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Abstract

Using tools from extreme value theory (EVT), it is proved that, when the user signal and the

interferer signals undergo independent and non-identically distributed (i.n.i.d.) κ− µ shadowed fading,

the limiting distribution of the maximum of L independent and identically distributed (i.i.d.) signal-to-

interference ratio (SIR) random variables (RVs) is a Frechet distribution. It is observed that this limiting

distribution is close to the true distribution of maximum, for maximum SIR evaluated over moderate L.

Further, moments of the maximum RV is shown to converge to the moments of the Frechet RV. Also,

the rate of convergence of the actual distribution of the maximum to the Frechet distribution is derived

and is analyzed for different κ and µ parameters. Finally, results from stochastic ordering are used to

analyze the variation in the limiting distribution with respect to the variation in source fading parameters.

These results are then used to derive upper bound for the rate in Full Array Selection (FAS) schemes for

antenna selection and the asymptotic outage probability and the ergodic rate in maximum-sum-capacity

(MSC) scheduling systems.
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I. INTRODUCTION

Massive multiple input multiple output (MIMO) system has been widely accepted as a key

to meet the increasing demand for wireless throughput in 5G systems [1]. With the deployment

of massive MIMO, one can expect transmitters/receivers with hundreds of antennas available

for communication simultaneously. Larsson et al. in [2] show that the uplink spectral efficiency

and the radiated power efficiency shall increase by 100 times with massive MIMO technology

(with 100 antennas) and appropriate signal processing techniques. There are several examples

in literature in which massive MIMO scenarios have more than 100 antennas. Works such as

[3], [4] present various simulation results for realizing massive MIMO in a practical test-bed.

Similarly, [5]–[9] present analysis of different massive MIMO systems with over 100 antennas.

One of the impediments to a dense deployment of cellular networks, especially in MIMO

systems is the co-channel interference (CCI), which is caused by sharing of common system

resources by multiple users and by frequency reuse among adjacent cells. Therefore, the effect

of CCI on the quality of the wireless link has to be studied extensively before cell-planning

and employing interference mitigation techniques. A vast amount of attention and research in

literature is devoted to the study of signal to interference ratio (SIR). Given the fact that massive

MIMO is a promising technology for future cellular scenarios, the evaluation of the maximum

SIR statistics over all available antennas will be a useful metric for various performance analysis

and other quality of service (QoS) provisioning applications. Very recently, [10] discussed bounds

on the rate of full antenna selection (FAS) architecture in a massive MIMO system, using statistics

of the maximum SIR in a Rayleigh fading scenario. Similarly, the maximum SIR is an important

performance metric in multi-user shared networks, where user scheduling is based on the channel

conditions of the users. For example, the authors of [11] derive analytical expressions of the

ergodic capacity for max-signal-to-interference-plus-noise-ratio (Max-SINR) scheduling system

in a cognitive radio network. Also, using the kth order statistics of the user SIR, [12] analyzes the

asymptotic performance of a generalized multi-user diversity scheme of an underlay cognitive

radio system in a Nakagami fading channel.
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The cumulative distribution function (CDF) of the maximum of independent random variables

(RVs) is given by the product of CDF of each of the variables. Hence, in the case of L independent

and identically distributed (i.i.d.) RV’s, the CDF of the maximum is given by the Lth power

of the common CDF. In several cases, given that the CDF of a single RV can itself involve

complicated functions, the CDF of order statistics like maximum and minimum, even over i.i.d.

RVs will be more complicated. Also, providing a meaningful analysis for performance metrics

like outage probability, the ergodic rate becomes intractable, if not impossible. In such cases,

we can use extreme value theory (EVT) and propose a systematic approach to characterize the

asymptotic maximum or minimum SIR in terms of simple probability distribution functions

(PDF) or CDFs that are amenable to analysis. For example, works like [13]–[15] study the

capacity limits of Rayleigh faded multi-cast channels using EVT, without which the capacity

limits would have been intractable to analyze. EVT has also been used effectively for studying

the asymptotic behaviour of performance metrics in opportunistic scheduling. For example,

the limiting distribution of spectral efficiency for multi-hop relaying techniques employing

opportunistic scheduling is analyzed in works such as [16]–[18] using EVT. The ergodic capacity

of opportunistic scheduling for a gamma-gamma composite fading channel is investigated in the

work [19]. The asymptotic distributions of metrics such as ergodic capacity, mutual information,

end-to-end signal to noise ratio (SNR), ergodic secrecy rate (ESR) in a multi-relay setup are

discussed in works such as [11], [12], [20]–[24]. The asymptotic PDF of the maximum of

i.i.d. sums of i.n.i.d. gamma RVs is shown to be a Gumbel PDF in [25]. SIR-based asymptotic

throughput analysis for opportunistic scheduling of MIMO downlink systems for Rayleigh fading

channels is performed in [26]. Here, using EVT, the limiting distribution is found to be Frechet

distribution. To the best of our knowledge, there is currently no work that gives results similar

to [26], even for Rician or Nakagami fading channels. Also, the recent work [10], derives the

statistical upper channel capacity bounds for FAS systems using EVT in the large-scale limit

only for Rayleigh fading channels.

In recent times, there has been a significant focus on generalized multipath fading models,

first discussed in [27]. These fading models called κ − µ and η − µ fading, model small-scale

variations of the channel in the line of sight (LOS) and non-line of sight (NLOS) conditions,

respectively. Further, these generalized fading distributions include Rayleigh, Rician, Nakagami-

m, Nakagami-q and one-sided Gaussian distributions as special cases. To investigate shadowing

of the dominant component, a shadowed Rice model with random LOS component is introduced
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in [28]. A further generalization of the shadowed Rician fading is the κ − µ shadowed fading,

which has been studied in both [29] and [30]. Also, κ− µ shadowed fading has been shown to

unify the κ−µ and η−µ fading models [31] and to have a wide variety of applications ranging

from land-mobile satellite systems to device to device communication [30].

Performance metrics for κ− µ shadowed fading have been studied extensively in works like

[32]–[38]. For example, the exact capacity and effective capacity expressions for κ−µ shadowed

fading channel have been derived in [32] and [33] respectively. Expressions for the effective rate

of MISO systems over κ − µ shadowed fading models have been derived in [35]. However,

all the above works either do not consider the impact of CCI or consider only Rayleigh faded

interferers. There are works like [39]–[44], which consider CCI in a generalized fading setting

and characterize the SIR. For example, outage probability expression for η−µ signal of interest

(SOI) and Rayleigh faded interferers is derived in terms of confluent Lauricella function in [39].

Outage probability expressions, when SOI experiences η−µ or κ−µ fading and the interfering

signals are subject to η−µ fading, have been derived in [40]. This was further extended to cases

where CCI can be either η−µ or κ−µ fading in the presence of white Gaussian noise in [41].

Expressions for coverage probability and rate are derived in terms of Lauricella’s function of

the fourth kind in [42] when SOI and interferers experience κ−µ and η−µ fading respectively.

Approximate outage probability and rate expressions are derived in terms of the Appell function

in [43], when the user channel and the interferers experience κ−µ and η−µ fading respectively.

Though new, κ−µ shadowed fading has its fair share in the literature that characterize SIR. In

[45] coverage probability expressions are derived when the base stations are modeled as Poisson

point process (PPP) and the channels experience κ− µ shadowed fading. Expressions for error

vector magnitude (EVM) are derived in [46] for an interference-limited system when both the

desired channel and interferers experience i.n.i.d. κ− µ shadowed fading. Approximate outage

probability and capacity expressions are derived for κ − µ shadowed fading channels in [47].

Exact outage and rate expressions in the presence of CCI has been studied in [48] only recently.

