)] ym(n)∗

λm(n)

8: xm+1(n) = xm(n)− um(n)ym(n)
9: end for

10: end for
11: DMS = [u1(PBS),u2(PBS), . . . ,uM (PBS)]

Algorithm 2 The OOJA Algorithm

1: Set δ = 0.01
2: for n = 1 : PBS do
3: v(n) = WT (n)rMS(n)
4: z(n) = W(n)v(n)
5: p(n) = rMS(n)− z(n)
6: ϕ(n) = 1√

1+δ2‖p(n)‖2‖v(n)‖2

7: τ(n) = φ(n)−1
‖v(n)‖2

8: p̄(n) = − τ(n)z(n)δ + φ(n)p(n)
9: W(n+ 1) = W(n)− δp̄(n)vT (n)

10: end for
11: DMS = W(PBS + 1)

A. FD beamforming architecture

We start by considering the case of FD beamforming. Also
in the case, the proposed protocol consists of two successive
phases. In phase (a), the BS transmits a suitable probing signal
and the MS estimates the dominant left eigenvectors of the
channel matrix; then, in phase (b), the MS transmits a suitable
signal and the BS estimates the dominant right eigenvectors
of the channel matrix.

With regard to phase (a), the received signal at
the MS is again expressed as (3). Let EMS =
1
PBS

∑PBS

n=1 rMS(n)rMS(n)H be the sample covariance matrix
of the noisy received vectors rMS(n) , n = 1, . . . , PBS.
Due to the clustered nature of the mmWave channel ma-
trix, the covariance matrix of the data at the MS can be
expressed as the sum of rank-1 matrices whose principal
eigevector is the MS array response corresponding to the
directions

{
φMS
i,l

}
l=1,...,Nray,i i=1,...,Ncl

. Accordingly, letting

θi = 2π(i−1)
LMS

, i = 1, . . . , LMS denote a set of LMS � NMS

angles uniformly spanning the entire 2π angular range, and
denoting by gi the MS array response corresponding at the
angle θi, we aim at approximating the matrix EMS with the
sum

∑LMS

i=1 sigig
H
i , where the coefficients s1, . . . , sLMS are

unknown positive real numbers, that can be determined by

considering the following LS problem

s̃ = arg min
s1,...,sLMS

∥∥∥∥∥
LMS∑
i=1

sigig
H
i −EMS

∥∥∥∥∥
2

. (14)

Solving (14) leads to the solution

s̃ = F−1MSeMS, (15)

where [FMS]i,j = tr
(
gig

H
i gjg

H
j

)
and [eMS]i =

R
{

tr
(
EMSgig

H
i

)}
. After computing the vector s̃ by using

(15), the MS beamformer is obtained by retaining the M
dominant eigenvectors of the matrix

∑LMS

i=1 s̃igig
H
i .

After PBS symbol intervals, phase (a) is over and phase
(b) starts. Similarly to the case of subspace-based channel
estimation, the received discrete-time signal at the BS is rep-
resented by Eq. (6). Let EBS = 1

PMS

∑PMS

n=1 rBS(n)rBS(n)H

be the sample covariance matrix of the noisy received vectors
rBS(n) , n = PBS+1, . . . , PBS+PMS. Again, we can write the
matrix EBS through the approximation EBS ≈

∑LBS

i=1 riqiq
H
i ,

where qi = aBS

(
φBS
i

)
, and φBS

i = 2π(i−1)
LBS

, i = 1, . . . , LBS,
with LBS � NBS. In order to estimate the right eigenvectors
of the channel matrix we formulate the following LS problem:

r̃ = arg min
r

‖
LBS∑
i=1

riqiq
H
i −EBS‖2 , (16)

whose solution is shown to be expressed as

r̃ = F−1BSeBS, (17)

where now [FBS]i,j = tr
(
qiq

H
i qjq

H
j

)
and [eBS]i =

R
{

tr
(
EBSqiq

H
i

)}
. After computing the vector r̃ by using

(17), the BS beamformer the matrix DBS is built by retaining
the M dominant eigenvectors of the matrix

∑LBS

i=1 r̃iqiq
H
i .

A simulation diagram for the outlined LS-based channel
estimation procedure in the single-user scenario is reported in
subfigure (b) of Figure 2.

