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Abstract—This paper investigates a new scenario of spectrum
sharing between unmanned aerial vehicle (UAV) and terrestrial
wireless communication, in which a cognitive/secondary UAV
transmitter communicates with a ground secondary receiver
(SR), in the presence of a number of primary terrestrial com-
munication links that operate over the same frequency band. We
exploit the UAV’s mobility in three-dimensional (3D) space to im-
prove its cognitive communication performance while controlling
the co-channel interference at the primary receivers (PRs), such
that the received interference power at each PR is below a pre-
scribed threshold termed as interference temperature (IT). First,
we consider the quasi-stationary UAV scenario, where the UAV is
placed at a static location during each communication period of
interest. In this case, we jointly optimize the UAV’s 3D placement
and power control to maximize the SR’s achievable rate, subject
to the UAV’s altitude and transmit power constraints, as well as a
set of IT constraints at the PRs to protect their communications.
Next, we consider the mobile UAV scenario, in which the UAV
is dispatched to fly from an initial location to a final location
within a given task period. We propose an efficient algorithm to
maximize the SR’s average achievable rate over this period by
jointly optimizing the UAV’s 3D trajectory and power control,
subject to the additional constraints on UAV’s maximum flying
speed and initial/final locations. Finally, numerical results are
provided to evaluate the performance of the proposed designs for
different scenarios, as compared to various benchmark schemes.
It is shown that in the quasi-stationary scenario the UAV should
be placed at its minimum altitude while in the mobile scenario the
UAV should adjust its altitude along with horizontal trajectory,
so as to maximize the SR’s achievable rate in both scenarios.

Index Terms—UAV communication, spectrum sharing, 3D
placement, 3D trajectory design, power control, interference
management.

I. INTRODUCTION

With continuous technology advancement and cost reduc-

tion, unmanned aerial vehicles (UAVs) or drones have been

more widely used in various applications, such as cargo

delivery, aerial photography, surveillance, search and rescue,

etc [2]. It is projected by Federal Aviation Administration

(FAA) [3] that there will be around seven million UAVs in
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the United States only in 2020. With the explosively increasing

number of UAVs, how to integrate them into future wireless

networks to enable their bidirectional communications with the

ground users/pilots has become a critical task to be tackled. On

one hand, for emergency situations (e.g., after natural disaster)

and temporary hotspots (e.g., stadium during a football match),

UAVs can be employed as aerial wireless communication

platforms (e.g., relays or base stations (BSs)) to provide data

access, enhance coverage, and improve communication rates

for ground users [4], [5]. On the other hand, for UAVs in vari-

ous missions (e.g., cargo delivery), it is crucial to enable them

as aerial mobile users to access existing wireless networks

(e.g., cellular networks), in order to support not only secure,

reliable, and low-latency remote command and control, but

also high-capacity mission-related data transmission [6]–[8].

Therefore, UAV-assisted terrestrial communications [4] and

network-connected UAV communications [7] have become

two widely investigated paradigms for integrating UAVs into

future wireless communication networks.

UAV communications are different from conventional ter-

restrial wireless communications in the following two main

aspects. First, UAVs normally have strong line-of-sight (LoS)

links with ground nodes, thus offering better channel con-

ditions than terrestrial fading channels and even making

it possible to predict channel state information (CSI) and

hence communication performances at different UAV’s three-

dimensional (3D) locations based on the ground nodes’ lo-

cation information. Second, UAVs have fully controllable

mobility in 3D, by exploiting which UAVs can adjust their

altitude and horizontal location over time to optimize their

communication performances with ground nodes.

In the literature, there are generally two lines of research

that exploit the UAV mobility for communication performance

optimization, namely the quasi-stationary UAV with 3D place-

ment optimization and the mobile UAV with 3D trajectory

optimization, respectively. For the quasi-stationary scenario,

the UAV is placed at a static location over each communication

period of interest, while its location can be changed from one

period to another. This may practically correspond to a UAV

communication platform that is connected by a cable/wire

with a ground control platform (see, e.g., “flying cell-on-

wings (COWs)” of AT&T [9] and “Air Masts” of Everything-

Everywhere (EE: the UK’s largest mobile network operator)

[10]). Substantial research efforts have been devoted to this

research paradigm. For example, the works [11] and [12]

optimized the UAV-BS’s altitude to maximize the coverage

probability on the ground and minimize the system outage

probability, respectively; while [13] optimized the UAV-BS’s

http://arxiv.org/abs/1901.02804v2
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3D location to maximize the number of served ground users.

Furthermore, [14], [15] and [16] optimized multiple UAV-BSs’

locations to minimize the number of required UAV-BSs to

cover a given area and maximize the minimum throughput

among all ground users, respectively. In [17], the downlink

coverage probability for a reference ground user was analyzed

in the presence of multiple UAV-BSs, while [18] showed that

the deployment of UAV-BSs at their optimized locations can

improve the coverage performance and spectral efficiency of

the network. In addition, [19] investigated the optimal place-

ment of a UAV-relay to maximize the end-to-end throughput

from a source to a destination by using a new LoS map based

approach.

On the other hand, under the mobile UAV scenario, prior

works have designed the UAV trajectory (i.e., 3D locations

over time) jointly with communication scheduling and re-

source allocation for performance optimization. For example,

when the UAV is employed as a mobile relay, the authors in

[4] and [20] optimized the UAV-relay’s trajectory to maximize

the end-to-end throughput and minimize the system outage

probability, respectively. When UAVs are employed as cellular

BSs, the authors in [5], [21]–[24] optimized the UAVs’ trajec-

tories to maximize the achievable rates under different setups

such as broadcast channel [5], [21], multicast channel [22],

[23], and interference channel [24]. Furthermore, the UAV

trajectory design was also investigated for other applications

when the UAV is employed as an access point (AP) for

wireless power transfer [25], wireless powered communication

[26], and mobile edge computing [27]. In addition, when UAVs

act as cellular users that perform tasks in a long range, the

works [7] and [8] studied the UAV users’ trajectory design

to minimize the mission completion time, subject to various

communication connectivity constraints with ground BSs. In

[28], an interference-aware path planning design was proposed

for multiple UAV users, which aimed to achieve an optimal

trade-off between energy efficiency, latency and interference

caused by the UAVs to the ground network. The work [29]

proposed an energy-efficient path planning design to minimize

the energy consumption of UAV swarms, subject to individual

energy availability constraints at UAVs.