One thing that is common among [34], [39]–[43], [45]–[48] is the complicated nature of the

PDF and the CDF of SIR. For example, the recent work [48], which generalizes all existing

results and considers the SOI and CCI to be i.n.i.d. κ − µ shadowed fading derives the CDF

of SIR in terms of an infinite summation of the Lauricella function of the fourth kind. This

Lauricella function itself involves N-fold infinite summation (Here, N denotes the number of

interferers). Now, determining the CDF of maximum over L such i.i.d. SIR realizations involve
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raising the CDF to power L, making further mathematical analysis like computing rate very

difficult. Even the evaluation of the exact CDF of the maximum of two SIR RVs having two

i.n.i.d interferers takes more than an hour to compute in Mathematica with the series expansion

given by [48, Eqn. (8)]. Further, the evaluation of the exact CDF of the maximum of four SIR

RVs with each SIR RV having four i.n.i.d interferers in a κ− µ shadowed fading environment

times out in Mathematica. Therefore, a limiting distribution for the maximum of SIR RVs,

which is not only easy to compute but is also amenable to mathematical analysis, will have

significant utility. Also, such a distribution will easily extend the recent FAS results of [10] to

a generalized fading scenario. Similarly, the authors of [49] and [11] discuss the performance

analysis of a maximum-sum-capacity (MSC) scheduling system and a max-SINR scheduling

system respectively in Rayleigh fading channels. A simple expression for the distribution of

maximum SIR can generalize these results as well. Our major contributions in this paper are as

follows:

• Assuming that the user signal and the interferer signals undergo i.n.i.d. κ − µ shadowed

fading, we prove, using tools from EVT, that the limiting distribution of the maximum of

L such i.i.d. SIR RVs is a Frechet distribution. We then prove the convergence of moments

of the maximum RV to those of the limiting distribution.

• We also derive the rate of convergence of the actual maximum distribution to the asymptotic

distribution. This sheds light on how well the limiting distribution approximates the actual

distribution for finite values of L and N . In order to further demonstrate the practical

validity of the work, we also study the empirical Kullback-Leibler (KL) divergence be-

tween the empirical maxima distribution and the derived asymptotic distribution. The KL

divergence results indicate the quantitative closeness between the asymptotic results and the

exact results, for finite L, whereas the rate of convergence results discusses the order of

convergence.

• Further, we use results from stochastic ordering to analyze the variations in the asymp-

totic distribution of the maximum. This analysis will not be possible with the exact but

complicated distribution of the maximum RV.

• Finally, we analyze the utility of the derived asymptotic results in the following applications:

i Analysis of asymptotic outage probability and asymptotic ergodic rate of the user in each

time slot of a MSC system.
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ii Derivation of upper bound on the rate in FAS architectures for antenna selection in

massive MIMO scenario.

Also, the above-mentioned results hold for Rayleigh, Rician, Nakagami-m, κ − µ and η − µ

faded user and interferer scenarios since all of these are special cases of the κ − µ shadowed

fading model. Since we assume i.n.i.d. interferers, we also account for interferers having different

path-loss or having unequal powers.

The rest of the paper is organized in the following fashion. In Section II, we find the asymptotic

distribution of the maximum SIR using tools from EVT. We also give brief notes on the

convergence of moments and the rate of convergence. Further, in Section III, we give an analysis

of the asymptotic distribution and analyze the convergence of the true maxima distribution to

the asymptotic results derived in terms of the empirical KL divergence. Then, in Section IV, we

present three applications of the derived results and their corresponding simulations. Finally, we

conclude the work in Section V.

II. EVT BASED MAXIMA OF L I.I.D. SIR RVS

Let γLmax denote the maximum of L i.i.d. SIR RVs, where the source and the interferers

are assumed to experience i.n.i.d. κ − µ shadowed fading, i.e., γLmax = max{γ1, · · · , γL} and

γj ∼ Fγ(z), ∀ j ∈ {1, · · · , L}. In this section, (a) the asymptotic distribution of γLmax represented

as Fγmax
(z) is derived, (b) convergence of the moments of Fγmax

(z) to the moments of the true

maxima distribution FγLmax
(z) is analyzed and (c) the rate of convergence of FγLmax

(z) to Fγmax
(z)

is derived.

A. Maximum of SIR RVs in κ− µ shadowed fading environment.

We first prove that the CDF of maximum of L i.i.d. SIR RVs converges to the CDF of a

Frechet RV. For this, we make use of Fisher-Tippet theorem, which forms the corner-stone of

EVT. The seminal theorem is as follows [50]:

Theorem 1. Fisher-Tippet Theorem, Limit Laws for Maxima:

Let z1, z2, · · · , zL be a sequence of L i.i.d. RVs and ML = max {z1, z2, · · · , zL}; if ∃ constants

aL > 0 and bL ∈ R and some non-degenerate CDF Gβ such that, as L→ ∞,

a−1
L (ML − bL)

D
−→ Gβ , (1)

where
D
−→ denotes convergence in distribution, then the CDF Gβ is one of the three CDFs:
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Frechet : Λ1(z) :=







0, z ≤ 0,

exp(−z−β), z > 0,

Reversed Weibull : Λ2(z) :=







exp(−(−z)β), z ≤ 0,

1, z > 0,

Gumbel : Λ3(z) := exp(−exp(−z)), z ∈ R.

Proof. Please refer to page 6 in [50] for the proof.

To determine the limiting distribution from the above three, we have to first define the

maximum domain of attraction (MDA).

Definition 1. Maximum Domain of Attraction [50]: The CDF F of i.i.d. RVs z1, · · · , zL belongs

to the MDA of the extreme value distribution (EVD) Gβ , if and only if ∃ constants aL > 0 and

bL ∈ R, such that (1) holds.

Theorem 2. A CDF F belongs to the MDA of the Frechet distribution, if it satisfies the following

relation from [50]:

lim
t→∞

1− F (tz)

1− F (t)
= z−β . (2)

Proof. Please refer to page 19 in [50] for the proof.

Now, if we show that the CDF Fγ(z) satisfies the relation in (2), then from the definition of

the MDA of an EVD, we can conclude that there exists aL and bL satisfying (1). A choice

for the corresponding constants for the Frechet distribution is given in [50] as bL = 0 and

aL = F−1(1− L−1).

Theorem 3. The CDF Fγ(z) is in the MDA of the Frechet distribution.

Proof. Please refer to Appendix A for the detailed proof.

Thus, we conclude that the CDF of γLmax converges to the CDF of a Frechet RV γmax with

shape parameter

β =

N∑

i=1

µi (3)

and scale parameter

aL = F−1
γ (1− L−1). (4)

October 29, 2019 DRAFT
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The asymptotic distribution of the CDF of γLmax is hence given by

Fγmax
(z) =







0, z ≤ 0,

exp
(

− (z/aL)
−β
)

, z > 0.
(5)

The above expression is far easier to evaluate than the Lth power of (21) for large values of L.

B. Moment Convergence

We will examine the convergence of moments of γLmax to those of γmax. This is useful in

evaluating various average ergodic performance metrics with respect to the maximum SIR RV.

We make use of the following results from [50] to prove the convergence of moments.

Lemma 1. If F, the CDF of a RV Z, belongs to the domain of attraction of Gβ, then ∀

−∞ < z < ω(F ),

E[|Z|ν 1Z>z] :







< ∞, if 0 < ν < β+,

= ∞, if ν > β+,
(6)

where β+ := max{0, β}, ω(F ) := sup{z ∈ R : F (z) < 1} and 1Z>z is the indicator function

for the event given by Z > z.

Proof. Please refer to [50] for the proof.

Theorem 4. Let Z be an F distributed RV and F belongs to the domain of attraction of Gβ, if

E[Zν ] is finite for some ν < β+ then,

lim
L→∞

E

[(
ML − bL

aL

)ν]

=

∞∫

−∞

zνdGβ(z), (7)

where β+ := max{0, β}.

Proof. Please refer to page 176 in [50] for the proof.

