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Beamforming Network Optimization for Reducing Channel Time Variation in

High-Mobility Massive MIMO

Yinghao Ge, Weile Zhang, Feifei Gao, Shun Zhang, and Xiaoli Ma

Abstract—Communications in high-mobility environments
have caught a lot of attentions recently. In this paper, fast
time-varying channels for massive multiple-input multiple-output
(MIMO) systems are addressed. We derive the exact channel
power spectrum density (PSD) for the uplink from a high-speed
railway (HSR) to a base station (BS) and propose to further
reduce the channel time variation via beamforming network op-
timization. A large-scale uniform linear array (ULA) is equipped
at the HSR to separate multiple Doppler shifts in angle domain
through high-resolution transmit beamforming. Each branch
comprises a dominant Doppler shift, which can be compensated
to suppress the channel time variation, and we derive the channel
PSD and the Doppler spread to assess the residual channel time
variation. Interestingly, the channel PSD can be exactly expressed
as the product of a pattern function and a beam-distortion
function. The former reflects the impact of array aperture and is
the converted radiation pattern of ULA, while the latter depends
on the configuration of beamforming directions. Inspired by the
PSD analysis, we introduce a common configurable amplitudes
and phases (CCAP) parameter to optimize the beamforming
network, by partly removing the constant modulus quantized
phase constraints of matched filter (MF) beamformers. In this
way, the residual Doppler shifts can be ulteriorly suppressed,
further reducing the residual channel time variation. The optimal
CCAP parameter minimizing the Doppler spread is derived in a
closed form. Numerical results are provided to corroborate both
the channel PSD analysis and the superiority of beamforming
network optimization technique.

Index Terms—High-mobility communication, time-varying
channel, power spectrum density (PSD), Doppler spread, angle-
domain massive MIMO, beamforming network optimization.

I. INTRODUCTION

Over the past few decades, high-mobility communications

have drawn exploding interests from researchers [1]–[3]. Due

to the relative motion between transceivers, the emitting or

incoming signals are affected by different Doppler shifts,

which superimpose at the receiver and result in fast time fluc-

tuations of the equivalent channel. Some researchers consider
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the Doppler shifts as a positive factor and attempt to exploit the

Doppler diversity to improve the system performance, e.g., in

[1], [3]. The Doppler diversity gain is harvested at the cost of

high complexity at receiver and low spectral efficiency to track

the time-varying channel. Instead, other researchers consider

the fast time-varying channel detrimental to communications,

since it could bring severe inter-carrier interference (ICI) to

orthogonal frequency division multiplexing (OFDM) systems

[4].

When the channel is fast time-varying, it is quite challenging

and even impossible to directly estimate the channel coeffi-

cients. Some works employ the basis expansion model (BEM)

[5]–[8] to approximately represent the fast time-varying chan-

nel, such that the parameters to be estimated are significantly

reduced. Another frequently adopted approach approximates

the channel autocorrelation as the weighted summation of

two monochromatic plane waves [9], [10]. Considering that

each Doppler shift is related to an angle-of-arrival (AoA)

for downlink or angle-of-departure (AoD) for uplink, the

multiple Doppler shifts can be separated in angle domain.

Such concept could be first found in [11], [12]. For reducing

the channel fading rate, [11] designs the beams that yield

equal Doppler contributions by using the Fourier method,

and [12] points out that the channel time variation can be

slowed down through beamforming. These pioneering works

have inspired the authors in [13], [14], where the small-scale

uniform circular array (UCA) and uniform linear array (ULA)

are adopted to separate multiple Doppler shifts and eliminate

ICI via array beamforming. However, due to the limited spatial

resolution, [13] and [14] only apply to high-mobility scenarios

with a few dominating paths, such as viaducts and rural areas.

In order to deal with the richly scattered high-mobility sce-

narios including tunnels and urban areas, we can resort to the

large-scale antenna array, which is considered as a promising

technique for the next generation wireless systems owing to

its enhanced spectral and energy efficiency as well as high

spatial resolution [15]–[19]. The authors of [20] propose to

separate the multiple downlink Doppler shifts in angle domain

by a pre-designed beamforming network with a large-scale

ULA at the high-speed railway (HSR). After estimating and

compensating the Doppler shift in each branch, the resultant

channel turns to be quasi time-invariant and can be estimated

with conventional channel estimation approaches. The array

imperfection is further taken into account in [21], [22], and the

multi-Doppler shift separation via array beamforming can be

done after array calibration. Unlike [20]–[22] addressing the

downlink Doppler shifts, [23] and [24] focus on the uplink

from the HSR to the base station (BS), where the Doppler

shifts are related to AoDs instead of AoAs. As a result, a

large-scale ULA is configured at the HSR to perform high-

http://arxiv.org/abs/1809.00137v3
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resolution transmit beamforming, and the multi-branch signal

is emitted after compensating the multiple Doppler shifts in

angle domain to suppress the channel time variation. In prac-

tice, however, the number of antennas may not be sufficiently

large to generate beamformers with infinite spatial resolution.

Thus, the Doppler shifts cannot be completely compensated,

resulting in the residual time variation of the equivalent uplink

channel. The power spectrum density (PSD) and Doppler

spread are derived in [23], [24] as a measure of assessing such

residual channel time variation, and a scaling law between the

Doppler spread and number of antennas is further given in

[24]. However, the PSD analysis in [23], [24] is approximative

and only valid contingent on 1) the array is a large-scale ULA,

2) the channel follows Jakes’ model [25], [26] and 3) the

beamforming directions are evenly configured. The derivation

is arduous and cannot be easily extended to more generalized

cases. Furthermore, the Doppler shifts separation in [23], [24]

is performed by matched filter (MF) beamformers, which are

amplitude-constrained and phase-quantized vectors [27] and

thus suboptimal in suppressing the residual Doppler shifts.

Only when the number of antennas is massive, can the MF

beamformers effectively eliminate the residual Doppler shifts.

Otherwise, the residual channel time variation would remain

non-negligible and the resultant uplink channel could still not

be regarded as quasi time-invariant.

In view of this, we derive the channel PSD in an alternative

way to remarkably simplify the derivation. An exact and

concise expression of the channel PSD is obtained in this

paper, and the derivation can be readily extended to more

generalized high-mobility scenarios, where the multi-branch

transmit beamforming and angle-domain Doppler shifts com-

pensation scheme is applied. Moreover, benefiting from the

simplified PSD analysis, we further propose a beamforming

network optimization technique to address the suboptimal-

ity issue of MF beamformers. By introducing a common

configurable amplitudes and phases (CCAP) parameter, the

optimized beamformers can reduce the residual channel time

variation in a more efficient manner. The main contributions

of this paper can be summarized as follows:

• Explicit PSD expression with wider applicability and

clearer insights: Unlike [23], [24] where the channel

PSD is approximatively derived, we demonstrate that the

channel PSD can be exactly expressed as the product

of a pattern function and a beam-distortion function.

The former can be uniquely determined by the antenna

spacing and in fact corresponds to the radiation pattern of

ULA, while the latter depends on how the beamforming

directions are configured. Our PSD derivation not only

can be extended to non-Jakes’ channels or non-uniform

linear arrays, but also allows to observe how the antenna

spacing and beamforming directions influence the chan-

nel PSD.

• Reduction of Doppler spread through beamforming net-

work optimization: The capacity of MF beamformers

being limited in suppressing the residual Doppler shifts,

we propose to introduce a CCAP parameter and optimize

the beamforming network by removing, to some degree,
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Fig. 1: Multi-branch transmit beamforming and angle-domain Doppler shifts
compensation for the high-mobility uplink.

the constant modulus quantized phase constraints of

MF beamformers [27]. By minimizing the corresponding

Doppler spread, the optimal CCAP parameter can be

acquired in a closed form. Compared to the simplest

MF beamformers, the optimized beamformers can better

suppress the residual channel time variation.

The rest of this paper is organized as follows. The transmit

array bramforming and Doppler shifts compensation scheme

under high-mobility scenarios is briefly described in Section

II. Section III gives the detailed derivation of channel PSD and

Doppler spread, based on which the impact of antenna spacing

and beamforming directions is discussed. The beamforming

network optimization technique, especially the computation

of the optimal CCAP parameter, is presented in Section IV.

Simulation results are provided in Section V. Section VI

concludes the paper.