Despite the above research progress, existing works have

mostly assumed that the UAV communications are operated

over dedicated frequency bands. Nevertheless, due to the

scarcity of wireless spectrum, it is practically difficult to

allocate dedicated spectrum to new UAV communications.

To address this challenge and motivated by the technical

advancement of spectrum sharing in cognitive radio (CR) [30],

a viable solution is to allow UAVs to operate as cognitive or

secondary communication nodes to access the spectrum that

is originally allocated to existing (primary) terrestrial wireless

communication networks (see, e.g., [31]). For instance, in the

network-connected UAV communication (as shown in Fig.

1(a)), the UAV communicates with its associated ground BS

by reusing the resource blocks (RBs) assigned to existing

ground users; whereas in the device-to-device (D2D)-enabled

UAV-ground communication (as shown in Fig. 1(b)), the UAV

communicates with its associated ground user via D2D com-

munication by reusing the RBs in the uplink cellular commu-

nications. In both the above two cases, a new and severe air-to-

ground (A2G) interference issue needs to be tackled [6], [32]–

[34], since the A2G channels are normally LoS-dominated.

Specifically, the UAV may impose severe uplink interference

to multiple co-channel non-associated ground BSs (primary

receivers (PRs)) in network-connected UAV communication

(Fig. 1(a)). Similarly, the D2D communication from the UAV

to ground user may impose severe uplink interference at co-

channel ground BSs (PRs) in D2D-enabled UAV-ground com-

munication (Fig. 1(b)). As a result, how to maximize the UAV

communication throughput while effectively mitigating the

A2G co-channel interference to the primary communication

system is an important and yet challenging problem that calls

for innovative solutions. It is worth noting that there have

been some initial studies on A2G interference mitigation for

network-connected UAV communication in the literature [35]–

[37], which, however, only considered the case of a static

UAV user. By leveraging the UAV’s controllable mobility,

in this paper, we propose a new approach to tackle this

problem, which jointly optimizes the UAV’s 3D placement or

trajectory (for the quasi-stationary and mobile UAV scenarios,

respectively) and CR-based interference-aware transmit power

control to achieve the maximum throughput of UAV-to-ground

secondary communication, while controlling the interference

to existing primary ground receivers below a tolerable level.

For the purpose of exposition, this paper considers a

spectrum sharing system where a cognitive/secondary UAV

transmitter communicates with a ground secondary receiver

(SR), in the presence of a number of primary terrestrial

communication links that operate over the same frequency

band. Under this setup, we adopt the interference temperature

(IT) technique in CR [41] to protect the primary communi-

cations, so that the received power at each PR cannot exceed

a prescribed IT threshold. The main results of this paper are

summarized as follows.

• First, we consider the quasi-stationary UAV scenario, in

which the UAV is placed at an optimized location that

is fixed during the communication period of interest. We

jointly optimize the UAV’s 3D placement and transmit

power to maximize the SR’s achievable rate, subject to

the UAV’s flight altitude and transmit power constraints,

and a set of IT constraints at the PRs. The joint 3D

placement and power optimization problem is non-convex

and difficult to be optimally solved in general. To tackle

this challenge, we first prove that the UAV should be

placed at the lowest altitude at the optimality. Building

upon this, we further use the semi-definite relaxation

(SDR) technique to obtain the UAV’s optimal horizontal

location and transmit power.

• Next, we consider the mobile UAV scenario, in which the

UAV is dispatched to fly from an initial location to a final

location during a particular task period. We maximize

the SR’s average achievable rate over this period by

jointly optimizing the UAV’s 3D trajectory and transmit

power over time, subject to the UAV’s maximum flying

speed, altitude, and transmit power constraints, as well

as the PRs’ IT constraints. Due to the time-dependent

UAV trajectory variables, this problem is more involved
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Fig. 1. Illustration of the cognitive UAV communication systems.

and thus more difficult to be solved as compared to that

in the quasi-stationary scenario. To tackle this problem,

we propose an efficient algorithm that ensures a locally

optimal solution by applying the technique of successive

convex approximation (SCA).

• Finally, numerical results are presented to validate the

performance of our proposed cognitive UAV communi-

cation designs, as compared to other benchmark schemes,

for both the quasi-stationary and mobile scenarios.

Specifically, it is shown that in the mobile scenario,

the UAV needs to adaptively adjust its altitude together

with horizontal location over time to balance the trade-

off between maximizing the SR’s rate versus minimizing

the interference with PRs. This is in a sharp contrast to

the quasi-stationary scenario, where it is shown that the

UAV should always be placed at its lowest altitude at the

optimality.

The remainder of this paper is organized as follows. Section

II introduces the system model of the cognitive UAV com-

munication system and formulates the optimization problems

of our interest. Section III presents the optimal solution

to the joint 3D placement and power control problem in

the quasi-stationary UAV scenario. Section IV proposes an

efficient algorithm to obtain a locally optimal solution to the

joint 3D trajectory and power optimization problem in the

mobile UAV scenario. Section V provides numerical results

to demonstrate the efficacy of our proposed designs versus

benchmark schemes. Finally, Section VI concludes this paper.