From Lemma 1, we observe that E[Zν ] is finite for all values of 0 < ν < β+. So, according

to Theorem 4, (7) holds for all ν in this range. Hence, we conclude that the νth moment of the

RV γLmax converges to the νth moment of γmax, for all ν <
N∑

i=1

µi.

October 29, 2019 DRAFT
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C. Rate of convergence

Note that, (1) guarantees the convergence of the distribution of γLmax to a Frechet distribution,

but does not discuss the rate of convergence. In other words, it does not discuss how fast γLmax
D
−→

γmax. The rate of convergence is not the same for all distributions in any domain of attraction. In

fact, it is a function of the initial distribution parameters and depends on the equivalence of the

tail of the initial distribution function to the tail of a generalized Pareto distribution (GPD) [50].

The closer the tail-behaviour of the initial distribution to the tail-behaviour of a GPD, faster is

its rate of convergence. We now give the rate of convergence for our case through the following

theorem.

Theorem 5. The rate of convergence of FγLmax
(z) to the Frechet distribution is

O



L
−

(

N
∑

i=1
µi

)−1

+ L−1



.

Proof. Please see Appendix. B for the detailed proof.

This result is equivalent to stating that

sup
B∈B

∣
∣
∣
∣
P

(((
γLmax
a

)

/Lβ
)

∈ B

)

− Λ1(B)

∣
∣
∣
∣
= O

((
1

L

)δ

+
1

L

)

, (8)

where δ =

(
N∑

i=1

µi

)−1

, B denotes the Borel σ algebra on R, Λ1(.) is the asymptotic maxima

distribution and a is a positive constant. Hence, we can see that the maximum deviation between

the true distribution of the maximum and the asymptotic distribution of the maxima over all the

points, decreases with an increase in L or 1/β. (Note that, this is the rate of convergence at

the point of maximum possible deviation over the entire support of the maximum distribution.

We can expect faster convergence over some subsets of the support of the maxima distribution).

Further, this result says that the rate of convergence is determined by the number of interferers

N and the number of clusters µi (for i = 1, · · · , N) in the interferers’ fading distribution. The

convergence rate decreases as the number of interferers increases or the number of clusters

µi increases. Thus, the distributions of γLmax for interferers with fading environments having

µi = 1 (Rayleigh, Rician or shadowed Rician) converge faster to the asymptotic distribution of

the maximum, given by (5) than those having µi > 1 (Nakagami-m, κ-µ or η-µ). Also, note that

the parameters κ, µ and m of the source and the parameters κi and mi (for i = 1, ..., N) of the

interferers do not affect the convergence rate.

October 29, 2019 DRAFT
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III. ANALYSIS OF EXTREME-VALUE DISTRIBUTION

Now that we have derived the asymptotic distribution of the maximum of L i.i.d. SIR RVs

where the source and the interferers are assumed to experience i.n.i.d. κ− µ shadowed fading,

in this section, we analyze the impact of fading parameters κ, µ and m on the asymptotic

distribution. For this, we give the following key lemma.

Lemma 2. Consider two Frechet RVs P and Q with parameters {aL1, β} and {aL2, β} respec-

tively. P is stochastically larger than Q if

P(P < z) < P(Q < z), ∀z > 0. (9)

In other words, P >st Q if

exp

(

−

(
z

aL1

)−β
)

< exp

(

−

(
z

aL2

)−β
)

. (10)

The above condition is achieved when aL1 ≥ aL2.

According to Lemma 2, the variations in the asymptotic CDF of the maximum SIR is governed

by the variations in aL where aL = F−1
γ (1− L−1). Hence, the variation in the CDF of the maxi-

mum SIR with respect to the variations in the source fading environment can be studied by ana-

lyzing the variations in aL. However, the relationship between various parameters and aL is highly

non linear, and therefore comprehending these variations with respect to changes in the fading

parameters is very difficult. One way to circumvent this problem is to use moment matching as in

[51], and approximate each of the κ−µ shadowed RV as a gamma RV. The κ−µ shadowed RV

corresponding to the users fading coefficients with parameters (κ, µ,m, x̄) can be approximated

with a gamma RV with shape parameter ψ1 =
mµ(1+κ)2

m+µκ2+2mκ
and scale parameter ψ2 =

x̄
ψ1

. Similarly,

each of the κ− µ shadowed interferer can be first approximated as a gamma RV and their sum

can be further approximated by another gamma RV with parameters (φ1, φ2) using [51, Eqn.

(4)]. Here, we have Fγ(z) = P(γ ≤ z) ≈ P

(
Γ(ψ1, ψ2)

Γ(φ1, φ2)
≤ z

)

= P

(
Γ(ψ1, 1)

Γ(φ1, 1)
≤ z

φ2

ψ2

)

, where

Γ(., .) represents a gamma distributed RV. This ratio of gamma RVs has a beta-prime CDF [52]

with parameters ψ1 and φ1 evaluated at z
φ2

ψ2
. Now, the analysis in [53] can be used to make

inferences about the approximate variation in Fγ(z), with respect to the changes in κ, µ and m.

Based on the analysis, we give the following observations.

Observation 1 : Scale parameter of the Frechet distribution aL increases with increase in

µ or m.

October 29, 2019 DRAFT
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Observe that, an increase in µ or m results in an increase in ψ1. According to I4 in Section

III of [53], with an increase in ψ1 along with a proportionate increase in x̄, we can observe a

decrease in Fγ(z). Since CDF is an monotonically increasing function, to obtain the same CDF

value of 1 − 1
L

even after an increase in µ or m, the CDF evaluation point, which in our case

is aL, has to increase.

Observation 2 : Scale parameter of the Frechet distribution aL increases with increase in

κ if m − µ ≥ 0 and decreases otherwise .

The derivative of ψ1 with respect to κ is given by
2κ(1 + κ)mµ(m− µ)

(m+ 2κm+ κ2µ)2
. This shows that ψ1

increases with an increase in κ if m− µ > 0 and decreases otherwise. This in turn implies that

the scale parameter F−1
γ (1− L−1) increases with an increase in κ, if m− µ > 0 and decreases

otherwise. Hence, following the same reasoning given in Observation 2, we can infer that an

increase in κ increases aL, if m− µ > 0, owing to the increase in ψ1. Similarly, an increase in

κ results in an decrease in aL, if m− µ < 0.

Thus Observation 1, Observation 2 along with Lemma 2 gives inferences on the variation

of the asymptotic maximum distribution with respect to the changes in the source’s fading

environment. Further, Table I in [31] summarizes the relation between κ − µ shadowed fading

model and many common fading models like Rayleigh, Rician, Nakagami, etc. Using these

results, we can analyze the variations in the maximum SIR for any specific fading environment

as well.

A. KL divergence between asymptotic maximum distribution and the true maximum distribution

To get a quantitative idea of how the convergence of the true distribution of the maximum to

the asymptotic distribution of the maximum varies for different values of L and β, we compute

the empirical KL divergence between the maximum SIR samples and the samples from the

corresponding Frechet distribution1. To calculate the empirical KL-divergence, we use the method

discussed in [54]. Let {X1, · · · , Xn} and {Y1, · · · , Yn} be i.i.d samples from the distributions

P and Q respectively. Now, we compute their histograms over the complete range of samples

divided into equispaced bins. According to the Freedman-Diaconis rule2 [55], the number of

1Since the exact CDF of the maximum SIR has a complicated structure, it is mathematically intractable to derive an expression

for the KL divergence and hence we calculate the empirical KL divergence

2Number of bins = Max({Xi})−Min({Xi})

2×IQR×n−1/3 where IQR is the interquartile range.
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bins is computed for both set of samples and the maximum of the two, given by W , is chosen to

compute the histograms. If ui and vi represent the number of samples in the ith bin of histograms

of P and Q respectively, then the corresponding empirical KL divergence is computed as [54]

DKL(P ||Q) ≈

W∑

i=1

ui
n
log

(
ui
vi

)

. (11)

The following tables give the empirical KL divergence of the asymptotic distribution of the

maximum from the true distribution of the maximum for different values of N , L and β. The

number of samples in each case is n = 106. Tables I (a)-(c) gives the KL divergence in Rayleigh

fading scenario for different number of interferers. The smaller the KL divergence, the closer are

two distributions. We can see that the KL divergence decreases as L increases for all the cases

as expected. Similarly, for the same value of L, we can see that the KL divergence increases

with N . This observation is also in agreement with the rate of convergence results derived which

says that the rate decreases with an increase in β. For the case of Rayleigh fading, we have

β = N .