B. HY beamforming architecture

We now extend the LS-based channel estimation scheme to
the case in which a HY beamforming architecture is adopted.
We thus assume that the beamforming matrices at the MS
and at the BS can be expressed as in (8), where DMS,RF

and DBS,RF have a fixed structure and in particular contain
on their column the ULA array responses corresponding to
a grid of discrete angles spanning the range [−π/2, π/2]
with quantization step given by π divided by the number of
considered RF chains. We can consider the composite channel
H̃ = DH

MS,RFHDBS,RF and apply to it the LS procedure.
With regard to phase (a), let s̃BS(n), with n = 1, . . . , PBS, be
a sequence of NRF

BS -dimensional random column vectors with
identity covariance matrix. These vectors are transmitted by
the BS at (discrete) time n = 1, . . . , PBS; the signal received
at the MS at time n is expressed as the following (NRF

MS × 1)-
dimensional vector:

r̃MS(n) = H̃s̃BS(n) + DH
MS,RFw̃MS(n) , (18)

where w̃MS(n) is the NRF
MS-dimensional AWGN vector,

modeled as CN (0, σ2
n) independent RVs. Let ẼMS =
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(a) . (b) .

Figure 3: Simulation diagrams for the proposed channel estimation algorithms in the multiuser scenario. Subspace-based channel estimation
in subfigure (a) and LS channel estimation in subfigure (b).

1
PBS

∑PBS

n=1 r̃MS(n)r̃MS(n)H be the sample covariance matrix
of the noisy received vectors r̃MS(n) , n = 1, . . . , PBS.
Similarly to the case of LS channel estimation with FD beam-
forming we can approximate the sample covariance matrix as
ẼMS ≈

∑LMS

i=1 sig̃ig̃
H
i , where now g̃i = DH

MS,RFaMS

(
φMS
i

)
,

and φMS
i = 2π(i−1)

LMS
, i = 1, . . . , LMS, with LMS � NMS. We

formulate the LS problem

s̃ = arg min
s

‖
LMS∑
i=1

sig̃ig̃
H
i − ẼMS‖2, (19)

with solution s̃ = F̃−1MSẽMS, where
[
F̃MS

]
i,j

=

tr
(
g̃ig̃

H
i g̃j g̃

H
j

)
and [ẽMS]i = R

{
tr
(
ẼMSg̃ig̃

H
i

)}
. The

precoder DMS,BB is then obtained by considering the M

dominant singular vectors of the matrix
∑LMS

i=1 s̃ig̃ig̃
H
i .

For phase (b), a similar procedure is pursued. Let s̃MS(n),
with n = PBS + 1, . . . , PBS + PMS, be a sequence of M -
dimensional random column vectors with identity covariance
matrix. These vectors are transmitted by the MS at (discrete)
time n = PBS + 1, . . . , PBS + PMS ; the signal received at
the BS at time n is expressed as the following (NRF

BS × 1)-
dimensional vector:

r̃BS(n) = H̃HDMS,BBs̃MS(n) + DH
BS,RFw̃BS(n) , (20)

where w̃MS(n) is the NRF
BS -dimensional AWGN vector,

modeled as CN (0, σ2
n) independent RVs. Let ẼBS =

1
PMS

∑PMS

n=1 r̃BS(n)r̃BS(n)H be the sample covariance ma-
trix of the noisy received vectors r̃BS(n) , n = PBS +
1, . . . , PBS + PMS. The (NRF

BS × M)-dimensional matrix
DBS,BB is built with the M dominant singular vectors of the
matrix

∑LBS

i=1 r̃iq̃iq̃
H
i , with q̃i = DH

BS,RFaBS

(
φBS
i

)
, φBS

i =

2π(i−1)
LBS

, i = 1, . . . , LBS, LBS � NBS, and the coefficients r̃i
are the entries of the vector r̃ = F̃−1BSẽBS, with

[
F̃BS

]
i,j

=

tr
(
q̃iq̃

H
i q̃jq̃

H
j

)
and [ẽBS]i = R

{
tr
(
ẼBSq̃iq̃

H
i

)}
.

V. MULTIUSER CHANNEL ESTIMATION

While previous derivations considered a single-user link, we
now tackle the multiuser scenario; we thus focus on a single-
cell wireless network wherein a BS serves K MSs in the same
time-frequency resource. As in the single-user scenario, we
develop a framework that consists of two successive phases.
In phase (a), the BS sends a suitable probing signal in order
to let the K MSs estimate the dominant left eigenvectors of
their own channel matrix; then, in phase (b), the MSs, using the
estimated vectors as pre-coding beamformers, simultaneously
send pilot sequences to enable channel estimation at the BS.
We first outline the subpace-based technique and then focus on
LS channel estimation. Simulation diagrams for the outlined
subspace-based and LS-based channel estimation procedures
in the multiuser case are reported in subfigures (a) and (b) of
Figure 3, respectively.

A. Subspace-based channel eigendirections estimation

1) FD architecture: As in the single-user scenario, we start
by considering the case of FD beamforming, i.e. no analog
beamforming is performed and the number of RF chains
coincides with the number of antennas, both at the BS and
at the MSs.