Notations: In this paper, scalars are denoted by italic letters,

vectors and matrices are denoted by bold-face lower-case and

upper-case letters, respectively. R
x×y denotes the space of

x × y real-valued matrices. For a square matrix M , Tr(M),
det(M ), and rank(M) represent its trace, determinant, and

rank, respectively, while M � 0 (M � 0) means that M is

positive (negative) semi-definite. I and 0 denote an identity

matrix and an all-zero matrix with proper dimensions, respec-

tively. For a vector a, ‖a‖ represents its Euclidean norm,

aT denotes its transpose, and diag(a) denotes a diagonal

matrix whose diagonal elements are specified by a. For a time-

dependent function x(t), ẋ(t) denotes its first derivative with

respect to time t. The notation log2(·) denotes the logarithm

function with base 2, e denotes the natural constant, and E(·)
denotes the statistic expectation.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a new spectrum sharing sce-

nario for UAV communications, where a cognitive/secondary

UAV transmitter communicates with a ground SR, in the

presence of a set of K ≥ 1 primary users that operate over the

same frequency band. Let K , {1, . . . ,K} denote the set of

ground PRs. We focus on the cognitive UAV communication

over a particular mission period, denoted by T = [0, T ], with

duration T > 0 in second (s). In practice, the mission period T
is generally prescribed, which is set based on the UAV’s maxi-

mum endurance and the requirements in different applications.

Without loss of generality, we consider a 3D coordinate system

with the SR located at the origin (0, 0, 0) and each PR k ∈ K
at a fixed location (xk, yk, 0), where wk = (xk, yk) ∈ R

2×1

denotes the horizontal location of PR k. We consider offline

optimization in this paper by assuming that the UAV perfectly

knows the locations of the ground SR and PRs1, as well as

the channel propagation environments (channel parameters)

a-priori to facilitate the joint maneuver and power control

design. This provides key insights and the performance upper

bound for practical designs with partial/imperfect knowledge

of location and channel information. In the following, we

consider the 3D placement optimization and 3D trajectory

optimization (jointly with power control) for quasi-stationary

and mobile UAV scenarios, respectively.

A. Quasi-Stationary UAV Scenario

First, we consider the quasi-stationary UAV scenario, in

which the UAV is placed at a fixed location (x, y, z) (to be op-

timized later) over the communication period T . For notational

convenience, let q = (x, y) and z denote the UAV’s horizontal

location and altitude, respectively. Accordingly, the distances

from the UAV to the SR and each PR k ∈ K are given by

d(q, z) =
√

z2 + ‖q‖2 and dk(q, z) =
√

z2 + ‖q −wk‖2,

respectively. Furthermore, let Hmin > 0 and Hmax > 0
denote the minimum and maximum flight altitudes of the UAV,

respectively. Then we have Hmin ≤ z ≤ Hmax.

1As shown in Fig. 1, as the PRs in both of our considered scenarios and
the SR in the network-connected UAV communication scenario are ground
BSs at fixed locations, their location information can be easily obtained by
the UAV a priori. In the D2D-enabled UAV-ground communication scenario,
the SR can obtain its location via global positioning system (GPS) and then
reports such information to the UAV.
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In practice, A2G wireless channels are normally dominated

by the LoS links owing to the UAV’s high flight altitude [38]–

[40]. Therefore, we consider the LoS channel model with path-

loss exponent α ≥ 2 for the wireless channels from the UAV

to the SR and the PRs2. As such, the UAV can easily obtain

the CSI with them over time based on its own as well as their

(fixed) locations. As a result, the channel power gains from the

UAV to the SR and each PR k ∈ K are respectively expressed

as

h(q, z) = βud
−α(q, z) =

βu

(z2 + ‖q‖2)α/2 , (1)

gk(q, z) = βg,kd
−α
k (q, z) =

βg,k

(z2 + ‖q −wk‖2)α/2
, (2)

where βu and βg,k denote the reference channel power gains

from the UAV to the SR and each PR k ∈ K, respectively,

including the transmit and receive antenna gains of commu-

nication nodes involved. In practice, the UAV may adjust its

antenna’s main lobe towards the SR to improve the cognitive

communication rate, and the PRs (ground BSs) may adjust

their main lobes downwards to better serve their respective

primary transmitters (ground users) by reducing the co-channel

interference from other primary transmitters. As a result, the

A2G interference is generated and received via the side-lobes

of the UAV’s and the PRs’ antennas, respectively. Therefore,

we have βg,k ≤ β0, ∀k ∈ K, where β0 denotes the maximum

reference channel power gain from the UAV to the PRs when

they are all equipped with the omnidirectional antennas.

Accordingly, by letting p ≥ 0 denote the transmit power of

the UAV, the maximum achievable rate from the UAV to the

SR in bits/second/Hertz (bps/Hz) is given by

R (p, q, z) = log2

(

1 +
h(q, z)p

σ2

)

= log2

(

1 +
ηup

(z2 + ‖q‖2)α/2
)

, (3)

where σ2 denotes the total power of receiver noise and

terrestrial interference at the SR, and ηu , βu/σ
2 denotes the

reference signal-to-interference-plus-noise ratio (SINR). Let

P > 0 denote the maximum transmit power at the UAV. We

thus have 0 ≤ p ≤ P .

Under spectrum sharing, the secondary UAV communica-

tion introduces A2G co-channel interference to the ground

PRs, and the resultant interference power at each PR k ∈ K is

given by Q̃k (p, q, z) = gk(q, z)p =
βg,kp

(z2+‖q−wk‖2)α/2 . As the

UAV may not be able to know the exact receive antenna gain at

each PR (due to the unknown receive antenna direction), we

consider the worst-case A2G interference by replacing βg,k

with β0, ∀k ∈ K. Thus, we have

Q̃k (p, q, z) ≤ Qk (p, q, z) =
β0p

(z2 + ‖q −wk‖2)α/2
, ∀k ∈ K.

(4)

In order to protect the primary communications, we apply the

IT technique that is widely adopted in the CR literature (see,

2Notice that the proposed methods can also be extended to handle other
A2G channel models such as Rician fading and probabilistic LoS channel
models. Please refer to Remark 3.2 in Section III and Remark 4.2 in Section IV
for details under the quasi-stationary and mobile UAV scenarios, respectively.

e.g., [41]), such that the received (worst-case) interference

power Qk(p, q, z) at each PR k cannot exceed a maximum

threshold, denoted by Γ ≥ 03, i.e., Qk (p, q, z) ≤ Γ, ∀k ∈ K,

and thus we have β0p/(z
2 + ‖q −wk‖2)α/2 ≤ Γ, ∀k ∈ K4.