L (a) KL diver-

gence for N=1

(b) KL diver-

gence for N=2

(c) KL diver-

gence for N=3

(d) KL diver-

gence for β =

2

(e) KL diver-

gence for β =

3

(f) KL diver-

gence for β =

4

20 3.056835e-04 6.917400e-02 1.866447e-01 8.416245e-02 8.327871e-02 4.312127e-01

40 2.401260e-04 3.431374e-02 1.365351e-01 3.17051e-02 2.096145e-02 4.113886e-01

60 1.740811e-04 2.289564e-02 9.692215e-02 2.654761e-02 1.222194e-02 3.745029e-01

80 1.173821e-04 1.725099e-02 8.344516e-02 1.877953e-02 1.163133e-02 3.373044e-01

100 9.642496e-05 1.346993e-02 6.688599e-02 1.041195e-02 1.120306e-02 2.796802e-01

TABLE I: Empirical KL divergence values for Rayleigh and κ− µ shadowed fading

Similarly, Tables I (d)-(f) give the empirical KL divergence for the case of κ − µ shadowed

fading for different values of β. Here too, we can see that the KL divergence increases with a

decrease in L or an increase in β. From the above tables, it is clear that for L > 60, the KL

divergence values are small and hence our asymptotic distribution very well approximates the

true distribution of the maximum, for maximum taken over sequences of length greater than 60.3

This along with the rate of convergence analysis reaffirms the claim that our asymptotic results

3Note that, similar behaviour of KL divergence is observed for different values of κ, µ and m. However, due to space

constraints we have only included the results for a subset of cases.
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can be reliably used for the performance analysis in all scenarios where we need the statistics

of the maximum SIR.

IV. APPLICATIONS AND SIMULATIONS

Our results can be used in any application which involves the maximum SIR statistic. Here,

we present some example applications.

A. Asymptotic outage probability and ergodic rate of MSC system.

The limiting distribution of the maximum SIR RV is useful for the asymptotic performance

analysis of channel-aware packet scheduling systems [49]. Consider a time-slotted downlink

channel shared among L users. With MSC scheduling, the channel is assigned to the user with

the maximum SIR in each time slot. The authors of [49] have analyzed the performance of such

a system in a noise-limited scenario under Rayleigh fading channel using EVT. We can readily

generalize these results to a κ−µ shadowed fading environment using the results derived in the

previous section.

1) Outage probability: The probability of outage of the user in each time slot of an MSC

scheduling system, for a threshold γT , in an interference limited scenario is given by

P(γLmax ≤ γT ) =

L∏

j=1

Fγi(z), (12)

where γi is the SIR of the ith user. When all the users experience identical fading, the above

probability is the same as (Fγ(z))
L

evaluated at γT . Note that, the evaluation of the true

distribution of the maximum given by (Fγ(z))
L

is not computationally tractable in a κ − µ

shadowed fading environment. However, the asymptotic distribution function derived in the

previous section can be used to compute this outage probability easily. In the following figures,

we show the simulated and asymptotic CDF of maximum for a two interferer scenario.

October 29, 2019 DRAFT



14

0 5 10 15 20 25

z (dB)

0

0.2

0.4

0.6

0.8

1
F
γ

m
ax

(z
)

Simulated
Theoretical

Case 1

Case 2

Fig. 1: CDF of γLmax for κ− µ shadowed

fading with i.n.i.d. interferers, L=64.
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Fig. 2: CDF of γLmax for Rayleigh fading with

i.i.d. interferers, L=32.

Fig. 1, shows the CDFs for the case of κ−µ shadowed fading with i.n.i.d interferers. Here, case

1 corresponds to the scenario where κ = 2, µ = 2, m = 3, κi = {2, 2}, µi = {2, 1}, mi = {3, 2}

and case 2 corresponds to κ = 2, µ = 1, m = 2 and κi = {2, 2}, µi = {1, 1}, mi = {2, 1}. Fig.

2 show the case of Rayleigh fading channel for different values of N when L = 32.Fig. 3-6

validates Observation 1 and 2 in Section III. An increase in µ or m increases the scale parameter

aL. From Lemma 2, an increase in the scale parameter for a constant shape parameter results

in a shift of the CDF to the right. This results in a lesser probability of outage for the same

threshold. For clarity, we show the results only for L = 200.
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Fig. 3: CDF for N=1, L=200, κI = 2, µI = 3,

m = 1 .
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µI = 3, m = 1 .
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µI = 3, m = 1 .

Fig. 5 and 6 show the variation of CDF with respect to variation in κ. From Observation 2 in

Section III, we know that, with an increase in κ the scale parameter aL decreases, if m− µ is

positive. This would result in a decrease in the outage probability. Fig. 5 shows such a scenario

and the result agrees with the expected observation. Fig. 6 corresponds to a case where µ > m. In

this case, it can be observed that an increase in κ results in an increase in the outage probability.

The change in outage probability with the change in κ is not very large. Hence, for clarity, in

Figs. 5 and 6, we have given only the theoretical Frechet distribution curves.

Fig. 7 compares the simulated and theoretical values of the first moment of γLmax for different

values of L and N . As discussed in Section II-B, the first moment of the asymptotic distribution

converge to the first moment of the original distribution of γLmax. From the results, it is clear that

the simulated and theoretical values of expectation get closer as L increases and this convergence

is faster for smaller values of N .

2) Ergodic rate: The asymptotic ergodic rate of the user in each time slot of the MSC

scheduling system is given by

RL
max = E

[
log2(1 + γLmax)

]
. (13)

where γLmax = max{γ1, · · · , γL}. Recall that γLmax converges in distribution to a Frechet RV

γmax, i.e., γLmax
D
−→ γmax. We still have to prove that lim

L→∞
E[RL

max] = E[Rmax] where Rmax =

log2(1 + γmax). To prove this, we first utilize continuous mapping theorem, which is given as

follows [56]:
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Theorem 6. Let {Xn}
∞
n=1 be a sequence of random variables and X another random variable,

all taking values in the same metric space X . Let Y be another metric space and f : X → Y

a measurable function and Cf := {x : f is continuous at x}. Suppose that Xn
D
−→ X and

P(X ∈ Cf ) = 1, then f(Xn)
D
−→ f(X).

Let RL
max = log2(1+γ

L
max). Since f(x) = log2(1+x) is a continuous function, using Theorem.

6, RL
max

D
−→ Rmax. Finally, we use monotone convergence theorem, which is given below [57].