With regard to phase (a), the BS transmits a suitable probing
signal and the MSs estimate the dominant left eigenvectors
of their respective BS-to-MS channel matrix. The processing
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needed in this phase at each MS is exactly coincident with
that outlined in the single-user case in Section III, since only
the BS transmits and each MS receives an interference-free
signal. Let thus Dk be the (NMS ×M)-dimensional matrix
containing an estimate of the M dominant singular vectors of
the covariance matrix of the NMS-dimensional vector received
at the k-th MS.

After PBS symbol intervals, phase (a) is over and phase (b)
starts. Let us now denote by Φk an (M × PMS)-dimensional
matrix containing on its rows the M unit-energy pilot se-
quences assigned to user k; we assume that the rows of
Φk are orthogonal, while no orthogonality is required for
pilot sequences assigned to different users. In particular, we
will use in the numerical simulations random binary pilot
sequences with the constraint that the rows of each matrix
Φk be orthogonal. The generic k-th MS transmits, over PMS

consecutive signaling slots, the matrix
√
αkDkΦk, with αk

a proper coefficient ruling the power transmitted by the k-th
MS. The signal received at the BS can be thus expressed as
the following (NBS × PMS)-dimensional matrix:

Y=

K∑
k=1

√
αkH

H
k DkΦk+ Z≈

K∑
k=1

M∑
i=1

λk,ivk,iΦk(i, :)+ Z

(21)
wherein Z contains the thermal noise contribution, we have
assumed, with no loss of generality, that the diagonal entries
of Λk are ordered according to a decreasing magnitude, and
λk,i and vk,i represent the i-th diagonal entry of

√
αkΛk

and the i-th column of Vk, respectively. Now, based on
observable (21), and relying on the knowledge of the pilot
matrices Φk, a number of algorithms can be envisaged to
estimate the dominant right channel eigenvectors vk,i. A
simple algorithm relies on pilot-matched (PM) filtering, i.e.
the product λk,ivk,i can be estimated as follows: λ̂k,ivk,i =

Y[Φk(i, :)]H . Alternatively, if PMS ≥ MK, a zero-forcing
(ZF) approach can be also used; in particular, the estimate of
the matrix [λk,1vk,1, . . . , λk,Mvk,M ] if formed by considering
the statistic YZk, where the (PMS ×M)-dimensional matrix
Zk is such that ΦkZk = IM and ΦjZk is the all-zero matrix
for all j 6= k.

2) HY architecture: In the HY architecture beamforming
at the BS and at the MSs is of the HY type, so the front-
end processing both at the BS and at the MSs consists of an
analog RF combining matrix aimed at reducing the number of
RF chains needed to implement the base-band processing. As
in the single-user scenario, the beamforming matrices at the
k-th MS and at the BS can be expressed as

Dk = Dk,RFDk,BB , and
DBS = DBS,RFDBS,BB ,

(22)

respectively. In (8), Dk,RF is an (NMS × NRF
MS)-dimensional

matrix with unit-norm entries, while Dk,BB is an (NRF
MS×M)-

dimensional matrix with no constraint on its entries. Similarly,
DBS,RF is an (NBS × NRF

BS )-dimensional matrix with unit-
norm entries, and DBS,BB is an (NRF

BS × M)-dimensional
baseband combining matrix. As in the single-user case, we
assume that Dk,RF and DBS,RF have a fixed structure and in
particular contain on their columns the ULA array responses

corresponding to a grid of discrete angles uniformly spanning
the range [−π/2, π/2]. In particular, letting

ϕMS,k
i =

(
−π2 + π(i−1)

NRF
MS

)
, i = 1, . . . , NRF

MS ,

ϕBS
i =

(
−π2 + π(i−1)

NRF
BS

)
, i = 1, . . . , NRF

BS ,
(23)

the RF combiners have the following structure:

DBS,RF =
[
aBS

(
ϕBS
1

)
, . . .aBS

(
ϕBS
NRF

BS

)]
,

Dk,RF =
[
aMS

(
ϕMS,k
1

)
, . . .aMS

(
ϕMS,k

NRF
MS

)]
.

(24)

Now, the cascade of the BS analog beamformer, the channel
Hk and the k-th MS analog beamformer can be modeled
through the matrix H̃k = DH

k,RFHkDBS,RF, of dimension
NRF

MS×NRF
BS . As a consequence, the channel estimation scheme

outlined above under the assumption of FD beamforming
can be now re-applied on the (reduced-dimension) composite
channels H̃k, with k = 1, . . . ,K. In particular, the generic k-
th MS transmits, over PMS consecutive signaling slots, the
matrix

√
αkDk,BBΦk, with αk, again a proper coefficient

ruling the power transmitted by the k-th MS. The signal
received at the BS can be thus expressed as the following
(NRF

BS × PMS)-dimensional matrix:

Ỹ=

K∑
k=1

√
αkH̃

H
k Dk,BBΦk+ Z≈

K∑
k=1

M∑
i=1

λ̃k,iṽk,iΦk(i, :)+ Z

(25)
wherein Z contains the thermal noise contribution. Now,
based on observable (25), again either PM or ZF channel
estimation can be applied at the BS to estimate the channel
eigendirections from the active users.