Notations: Superscripts (·)∗, (·)T , (·)H , (·)−1 and E{·}
represent conjugate, transpose, Hermitian, inverse and expec-

tation, respectively; j =
√
−1 is the imaginary unit; |·| denotes

the absolute value operator; ‖ · ‖2 denotes the Euclidean norm

of a vector or Frobenius norm of a matrix; ⊗ denotes the

Kronecker product operator; diag(x) is a diagonal matrix with

vector x as the main diagonal; Cm×n defines the vector space

of all m × n complex matrices; IN stands for the N × N
identity matrix.

II. SYSTEM MODEL

Consider an OFDM uplink transmission in a high-mobility

scenario where the signal transmitted from the HSR ar-

rives at the BS along a number of independent subpaths,

as illustrated in Fig. 1. The HSR is equipped with an M -

elements ULA1. Assume that the direction of the ULA co-

incides with that of HSR motion. Then, the array response

vector pointing to direction θ can be expressed as a(θ) =

1The reason for adopting the ULA can be explained as follows (cited
from [11]): The main groups of arrays are linear, planar and circular.
Compared to linear arrays, planar and circular arrays are able to generate
beams to point anywhere on a sphere. Since the elevation does not influence
the Doppler shift, planar or circular arrays are not needed in the considered
circumstance. The ULA is the simplest array geometry and has the property of
generating broader beams in the end-fire directions than at broadside, which
accords with the changing rate of Doppler shifts [20].
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[

a1(θ), a2(θ), . . . , aM (θ)
]T

, where the rth element is

given by ar(θ)=ej2χ(r−1) cos θ. Here, χ = π d
λ

, d and λ denote

the antenna spacing and carrier wavelength, respectively. By

denoting the velocity of HSR as v, the maximum Doppler shift

fd can be defined as fd =
v
λ

. Note that the HSR runs along

fixed tracks of the railways according to a strict preplanned

schedule [28], implying that the real-time velocity v can be

directly stored and accessed. Thus, the maximum Doppler shift

fd is assumed perfectly known at the HSR.

The well established Jakes’ channel model [25], [26] is used

to characterize the channel between the rth antenna and BS.

It consists of L taps, with dl denoting the relative delay of the

lth tap. Each tap is composed of P ≫ 1 separable subpaths

with index p = 1, 2, . . . , P . Denote θl,p ∼ U (0, 2π) and

ρl,p∼CN (0, 1/PL) as the departure angle and the associated

complex gain of the pth subpath at the lth tap.

Denote sm =
[

sm(0), sm(1), . . . , sm(N − 1)
]

as

the length-N transmitted time domain symbols in the mth

OFDM block. The cyclic prefix (CP) of length Ncp is ap-

pended to sm, which implies that sm(−n) = sm(N − n)
for n = 1, 2, . . . , Ncp. Then, the transmitted signal ma-

trix at the transmit antenna array after delay of dl can

be expressed as Sm (dl) = 1M×1 ⊗ sm (dl) /
√
M , where

sm (dl) =
[
sm (−dl) , sm (1−dl) , . . . , sm (N−1−dl)

]

corresponds to the right circular shift of sm by a factor of

dl. Here, the divisor
√
M is added to keep the total transmit

power per symbol to 1. Moreover, define Ns=N+Ncp as the

length of a whole OFDM block.

Let the transmitted signal pass through the above-described

channel. The received signal in the mth block (after CP

removal) at the BS without Doppler shifts compensation can

be expressed as the following 1×N vector

ym =

L∑

l=1

P∑

p=1

ρl,pa
T (θl,p)Sm (dl)Φm (θl,p) + nm, (1)

where Φm (θl,p) = diag
([
βm,0 (θl,p) , βm,1 (θl,p) , . . . ,

βm,N−1(θl,p)
])

with βm,n(θl,p)= ej2πfd cos θl,p(mNs+n−dl)Ts .

Here, Ts is the sampling interval. Besides, nm ∈ C
1×N is the

zero-mean complex additive white Gaussian noise (AWGN) in

the mth block at the BS with E{nHmnm}= σ2
nIN , where σ2

n

is the noise power.

Owing to the ambiguity between any two opposite

directions about the ULA, it is sufficient to perform the multi-

branch transmit beamforming towards a set of Q directions

ϑq ∈ (0, π) , q = 1, 2, . . . , Q, which can cover the entire

AoD range of (0, 2π). Then, the transmit beamforming and

Doppler shifts compensation can be performed by substituting

Sm (dl) with S̃m,q (dl) = b∗ (ϑq) sm (dl)Ψm,l (ϑq), where

b (ϑq) =
η

M
√
Q
a (ϑq) e

jφ(ϑq) represents the qth beamformer.

Here, φ (ϑq) denotes the random phase introduced at b (ϑq),
and η= 1

∥

∥

∥

∥

∥

Q
∑

q=1

1
M

√
Q
a(ϑq)e

jφ(ϑq)

∥

∥

∥

∥

∥

2

is the normalization coefficient

to keep the total transmit power per symbol to 1. The

associated Doppler shift compensation matrix is Ψm,l (ϑq)=

diag
([

β̃m,0,l (ϑq) , β̃m,1,l (ϑq) , . . . , β̃m,N−1,l (ϑq)
]T

)

,

where β̃m,n,l (ϑq)=e−j2πfd cosϑq(mNs+n−dl)Ts .

Substituting Sm (dl) with S̃m,q (dl) in (1), we arrive at

rm,q =

L∑

l=1

P∑

p=1

ρl,pa
T (θl,p)b

∗ (ϑq) sm (dl)

×Ψm,l (ϑq)Φm (θl,p) + nm,

=
η√
Q
e−jφ(ϑq)

∑

l,p,θl,p=ϑq

ρl,psm (dl)

︸ ︷︷ ︸

desired signal

+
∑

l,p,θl,p 6=ϑq

ρl,pb
H(ϑq) a (θl,p) sm (dl)Ψm,l (ϑq)Φm (θl,p)

︸ ︷︷ ︸

interference

+ nm
︸︷︷︸

noise

. (2)

When the number of antennas M is massive, the interfer-

ence in (2) tends to vanish, and the time-varying channel can

be decomposed into a set of parallel time-invariant channels.

However, the number of antennas may not be sufficiently large

in practice, in which case there will still be uncompensated

Doppler shifts due to limited spatial resolution while a thor-

ough time-invariant equivalent channel cannot be achieved for

each beamforming branch. The Doppler spread [29] could be

employed here as a metric to measure the residual channel

time variation.

The derivation of Doppler spread requires the channel PSD,

which is the Fourier Transform of channel autocorrelation.

Since different channel taps are independent and have identical

statistical properties [11], [24], we only consider one tap for

simplicity, i.e., L=1, d1=0. By ignoring the noise item, the

signal at the BS obtained after Doppler shifts compensation

and multi-branch beamforming can be expressed as

rm =

Q
∑

q=1

rm,q =

Q
∑

q=1

P∑

p=1

ρ1,pa
T (θ1,p)b

∗ (ϑq)

× sm (d1)Ψm,1 (ϑq)Φm (θ1,p) ,

=
η√
Q

Q
∑

q=1

P∑

p=1

ρpe
−jφ(ϑq)

1

M
aH (ϑq) a (θp)

× smΨm,1 (ϑq)Φm (θp) , (3)

where ρ1,p and θ1,p have been replaced by ρp and θp,

respectively. Besides, the complex channel gain ρp can be

equivalently expressed as ρp=αpe
jϕp , where αp∼N (0, 1/P )

and ϕp∼U (0, 2π) denote the random channel gain and phase,

respectively.

III. ANALYSIS OF CHANNEL PSD AND DOPPLER SPREAD

A. Derivation of the Channel PSD

The equivalent uplink channel of (3) can be expressed in a

continuous-time form as

g (t) =
1√
Q

Q
∑

q=1

∫ 2π

0

α (θ)G (cos θ, cosϑq)

× ej2πfdt cos θ−j2πfdt cosϑq+jϕ(θ)−jφ(ϑq)dθ,
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=
1√
Q

Q
∑

q=1

∫ 2π

0

α (θ)G (cos θ, cosϑq)

× ejωd(cos θ−cosϑq)t+jϕ(θ)−jφ(ϑq)dθ, (4)

where ωd = 2πfd and G (cos θ, cosϑq) =
1
M
aH (ϑq)a (θ) =

1
M

∑M

r=1 e
j2χ(r−1)(cos θ−cosϑq). Note that the equivalent con-

tinuous channel (4) is obtained by replacing θp with θ, and

α(θ) and ϕ(θ) denote the random gain and phase for the path

with AoD θ. The normalization coefficient η is omitted in the

continuous-form channel (4) for simplicity, since it does not

affect the following PSD analysis. Besides, |G (cos θ, cosϑq)|2
is in fact the radiation pattern at direction θ with 1

M
a (ϑq)

as beamformer. Moreover, by fixing ϑq =
π
2 and varying θ,

|G (cos θ, cosϑq)|2 is exactly the radiation pattern obtained

with the MF beamformer pointing towards the normal direc-

tion of ULA.