In the quasi-stationary UAV scenario, our objective is to

maximize the SR’s achievable rate (i.e, R(p, q, z)), by jointly

optimizing the UAV’s 3D location q and z, and transmit power

p. The problem is formulated as

max
p,q,z

log2

(

1 +
ηup

(z2 + ‖q‖2)α/2
)

s.t. Hmin ≤ z ≤ Hmax, (5)

0 ≤ p ≤ P, (6)

β0p

(z2 + ‖q −wk‖2)α/2
≤ Γ, ∀k ∈ K. (7)

Notice that the cognitive communication performance in this

scenario is regardless of the mission duration T . Due to the

monotonic increasing property of the log2(·) function, the

above problem is equivalent to maximizing the SR’s received

SNR, i.e.,

(P1): max
p,q,z

p

(z2 + ‖q‖2)α/2
s.t. (5)–(7),

where the constant ηu is omitted at the objective function

without loss of optimality. Note that problem (P1) is non-

convex, as the objective function is non-concave and the

constraints in (7) are non-convex. Therefore, this problem is

generally difficult to be solved optimally. We will tackle this

problem in Section III.

B. Mobile UAV Scenario

Next, we consider the mobile UAV scenario, in which the

UAV flies freely in the 3D space during the mission period T ,

subject to pre-determined initial and final locations. Suppose

that the UAV has a time-varying 3D location (x̂(t), ŷ(t), ẑ(t))
at time instant t ∈ T , where q̂(t) = (x̂(t), ŷ(t)) denotes

the horizontal UAV location, and ẑ(t) denotes the flight

altitude. Specifically, the UAV’s initial and final horizontal

locations are given as q̂I = (xI , yI) and q̂F = (xF , yF ),
and the corresponding altitudes are ẑI and ẑF , respectively.

Let V̂H , V̂A and V̂D denote the UAV’s maximum horizontal

speed, vertical ascending speed, and vertical descending speed

in meters/second (m/s), respectively (e.g., V̂H = 26 m/s,

V̂A = 6 m/s, and V̂D = 4 m/s for DJI’s Inspire 2 drones

[42]). Then we obtain the UAV’s flying speed constraints as
√

˙̂x2(t) + ˙̂y2(t) ≤ V̂H , −V̂D ≤ ˙̂z(t) ≤ V̂A, ∀t ∈ T . In

this case, the minimum required duration for the UAV to fly

3In practice, each PR also suffers the terrestrial uplink interference from
other co-channel terrestrial users. However, due to the more severe path-loss,
shadowing, and small-scale fading over terrestrial channels, as well as the
relatively mature interference mitigation techniques for terrestrial networks
[44], we assume that in this paper the terrestrial interference is much weaker
than the A2G interference from the UAV. As a result, under our considered
setup, each PR’s rate performance is mainly limited by the A2G interference
given in (4).

4Notice that the IT constraint at each PR k ∈ K only depends on its location
wk . Therefore, the UAV only needs to know the locations of PRs, but does
not need to know the locations of primary transmitters (ground users).
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straightly from the initial location to the final location is given

by

Tmin ,







max
(

‖q̂F − q̂I‖/V̂H , |ẑF − ẑI |/V̂A

)

, if ẑF ≥ ẑI ,

max
(

‖q̂F − q̂I‖/V̂H , |ẑF − ẑI |/V̂D

)

, if ẑF < ẑI .

Therefore, we must have T ≥ Tmin in order for the UAV

trajectory design to be feasible. For ease of exposition, we

discretize the communication period T into N time slots

each with equal duration δt = T/N , which is chosen to be

sufficiently small such that the UAV’s location can be assumed

to be approximately constant within each time slot even at its

maximum flying speed5. Accordingly, let q[n] = (x[n], y[n])
and z[n] denote the UAV’s horizontal location and altitude

at time slot n ∈ N , {1, . . . , N}. Define VH = V̂Hδt,
VA = V̂Aδt, and VD = V̂Dδt. As a result, we have the

following constraints on the UAV trajectory:

‖q[n]− q[n− 1]‖ ≤ VH , ∀n ∈ N\{1},
− VD ≤ z[n]− z[n− 1] ≤ VA, ∀n ∈ N\{1},
q[1] = q̂I , q[N ] = q̂F , z[1] = ẑI , z[N ] = ẑF .

Furthermore, let p[n] denote the transmit power of the UAV

at time slot n, where 0 ≤ p[n] ≤ P, ∀n ∈ N . Assuming

that the Doppler effect due to the UAV’s mobility is perfectly

compensated at the receiver based on existing techniques [43],

the achievable rate from the UAV to the SR in bps/Hz in

this slot is expressed as R(p[n], q[n], z[n]) in (3). In addition,

at each time slot n ∈ N , the UAV’s resultant (worst-case)

interference power at each PR k cannot exceed the IT threshold

Γ, i.e.,

β0p[n]

(z2[n] + ‖q[n]−wk‖2)α/2
≤ Γ, ∀n ∈ N , k ∈ K.

Our objective is to maximize the SR’s average achiev-

able rate (i.e., 1
N

∑N
n=1 R(p[n], q[n], z[n])), by optimizing the

UAV’s time-varying 3D locations (or trajectory) {q[n], z[n]},

and the transmit power allocation {p[n]}. Therefore, the prob-

lem of our interest is formulated as

(P2): max
{p[n],q[n],z[n]}

1

N

N
∑

n=1

log2

(

1 +
ηup[n]

(z2[n] + ‖q[n]‖2)α/2
)

s.t. ‖q[n]− q[n− 1]‖ ≤ VH , ∀n ∈ N\{1}, (8)

− VD ≤ z[n]− z[n− 1] ≤ VA, ∀n ∈ N\{1}, (9)

q[1] = q̂I , q[N ] = q̂F , z[1] = ẑI , z[N ] = ẑF , (10)

Hmin ≤ z[n] ≤ Hmax, ∀n ∈ N , (11)

0 ≤ p[n] ≤ P, ∀n ∈ N , (12)

β0p[n]

(z2[n] + ‖q[n]−wk‖2)α/2
≤ Γ, ∀n ∈ N , k ∈ K.