Notice also that letting NRF
BS = NBS and NRF

MS = NMS and
taking the analog beamformers equal to an identity matrix the
procedures developed in the following describe a system with
FD beamforming.

B. LS channel estimation

1) FD architecture: Again, we start by considering the case
of FD beamforming, i.e. no analog beamforming is performed
and the number of RF chains coincides with the number of
antennas, both at the BS and at the MSs.

With regard to phase (a), the BS transmits a suitable probing
signal and the MSs estimate the dominant left eigenvectors of
their respective BS-to-MS channel matrix. Also in this case,
the processing needed at each MS coincides with that outlined
in the single-user case in Section IV. Let thus Dk,BB be
the (NRF

MS ×M)-dimensional matrix containing the estimate,
available at the k-th MS, of the M dominant singular vectors
of Hk.

After PBS symbol intervals, phase (a) is over and phase (b)
starts. Following the same approach as in Section V-A, the
signal received at the BS can be thus expressed as in Eq. (21),
and either PM or ZF channel estimation can be pursued.

2) HY architecture: As in Section V-A, the beamforming
matrices at the k-th MS and at the BS can be expressed as Eq.
(22) and the cascade of the BS analog beamformer, the channel
Hk and the k-th MS analog beamformer can be modeled
through the matrix H̃k. The LS channel estimation scheme
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outlined in Section IV under the assumption of single user
can be now re-applied to estimate the left eigendirections of
the reduced dimensions channels H̃k for k = 1, . . . ,K. After
this procedure we obtain Dk,BB be the matrix containing the
estimate of the M dominant left singular vectors of H̃k.

After PBS symbol intervals, phase (a) is over and phase
(b) starts. Similarly to Section V-A, based on observable (25),
either PM or ZF channel estimation can be applied at the BS
to estimate the channel eigendirections from the active users.

VI. PERFORMANCE ANALYSIS AND ALGORITHMS
COMPARISON

A. Algorithms comparison

Before illustrating the performance analysis, it is useful to
give some comments about the computational complexity of
the proposed subspace-based and LS-based channel estimation
algorithms.

Denoting by M the multiplexing order (i.e., the num-
ber of dominant eigenvectors to be tracked) and by N the
size of the data-vectors to be processed by the algorithm,
executing the PASTd algorithm costs 4NM + O(N) flops
per iteration. Focusing on the single-user case, this implies
that the complexity at the BS is proportional to the product
4NBSM , for FD beamforming, and to the product 4NRF

BS M ,
for HY beamforming, respectively. Similarly, at the MS, the
complexity is proportional to the product 4NMSM , for FD
beamforming, and to the product 4NRF

MSM , for HY beamform-
ing, respectively. Let us now consider the OOJA algorithm,
which costs 3NM + O(N) flops per iteration. Comparing
this to the PASTd algorithm, we see that the complexity is
still linear in the product between the dimensionality of the
processed vectors and the number of principal directions to
be tracked, but, compared to the PASTd algorithm, there is
a 25% saving. Let us now examine the LS-based channel
estimation technique. Differently from the subspace-based
techniques, the LS-based algorithm performs a batch (rather
than iterative) processing of the data, and the dominant task,
from the point of view of the computational complexity, are
the matrix inversions in (15) and in (17), and the subsequent
SVD computations. Overall, we can thus state that for the
LS-based technique the complexity at the BS is L3

BS + N3
BS,

for the case of FD beamforming, and L3
BS + (NRF

BS )3, for
the case of HY beamforming. The complexity at the MS,
instead, is L3

MS + N3
MS, for the case of FD beamforming,

and L3
MS + (NRF

MS)3, for the case of HY beamforming. The
cubic complexity incurred by the LS-based technique could
lead to the conclusion that this algorithm is the most complex
one. However, as already discussed, the LS-based algorithm
complexity refers to the batch algorithm; thus, in order to
perform a fair comparison with the subspace-based methods,
the batch complexity must be divides by the length of the
pilots, i.e. PBS and PMS, for the BS and for the MS algorithms,
respectively. This implies that the LS-based algorithm has
approximately the same complexity at the subspace-based
algorithms, and that the exact ranking among the algorithms
in terms of complexity depends on the particular choice of
the involved parameters. On the other hand, although this

issue is not explored in this paper for the sake of brevity, the
subspace-based algorithms should be superior to the LS-based
algorithm in terms of tracking capabilities, i.e. they should be
able to cope with the situation in which the channel principal
directions are subject to (slow) variations.