The autocorrelation for the equivalent continuous channel

g (t) is given by

Rg (τ) = E {g (t) g∗ (t+ τ)} ,

=
1

Q

Q
∑

q=1

Q
∑

k=1

∫ 2π

0

∫ 2π

0

E
{

α (θ)α∗(θ̃)ej[ϕ(θ)−ϕ(θ̃)]

× ej[φ(ϑk)−φ(ϑq)]G (cos θ, cosϑq)G
∗( cos θ̃, cosϑk

)

× ejωd(cos θ−cosϑq)t−jωd(cos θ̃−cosϑk)(t+τ)
}

dθdθ̃,

∗
=

1

Q

Q
∑

q=1

∫ 2π

0

E
{
|α (θ)|2

}
|G (cos θ, cosϑq)|2

× e−jωd(cos θ−cosϑq)τdθ,

∗∗
=

1

2πQ

Q
∑

q=1

∫ 2π

0

|G (cos θ, cosϑq)|2e−jωd(cos θ−cosϑq)τdθ,

=
1

πQ

Q
∑

q=1

∫ π

0

|G (cos θ, cosϑq)|2e−jωd(cos θ−cosϑq)τdθ, (5)

where
∗
= employs the properties

E
{

ej[ϕ(θ)−ϕ(θ̃)]
}

=

{
1, θ = θ̃

0, θ 6= θ̃
,

E
{

ej[φ(ϑk)−φ(ϑq)]
}

=

{
1, q = k
0, q 6= k

,

and
∗∗
= comes from

∫ 2π

0
|α (θ)|2dθ=1 and E

{
|α (θ)|2

}
= 1

2π .

The channel PSD is the Fourier transform of the channel

autocorrelation Rg (τ) and the explicit expression of channel

PSD is provided by the following Lemma.

Lemma 1: Let ω be the Doppler frequency and denote

ω̃ = ω
ωd

= ω
2πfd

as the normalized Doppler frequency with

respect to the maximum Doppler shift. Then, for the given

channel autocorrelation Rg(τ) in (5), the channel PSD can be

expressed in the form of

P (ω) =
1

ωd
|G(ω̃)|2W (ω̃) , (6)

where

|G(ω̃)|2 = | 1
M

∑M

r=1
e−j2χ(r−1)ω̃|2 =

sin2 (χMω̃)

M2sin2 (χω̃)
, (7)

and

W (ω̃) =
2

Q

Q
∑

q=1

1
√

1− (ω̃ − cosϑq)
2
Iq (ω̃), (8)

are named as pattern function and beam-distortion function,

respectively. Note that Iq (ω̃) is the binary-value indicator

function defined in the proof below.

Proof: According to the definition, the channel PSD can

be expressed as

P (ω) =

∫ +∞

−∞
Rg (τ) e

−jωτdτ ,

=
1

πQ

Q
∑

q=1

∫ π

0

|G (cos θ, cosϑq)|2

×
[∫ +∞

−∞
e−jωd(cos θ−cosϑq)τ e−jωτdτ

]

dθ,

=
2

Q

Q
∑

q=1

∫ π

0

|G (cos θ, cosϑq)|2

× δ (ω + ωd (cos θ − cosϑq)) dθ, (9)

where we have exploited
∫ +∞
−∞ e−jωd(cos θ−cosϑq)τe−jωτdτ =

2πδ (ω+ωd (cos θ−cosϑq)).

In addition, there holds
∫ π

0

|G (cos θ, cosϑq)|2δ (ω + ωd (cos θ − cosϑq)) dθ

y=ωd cos θ
=

1

ωd

∫ ωd

−ωd

∣
∣
∣
∣
G

(
y

ωd
, cosϑq

)∣
∣
∣
∣

2
1

√

1−
(
y
ωd

)2

× δ (y + ω − ωd cosϑq) dy,

=







1
ωd

∣
∣
∣G

(

cosϑq− ω
ωd
, cosϑq

)∣
∣
∣

2
1

√

1−
(

ω
ωd

−cosϑq

)2
,

−1≤ ω
ωd

−cosϑq≤1

0, otherwise

,

=

{
1
ωd

|G(ω̃)|2 1√
1−(ω̃−cosϑq)

2
,−1≤ ω̃−cosϑq≤1

0, otherwise
. (10)

Combining (9) and (10), we obtain

P (ω) =
2

Q

Q
∑

q=1

1

ωd
|G(ω̃)|2 1

√

1− (ω̃ − cosϑq)
2
Iq (ω̃)

=
1

ωd
|G(ω̃)|2W (ω̃) . (11)

Here, Iq (ω̃) =
{
1, q ∈ S (ω̃)
0, q /∈ S (ω̃)

, with S (ω̃) being the set of

beamforming branches contributing to the PSD at ω̃. From

the derivation (10), S (ω̃) can be given by S (ω̃)={q | ω̃−1≤
cosϑq ≤ ω̃+1}. However, there is also an implicit constraint

about ϑq ∈ (0, π), i.e., −1 ≤ cosϑq ≤ 1. By making the

implicit constraint explicit, S (ω̃) can be re-expressed as

S (ω̃)={q | ω̃−1≤cosϑq ≤ ω̃+1, −1≤cosϑq≤1}

=

{
{q | − 1≤cosϑq≤ ω̃+1} , −2≤ ω̃<0
{q | ω̃−1≤cosϑq≤1} , 0≤ ω̃≤2

. (12)

This completes the proof.
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From Lemma 1, the following observations can be made:

1) The expression of S (ω̃) in (12) reveals that the PSD is

nonzero only for |ω̃| ≤ 2. Obviously, the maximum Doppler

frequency ωmax is |ωmax| = 2ωd.

2) The most interesting observation from (6) is that the

channel PSD can be fully characterized by |G(ω̃)|2 and W(ω̃).
Taking ϑq =

π
2 and −ω̃ = cos θ−cosϑq = cos θ, we arrive at

G (ω̃) = G
(
cos θ, cos π2

)
, which implies that |G (ω̃) |2 is the

converted radiation pattern obtained with the MF beamformer

pointing to the normal direction of ULA. This explains why

|G(ω̃)|2 is named as pattern function. Besides, Iq (ω̃) is the

binary-value indicator function indicating whether the qth

beamforming branch contributes to the PSD at ω̃. Therefore,

W (ω̃) reflects the comprehensive impact of different beam-

formers on channel PSD, and is named as beam-distortion

function to highlight its distortion effect on the pattern function

|G(ω̃)|2. Moreover, the pattern function |G(ω̃)|2 only depends

on the antenna spacing d, and the beam-distortion function

W(ω̃) is entirely determined by the configuration of beam-

forming directions ϑq, q=1, 2, . . . , Q.

3) The PSD in (6) can be equivalently written as P (ω)=
1
ωd

∣
∣
∣G

(
ω
ωd

)∣
∣
∣

2

W
(
ω
ωd

)

. Evidently, increasing ωd, i.e., the max-

imum Doppler shift fd, will preserve the shape of the PSD,

except that the resulting PSD will be linearly stretched in

frequency and reversely decreased in amplitude. Nevertheless,

the integral of P (ω) with respect to ω is independent of ωd,

because of
∫ 2ωd

−2ωd

P (ω) dω =

∫ 2ωd

−2ωd

∣
∣
∣
∣
G
(
ω

ωd

)∣
∣
∣
∣

2

W
(
ω

ωd

)

d
ω

ωd

=

∫ 2

−2

|G(ω̃)|2W (ω̃) dω̃.

4) The Doppler spread can be calculated as

σDS =

√
√
√
√

∫ 2ωd

−2ωd
ω2P (ω) dω

∫ 2ωd

−2ωd
P (ω) dω

ω=ωdω̃= ωd

√
√
√
√

∫ 2

−2
ω̃2|G (ω̃)|2W (ω̃) dω̃

∫ 2

−2 |G (ω̃)|2W (ω̃) dω̃
. (13)

Considering that the two integrals with respect to ω̃ in (13)

does not depend on ωd, we know that the Doppler spread σDS

is linearly proportional to ωd, i.e., the maximum Doppler shift

fd. In other words, the higher the HSR velocity is, the larger

the Doppler spread σDS will be.