Theorem 7. Let gn ≥ 0 be a sequence of measurable functions such that gn(ω) → g(ω) ∀ ω

except maybe on a measure zero set and gn(ω) ≤ gn+1(ω), n ≥ 1. We then have

lim
n→∞

∫

gn dµ =

∫

g dµ. (14)

Here, we know that γLmax ≤ γL+1
max , ∀ L and hence P(γLmax ≤ l) ≥ P(γL+1

max ≤ l). Thus,

1 − FγLmax
(l) ≤ 1 − FγL+1

max
(l). Logarithm is a monotonic function and hence 1 − FRL

max
(l) ≤

1− FRL+1
max

(l). For a positive RV X , note that the expectation is given by

E[X ] =

∞∫

0

P(X > x) dx =

∞∫

0

(1− FX(x)) dx. (15)

Thus, making use of Theorem. 7 we have lim
L→∞

E[RL
max] = lim

L→∞

∞∫

0

P(RL
max > l) dl =

∞∫

0

lim
L→∞

P(RL
max >

l) dl = E[Rmax]. Hence, we have the required result. Given that we have proved the convergence

of moments of RL
max to the moments of Rmax, for large L, the expectation in (13) can now be

evaluated using the CDF of Frechet RV given in (5), instead of using the true CDF of γLmax, which

is difficult to evaluate. The asymptotic ergodic rate is thus given by R =
∞∫

0

log2(1+z) fγmax
(z) dz,

where fγmax
(z) is the asymptotic PDF of the Frechet RV γLmax. Substituting the Frechet PDF,

the previous expression can be rewritten as follows :

R = β(aL)
β

∞∫

0

log2(1 + z)z−β−1e
−
(

z
aL

)−β

dz. (16)
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Fig. 8: L vs ergodic rate for {κ = 2, µ =

3, m = 2},{κI = 2, µI = 2, mI = 3}.

From (16), we obtain the following observation :

Observation 3 : Ergodic rate increases with increase in aL, for a constant shape parameter

β.

Note that both β and z are non-negative and hence log2(1 + z)z−β−1 will also be non-negative

for all values of β and z. Hence, with an increase in aL, the rate increases. Observation 1 and

Observation 2 along with Observation 3 will facilitate obtaining inferences on the variations

of the asymptotic data rate with respect to the κ− µ shadowed fading parameters.

Fig. 8 compares simulated values of the rate with the rate computed using (16), for different

values of L and N . The results show that there is a good match between the simulated and

theoretical values over a wide range of L and N . As expected, the rate increases with the number

of antennas at the receiver. However, with an increase in the number of interferers SIR signals

of smaller magnitude are available at the receivers and hence the rate reduces significantly.
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{κI = 2, µI = 2, mI = 3}, N =1.

Fig. 9 further shows variation in the rate for changes in the interferer fading parameters (here,

interferers are assumed to be i.i.d.). Increase in µI , mI results in stronger interferers and hence

results in a decrease in the rate. Further, Fig. 10 shows the variation in rate for different values

of source fading parameters. As discussed previously for the case of outage probability, increase

in m, µ results in better coverage conditions and hence higher rates. Also, similar to the case

of outage probability, the variation of the rate with respect to κ depends on the sign of µ−m.

B. Upper bound for the rate in FAS (Full Antenna Selection) architecture in massive MIMO

In massive MIMO scenarios, there is often a restriction to the number of RF chains available

for processing. Dedicated RF chains for each antenna in the massive MIMO antenna array is a

cost prohibitive and power hungry design [9]. Hence, a very common practice is to choose a

subset of antennas from the array for further processing. This is known as the full array switching

(FAS) architecture. Very recently, the authors of [9], [10] discussed the analysis of FAS systems

in a noise-limited scenario using EVT, when the channel experiences Rayleigh fading. In this

subsection, we derive upper bounds on the rate for FAS architecture in an interference-limited

scenario for κ − µ shadowed fading channels. Note that our results will generalize the FAS

results of [10].

Consider a multi-antenna receiver with L antennas, out of which Ls antennas are selected for

further processing. Upper bound on the rate in a FAS scenario would correspond to the condition
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where the first Ls antennas in terms of SIR are selected. The corresponding bound is given by

[10] :

Rub,fas = E

[
Ls∑

l=1

log2(1 + γL(l))

]

, (17)

where {γL(l)}l=1,2,··· ,L are the ordered SIR RVs; ie. γL(1) > γL(2) > · · · > γL(L) > 0. The convergence

of the above moment to the first moment of the limiting distribution is guaranteed by extending

the same claims used in the previous section to prove convergence of rate in MSC scheduling

systems. Now, to compute the ergodic rate as in (17), we need the joint distribution of the

first Ls SIR RVs. The exact expression for the joint pdf of Ls ordered i.i.d. random variables

{x(1) ≥ x(2) ≥ · · · ≥ x(Ls)} is given by

fx(1),x(2),··· ,x(Ls)
(x(1), x(2), · · · , x(Ls)) = Ls!

Ls∏

l=1

f(x(l)), (18)

where f(x) is the pdf of each of the RV x(i); i = 1, · · · , L. The evaluation of (17) using the true

joint distribution as given in (18) will result in a very complex expression due to the complicated

nature of the Ls product terms and the Ls fold integration. In fact, even the evaluation of a single

term of the product using (39) will take close to an hour in Mathematica. However, we make

use of the following result from EVT to derive the asymptotic joint distribution of the first Ls

RVs.

Lemma 3. Given a sequence of i.i.d RVs X1, X2, · · · , XL with a common CDF F (x) that belongs

to the MDA of one of the three EVD G(x) such that
max(X1,X2,··· ,XL)−bL

aL

D
−→ G(x). Suppose that

X(1) > X(2) > · · · > X(L) is the ordered sequence of X1, X2, · · · , XL then the Ls dimensional

vector
(
X(1)−bL

aL
,
X(2)−bL

aL
, · · · ,

X(Ls)−bL
aL

)

has the following asymptotic joint distribution :

g1,2,··· ,Ls
(x(1), x(2), · · · , x(Ls)) = G(x(Ls))

Ls∏

l=1

g(x(l))

G(x(l))
, (19)

with x(1) > x(2) > · · · > x(Ls) and g(x) is the pdf of max(X1, X2, · · · , XL).

Proof. Please refer to page 219 in [58] for the proof.
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Fig. 11: Asymptotic upper bound of rate and simulated rate of FAS systems in Rayleigh fading.

The corresponding joint distribution in our case is as follows :

fx(1),x(2),··· ,x(Ls)
(x(1), x(2), · · · , x(Ls)) =

(
β(aL)

β+1
)Ls

exp

(

−

(
x(Ls)

aL

)−β
)

Ls∏

l=1

(
x(l)
)−1−β

.

(20)
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Fig. 13: Asymptotic upper bound of rate

and simulated rate of FAS systems in

κ− µ shadowed fading with i.i.d.

interferers.

Now, using the expression for the joint distribution of ordered RVs in (20) we can compute

the upper bound for the rate easily. We show typical simulation results to validate the bounds for

FAS systems. Here, the best 4 or 8 antennas are selected for further processing in each case. We

can see that the bound is tight for the case of Ls = 4 and the bound gets looser for larger values
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of Ls. Here, the asymptotic statistics of the ordered RVs allows easy evaluation of the upper

bound on the rate. Fig. 11 shows the asymptotic bound and the simulated rate with different

antenna lengths, for the case of FAS architectures in Rayleigh fading environment. Further, Fig.

12 and Fig. 13 shows the simulated and asymptotic bound for the rate in FAS system in a κ−µ

shadowed fading environment. The fading parameters chosen for the simulations in Fig. 12 and

Fig. 13 are κ = 2, µ = 3, m = 1, κI = 2, µI = 1, mI = 1 and κ = 2, µ = 3, m = 1, κ1 = 2,

µ1 = 1, m1 = 1 and κ2 = 2, µ2 = 2, m2 = 1 respectively.

C. Other applications:

Besides the performance analysis of MSC scheduling and FAS systems, the results derived in

our work can also be used in other applications. One can derive the asymptotic outage probability

and ergodic rate of the maximum SIR antenna (i.e., selection combining) in a massive MIMO

scenario. These metrics describe the performance of the best antenna from the antenna array

under a given channel condition and hence are useful for system characterization and resource

allocation, especially when limited number of high-resolution RF chains are available at the

receiver [59], [60]. Also, note that the asymptotic distribution of the kth maximum SIR RV

can be derived easily from the distribution of the maximum RV using [58, Eqn. (8.4.2)]. This

can be used for the performance analysis of a general selection-diversity (SD) scheme as in

[12]. One can also determine the joint distribution of the largest and second largest SIR RV and

determine performance bounds for generalized selection combining (GSC) schemes in massive

MIMO receivers [61]–[63]. Also, our asymptotic distribution of the maximum SIR can be used

for the analysis of receive antenna selection schemes in spectrum sharing systems [8].