B. The considered performance measures

We now describe the performance measures that we will
consider to assess the merits of the proposed algorithms. First
of all, we consider the normalized correlation between the
true channel eigenvectors and the estimated ones. In particular,
we denote by u and v the left and the right eigenvector of
the channel matrix corresponding to the dominant eigenvalue
respectively, and by û and v̂ the estimates of left and right
dominant eigenvector of the channel matrix, respectively. The
normalized correlations are defined as

ηU =

∣∣uH û
∣∣

‖u‖‖û‖
, (26)

and as

ηV =

∣∣vH v̂
∣∣

‖v‖‖v̂‖
. (27)

The second performance measure here considered is the
achievable spectral efficiency in the single user and in the
multiuser scenarios. In particular, the achievable spectral effi-
ciency in the single user scenario in downlink and uplink are
respectively

RMS = log2 det [IM

+
PT,BS

M

(
σ2
nDH

MSDMS

)−1
DH

MSHDBSDH
BSHHDMS

]
,

(28)
and

RBS = log2 det [IM

+
PT,MS

M

(
σ2
nDH

BSDBS

)−1
DH

BSHHDMSDH
MSHHDMS

]
.

(29)
with PT,MS the transmitted power at the MS and PT,BS the
transmitted power at the BS. In the multiuser scenario the
spectral efficiency on the uplink and downlink are respectively

RDL =

K∑
k=1

log2 det
[
IM+R−1k,DLDH

k HkFkPBS,kF
H
k HH

k Dk

]
,

(30)
and

RUL =

K∑
k=1

log2 det
[
IM+R−1k,ULJHk HH

k DkPMS,kD
H
k HkJk

]
,

(31)
where Jk =

[
λ̂k,1vk,1, . . . λ̂k,Mvk,M

]
denotes the matrix

containing the estimates of the products λk,ivk,i, PBS,k is
the (M × M)-dimensional diagonal matrix containing the
power transmitted from the BS to the k-th MS for each

stream, i.e. [PBS,k]j,j =
PT,BS

MK‖ [Jk](:,j) ‖2
, PMS,k is the

square M -dimensional diagonal matrix containing the power
transmitted from the k-th MS to the BS for each stream, i.e.
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[PMS,k]j,j =
PT,MS

M‖ [Dk](:,j) ‖2
, and the matrices Rk,DL and

Rk,UL are expressed as

Rk,DL =
∑
` 6=k

DH
k HkJ`PBS,`J

H
` HH

k Dk, (32)

and
Rk,UL =

∑
` 6=k

JHk HH
` D`PMS,`D

H
` H`Jk. (33)

We will also represent, finally, the symbol error probability
assuming differential phase shift keying signaling and differen-
tial non-coherent detection; indeed, notice that the proposed
channel estimation methods do not rely on known training
symbols, and the dominant eigenvectors are estimated with no
information on the signal phase.

C. Numerical results

In our simulation setup, we consider a communication band-
width of W = 500 MHz centered over the carrier frequency
f0 = 73 GHz. The distance between the transmitter and the
receiver is 50 m; the additive thermal noise is assumed to have
a power spectral density of −174 dBm/Hz, while the front-end
receiver at the BS and at the MS is assumed to have a noise
figure of 6 dB. The shown results come from an average over
500 random scenario realizations with independent channels.
The remaining system parameters are reported in the figures’
captions.

We start considering the single user scenario, in this case
the length of the training phase for all the algorithms is
PBS = PMS = 30; of these training samples, the first ten
are used to perform an SVD of the sample covariance matrix
of the data, and the corresponding dominant eigenvector is
used to initialize the PASTd and OOJA algorithms. First of
all we focus on the performance measures ηU and ηV . In
Figure 4 we report the average ηU and ηV versus the received
SNR for all the considered algorithms proposed in the paper
and for competing alternatives, and in particular the AML,
ARN and AE methods, whose details are provided in the
Appendix. The system parameters are fully specified in the
figure’s caption. Inspecting the curves, it is seen that the
proposed algorithms achieve satisfactory performance. Indeed,
for SNR larger than 0 dB the average values of ηV and ηU
approach very closely the limiting value 1 for both the PASTd
and the OOJA algorithms with FD beamforming. The LS-
based algorithm, on the other hand, achieves its ceil for SNR
larger than -15 dB; its limiting performance value, however,
for ηV is slightly smaller than one, and this may be due to the
quantization error induced by too small values for LMS and
LBS. This behavior thus suggests that the LS-based procedure
can be used with improved performance for low values of
SNR, while, instead, for larger values of SNR it is convenient
to use the subspace-based techniques. When considering the
HY beamformers, we see that the limiting performance values
are in the range [0.8, 0.9], i.e. they do not approach unity. This
is due to the fact that the fixed analog beamformer introduces
a constraint that prevents the convergence of the estimated
singular vectors to the true ones. Figure 6, to be commented

later, will show that the impact of the constraint posed by
the analog beamforming stage on the system SE is however
rather limited. Finally, the results show that the competing
alternatives have a performance inferior to that of the proposed
approaches, and, among the alternatives, the AML algorithm
achieves the best performance.