Remark 1: The derivation of channel PSD can be readily

extended to much more generalized cases. Consider that a

linear antenna array (possibly non-uniform) is equipped at the

HSR and denote ∆dr as the antenna spacing between the rth
antenna and the first one, with ∆d1 = 0. Moreover, we assume

that the signal AoDs θ∼U (θL, θR), where θL, θR denote the

bounds of the AoD region. Similar to [30], we denote κ(θ) as

the complex-valued channel gain corresponding to the AoD θ.

The channels with different AoDs are assumed uncorrelated,

i.e., E{κ(θ)κ∗(θ′)} = ρ(θ)δ(θ − θ′), where ρ(θ) represents

the channel power angle spectrum (PAS) which models the

channel power distribution in angle domain [30]. There holds
∫ θR
θL

ρ(θ)dθ=1 such that the total channel gain is normalized

to 1.

By introducing the concept of channel PAS ρ (θ), our PSD

derivation can cover a wide variety of channel circumstances.

For example, if the channel has uniform PAS in non-line-of-

sight (NLoS) environments, there is ρ(θ) = 1
θR−θL , θL ≤ θ≤

θR. Instead, in the case of line-of-sight (LoS) environments

with LoS path component at θLoS and NLoS subpaths, we

have

ρ(θ) = ρNLoS(θ) +
K

K+1
δ (θ−θLoS) , θL≤θ≤θR,

where ρNLoS(θ) denotes the channel PAS for NLoS subpaths,

with
∫ θR
θL

ρNLoS (θ) dθ = 1
K+1 . Here, K is the Rician factor

to reflect the power ratio between LoS component and NLoS

subpaths.

Following the similar derivation as in Lemma 1, the pattern

function and beam-distortion function in the above-described

generalized scenario turn to be

|G(ω̃)|2 =

∣
∣
∣
∣
∣

1

M

M∑

r=1

e−j2π∆dr
λ
ω̃

∣
∣
∣
∣
∣

2

, (14)

and

W (ω̃) =
2π

Q

Q
∑

q=1

ρ (arccos (cosϑq−ω̃))
√

1− (ω̃ − cosϑq)
2
Iq (ω̃), (15)

where Iq (ω̃)=
{
1, q ∈ S (ω̃)
0, q /∈ S (ω̃)

remains the same while S (ω̃)

becomes

S (ω̃)={q | ω̃+cos θR≤cosϑq ≤ ω̃+cos θL,

cos θR≤cosϑq≤cos θL}

=

{
{q | cos θR≤cosϑq≤ ω̃+cos θL} , −µ (θL, θR)≤ ω̃<0
{q | ω̃+cos θR≤cosϑq≤cos θL} , 0≤ ω̃≤µ (θL, θR) .

(16)

Note that µ (θL, θR) = cos θL − cos θR. In such case, the

pattern function |G(ω̃)|2 depends on the antenna spacings ∆dr,

and the beam-distortion function W(ω̃) is jointly determined

by the AoD region (θL, θR), the channel PAS ρ(θ) and the

configuration of beamforming directions ϑq, q=1, 2, . . . , Q.

It is confirmed that the derived PSD can be extended to non-

uniform linear arrays and non-Jakes’ channels with generic

channel PAS. Nonetheless, unless otherwise specified, we will

limit the discussion hereinbelow in the scope of ULA and

Jakes’ channel for simplicity.

B. Impact of Beamforming Directions and Antenna Spacing

on Channel PSD

In this section, we discuss how the configuration of beam-

forming directions and the choice of antenna spacing influence

the channel PSD.

1) Impact of beamforming directions: As the number of

selected beamformers Q goes to infinity, the beam-distortion

function given in (8) can be transformed into the following

integral form

W (ω̃) =
2

Q

Q
∑

q=1

1
√

1−(ω̃−cosϑq)
2
Iq (ω̃)
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= 2

∫ π

0

1
√

1−(ω̃−cosϑ)
2
f (ϑ) I (ϑ, ω̃) dϑ, (17)

where ϑ is the continuous counterpart of ϑq , f(ϑ) is the

probability density function (pdf) of ϑ, and I (ϑ, ω̃) ={
1, ϑ ∈ S (ϑ, ω̃)
0, ϑ /∈ S (ϑ, ω̃)

is the binary-value indicator function, with

S (ϑ, ω̃)=

{
{ϑ | − 1≤cosϑ≤ ω̃+1} , −2≤ ω̃<0
{ϑ | ω̃−1≤cosϑ≤1} , 0≤ ω̃≤2

=

{
{ϑ | arccos (ω̃+1)≤ϑ≤π} , −2≤ ω̃<0
{ϑ | 0≤ϑ≤arccos (ω̃−1)} , 0≤ ω̃≤2

. (18)

Note that S (ϑ, ω̃) can be directly derived from S (ω̃), by

substituting ϑq in (12) with ϑ.

Next, we further derive a more explicit form of the beam-

distortion functions, under two typical configurations of beam-

forming directions: First, the beamforming directions are con-

figured such that cosϑq, q=1, 2, . . . , Q are evenly distributed

between (−1, 1); second, the beamforming directions ϑq, q=
1, 2, . . . , Q themselves are evenly configured between (0, π).
We refer to the two configurations of beamforming directions

as “Equi-cos” and “Equi-angle”, respectively. Note that “Equi-

cos” is considered since the multi-branch beamforming with

such configured beamformers can be implemented efficiently

with fast Fourier transform (FFT) [18].

Case 1: In the case of “Equi-cos”, i.e., cosϑq, q =
1, 2, . . . , Q are evenly distributed between (−1, 1), the pdf

of ϑ can be expressed as

f (ϑ) =
1

2
sinϑ, ϑ ∼ (0, π). (19)

Here, the pdf (19) should be in sinusoidal form since “Equi-

cos” distribution implies −d cosϑ=sinϑdϑ, and the normal-

ization term 1
2 comes from

∫ π

0
sinϑdϑ=2.

As a result, the beam-distortion function can be expressed

as

W (ω̃) =
2

Q

Q
∑

q=1

1
√

1− (ω̃ − cosϑq)
2
Iq (ω̃)

∣
∣
∣
∣
∣
∣
cosϑq ∼ U(−1,1)

=

∫ π

0

sinϑ
√

1− (cosϑ− ω̃)
2
I (ϑ, ω̃) dϑ. (20)

To further simplify (20), we take a variable substitution

of x = arccos (cosϑ− ω̃), i.e., ϑ = arccos(cos x + ω̃).
Then, the indicator function I (ϑ, ω̃) becomes

I (arccos(cosx+ ω̃), ω̃) = I (ϑ, ω̃)|ϑ=arccos(cosx+ω̃),

with the beamformer set S (ϑ, ω̃) being transformed into

S (arccos(cosx+ω̃), ω̃)

=

{
{x | 0≤x≤arccos (−1−ω̃)} ,−2≤ ω̃<0
{x | arccos (1−ω̃)≤x≤π} , 0≤ ω̃≤2

. (21)

After the variable substitution, (20) can be finally expressed

in a closed form as

W (ω̃) =

∫ arccos(−1−ω̃)

arccos(1−ω̃)
I (arccos(cos x+ ω̃), ω̃) dx,

=

{∫ arccos(−1−ω̃)
0

1dx, −2 ≤ ω̃ < 0
∫ π

arccos(1−ω̃) 1dx, 0 ≤ ω̃ ≤ 2
,

= arccos (|ω̃|−1) , |ω̃| ≤ 2 . (22)

Case 2: In the case of “Equi-angle”, i.e., ϑq, q=1, 2, . . . , Q
are evenly selected between (0, π), the pdf of ϑ can be given

by

f (ϑ) =
1

π
, ϑ ∼ (0, π). (23)

As a result, the beam-distortion function can be expressed as

W (ω̃) =
2

Q

Q
∑

q=1

1
√

1− (ω̃ − cosϑq)
2
Iq (ω̃)

∣
∣
∣
∣
∣
∣
ϑq ∼ U(0,π)

,

=
2

π

∫ π

0

1
√

1− (cosϑ− ω̃)
2
I (ϑ, ω̃) dϑ,

=







2
π

∫ π

arccos(ω̃+1)
1√

1−(cosϑ−ω̃)2
dϑ, −2 ≤ ω̃ < 0

2
π

∫ arccos(ω̃−1)

0
1√

1−(cosϑ−ω̃)2
dϑ, 0 ≤ ω̃ ≤ 2

,

=
2

π

∫ arccos(|ω̃|−1)

0

1
√

1−(cosϑ−|ω̃|)2
dϑ, |ω̃| ≤ 2 .