V. CONCLUSIONS

We considered L wireless links in the presence of N co-channel interferers experiencing non-

identical κ− µ shadowed fading conditions with {κ, µ,m, x̄} and {κi, µi, mi, ȳi; i = 1, · · · , N}

being the fading parameters of the source and interferers respectively. Let, γ = γj, ∀ j ∈

{1, · · · , L} represent the SIR available at each user/antenna and γLmax is the maximum over all

γj . Following are our key results and observations :

• The asymptotic distribution of γLmax is a Frechet distribution with scale parameter aL =

F−1
γ (1− L−1) and shape parameter β =

N∑

i=1

µi.
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• The νth moment of γLmax converges to the νth moment of the corresponding Frechet

distribution for all ν <
N∑

i=1

µi.

• The rate of convergence of FγLmax
(z) to the Frechet distribution is O



L
−

(

N
∑

i=1
µi

)−1

+ L−1



.

From this result, we can observe that the maximum deviation between the true distribution of

the maximum and the asymptotic distribution of the maximum over all the points decreases

with an increase in L. Also, in order to demonstrate the practical validity of the work, we

studied the empirical KL divergence between the exact distribution of the maximum and the

corresponding asymptotic distribution. The KL divergence results indicated the closeness

between the asymptotic results and the exact results, even for finite L.

• Using results from stochastic ordering, the variation in the behaviour of the asymptotic

outage probability and asymptotic ergodic rate with respect to variations in the source

fading environment is studied.

• We analyze the utility of the derived asymptotic results in the following applications :

i Analysis of asymptotic outage probability and asymptotic ergodic rate of the user in each

time slot of an MSC system.

ii Derivation of the asymptotic upper bound on the rate in FAS architectures for antenna

selection

Further, simulations are provided to validate the above results and to confirm the utility of

our results. As the κ − µ shadowed fading model is a generalized fading model encompassing

most of the general fading scenarios as special cases, our results can be used in a number of

problem scenarios involving maxima statistics.

APPENDIX A

PROOF FOR THEOREM 2

Fγ(z) belongs to the MDA of the Frechet distribution, if it satisfies (2). The CDF of the SIR

RV γ is given by Fγ(z) = P(γ ≤ z),, where P(.) represents the probability of an event. Note that,

this is equivalent to the expression for outage probability with a threshold z. The expression for

outage probability in a κ−µ shadowed interference-limited scenario is given in [48, Eqn.(6)] 4.

4Note that there was an typo in the equation in the original version of [48] and the correct expressions are used above. An

errata for [48] has also been communicated.
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An equivalent expression for the above CDF in the form of an infinite sum of Lauricella functions

of the fourth kind is given below [48, Eqn. (20)]. We assume that the source and interferers

undergo κ−µ shadowed fading with parameters (κ, µ,m, x̄) and {(κi, µi, mi, ȳi); i = 1, · · · , N}

respectively, where N is the number of interferers and x̄, {ȳi; i = 1, · · · , N} are the expectations

of the corresponding RVs. Then the CDF of γ is given by

Fγ(z) =1−K1

∞∑

p=0

(m)p
(
1− θ

λ

)p
Γ

[
N∑

i=1

µi + µ+ p

]

(µ)pp!
F

(2N)
D (1− p− µ, µ1 −m1, · · · , µN −mN ,

m1, · · · , mN ; 1 +
N∑

i=1

µi;
θ

θ + zθ1
, · · · ,

θ

θ + zθN
,

θ

θ + zλ1
, · · · ,

θ

θ + zλN
),

(21)

where K1 =

N∏

i=1

((
θ

θ+zθi

)µi−mi
(

θ
θ+zλi

)mi

)

θm

Γ

[
N∑

i=1

µi + 1

]

Γ[µ]λm
, (m)p =

Γ[m+ p]

Γ[m]
is the Pochhammer symbol

and

θ =
x̄

µ(1 + κ)
, θi =

ȳi
µi(1 + κi)

, λ =
(µκ+m)x̄

µ(1 + κ)
, λi =

(µiκi +mi)ȳi
µi(1 + κi)mi

. (22)

To show that Fγ(z) belongs to the MDA of the Frechet distribution, we first do some simplifi-

cations of the CDF in (21). This CDF expression has a Lauricella function of the fourth kind

(F
(2N)
D (.)), which has the following series expansion [64]:

F
(N)
D (a, b1, · · · , bN ; c; x1, · · · , xN ) =

∞∑

p1,··· ,pN=0

(a)p1+··· ,pN

(c)p1+···+pN

N∏

i=1

(bi)pi
xpii
pi!
. (23)

Substituting (23) in (21), we get an expanded form for the CDF of γ as given in (24). Further, by

rewriting the inner 2N fold summation in (24) as two separate terms one with p1 = · · · = p2N = 0

and the second with rest of the terms,we get (25).

Fγ(z) = 1−

N∏

i=1

(
θ

θ+zθi

)µi−mi
(

θ
θ+zλi

)mi

θm

Γ

[
N∑

i=1

µi + 1

]

Γ[µ]λm
×

∞∑

p=0

(m)p
(
1− θ

λ

)p

(µ)pp!
Γ

[
N∑

i=1

µi + p+ µ

]

×

∞∑

p1,··· ,p2N=0

(1− p− µ)p1+···+p2N

N∏

i=1

(µi −mi)pi (mi)pi+N

(

1 +
N∑

i=1

µi

)

p1+···+p2N

N∏

i=1

(
θ

θ+zθi

)pi (
θ

θ+zλi

)pi+N

pi!pi+N !
.

(24)

October 29, 2019 DRAFT



24

1− Fγ(z) = K2

∞∑

p=0

C1

{

C2z
−

N
∑

i=1
µi

N∏

i=1

(
θ

z
+ θi

)−(µi−mi)(θ

z
+ λi

)−mi

+

∞∑

p1···p2N=0,
s.t ∃ pi1 6=0; i1∈{1,··· ,2N}

C2z
−

N
∑

i=1
µi
z
−

N
∑

i=1
(pi+pi+N)

N∏

i=1

(
θ
z
+ θi

)mi−µi−pi ( θ
z
+ λi

)−mi−pi+N

pi!pi+N !







,

(25)

where K2 =
(θ/λ)m

Γ

[

1 +
N∑

i=1

µi

]

Γ[µ]

, C1 =
(m)p

(
1− θ

λ

)p

(µ)pp!
Γ

[
N∑

i=1

µi + p+ µ

]

and

C2 =

(1− p− µ)p1+···+p2N

N∏

i=1

(µi −mi)pi (mi)pi+N

(

1 +
N∑

i=1

µi

)

p1+···+p2N

θ

N
∑

i=1
µi+pi+pi+N

. After further rearrangement of

the terms, we obtain,

1− Fγ(z) = K2

∞∑

p=0

C1

{

C2z
−

N
∑

i=1
µi

N∏

i=1

(
θ

z
+ θi

)−(µi−mi)(θ

z
+ λi

)−(mi)

+ z
−

N
∑

i=1
µi
h(z)

}

,

(26)

where h(z) =
∞∑

p1···p2N=0,
s.t ∃ pi1 6=0; i1∈{1,··· ,2N}

C2z
−

N
∑

i=1
(pi+pi+N )

N∏

i=1

(
θ
z
+ θi

)mi−µi−pi ( θ
z
+ λi

)−mi−pi+N

pi!pi+N !
.