While Figure 4 has shown the average values of ηV and
ηU versus the SNR, in Figure 5, we set the SNR at 3
dB, and report the cumulative distribution function (CDF)
of ηU and ηV across the 500 independent trials. This figure
helps understanding the algorithms’ performance in extreme
situations, since its permits visualizing the percentiles of the
plotted performance measures. Results show that the subspace-
based algorithms with FD beamforming are very effective and
are able to provide good performance also in the presence
of heavily degraded channels. Indeed, focusing on the 5%-
percentile, the PASTs and OOJA algorithms with FD beam-
forming achieve correlation values quite close to 0.95, for
both the left and right singular vectors. The other algorithms,
instead achieve inferior performance, and, thus, they are less
resistant to adverse situations with very bad channel realiza-
tions. Another general trend that can be observed is that in
general ηU is larger than ηV i.e. the proposed algorithms
estimate with higher reliability the left singular vectors of
the channel. This behavior can be explained by noticing that
the dominant left singular vectors are estimated based on the
transmission of NBS-dimensional pilots (see (3)), while, in
the second phase, the right singular vectors of the channel
are estimated at the BS based on the transmission of M -
dimensional pilots (see (6)), with M , usually much smaller
than NBS, the multiplexing order. Of course, the proposed
algorithms might be modified and estimate the channel right
singular vectors using NBS-dimensional pilots, but this would
lead to increased algorithm complexity.

So far, the parameters ηV and ηU have been used to
assess the performance of the proposed channel estimation
algorithms. It is however of great interest to understand
what is the impact of the proposed algorithms on one of
the crucial performance measures for any wireless link, i.e.
the achievable spectral efficiency. Figure 6 thus reports the
downlink achievable spectral efficiency evaluated as in (28),
for the BS-to-MS link versus SNR, for multiplexing order
M = 1 and M = 3. For benchmarking purposes, we also
report the curve corresponding to the case of perfect channel
knowledge. The results again confirm that the subspace-based
techniques achieve the best performance, and are capable
of attaining spectral efficiency values very close to those
attainable in the ideal case of perfectly known channel. While
for multiplexing order M = 1 the several algorithms achieve
very similar performance, for M = 3 there is instead some
evident performance gap among them. As an instance, for
SNR=13 dB, the PASTd algorithm with FD beamforming
achieves an average spectral efficiency of 14 bit/s/Hz, while
the same algorithm with HY beamforming the average spectral
efficiency is 11 bit/s/Hz, with a −20% loss. This gap, however,
can be reduced by increasing the number of RF chains at the
BS and at the MS.

Figure 7 reports the symbol error probability assuming
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Figure 4: ηU and ηV versus signal to noise ratio for a system with NMS × NBS = 16 × 64. Parameters: M = 1, PBS = PMS = 30. For
the HY implementations we have used NRF

MS = 8 and NRF
BS = 8.
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Figure 5: CDF of ηU and ηV for a system with NMS ×NBS = 16× 64. Parameters: M = 1, PBS = PMS = 30, the signal to noise ratio
is 3 dB. For the HY implementations we have used NRF

MS = 8 and NRF
BS = 8.

differential uncoded 4-PSK modulation versus SNR for the
BS-to-MS link and assuming multiplexing order M = 1. Re-
sults show that the proposed algorithms with FD beamforming
are fractions-of-dB far from the ideal curce corresponding to
the case in which the channel is perfectly known. The use
of HY beamformers, instead, introduces some performance
degradation, that, at 10−2 error probability, can be quantified
in approximately 5 dB.

Finally, we focus on the multiuser scenario and consider a
system with one BS and K = 15 MSs. The distance between
the BS and the MSs was randomly chosen in the range [5, 100]
m. During phase (a) the BS transmit power is 1 W and the
pilot length is PBS = 60; in phase (b), the MSs transmit with a
power of 0.1 W, and the pilot length is PMS = 32. During the
data communication phase the BS and MSs transmit powers
are again 1 W and 0.1 W, respectively. Figure 8(a) shows the