(24)

In order to get some insights from the expression, we further

rewrite (24) as

W (ω̃) =







2
π

∫ π
2

0
1

√

1−(1− ω̃2

4
)sin2ξ

dξ, 0< |ω̃|<2

∞, ω̃=0
1, |ω̃|=2

. (25)

The detailed derivation can be found in Appendix A. As (25)

reveals, on the one hand, W (ω̃) monotonically decreases with

the increase of |ω̃|; on the other hand, W (ω̃) approaches to

infinity and 1 as |ω̃| goes to 0 and 2, respectively. Thus, based

on (25), the profile of the beam-distortion function can be

easily outlined.

Remark 2: For the generalized channel in Remark 1, where

the signal AoDs are distributed within (θL, θR), the beam-

distortion functions in the above two cases can be similarly de-

rived. The results are summarized in Table I, which compares

different forms of beam-distortion functions under different

channel assumptions and beamforming directions. Especially,

if uniform channel PAS is assumed for the generalized chan-

nel, the beam-distortion functions with ‘Equi-cos’ and ‘Equi-

angle’ beamforming distrbutions reduce to

W (ω̃)=

{
2π

θR−θL
arccos(cos θR−ω̃)−θL

µ(θL,θR) , −µ (θL, θR)≤ ω̃<0
2π

θR−θL
θR−arccos(cos θL−ω̃)

µ(θL,θR) , 0≤ ω̃≤µ (θL, θR)
,

(26)

and

W (ω̃)=







2π
(θR−θL)2

∫ θR
arccos(ω̃+cos θL)

1√
1−(cosϑ−ω̃)2

dϑ, ω̃<0

2π
(θR−θL)2

∫ arccos(ω̃+cos θR)

θL

1√
1−(cosϑ−ω̃)2

dϑ, ω̃≥0
,

|ω̃| ≤ µ (θL, θR) . (27)

The beam-distortion functions given in (22), (24) and (26)

are depicted in Fig. 2. Note that (22) and (26) adopt “Equi-cos”

while (24) adopts “Equi-angle”. Besides, Jakes’ channel is as-

sumed for (22) and (24), whereas we take θL=0◦, θR=90◦ for

(26). All the three beam-distortion functions are nonnegative

and decrease with increasing |ω̃|. Hence, they all attain the

maximum at ω̃=0. Apart from this, the following observations
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TABLE I: Beam-distortion functions under difference channel assumptions and beamforming directions

W(ω) Jakes’ channel Non-Jakes’ channel

Equi-cos arccos (|ω̃|−1) , |ω̃| ≤ 2

{

2π
µ(θL,θR)

∫ arccos(cos θR−ω̃)
θL

ρ(x)dx, −µ (θL, θR) ≤ ω̃ < 0
2π

µ(θL,θR)

∫ θR
arccos(cos θL−ω̃)

ρ(x)dx, 0 ≤ ω̃ ≤ µ (θL, θR)

Equi-angle















2
π

∫

π
2

0
1

√

1−(1− ω̃2

4
)sin2ξ

dξ, 0< |ω̃|<2

∞, ω̃=0
1, |ω̃|=2











2π
θR−θL

∫ θR
arccos(ω̃+cos θL)

ρ(arccos(cosϑq−ω̃))√
1−(cos ϑ−ω̃)2

dϑ,−µ(θL, θR)≤ ω̃<0

2π
θR−θL

∫ arccos(ω̃+cos θR)
θL

ρ(arccos(cosϑq−ω̃))√
1−(cosϑ−ω̃)2

dϑ, 0≤ ω̃≤µ(θL, θR)
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Beam−distortion function − (24)
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Equi−cos, non−Jakes’

Equi−cos, Jakes’

Equi−angle, Jakes’

Fig. 2: Comparison of the beam-distortion functions W (ω̃) given in (22),
(24) and (26) (θL=0◦, θR=90◦ for (26)).

can be made:

First, unlike (22) and (24), (26) yields a beam-distortion

function which is asymmetric about ω̃ = 0. Such asymmetry

is due to the fact that the mean AoD deviates from π
2 .

Moreover, W (ω̃) in (26) remains zero for |ω̃| > 1, due to

µ (θL, θR)=1. Second, comparing (22) and (24), we observe

that the beam-distortion function in (24) is more concentrated

around ω̃ = 0, while that in (22) better attenuates the high

Doppler frequencies as |ω̃| approaches 2. Third, W (ω̃) in

(24) is unbounded above at ω̃=0 and converges to 1 as |ω̃|
tends to 2, which matches with the analysis obtained from the

alternative form (25).

2) Impact of antenna spacing: As derived in Lemma 1, the

pattern function |G (ω̃)|2 is given by |G (ω̃)|2 = sin2(χMω̃)
M2sin2(χω̃) .

Apparently, |G (ω̃)|2 manifests itself as a periodic function of

ω̃, which repeats itself with period Ω̃= π
χ

.

Note that the antenna spacing d can be set a bit larger to gain

higher beamforming resolution, but it cannot exceed dmax=
λ
2

to avoid aliasing. Moreover, d= λ
2 will also incur the aliasing

between 0◦ and 180◦. Therefore, we limit the range of antenna

spacing as 0<d< λ
2 , and the optimal antenna spacing should

be compromised between beamforming resolution and aliasing

avoidance.

Fig. 3 compares the pattern function |G(ω)|2, beam-

distortion function W(ω) and PSD P (ω), when the antenna

spacings are taken as d=0.3λ and d=0.5λ, respectively. Note

that the absolute values of |G(ω)|2, W(ω) and P (ω) have been

scaled such that their maximums are all 1 (e.g., the depicted

beam-distortion function is in fact W(ω)/max{|W(ω)|}).

The maximum Doppler shift is taken as fd =1 000 Hz. The

beamforming directions are configured such that cosϑq, q =
1, 2, . . . , Q, are uniformly distributed between (−1, 1). Since

−1 −0.5 0 0.5 1

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

ω

N
or

m
al

iz
ed

 fu
nc

tio
ns

(a)

 

 

Pattern function
Beam−distortion
function
PSD

−1 −0.5 0 0.5 1

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

ω

N
or

m
al

iz
ed

 fu
nc

tio
ns

(b)

 

 

Pattern function
Beam−distortion
function
PSD

Fig. 3: Comparison of the normalized pattern function |G(ω)|2,
beam-distortion function W (ω) and PSD P (ω), for 16-element (M=16)

ULA with the normalized antenna spacings set as: (a) d
λ
= 0.3 and (b)

d
λ
= 0.5.

the beamforming directions are exactly the same, both cases

share the same beam-distortion function W(ω). Hence, only

the choice of antenna spacing accounts for the difference

between Fig. 3(a) and Fig. 3(b). As anticipated, the pattern

function |G(ω)|2 at d
λ

= 0.5 accomplishes a full period

within ω∈(−2ωd, 2ωd), which implies |G(±2ωd)|2= |G(0)|2.

Therefore, despite the attenuation effect of the beam-distortion

function W (ω) on large Doppler frquencies, the PSD at
d
λ
=0.5 would be much larger than that at d

λ
=0.3 for large ω.

Since a PSD concentrated around low Doppler frequencies

is more favorable for reducing the residual channel time

variation, the antenna spacing d=0.5λ should be avoided. This

graphically explains from another perspective why the tradeoff

between beamforming resolution and aliasing avoidance needs

to be taken when determining the antenna spacing d.
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Doppler shift 
compensation

Doppler Shifts Compensation

ms

MF 
beamformers

CCAP 
parameter

Optimized 
beamformers

Beamforming Network Optimization

1

2

Q

Fig. 4: Illustration of the beamforming network optimization technique.

IV. BEAMFORMING NETWORK OPTIMIZATION FOR

REDUCING DOPPLER SPREAD

In Section III, we have employed B =
[
b (ϑ1) , b (ϑ2) ,

. . . , b (ϑQ)
]

as the beamforming network, with b (ϑq) =
η

M
√
Q
a (ϑq) e

jφ(ϑq), to separate the Doppler shifts and reduce

channel time variation. However, the MF beamformers are

amplitude-constrained and phase-quantized vectors, which are

suboptimal themselves in suppressing the residual Doppler

shifts. If the Doppler shifts separation could be performed by

the optimal beamformers with entirely configurable amplitudes

and phases, the residual Doppler shifts could be minimized,

further reducing the channel time variation. Yet, acquiring

such optimal beamformers leads to the joint optimization

of Q(M − 1) parameters, which is of prohibitively high

computational complexity. In fact, we could turn to optimize

the MF beamforming network B by introducing a Common

Configurable Amplitudes and Phases (CCAP) parameter2 u=
[
u1, u2, . . . , uM

]T
such that

BCCAP = [bCCAP (ϑ1) , bCCAP (ϑ2) , . . . , bCCAP (ϑQ)]

= diag (u∗)B. (28)

The qth beamformer is thus given by bCCAP (ϑq) =
ηCCAP

M
√
Q

diag (u∗) a (ϑq) ejφ(ϑq), where ηCCAP =
1

∥

∥

∥

∥

∥

Q
∑

q=1

1
M

√
Q

diag(u∗)a(ϑq)e
jφ(ϑq)

∥

∥

∥

∥

∥

2

is the normalization coefficient

to keep the total transmit power per symbol as 1.