Now, let us focus on the term h(z). As z → ∞, z
−

N
∑

i=1
(pi+pi+N )

tends to zero and the prod-

uct

N∏

i=1

(
θ
z
+ θi

)mi−µi−pi ( θ
z
+ λi

)−mi−pi+N

pi!pi+N !
will tend to a finite and positive value, which is

N∏

i=1

θmi−µi−pi
i λ

−mi−pi+N

i

pi!pi+N !
. Hence lim

z→∞
h(z) = 0. Recall from (2) that the condition for a CDF

F to belong to the MDA for Frechet distribution is

lim
t→∞

1− F (tz)

1− F (t)
= z−β . (27)

Substituting (26) in the left hand side (LHS) of the above relation, we have,

lim
t→∞

K2

∞∑

p=0

C1{C2(tz)
−

N
∑

i=1
µi N∏

i=1

( θ
tz
+ θi)

−(µi−mi)( θ
tz
+ λi)

−(mi) + (tz)
−

N
∑

i=1
µi
h(tz)}

K2

∞∑

p=0

C1{C2(t)
−

N
∑

i=1
µi N∏

i=1

( θ
t
+ θi)−(µi−mi)( θ

t
+ λi)−(mi) + (t)

−
N
∑

i=1
µi
h(t)}

. (28)
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Cancelling the terms common to both numerator and denominator, we obtain,

lim
t→∞

z
−

N
∑

i=1
µi
K2

∞∑

p=0

C1{C2

N∏

i=1

( θ
tz
+ θi)

−(µi−mi)( θ
tz
+ λi)

−(mi) + h(tz)}

K2

∞∑

p=0

C1{C2

N∏

i=1

( θ
t
+ θi)−(µi−mi)( θ

t
+ λi)−(mi) + h(t)}

. (29)

Since we have already proven that lim
z→∞

h(z) = 0, (29) evaluates to z
−

N
∑

i=1
µi

.

APPENDIX B

DERIVATION OF RATE OF CONVERGENCE

To derive the result in Theorem 5, we first define the δ-neighborhood of GPD for a Frechet

RV. Let the δ-neighbourhood be denoted by Q1(δ) and the GPD for a Frechet RV be denoted

by W{1,β}. The Extreme Value Distributions (EVDs) lies in the δ neighbourhood of one of three

GPD W{i,β}; i = 1, 2, 3 with δ = 1 .

Definition 2. δ-neighborhood Q1(δ) of the GPD W{1,β} [65] is defined as Q1(δ) := {F : ω(F)

= ∞} and F has a density f on [z0,∞] for some z0 > 0 such that for some shape parameter

β > 0 and some scale parameter a > 0 on [z0,∞], we have,

f(z) =
1

a
W ′

1,β

(z

a

)

(1 +O((1−W1,β(z))
δ)}, (30)

where ω(F ) := sup{z ∈ R : F (z) < 1}. In fact the GPD for the Frechet distribution is defined

in [65] as W1,β = 1− z−β ; z ≥ 1 and using this, (30) can be rewritten as

f(z) =
β

a

(z

a

)−β−1 (
1 +O((z−β)δ)

)
. (31)

This definition says that, if a PDF f on [z0,∞] for some z0 > 0 can be written in the form

of (31), then the corresponding CDF F belongs to the δ-neighborhood Q1(δ) of the Frechet

distribution5. The PDF of the SIR RV at the jth antenna is given by,

5For a real or complex valued function g1(x) and a strictly positive real valued function g2(x) both defined on some unbounded

subset of R+, we say g1(x) = O(g2(x)), iff ∃ M ∈ R
+ and x0 ∈ R such that, |g1(x)| ≤ Mg2(x) ∀x ≥ x0.
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fγ(z) = K5z
−

(

1+
N
∑

i=1
µi

)

(

1 +
θ

zθ1

)−

(

µ+
N
∑

i=1
µi

)

×
(1)
(1) E

(2N)
D

[

µ+
N∑

i=1

µi, m, µ2 −m2, · · · ,

µN −mN , m1, · · · , mN ;µ,

N∑

i=1

µi;
zθ1(λ− θ)

λ(θ + zθ1)
,
θ(θ2 − θ1)

θ2(θ + zθ1)
, · · · ,

θ(θN − θ1)

θN(θ + zθ1)
,
θ(λ1 − θ1)

λ1(θ + zθ1)
,

· · · ,
θ(λN − θ1)

λN (θ + zθ1)

]

,

(32)

where K5 =

θ
(m+

N
∑

i=1
µi)

Γ

[

µ+
N∑

i=1

µi

]

λmΓ[µ]Γ

[
N∑

i=1

µi

]
N∏

i=1

θµi−mi

i λmi

i

(The PDF expression is not given in [48] and is a

non-trivial derivation. Hence, we derive the PDF in Appendix C). Also, we get the following

form for the PDF fγ(z) by following the simplification steps given in Appendix D:

fγ(z) = K6z
−(1+

N
∑

i=1
µi)






1 +

(µ+
N∑

i=1

µi)m(λ− θ)

µλ







(1 +O(z−1)). (33)

This is in the same form as that of (31). Comparing (33) with (31), we can identify that the

CDF Fγ(z) belongs to the δ neighborhood of Q1(δ) with δ =

(
N∑

i=1

µi

)−1

and β =

N∑

i=1

µi. Now

that we have identified the δ neighbourhood for Fγ(z), we make use of the following lemma

from [65] to conclude the proof.

Lemma 4. Suppose that the CDF F (of i.i.d. RVs z1, · · · , zL) is in the δ neighborhood Q1(δ) of

the GPD W1,β then there obviously exist constant a > 0 such that f(z) =
1

a
W ′

1,β(
z

a
)(1 +O((1−

W1,β(z))
δ) for all z in the left neighborhood of ω(W1,β). Consequently we have,

sup
B∈B

∣
∣
∣
∣
P

(((
ML

a

)

/Lβ
)

∈ B

)

−Gβ(B)

∣
∣
∣
∣
= O

((
1

L

)δ

+
1

L

)

, (34)

where B denotes the Borel σ algebra on R and ML = max{z1, · · · , zL}.

Since the CDF Fγ(z) belongs to the δ neighborhood of Q1(δ), by the previous lemma, the

rate of convergence is O
((

1
L

)δ
+ 1

L

)

with δ =

(
N∑

i=1

µi

)−1

.
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APPENDIX C

DERIVATION OF PDF OF SIR RANDOM VARIABLE

Let Z = X
Y

, Y =
N∑

i=1

Yi. Here, X and Yi are κ−µ shadowed RVs with parameters {κ, µ,m, x̄}

and {κi, µi, mi, ȳi} respectively. Then by the method of transformation of RVs, the PDF of Z

can be expressed as fZ(z) =
∞∫

0

yfX(yz)fY (y) dy, where fX(x) and fY (y) represent the PDFs

of X and Y respectively. The expression for the PDF of X is given in ( [29, Eqn. (4)]). The

PDF of sum of i.n.i.d. κ− µ shadowed RVs is given in [29] as follows,

fY (y) =
y

N
∑

i=1
µi−1

Γ

[
N∑

i=1

µi

]
N∏

i=1

(
θµi−mi

i λmi

i

)
φ
(2N)
2 (µ1 −m1, · · · , µN −mN , m1, · · · , mN ;

N∑

i=1

µi;−
y

θ1
, · · · ,−

y

θN
,−

y

λ1
, · · · ,−

y

λN

)

,

(35)

where θi =
ȳi

µi(1 + κi)
, λi =

(µiκi +mi)ȳi
µi(1 + κ)mi

for i = 1, · · · , N and φ
(2N)
2 (.) is the confluent mul-

tivariate hypergeometric function of 2N variables. Substituting the pdfs of X and Y in the

expression for fZ(z), we obtain,

fZ(z) = K3

∞∫

0

y
µ+

N
∑

i=1
µi−1

e−
yz

θ ×1 F1

(

m,µ,
yz

θ
−
yz

λ

)

×

φ
(2N)
2

(

µ1 −m1, · · · , µN −mN , m1, · · · , mN ;

N∑

i=1

µi;−
y

θ1
, · · · ,−

y

θN
,−

y

λ1
, · · · ,−

y

λN

)

,

(36)

where K3 =
zµ−1

θµ−mλmΓ[µ]Γ

[
N∑

i=1

µi

]
1

N∏

i=1

θµi−mi

i λmi

i

. We use the following integral identity from

[64] to simplify the integral expression in (36):

Γ[a]
(1)
(1)E

(N)
D [a, b1, · · · , bN ; c, c

′; x1, · · · , xN ] =

∞∫

0

e−tta−1φ
(k)
2 [b1, · · · , bk; c; x1t, · · · , xkt]

×φ
(N−k)
2 [bk+1, · · · , bN ; c

′; xk+1t, · · · , xN t] dt.