(13)

Here, (8) denotes the UAV’s maximum horizontal speed

constraints, (9) denotes its maximum vertical ascending and

descending speed constraints, (10) specifies the constraints on

5However, if δt is chosen too small, the number of time slots N will be-
come excessively large, thus leading to prohibitive computational complexity.
Therefore, δt or N should be chosen to balance between the computational
accuracy and complexity.

its initial and final locations, (11) denotes its flight altitude

constraints, (12) denotes its maximum transmit power con-

straint, and (13) denotes the PRs’ stringent IT constraints. Note

that problem (P2) is non-convex, which is even more difficult

to be solved than (P1) due to the involvement of time-varying

optimization variables. We will propose an efficient algorithm

to solve (P2) sub-optimally in Section IV.

III. JOINT 3D PLACEMENT AND TRANSMIT POWER

OPTIMIZATION IN QUASI-STATIONARY UAV SCENARIO

In this section, we derive the solution to the joint 3D

placement and transmit power optimization problem (P1) in

the quasi-stationary UAV scenario. To start with, we introduce

the following variable transformation for the UAV’s transmit

power p, i.e., p = p̂α/2, to change the objective function of

(P1) into (p̂/(z2+‖q‖2))α/2. Due to the monotonic increasing

property of the function (x̃)α/2 with x̃ ≥ 0, the exponent

α/2 can be omitted without loss of optimality. Accordingly,

with some manipulation, problem (P1) can be recast in a more

tractable form, i.e.,

(P1.1): max
p̂,q,z

p̂

z2 + ‖q‖2

s.t.
β̂0p̂

z2 + ‖q −wk‖2
≤ Γ̂, ∀k ∈ K, (14)

0 ≤ p̂ ≤ P̂ , (15)

(5),

where β̂0 = β
2/α
0 , Γ̂ = Γ2/α, and P̂ = P 2/α. As a result, the

optimal solution to (P1) can be obtained by solving (P1.1) and

then obtaining the optimal p via the relation p = p̂α/2. In the

following, we first consider a simplified problem of (P1.1)

with UAV’s horizontal location being given to draw some

useful insights. Next, we derive the UAV’s optimal altitude for

(P1.1) and then apply the SDR technique to obtain the optimal

solution of q and p̂ to (P1.1). Finally, we consider a special

case of (P1.1) with only K = 1 PR, for which the closed-form

optimal solution is obtained to draw further insights.

A. Simplified Problem Given UAV’s Horizontal Location

First, in order to gain design insights, we consider a

simplified case when the UAV’s horizontal location q is given

a-priori. In this case, the original problem (P1.1) is simplified

as

(P3): max
p̂,z

p̂

z2 + ‖q‖2

s.t.
β̂0p̂

z2 + ‖q −wk‖2
≤ Γ̂, ∀k ∈ K, (16)

(5) and (15).

Let k̃(q) = argmin
k∈K

‖q − wk‖ denote the PR that is closest

to the UAV in the horizontal direction. Then it is evident that

the IT constraints for the K PRs in (16) are satisfied as long

as that for the k̃(q)-th PR is ensured. Notice that if k̃(q) is

not unique, i.e., the UAV has the same shortest distance with

two or more PRs, then we can simply choose any one of these
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PRs as k̃(q) without loss of optimality. Accordingly, the IT

constraints in (16) can be reduced to

β̂0p̂

z2 + ‖q −wk̃(q)‖2
≤ Γ̂. (17)

Then, we have the following proposition.

Proposition 3.1: The optimal solution to (P3), denoted by

z∗(q) and p̂∗(q), is given as follows.

• Case 1: If ‖q − wk̃(q)‖ < ‖q‖ (i.e.,

the UAV is closer to PR k̃(q) than the

SR), then the optimal altitude is z∗(q) =

min(Hmax,max(
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖2, Hmin)),

and the optimal solution of p̂ is p̂∗(q) =

min( Γ̂

β̂0
(H2

max + ‖q −wk̃(q)‖2), p̂).
• Case 2: If ‖q − wk̃(q)‖ > ‖q‖ (i.e., the UAV is closer

to the SR than PR k̃(q)), then the optimal altitude is

z∗(q) = Hmin, and the optimal solution of p̂ is p∗(q) =

min( Γ̂
β̂0
(H2

min + ‖q −wk̃(q)‖2), p̂).
• Case 3: If ‖q − wk̃(q)‖ = ‖q‖ (i.e., the UAV

has the same distance with the SR and PR k̃(q)),
then the optimal altitude z∗(q) is non-unique and

can be chosen as any value between Hmin and

min(Hmax,max(
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖2, Hmin)).

In this case, the optimal solution of p̂ is

p̂∗(q) = min( Γ̂

β̂0
(z∗(q) + ‖q −wk̃(q)‖2), p̂).

Proof: See Appendix A.

By combining z∗(q) together with p∗(q) = p̂(∗)α/2(q), the

optimal solution to (P1) in the simplified case with the given

UAV’s horizontal location is finally obtained.

B. Proposed Solution to (P1.1)

Next, we consider the original problem (P1.1), for which

we use q⋆, z⋆, and p̂⋆ to denote the optimal solution. We first

present the following lemma.

Lemma 3.1: At the optimal solution to (P1.1), the UAV

must be placed no closer to any of the PRs than the SR, i.e.,

‖q⋆ −wk‖ ≥ ‖q⋆‖, ∀k ∈ K6.