Note that the channel time variation can be reflected by

Doppler spread, the smaller the Doppler spread is, the slower

the channel varies in time. As a result, we could obtain the

optimal CCAP parameter by minimizing the Doppler spread.

To this end, we must first derive the channel PSD with the

modified beamformers bCCAP (ϑq), and it is expected that the

CCAP parameter u will only affect the pattern function, since

the pattern function corresponds to the converted radiation

pattern of the array.

With the new beamforming network BCCAP, the signal

received at the BS after Doppler shifts compensation and

multi-branch transmit beamforming can be re-expressed as (the

2The designation of CCAP parameter for u is due to the fact that all the MF
beamformers b (ϑq)’s share the same CCAP parameter, which could remove
in some degree the constant modulus and quantized phase constraints b (ϑq)’s
are subject to.

noise item is ignored and only one channel tap is considered)

rm,CCAP =

Q
∑

q=1

P∑

p=1

ρ1,pa
T (θ1,p)b

∗
CCAP (ϑq) sm (d1)

×Ψm,1 (ϑq)Φm (θ1,p) ,

=
ηCCAP√

Q

Q
∑

q=1

P∑

p=1

ρpe
−jφ(ϑq)

1

M
aH (ϑq) diag (u)

× a (θp) smΨm,1 (ϑq)Φm (θp) .
(29)

By ignoring the real scalar ηCCAP which does not affect

the PSD analysis and Doppler spread, the equivalent uplink

channel of (29) can be expressed in continuous-time form as

gCCAP (t) =
1√
Q

Q
∑

q=1

∫ 2π

0

α (θ)GCCAP (cos θ, cosϑq)

× ejωd(cos θ−cosϑq)t+jϕ(θ)−jφ(ϑq)dθ, (30)

where

GCCAP (cos θ, cosϑq) =
1

M
aH (ϑq) diag (u)a (θ)

=
1

M

∑M

r=1
ure

j2χ(r−1)(cos θ−cosϑq). (31)

By denoting c (cos θ, cosϑq) =
[
1, ej2χ(cos θ−cosϑq), . . . ,

ej2χ(M−1)(cos θ−cosϑq)
]T

, (31) could be rewritten as

GCCAP (cos θ, cosϑq) =
1

M
cT (cos θ, cosϑq)u. (32)

Note that the only difference between the continuous-

time channels in (30) and (4) is that G (cos θ, cosϑq) in

(4) is replaced by GCCAP (cos θ, cosϑq) in (31). Actually,

by letting u = 1M×1, GCCAP (cos θ, cosϑq) will reduce to

G (cos θ, cosϑq). Thus, the considered scenario in Section III

can be categoried as a special case of directly adopting MF

beamformers without configurable amplitudes and phases (or

with all-one CCAP parameter). Following the similar approach

as in Section III, the channel PSD can be expressed as

PCCAP (ω) =
1

ωd
|GCCAP(ω̃)|2W (ω̃) , (33)

where the beam-distortion function remains exactly the same

as (8), implying that the nonzero PSD region is still |ω̃| ≤ 2,

while the pattern function can be redefined as

|GCCAP(ω̃)|2 = | 1
M

∑M

r=1
ure

−j2χ(r−1)ω̃|2

= | 1
M

ς
H (ω̃)u|2. (34)

Here, ς (ω̃)=
[
1, ej2χω̃ , . . . , ej2χ(M−1)ω̃

]T
.

As a result, the Doppler spread with the beamforming

network BCCAP can be calculated as

σDS,CCAP =

√
√
√
√

∫ 2ωd

−2ωd
ω2PCCAP (ω) dω

∫ 2ωd

−2ωd
PCCAP (ω) dω

,

ω=ωdω̃= ωd

√
√
√
√

∫ 2

−2 ω̃
2|ςH (ω̃)u|2W (ω̃) dω̃

∫ 2

−2
|ςH (ω̃)u|2W (ω̃) dω̃

,
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= ωd

√
√
√
√
√

uH
[∫ 2

−2 ω̃
2W (ω̃) ς (ω̃) ςH (ω̃) dω̃

]

u

uH
[∫ 2

−2
W (ω̃) ς (ω̃) ςH (ω̃) dω̃

]

u
,

= ωd

√

uHC2u

uHC0u
, (35)

where

C0 =

∫ 2

−2

W (ω̃) ς (ω̃) ςH (ω̃) dω̃,

C2 =

∫ 2

−2

ω̃2W (ω̃) ς (ω̃) ςH (ω̃) dω̃.

Note that when the beam-distortion function W (ω̃) is sym-

metric about ω̃ = 0, both C0 and C2 are real symmetric

Toeplitz matrices.

The optimal CCAP parameter û minimizing the Doppler

spread can be acquired by solving the following optimization

problem

û =argmin
ũ

σDS,CCAP = argmin
ũ

ũHC2ũ

ũHC0ũ
,

s.t. ũHC0ũ = 1, (36)

where ũ denotes the trial CCAP parameter, and the constraint

ũHC0ũ=1 is added to eliminate the magnitude ambiguity of

ũ and also to avoid the trivial solution of û=0.

The optimization problem in (36) is a typical Rayleigh-

entropy problem [31], and the optimal CCAP parameter min-

imizing the Doppler spread can be obtained in a closed form

as

û = Q−Hvmin

(
Q−1C2Q

−H)
, (37)

where Q is acquired by decomposing C0 as C0 = QQH

and vmin (X) denotes the eigenvector corresponding to

the minimum eigenvalue of matrix X. The qth optimal

beamformer can finally be expressed as b̂CCAP (ϑq) =
ηCCAP

M
√
Q

diag (û∗) a (ϑq) ejφ(ϑq).

Remark 3: It can be seen from (36) that the optimization of

CCAP parameter does not depend on the maximum Doppler

shift fd and thus is independent of the velocity of the HSR.

Besides, the optimal CCAP parameter û in (37) can be

expressed in a closed form as a function of C0 and C2.

Thus, for a given ULA with fixed antenna spacing, the optimal

CCAP parameter û is uniquely determined by the beam-

distortion function W (ω̃), which depends on the beamforming

directions. In other words, as long as the beamforming network

is determined, the CCAP parameter can be optimized and the

obtained û remains valid irrespective of HSR velocity.

As expected, the introduction of the CCAP parameter will

affect the pattern function. Hence, we compare in Fig. 5 the

pattern function |GCCAP(ω)|2 obtained with the beamform-

ers b̂CCAP (ϑq) optimized by û and |G(ω)|2 obtained with

MF beamformers b (ϑq). The 16-element ULA with antenna

spacing d=0.45λ is adopted, and the maximum Doppler shift

is fd = 1 000 Hz. Note that the absolute values of pattern

functions are scaled such that their maximums are all 1, as in

Fig. 3. For each pattern function, we define the ratio between

the sidelobe levels and the maximum gain as side-to-main ratio

(SMR) ρ. It can be seen that the average SMR ρ is about 10−2
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Fig. 5: Comparison of the normalized pattern functions |G(ω)|2 (MF
beamformers) and |GCCAP(ω)|2 (optimized CCAP beamformers) for

M=16-element ULA, with antenna spacing d = 0.45λ and “Equi-cos”
beamforming directions.

for |G(ω)|2 with MF beamformers, while the pattern function

|GCCAP(ω)|2 with the beamformers optimized by û yields an

average SMR of ρCCAP ≈ 10−4, two orders of magnitude

smaller than the former. Such low SMR is obtained at the

cost of a slightly wider mainlobe. Nevertheless, the SMR has

greater impact on Doppler spread than the mainlobe width.

Hence, the Doppler spread could be significantly reduced with

the optimal CCAP beamformers, which substantially attenuate

the high Doppler frequencies.