CDF of the downlink achievable rate-per-user of the system,
while Figure 8(b) shows the CDF of the uplink achievable
rate-per-user considering the algorithms proposed in Section
V. Also in this case we assume that the first ten training
samples are used to perform an SVD of the sample covariance
matrix of the data, and the corresponding dominant eigenvector
is used to initialize the PASTd and OOJA algorithms at
the MS. Results confirm that the proposed subspace-tracking
algorithms exhibit very good performance, especially in their
FD implementation. Results show that with just 4 antennas
and 2 RF chains at the MSs it is possible to have, with the
HY beamformers, data-rates in the range 100 Mbit/s - 1 Gbit/s
for the 60 % and 40 % of the users in the downlink and in the
uplink, respectively. Moreover, if we focus on the median rate,
it can be seen that on the downlink the proposed algorithms
with FD beamforming perform very similarly to the ideal
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system that assumes perfect channel knowledge, with a median
rate equal to 600 Mbit/s, while, instead, with HY beamforming
this rate gets reduces to approximately 200 Mbit/s. On the
uplink, instead, the median rate penalty caused by the use of
HY beamforming is about one order of magnitude, and this
loss can be mitigated by increasing the number of RF chains
at the MSs.

VII. CONCLUSION

This paper has been focused on the problem of channel
estimation for wireless MIMO links at mmWave frequencies.
Exploiting the clustered propagation channel model, it is
shown that subspace tracking algorithms and the LS approach
can be used in order to estimate the principal eigenvectors
of the channel matrix. The proposed algorithms have been
extended to the case in which HY analog/digital beamform-
ing is used, and to a single-cell multiuser scenario. Results

have shown that the proposed estimation algorithms, and in
particular the ones based on the subspace tracking algorithms,
are effective and capable of attaining good performance levels
with low complexity. Results have also shown that there is a
noticeable performance gap of HY beamformers with respect
to the case of FD beamforming, and this suggests that the
design of optimized low-complexity beamformers is one of the
research areas that are worth being investigated, at least until
the technology will not permit the use of FD beamformers.
Further research in this area is also focused on the extension of
the proposed algorithms to the case in which 3D-lens antennas
arrays and parasitic arrays are employed, as well as to their
application in a cell-free massive MIMO settting [31].
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APPENDIX

In this Appendix, we provide the details about the gener-
alization of the AML algorithm in [10] to the case in which
multiple antennas are used at both sides of the communication
link. Then, we provide very few details on two other channel
estimation procedures that we have used for benchmarking
purposes.

A. AML Algorithm

For the multiantenna case, the AML algorithm can be
described as follows. In the first part of the training interval the
BS transmits its pilot signals for n = 1, . . . , PBS. Denoting by
s̄BS(n) the (NBS × 1)-dimensional vector transmitted by the
BS at the discrete epoch n, the received discrete-time signal at
the mobile station is represented by the following (NMS×1)-
dimensional vector:

r̄MS(n) = Hs̄BS(n) + wMS(n), (34)

where H is the (NMS×NBS)-dimensional channel matrix with
the structure reported in (1) and wMS(n) is the (NMS × 1)-
dimensional noise vector and s̄BS(n) is the (NBS × 1)-
dimensional pilot signal, whose entries are all equal to one.
Let TMS = HHH = ŨΛ̃2ŨH , denote by BMS the (NRF

MS ×
NMS)-dimensional 0/1 sampling operator, and consider the
NRF

MS-dimensional projection of r̄MS(n) onto BMS as:

x̄MS(n) = BMSr̄MS(n) (35)

Let Cx,MS = 1
PBS

∑PBS

n=1 x̄MS(n)x̄HMS(n) be the covariance
matrix of the sketches x̄MS(n), let Cx,MS = PLPH be
its SVD, and define ∆MS = PL1/2. The AML algorithm

proposed in [10] is cast as the following semi-definite program
(SDP)

(S∗MS,K
∗
MS) = arg min

M∈T+,KMS∈CN
RF
MS

×NRF
MS

tr
(
BMSMBH

MS

)
+ tr (KMS)

subject to
[
σ2
nINRF

MS
+ BMSMBH

MS ∆MS

∆H
MS KMS

]
� 0,

(36)
where T+ denotes the space of all NMS × NMS Hermitian
PSD Toeplitz matrices, and σ2

n is an estimate of the noise
variance in each antenna element. The optimal solution of (36)
gives an estimate of the matrix TMS. Since solving the SDP
(36) is a time-consuming task, especially for a large number
of antennas, in [9] the authors provide a low-complexity
algorithm to solve (36). Let GMS a discrete grid of size
GMS over the angular range

[
−π2 ,

π
2

]
. We assume that GMS

consists of uniformly spaced angles θMS
i =

(
−1 + 2(i−1)

GMS

)
π
2 ,

for i = 1, . . . , GMS. Denote by ḠMS the (NMS × GMS)-
dimensional matrix whose columns are given by aMS(θMS

i ),
corresponding to the array response at the MS at the AoA
θMS
i ∈ GMS. In [9] the authors assume that GMS is dense

enough such that every matrix TMS can be well approximated
by

TMS ≈ ḠMSdiag (t1, . . . , tGMS
) ḠH

MS

=
∑GMS

i=1 tiaMS

(
θMS
i

)
aHMS(θMS

i ),
(37)

with appropriate ti ≥ 0, i = 1, . . . , GMS. Now, consider the
following convex optimization problem to be solved for the
variable WMS:

W∗
MS=arg min

WMS

1

2
‖G̃MSWMS−XMS‖2+σ2

n

√
PBS‖WMS‖2,1,

(38)
where WMS is a (GMS × Np

MS)-dimensional matrix, with
an `2,1 norm defined by ‖WMS‖2,1 =

∑GMS

i=1 ‖WMS,(i,.)‖,
XMS = [x̄MS(1), . . . , x̄MS(PBS)] is the (NRF

MS × PBS)-
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Algorithm 3 The AML Algorithm with FBS for the estimation
at the MS

1: Fix W
(0)
MS, set Z

(0)
MS = W

(0)
MS, and t0 = 1

2: for k = 0, 1, . . . , do
3: R

(k)
MS = Z

(k)
MS −

1
β∇f1

(
Z

(k)
MS

)
4: W

(k+1)
MS = prox 1

β ,f2

(
R

(k)
MS

)
5: tk+1 =

1+
√

4t2k+1

2
6: αk = 1 + tk−1

tk+1

7: Z
(k+1)
MS = W

(k)
MS + αk

(
W

(k+1)
MS −W

(k)
MS

)
8: end for

dimensional matrix of noisy sketches, and G̃MS =
1√
NRF

MS

BMSḠMS. In [9], the authors show that, if we sup-

pose that the grid GMS is dense enough such that every
matrix TMS can be precisely approximated according to
(37), the SDP (36) and the convex optimization (38) are
equivalent. Then, the optimal solution of (36) can be ap-
proximated by T∗MS = ḠMSdiag

(
t∗1, . . . , t

∗
GMS

)
ḠH

MS, where
t∗i = 1√

NRF
MS

‖W∗
MS,(i,.)‖.

The forward-backward splitting (FBS) can be used for
minimizing the sum of two convex functions [32]. Indeed,
after suitable scaling, we can write the objective function (38)
as the sum of two convex function

f (WMS) = f1 (WMS) + f2 (WMS) , (39)

where f1 (WMS) = 1
2ζ ‖G̃MSWMS − XMS‖2, f2 (WMS) =

‖WMS‖2,1, and ζ = σ2
n

√
Np

MS.
The gradient of f1 is given by

∇f1 (WMS) =
1

ζ
G̃H

MS

(
G̃MSWMS −XMS

)
. (40)

The function ∇f1(·) defined in (40) is a Lipschitz function5

with Lipschitz constant κ, i.e,

‖∇f1 (WMS)−∇f1 (W′
MS) ‖ ≤ κ‖WMS −W′

MS‖, (41)

with κ = 1
ζλmax

(
G̃H

MSG̃MS

)
= 1

ζλmax

(
G̃MSG̃H

MS

)
, and

λmax(·) denoting the maximum singular value function. The
AML procedure with FBS for the channel subspace estimation
at the MS is reported in Algorithm 3, where we have:

proxα,f2 (WMS)i,. =

(
‖WMS,(i,.)‖ − α

)
+

‖WMS,(i,.)‖
‖WMS,(i,.)‖,

(42)
with (x)+ = max (x, 0).

Following similar steps, that we do not report for the sake of
brevity, it is possible to perform channel subspace estimation
at the MS also.

5A real-valued function f(·) is said to be a Lipschitz function if
|f(x)− f(y)| ≤ C|x− y|, for any value of x and y, and with C a constant
independent of x and y.

B. ARN Algorithm

The ARN algorithm for channel subspace estimation has
been proposed in [8]. The method is based on the Arnoldi
iteration, exploiting channel reciprocity in TDD systems and
the sparsity of the channel’s eigenmodes. The BS selects a
random unit beamforming vector and sends a pilot signal
to the MS. The signal received by the MS is echoed back
to the BS, in an Amplify-and-Forward like fashion. Then,
exploiting channel reciprocity, the received signal at the BS
is first normalized and then echoed back to the MS. This
procedure is done iteratively several times, and leads to the
estimation of the matrix DBS. A similar procedure can be
applied using MS-initiated echoing, to obtain DMS at the MS.
We refer to the paper [8] for the full details.

C. AE algorithm

The Adaptive Estimation (AE) algorithm was introduced
in [7]. The paper first formulates and develops a hierarchical
multiresolution codebook based on HY analog/digital precod-
ing, and then proposes the AE algorithm using the codebook
previously determined. In our numerical simulations, we use
the simulation code available at [33]; we refer to paper [7] for
the full details on the AE algorithm.
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