(37)
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Now, the PDF of Z is given by,

fZ(z) = K4 ×
(1)
(1) E

(2N+1)
D

[

µ+
N∑

i=1

µi, m, µ1 −m1, · · · , µN −mN , m1, · · · , mN ;µ,
N∑

i=1

µi;

1−
θ

λ
,−

θ

zθ1
, · · · ,−

θ

zθN
,−

θ

zλ1
, · · · ,−

θ

zλN

]

,

(38)

where K4 = K3Γ

[

µ+
N∑

i=1

µi

]

. Now, we make use of the following transformation from [64]

to get a converging form for the PDF:
(1)
(1)E

(N)
D (a, b1, · · · , bN ; c, c

′; x1, · · · , xN ) = (1−x2)
−a×

(1)
(1)

E
(N)
D (a, b1, c

′ − b2 − · · · − bN , b3, · · · , bN ; c, c
′; x1

1−x2
, x2
x2−1

, x2−x3
x3−1

, · · · , x2−xN
x2−1

).

Hence, we obtain the following expression:

fZ(z) = K5z
−(1+

N
∑

i=1
µi)
(

1 +
θ

zθ1

)−

(

µ+
N
∑

i=1
µi

)

×
(1)
(1) E

(2N)
D

[

µ+
N∑

i=1

µi, m, µ2 −m2, · · · ,

µN −mN , m1, · · · , mN ;µ,

N∑

i=1

µi;
zθ1(λ− θ)

λ(θ + zθ1)
,
θ(θ2 − θ1)

θ2(θ + zθ1)
, · · · ,

θ(θN − θ1)

θN(θ + zθ1)
,
θ(λ1 − θ1)

λ1(θ + zθ1)
,

· · · ,
θ(λN − θ1)

λN (θ + zθ1)

]

,

(39)

where K5 =

θ
(m+

N
∑

i=1
µi)

Γ

[

µ+
N∑

i=1

µi

]

λmΓ[µ]Γ

[
N∑

i=1

µi

]
N∏

i=1

θµi−mi

i λmi

i

.

APPENDIX D

SIMPLIFICATION OF PDF TO IDENTIFY δ NEIGHBOURHOOD

To begin with, the PDF fγ(z) given by (32) is rewritten as in Eqn. 41 where z1 =
(λ− θ)zθ1
λ(zθ1 + θ)

,

zi =
θ(θi − θ1)

θi(θ + zθ1)
for i ∈ {2, · · ·N} and zi =

θ(λi − θ1)

λi(θ + zθ1)
for i ∈ {N + 1, · · · , 2N}. The E

(2N)
D (.)

term in this expression has the following series expansion from [64]:

(1)
(1)E

(N)
D [a, b1, · · · , bN ; c, c

′; x1, · · · , xN ] =

∞∑

p1,··· ,pN=0

(a)p1+···+pN

N∏

i=1

(bi)pi
N∏

i=1

xpii

(c)p1(c
′)p2+···+pNp1! · · · pN !

. (40)
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fγ(z) =

z
−

(

1+
N
∑

i=1
µi

)

θ

(

m+
N
∑

i=1
µi

)

Γ

[

µ+
N∑

i=1

µi

]

λmΓ[µ]Γ

[
N∑

i=1

µi

]
N∏

i=1

θµi−mi

i λmi

i

(

1 +
θ

zθ1

)−

(

µ+
N
∑

i=1
µi

)

×
(1)
(1) E

(2N)
D

(

µ+

N∑

i=1

µi, m, µ2 −m2, · · · , µN −mN , m1, · · · , mN ;µ,

N∑

i=1

µi; z1, · · · , z2N

)

.

(41)

Using the above series expansion, we rewrite (41) as

fγ(z) =K6z
−

(

1+
N
∑

i=1
µi

)

(

1 +
θ

zθ1

)−

(

µ+
N
∑

i=1
µi

)

∞∑

p1,··· ,p2N=0

(

µ+
N∑

i=1

µi

)

p1+···+p2N

(µ)p1

×

(m)p1
N∏

i=2

(µi −mi)pi
2N∏

i=N+1

(mi)pi
(

N∑

i=1

µi

)

p2+···+p2N

2N∏

i=1

zpii
pi!
,

(42)

where K6 :=

θ

(

m+
N
∑

i=1
µi

)

Γ

[

µ+
N∑

i=1

µi

]

λmΓ[µ]Γ

[
N∑

i=1

µi

]
N∏

i=1

θµi−mi

i λmi

i

. We then expand the 2N fold summation in (42)

into three terms: the first term with all the iterating variables p1, p2, ..., p2N taking the value zero,

the second term with exactly one non-zero iterating variable and the third term with the rest. By

expanding, (42) becomes the expression given in (46) where ρ = µ+
N∑

i=1

µi. The term
1

θ + zθ1
present in Term a and Term b of (46) has the following converging series expansion:

1

zθ1 + θ
=

1

θ

{
1

zθ1/θ
−

1

(zθ1/θ)2
+

1

(zθ1/θ)3
−

1

(zθ1/θ)4
+O(z−5)

}

. (43)

Using (43), Term a can be represented as

(µ+
N∑

i=1

µi)m(λ− θ)

µλ

{

1−
1

zθ1/θ
+

1

(zθ1/θ)2
−

1

(zθ1/θ)3
+O(z−4)

}

. (44)

Similarly, Term b can also be expanded to get a series expression, but the expansion will have

only negative powers of z. Term 3 will also have only powers of z less than 1. Combining

these series expansions, the SIR PDF can be finally expressed as,

fγ(z) = K6z
−(1+

N
∑

i=1
µi)






1 +

(µ+
N∑

i=1

µi)m(λ− θ)

µλ







(1 +O(z−1)). (45)
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fγ(z) =



K6z
−

(

1+
N
∑

i=1
µi

)

(

1 +
θ

zθ1

)−ρ




{

1
︸︷︷︸
Term 1

+

ρm(λ− θ)zθ1
µλ(zθ1 + θ)
︸ ︷︷ ︸

Term a

+
N∑

k=2

ρ(µk −mk)θ(θk − θ1)
N∑

i=1

µiθk(θ + zθ1)

+
2N∑

k=N+1

ρ(mk)θ(λk − θ1)
N∑

i=1

µiλk(θ + zθ1)

︸ ︷︷ ︸
Term b

︸ ︷︷ ︸
Term 2

+

∞∑

p1,··· ,p2N=0;
∃ i1,i2s.t pi1pi2 6=0 ∀ i1 6=i2

(ρ)p1+···+p2N

(µ)p1

(m)p1
N∏

i=2

(µi −mi)pi
2N∏

i=N+1

(mi)pi
2N∏

i=1

z
pi
i

pi!

(
N∑

i=1

µi

)

p2+···+p2N
︸ ︷︷ ︸

Term 3







.

(46)
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