Remark 4: The result in Fig. 5 reveals that compared to

the pure MF beamformers b (ϑq), the optimal beamformers

b̂CCAP (ϑq) incorporating the CCAP parameter û can better

eliminate the residual Doppler shifts and reduce the channel

time variation. This is achieved via equivalently modifying

the radiation pattern. However, our proposed beamforming

network optimization technique is different from the traditional

array pattern synthesis3. Unlike array pattern synthesis, we

do not have a priori a desired radiation pattern to attain,

neither can we determine an “optimal” radiation pattern as

a criterion for designing the CCAP parameter. Instead, the

CCAP parameter is introduced to remove the constraints on

MF beamformers to some degree and further optimized by

minimizing the Doppler spread, resulting in the modified array

radiation pattern.

Remark 5: The proposed beamforming network optimiza-

tion technique can be equally applied to the generalized chan-

nel in Remark 1, where the signal AoDs are distributed within

(θL, θR). Note that when the realistic AoD range (θL, θR) is

not perfectly known, we can perform beamforming towards

a slightly wider AoD range
(

θ̃L, θ̃R

)

with θ̃L < θL, θ̃R > θR
to cover the realistic range. In particular, in the worst case

where the AoD range is completely unknown, we can simply

employ the optimized beamforming network obtained under

Jakes’ channel to perform beamforming towards (0, π).

3In general, array pattern synthesis refers to achieve the desired array
radiation pattern with explicit specifications by designing the amplitude and
phase excitation of different antennas [32]–[34]. In [32] for example, the
amplitude and phase excitations are optimized to minimize the beam pattern
level over a given region under other constraints.
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V. SIMULATION RESULTS

In this section, we first verify the accuracy of channel

PSD analysis and investigate the impact of some critical

parameters on channel PSD and Doppler spread through

numerical examples, and then demonstrate the superiority of

the proposed beamforming network optimization technique

over the simplest MF beamfoming network. Unless otherwise

stated, the antenna spacing is taken as d=0.45λ, the maximum

Doppler shift is set as fd=1000 Hz and the ULA consists of

M=16 antennas.

A. Verification of Channel PSD Analysis
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Fig. 6: Comparison of the PSD P (ω) between two circumstances of (a)
Non-Jakes’ channel (θL=0◦, θR=120◦) with “Equi-cos” beamforming

directions and (b) Jakes’ channel with “Equi-angle” beamforming directions.

In Fig. 6, we compare the channel PSD under different

channel assumptions and beamforming directions. The AoDs

are constrained within (θL, θR) with θL = 0◦, θR = 120◦ and

the beamforming directions ϑq are configured such that cosϑq
are evenly distributed between (cos θR, cos θL) in Fig. 6(a),

while Jakes’ channel model and ‘Equi-angle’ beamforming

directions are adopted for Fig. 6(b). That is to say, (26)

and (24) should be employed to compute the beam-distortion

function, respectively.

In order to verify the correctness of the PSD derivation

(6), we provide the numerical PSD obtained in the following

way: We first calculate the channel autocorrelation Rg (τ) at

T discrete time points by averaging over sufficient number
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Fig. 7: Comparison of channel PSD P (ω) with ULA composed of
M = 4, 16, 64 antennas, under d = 0.45λ and “Equi-cos” beamforming

directions.

of channel realizations (4) and then apply a T -point discrete

Fourier transform (DFT) to obtain the discretized PSD. Note

that T should be accordingly increased with the number of

antennas M to capture the faster fluctuation of the magnitude

of PSD. Fig. 6 reveals that whether the channel follows Jakes’

model or not, the analyzed PSD (6) perfectly coincides with

its numerical counterpart, confirming the validity of the PSD

analysis. Furthermore, we can find that the PSD in Fig. 6(a) is

asymmetric about ω=0 while that in Fig. 6(b) is symmetric.

In fact, we have pointed out in Fig. 2 that an average AoD

different from π
2 will result in asymmetric beam-distortion

function, which accounts for the asymmetry of the PSD in

Fig. 6(a).

B. Influence of Some Critical Parameters on Channel PSD

and Doppler Spread

First, we evaluate the impact of the number of antennas on

the PSD in Fig. 7. The ULA with M=4, 16, 64 antennas are

considered. “Equi-cos” beamforming directions are adopted

for all cases such that the beam-distortion function remains

the same. Therefore, the exclusive contributing factor to the

difference of the PSDs is the pattern function |G(ω)|2, which

in fact corresponds to the converted radiation pattern obtained

with the MF beamformer pointing to the normal direction of

ULA, as mentioned earlier. When the number of antennas M
increases, the radiation pattern exhibits lower sidelobe levels

and narrower main and side lobes. These features are all

reflected by the pattern function and thus by the PSDs depicted

in Fig. 7. Since the sidelobes of the PSD cover the undesired

high Doppler frequencies, a larger number of antennas can

better reduce the sidelobe levels and thereby lead to smaller

Doppler spread.

Then, the Doppler spreads computed by (13) are compared

in Fig. 8 under a set of normalized antenna spacings d
λ
=

[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.47, 0.49, 0.495, 0.5],
for different numbers of antennas M = 16, 64, 256 and

different configurations of beamforming directions “Equi-cos”

(even cosϑq) and “Equi-angle” (even ϑq). The maximum

Doppler shift is set as fd = 5 000 Hz. The following

observations can be drawn from Fig. 8:
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Fig. 8: Comparison of Doppler spread σDS calculated by (13), when the
beamforming directions are configured in two different ways, with

M = 16, 64, 256 and
d
λ
= [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.47, 0.49, 0.495, 0.5].

1) The Doppler spread decreases with the increasing number

of antennas M , which is within expectation. Actually, an

enlarged antenna array provides higher spatial resolution and

thereby the residual Doppler shifts tend to vanish, and the

time variation of the equivalent channel after Doppler shifts

compensation and transmit beamforming can be significantly

alleviated.

2) There exists an optimal antenna spacing dopt which

yields the minimal Doppler spread, and an antenna spacing

d either smaller or larger than dopt would be detrimental to

appeasing the residual channel time variation. A too small d
cannot fully exploit the spatial resolution of the ULA, which

is unfavorable for reducing the residual Doppler shifts. As

d increases to 0.5, the aliasing between 0◦ and 180◦ would

considerably enhance the PSD at high Doppler frequencies.

Both factors contribute to large Doppler spread.

3) The Doppler spread is not sensitive to how the beam-

forming directions are configured for d
λ

≤ 0.45. However,

different configurations of beamforming directions “Equi-cos”

and “Equi-angle” have great impact on the Doppler spread

for d
λ
=0.5. The significant divergence between the Doppler

spread of “Equi-cos” and that of “Equi-angle” for d
λ
= 0.5

can be explained as follows. As previously mentioned, the

pattern function |G(ω)|2 accomplishes a full period within

(−2ωd, 2ωd) under d
λ
=0.5, which implies G(±2ωd)=G(0).

Considering that the beam-distortion function of “Equi-cos”

approaches 0 while that of “Equi-angle” approaches 1 as ω
gets closer to ±2ωd, the PSD of “Equi-cos” at undesired

high Doppler frequencies would be much smaller than “Equi-

angle”. Thus, the former attenuates the time variation of the

equivalent channel more, resulting in smaller Doppler spread.

C. Superiority of the Proposed Beamforming Network Opti-

mization Technique

In this subsection, we demonstrate numerically the superior-

ity of the proposed CCAP beamforming network optimization

technique, in terms of Doppler spread and uncoded symbol

error rate (SER).

In Fig. 9, we assess the effect of the proposed beamform-

ing network optimization technique on reducing the Doppler

8 16 32 64 128
0

200

400

600

800

1000

1200

1400

1600

Number of antennas M

D
op

pl
er

 s
pr

ea
d 

(H
z)

 

 
MF beamformers
Optimized beamformers

Fig. 9: Comparison of the Doppler spreads computed with MF beamformers
and optimized CCAP beamformers (i.e., (13) and (35)), under

M = 8, 16, 32, 64, 128, d
λ
= 0.45 and “Equi-cos” beamforming directions.

spread, under ULA with different numbers of antennas M =
8, 16, 32, 64, 128. The maximum Doppler shift is set as fd=
5 000 Hz, and the beamforming directions satisfy “Equi-cos”

configuration. The acquired optimal CCAP parameter û for

different numbers of antennas M = 8, 16, 32, 64 are shown

in Table II. Note that the maximum absolute value of û is

normalized to 1. It can be seen from Fig. 9 that in contrast

to the case with MF beamformers, the optimized beamformers

b̂CCAP (ϑq) incorporating the CCAP parameter û can substan-

tially reduce the Doppler spread and thus suppress the residual

channel time variation, regardless of the number of antennas.

The better reduction of Doppler spread originates from the

more effective attenuation of high Doppler frequencies, since

the pattern function |GCCAP(ω)|2 obtained with the optimized

beamformers has much lower average SMR, as shown in Fig.