Proof: See Appendix B.

Then, we have the following proposition for the optimal

UAV’s altitude.

Proposition 3.2: z⋆ = Hmin is optimal for problem (P1.1),

i.e., it is optimal to place the UAV at its lowest altitude.

Proof: Given UAV’s horizontal location q as q⋆, the

optimal altitude solution z∗(q⋆) to problem (P3) is identical to

z⋆ to problem (P1.1). It follows from Lemma 3.1 that ‖q⋆‖ ≤
‖q⋆ − wk̃(q⋆)‖ must hold. By using this fact together with

Cases 2 and 3 in Proposition 3.1, we have z∗(q⋆) = Hmin. As

a result, it follows that z⋆ = z∗(q⋆) = Hmin. This proposition

is thus proved.

Remark 3.1: It is interesting to compare Proposition 3.2

versus Proposition 3.1. It is observed from Proposition 3.2

6Lemma 3.1 essentially reduces the set that contains the optimal horizontal
location q

⋆ from R
2×1 to a smaller convex set, which is the intersection of

K half-spaces each specified by the inequality ‖q⋆ − wk‖ ≥ ‖q⋆‖ for PR
k. However, how to search q

⋆ in this convex set is still challenging as shown
next.

that when the UAV’s horizontal location is at the optimal

point, the UAV should accordingly stay at its lowest altitude.

This is in a sharp contrast to Proposition 3.1, which shows

that if the UAV’s horizontal location is fixed at any given

point, then it is generally necessary for the UAV to adaptively

adjust its altitude depending on its horizontal distances with

the SR and the PRs, in order to maximize the SR’s achievable

rate subject to the PRs’ IT constraints. In particular, when the

UAV’s horizontal location is closer to any PR than the SR,

Proposition 3.1 shows that the UAV may need to ascend to

a higher altitude to achieve the best cognitive communication

rate. This implies that if the UAV has to fly over an area

with distributed PRs (e.g., for certain long-range tasks), then

adjusting its flight altitude (together with horizontal location)

becomes crucial for achieving the maximum cognitive UAV

communication rate, especially when the UAV has to visit

certain locations closer to some PRs than the SR during the

flight. This result will be exploited for the 3D trajectory design

in the mobile UAV scenario later.

Next, it remains for us to find the optimal solution of p̂
and q to problem (P1.1). By substituting z = z⋆ = Hmin

and introducing an auxiliary value τ , problem (P1.1) is re-

expressed as

(P4): max
τ,p̂,q

τ

s.t. ‖q‖2 ≤ p̂

τ
−H2

min, (18)

‖q −wk‖2 ≥ β̂0p̂

Γ̂
−H2

min, ∀k ∈ K, (19)

0 ≤ p̂ ≤ p̂. (20)

However, problem (P4) is still non-convex7, as constraint (18)

is non-convex due to the coupling between p̂ and τ , and the

constraints in (19) are non-convex quadratic constraints.

First, we deal with the non-convex quadratic constraints

in (19) by using the SDR technique. Towards this end, we

first equivalently recast (P4) as the following problem (P4.1)

with homogeneous quadratic terms by introducing an auxiliary

variable θ.

(P4.1): max
τ,p̂,q,θ

τ

s.t. (q, θ)TA(q, θ) ≤ p̂

τ
−H2

min, (21)

(q, θ)TBk(q, θ) ≥
β̂0p̂

Γ̂
−H2

min, ∀k ∈ K,

(22)

θ2 = 1, (23)

(20),

where A , diag((1, 1, 0)) ∈ R
3×3 and Bk ,

[

I −wT
k

−wk ‖wk‖
2

]

∈ R
3×3, ∀k ∈ K.

7Notice that given q, (P4) is a linear programming (LP) over τ and p̂, thus
can be optimally solved; nevertheless, the key challenge here is to jointly
optimize all variables, which renders (P4) a non-convex problem.
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Then, by introducing s = (q, θ) ∈ R
3×1 and S = ssT ∈

R
3×3, with S � 0 and rank(S) ≤ 1, problem (P4.1) is further

reformulated as

(P4.2): max
τ,p̂,S

τ

s.t. Tr(AS) ≤ p̂

τ
−H2

min, (24)

Tr(BkS) ≥
β̂0p̂

Γ̂
−H2

min, ∀k ∈ K, (25)

Tr(CS) = 1, (26)

rank(S) ≤ 1, (27)

S � 0, (28)

(20),

where C , diag((0, 0, 1)). Notice that the rank constraint in

(27) is non-convex. To address this issue, we relax problem

(P4.2) by dropping this rank constraint, and denote the relaxed

problem of (P4.2) as (P4.3).

Next, we consider problem (P4.3). Although constraint (24)

is non-convex due to the coupling between p̂ and τ , problem

(P4.3) can be solved by equivalently solving the following

feasibility problems (P4.4.τ ) under any given τ ≥ 0, together

with a bisection search over τ .

(P4.4.τ ): Find p̂,S

s.t. (20), (24), (25), (26), and (28).

In particular, denote by τ⋆ the optimal solution of τ to (P4.3).

Then, under any given τ ≥ 0, we have τ ≤ τ⋆ if problem

(P4.4.τ ) is feasible; otherwise, we have τ > τ⋆. Therefore, we

can solve (P4.3) by using the bisection search8 over τ ≥ 0, and

checking the feasibility of problem (P4.4.τ ) under any given

τ ≥ 0 [45]. Notice that under any given τ ≥ 0, problem

(P4.4.τ ) is a semi-definite program (SDP) that is convex,

and thus can be optimally solved by using standard convex

optimization techniques, such as the interior point method

[45]. With the obtained τ⋆, suppose that the corresponding

feasible/optimal solution to problem (P4.4.τ ) is p̂⋆(τ) and

S⋆(τ). Accordingly, they are also the optimal solution to

problem (P4.3), denoted by p̂⋆ and S⋆.