5.

After Doppler shifts compensation and multi-branch trans-

mit beamforming (whether with MF beamformers or opti-

mized beamformers b̂CCAP (ϑq)), the received signal only

suffers from slight residual time variation. Thus, the con-

ventional channel estimation and data detection for time-

invariant channel can be directly performed. Fig. 10 compares

the SER performance obtained with the received signals after

transmit beamforming with MF beamformers and optimized

beamformers, respectively. The receiver employs a 4-element

ULA with antenna spacing d
λ

= 0.5 and maximum-ratio-

combining (MRC) receiver is used to detect the data symbols.

The transmitter is equipped with a large-scale ULA with d
λ
=

0.45, and M = 32, 64, 128 transmit antennas are considered.

Note that despite of the number of transmit antennas M , the

total average transmit power is always normalized to 1. Each

OFDM frame consists of 5 blocks, with the first block serving

as pilot block. The number of subcarriers is taken as N=128,

and both pilot and data symbols are randomly drawn from

16-QAM constellation. The maximum Doppler shift is set

as fd = 1 000 Hz and the block duration is assumed to be

Tb = 0.1ms, which implies that the normalized maximum

Doppler shift is fdTb = 0.1. Moreover, the beamforming

directions satisfy “Equi-cos” configuration.

Conventional BEM methods which directly tackle the time-
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Fig. 10: SER performance comparison between our beamforming-based
approaches (‘MF beamformers’ and ‘Opt beamformers’), BEM methods

(‘GCE-BEM’ and ‘P-BEM’) and benchmark method ‘NoDopplerML’, with
4-element receive ULA and normalized total transmit power.

varying channel without Doppler shifts compensation, includ-

ing complex exponential BEM (CE-BEM) [7] and polynomial

BEM (P-BEM) [8], are also included for comparison. Single

transmit antenna is considered for BEM methods, while the

total average transmit power is kept to 1 to ensure the fairness

of comparison. Besides, an additional pilot block is appended

at the end of each frame for BEM methods, to better capture

the channel time variation [35]. The order of basis functions

are taken as Norder = 4. A benchmark method, labelled as

‘NoDoppler-ML’ is also provided. The maximum Doppler

shift is 0, and similar to BEM methods, only a single transmit

antenna is configured. Maximum likelihood (ML) channel

estimator and MRC detector are employed to estimate the

channel and detect the transmitted data, respectively.

From Fig. 10, the superiority of the proposed beamforming

network optimization technique over the scheme using MF

beamformers [23] is evident. Even with M = 128 transmit

antennas, the scheme with MF beamformers suffers from

severe SER performance floor, which can be attributed to

the residual channel time variation caused by uncompensated

Doppler shifts. In fact, numerical results in [23] reveal that

only when the number of transmit antennas are increased

to M = 1024, would the residual channel time variation

become negligible and the SER performance floor disappear.

In contrast, the SER obtained with the optimized beamformers

b̂CCAP (ϑq) does not exhibit obvious floor even with M=64
and 128 transmit antennas. This is due to the fact that

compared to MF beamformers, the optimized CCAP beam-

formers can achieve more substantial reduction of Doppler

spread, significantly improving the SER performance. In other

words, with the proposed beamforming network optimization

technique, far fewer transmit antennas are required to attain

the same detection performance as MF beamformers.

In addition, the following observations could also be made

from Fig. 10: 1) BEM methods can overmatch the scheme with

MF beamformers in high SNR regions. 2) By introducing the

CCAP parameter and optimizing the beamforming network,

our beamforming-based approach (i.e., ‘Opt beamformers’)

remarkably outperforms BEM methods. 3) With the increas-

ing number of transmit antennas, the proposed scheme ‘Opt

beamformers’ can gradually approach the benchmark method

‘NoDoppler-ML’, confirming the effectiveness of the beam-

forming optimization technique in suppressing the residual

Doppler shifts.

VI. CONCLUSIONS

In this paper, we considered the angle-domain Doppler

shifts compensation scheme for high-mobility uplink commu-

nication and derived the exact PSD and Doppler spread as a

measure of assessing the residual channel time variation. The

analysis reveals that the channel PSD can be fully charac-

terized by the pattern function and beam-distortion function,

which depend on the antenna spacing and the beamforming

directions, respectively. Based on the delicately derived PSD

with an explicit expression, the impacts of some essential

parameters including antenna spacing and beamforming di-

rections on channel PSD were discussed. Moreover, in order

to gain more effective reduction of Doppler spread, we further

introduced the CCAP parameter to optimize the original MF

beamforming network. The optimized beamformers incorpo-

rating CCAP parameter can ulteriorly suppress the residual

Doppler shifts and thus yield slighter channel time variation.

Numerical results were provided to corroborate the channel

PSD analysis and the proposed CCAP beamforming network

optimization technique.

APPENDIX A

DERIVATION OF THE ALTERNATIVE FORM OF THE

BEAM-DISTORTION FUNCTION (24)

For 0 < |ω̃| < 2, the beam-distortion function (24) can be

equivalently transformed into the following elliptic integral

W (ω̃) =
2

π

∫ arccos(|ω̃|−1)

0

1
√

1− (cosϑ− |ω̃|)2
dϑ,

x=cosϑ
=

2

π

∫ 1

|ω̃|−1

1
√
1− x2

√

1− (x− |ω̃|)2
dx,

∗
=

2

π
F
(π

2
, υ

)

=
2

π

∫ π
2

0

1
√

1− υ2sin2ξ
dξ, (38)

where
∗
= employs the property of equation (3.147-4) in [36],

υ =
√

1− ω̃2

4 and F (ψ, k) is the elliptic integral of the first

kind defined as

F (ψ, k) =

∫ ψ

0

1
√
(
1− k2sin2α

)dα.

Based on (38), we obtain that as |ω̃| goes to 2, υ approaches

to 0. Thus, there holds

lim
|ω̃|→2

W (ω̃) =
2

π

∫ π
2

0

lim
υ→0

1
√

1− υ2sin2ξ
dξ,

=
2

π

∫ π
2

0

1dξ = 1. (39)

As for ω̃=0, there holds

W(0) =
2

π

∫ π

0

1√
1− cos2ϑ

dϑ =
2

π

∫ π

0

1

sinϑ
dϑ,
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TABLE II: Optimal CCAP parameter obtained for different numbers of antennas M = 8, 16, 32, 64

M Normalized CCAP parameter û

8 0.384, 0.656, 0.876, 1.000, 1.000, 0.876, 0.656, 0.384

16 0.106, 0.221, 0.364, 0.525, 0.687, 0.832, 0.941, 1.000, 1.000, 0.941, 0.832, 0.687, 0.525, 0.364, 0.221, 0.106

32
0.060, 0.125, 0.207, 0.300, 0.399, 0.497, 0.591, 0.675, 0.748, 0.810, 0.863, 0.907, 0.943, 0.971, 0.990, 1.000,
1.000, 0.990, 0.971, 0.943, 0.907, 0.863, 0.810, 0.748, 0.675, 0.591, 0.497, 0.399, 0.300, 0.207, 0.125, 0.060

64

0.030, 0.063, 0.104, 0.153, 0.206, 0.261, 0.314, 0.364, 0.410, 0.454, 0.494, 0.534, 0.573, 0.613, 0.652, 0.691,
0.727, 0.761, 0.792, 0.821, 0.847, 0.871, 0.893, 0.914, 0.934, 0.952, 0.967, 0.979, 0.988, 0.994, 0.998, 1.000,
1.000, 0.998, 0.994, 0.988, 0.979, 0.967, 0.952, 0.934, 0.914, 0.893, 0.871, 0.847, 0.821, 0.792, 0.761, 0.727,
0.691, 0.652, 0.613, 0.573, 0.534, 0.494, 0.454, 0.410, 0.364, 0.314, 0.261, 0.206, 0.153, 0.104, 0.063, 0.030

=
4

π

∫ π
2

0

1

sinϑ
dϑ =

4

π

∫ π
2

0

1

sin ϑ
2 cos ϑ2

d
ϑ

2
,

ϑ̃=ϑ
2=
4

π

∫ π
4

0

1

tan ϑ̃cos2ϑ̃
dϑ̃ =

4

π

∫ π
4

0

1

tan ϑ̃
d tan ϑ̃,

γ=tan ϑ̃
=

4

π

∫ 1

0

1

γ
dγ =

4

π
ln γ|10 = +∞. (40)

As a result, the beam-distortion function (24) can be alter-

natively expressed as (25).
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