Now, it still remains to construct the optimal solution

to (P4.2), or equivalently (P4.1) and (P4). In particular, if

rank(S⋆) ≤ 1, then the SDR is tight. In this case, the solution

of p̂⋆ and S⋆ are also the optimal solution to (P4.2). By

performing the eigenvalue decomposition (EVD) for S⋆, we

can obtain the optimal solution s⋆ = (q⋆, θ⋆) to (P4.1) and

(P4) as the dominant eigenvector of S⋆. Accordingly, p̂⋆ is

also the optimal solution of p̂ to (P4.1) and (P4). However, if

rank(S⋆) > 1, then we need to construct a rank-one solution

of S to (P4.2) via additional processing such as the Gaussian

randomization procedure that is widely adopted in the SDR

literature (see, e.g., [46]). Fortunately, in our simulations with

randomly generated PRs’ locations, the optimal solution of S⋆

8Suppose that the searching range of τ is an interval [0, τmax]. As
such, the maximum number of iterations for bisection search is given by
⌈log2(τmax/ǫ)⌉, where ǫ is a positive constant that controls the accuracy, and
⌈ỹ⌉ denotes the minimum integer that is no smaller than ỹ. Since the number
of required iterations is a logarithmic function with respect to τmax/ǫ, the
convergence of the bisection search is exponentially fast.

to problem (P4.3) is always rank-one. Therefore, the Gaussian

randomization procedure is not required in general. More

specifically, we can rigorously prove that the optimal solution

of S⋆ to (P4.3) is rank-one in the following special case,

though our proposed SDR-based solution is applicable for the

general case with any PRs’ locations.

Proposition 3.3: When the K PRs are located at the same

side of the SR9, it follows that the optimal solution S⋆ to

(P4.3) is always rank-one.

Proof: See Appendix C.

Therefore, the solution to (P4) is finally obtained as p̂⋆ and

q⋆. By combining them together with z⋆ = Hmin, problem

(P1.1) is solved. As a result, the optimal solution to (P1) is

finally obtained as z⋆, q⋆, and p⋆ = p̂(⋆)α/2.

C. Special Case with K = 1 PR

In this subsection, we consider the special case of (P1.1)

with K = 1 PR and derive the closed-form optimal solution

to gain additional insights. In this case, by substituting z =
z⋆ = Hmin, problem (P1.1) is simplified as

(P5): max
p̂,q

p̂

H2
min + ‖q‖2

s.t.
β̂0p̂

H2
min + ‖q −w1‖2

≤ Γ̂, (29)

(15).

For (P5), we first have the following lemma.

Lemma 3.2: Under any feasible p̂, the optimal solution of

q to problem (P5) is given by q = −a w1

‖w1‖
, where a ≥ 0

denotes the horizontal distance between the UAV and the SR.

Proof: See Appendix D.

From Lemma 3.2, it is evident that at the optimality, the

UAV should be placed above a point at the PR’s opposite

direction along the line connecting the SR and the PR, to mini-

mize the interference to the PR. By substituting q = −a w1

‖w1‖
,

problem (P5) is re-expressed as

(P5.1): max
p̂,a≥0

p̂

H2
min + a2

s.t.
β̂0p̂

H2
min + (a+ ‖w1‖)2

≤ Γ̂, (30)

(15).

For convenience, we define p1 , Γ̂

β̂0
(‖w1‖2+H2

min), which

denotes the UAV’s maximally allowable value of p̂ for the IT

constraint (29) to be feasible, when the UAV is located exactly

above the SR at (0, 0, Hmin). Then, we have the following

proposition.

Proposition 3.4: The optimal solution of p̂ to problem (P5.1)

is given by p̂⋆ = min(p̂, p̃⋆), where

p̃⋆ ,
Γ̂

β̂0







(

‖w1‖+
√

‖w1‖2 + 4H2
min

)2

4
+H2

min






. (31)

9There are in total four cases when the K PRs are located at the same side
of the SR: 1) xk ≥ 0, ∀k ∈ K, and there exists at least one PR k̄ ∈ K with
xk̄ > 0; 2) xk ≤ 0, ∀k ∈ K, and there exists at least one PR k̄ ∈ K with
xk̄ < 0; 3) yk ≥ 0, ∀k ∈ K , and there exists at least one PR k̄ ∈ K with
yk̄ > 0; and 4) yk ≤ 0, ∀k ∈ K, and there exists at least one PR k̄ ∈ K
with yk̄ < 0.
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Accordingly, the optimal solution of a to problem (P5.1) is

given as

a⋆ =















ã⋆ ,

√
‖w1‖2+4H2

min−‖w1‖

2 , p̂ > p̃⋆,
√

β̂0P

Γ̂
−H2

min − ‖w1‖ < ã⋆, p1 ≤ p̂ ≤ p̃⋆,

0, p̂ < p1,

(32)

Proof: See Appendix E.

By combining Proposition 3.4 and Lemma 3.2, the optimal

solution to problem (P5) is finally obtained as p̂⋆ and q⋆ =
−a⋆ w1

‖w1‖
. As a result, the optimal solution to (P1) in the

special case with K = 1 PR is finally obtained as z⋆, q⋆, and

p⋆ = p̂(⋆)α/2.

Proposition 3.4 provides interesting insights on the optimal

horizontal location and transmit power solution to the special

case of (P1) with K = 1 PR. Firstly, when the UAV’s

maximum transmit power P is sufficiently large, the UAV

should transmit at an optimized power p⋆ = p̃(⋆)α/2 (with

p̃⋆ given in (31)) and be placed at an optimized horizontal

location with distance ã⋆ given in (32) from the SR. Notice

that ã⋆ is only dependent on ‖w1‖ and Hmin but irrelevant

to P ; as Hmin increases and/or ‖w1‖ decreases, ã⋆ becomes

larger and thus the UAV needs to be placed further away from

the SR for maximizing the SR’s achievable rate subject to

the IT constraint. Furthermore, when P becomes smaller with

p̂ ≤ p̃(⋆), the UAV should transmit at the full power P and be

placed at a horizontal location closer to the SR. In addition,

if P becomes sufficiently small with p̂ < p1, then the UAV

should be placed exactly above the SR and transmit with full

power P .

Remark 3.2: Notice that although in this paper we consider

the LoS channel model, the design principles are applicable

to other stochastic A2G channel models such as Rician fading

and probabilistic LoS channels.

Specifically, denote by h̃(q, z) and g̃k(q, z) the instanta-

neous channel power gains from the UAV to the SR and

to the PR k ∈ K, respectively, which are random vari-

ables whose probability density functions generally depend

on the elevation angles between the UAV and the ground

nodes. In general, as the UAV altitude z increases, the K-

factor becomes larger for Rician fading channel [40] and

the LoS probability increases for probabilistic LoS channel

[47]. For convenience, we denote ĥ(q, z) = E(h̃(q, z)) and

ĝk(q, z) = E(g̃k(q, z)) as their mean values. Then, we can

maximize the average rate from the UAV to the SR, i.e.,

E

(

log2

(

1 + ph̃(q,z)
σ2

))

, subject to the average IT constraints

at all PRs, i.e., E (pg̃k(q, z)) = pĝk(q, z) ≤ Γ, ∀k ∈ K. In

general, we can adopt the exhaustive search over the 3D space

to find the optimal solution to this new problem.

However, due to the concavity of the log(·) function, it

follows from the Jensen’s inequality [47] that

E

(

log2

(

1 +
ph̃(q, z)

σ2

))

≤ log2

(

1 +
pE(h̃(q, z))

σ2

)

= log2

(

1 +
pĥ(q, z)

σ2

)

.

Since the channel power gains achieve their maximum un-

der the LoS channel model, we have ĥ(q, z) ≤ h(q, z)
and ĝk(q, z) ≤ gk(q, z), ∀k ∈ K, which lead to

log2

(

1 + pĥ(q,z)
σ2

)

≤ log2

(

1 + ph(q,z)
σ2

)

, i.e., the achievable

rate under the LoS channel serves as an upper bound for the

average achievable rate at the SR under the stochastic channel

models. Similarly, the average interference power at each PR

satisfies pĝk(q, z) ≤ pgk(q, z), ∀k ∈ K. As a result, the

optimal solution to our considered problem (P1) can be viewed

as an approximate solution to the problem in the stochastic

channel models. In particular, such approximations become

more accurate when the K-factor is larger for Rician fading

channel or the LoS probability is higher for probabilistic LoS

channel.

IV. JOINT 3D TRAJECTORY AND TRANSMIT POWER

OPTIMIZATION IN MOBILE UAV SCENARIO

In this section, we consider the joint UAV 3D trajectory and

transmit power optimization problem (P2) in the mobile UAV

scenario. To tackle this problem, we use the SCA technique

to obtain a locally optimal solution.

To facilitate the implementation of SCA, we first obtain the

optimal transmit power levels under any given feasible UAV

trajectory {q[n], z[n]}, for which the problem is expressed as

(P6): max
{p[n]}

1

N

N
∑

n=1

log2

(

1 +
ηup[n]

(z2[n] + ‖q[n]‖2)α/2
)

s.t. 0 ≤ p[n] ≤ P, ∀n ∈ N , (33)

β0p[n]

(z2[n] + ‖q[n]−wk‖2)α/2
≤ Γ, ∀n ∈ N , k ∈ K.

(34)

It is easy to show that problem (P6) can be decomposed into

the following N subproblems each for one slot n ∈ N , for

which the coefficient 1/N is ignored for brevity.

(P6.1.n): max
p[n]≥0

log2

(

1 +
ηup[n]

(z2[n] + ‖q[n]‖2)α/2
)

s.t. p[n] ≤ min(P,min
k∈K

Γ

β0

(

z2[n] + ‖q[n]−wk‖2
)α/2

).

(35)

It is evident that the optimality of problem (P6.1.n) is attained

when constraint (35) is tight. Therefore, we have the optimal

solution to (P6.1.n)’s and (P6) as

p[n] = min

(

P,min
k∈K

Γ

β0

(

z
2[n] + ‖q[n]−wk‖

2)α/2
)

, ∀n ∈ N .

(36)

By substituting (36) into the objective function of (P2), prob-

lem (P2) is reformulated as

(P7): max
{q[n],z[n]}

1

N

N
∑

n=1

R̂(q[n], z[n])

s.t. ‖q[n]− q[n− 1]‖ ≤ VH , ∀n ∈ N\{1}, (37)

− VDδt ≤ z[n]− z[n− 1] ≤ VA, ∀n ∈ N\{1}, (38)

q[1] = q̂I , q[N ] = q̂F , z[1] = ẑI , z[N ] = ẑF , (39)

Hmin ≤ z[n] ≤ Hmax, ∀n ∈ N , (40)
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where

R̂(q[n], z[n])

= log2









1 +

ηu min

(

P,min
k∈K

Γ
β0

(

z2[n] + ‖q[n]−wk‖
2
)α/2

)

(z2[n] + ‖q[n]‖2)α/2









.

(41)

Next, to solve problem (P7), we introduce two sets of

auxiliary variables {ζ1[n]}Nn=1 and {ζ2[n]}Nn=1, and define

R̃(ζ1[n], ζ2[n]) = log2(1 + ηuζ1[n]/ζ2[n]). Accordingly, we

reformulate problem (P7) as

(P7.1): max
{q[n],z[n],ζ1[n],ζ2[n]}

1

N

N
∑

n=1

R̃(ζ1[n], ζ2[n])

s.t. 0 ≤ ζ1[n] ≤ P, ∀n ∈ N , (42)

ζ1[n] ≤
Γ

β0

(

z2[n] + ‖q[n]−wk‖2
)α/2

,

∀n ∈ N , k ∈ K, (43)

(‖q[n]‖2 + z2[n])α/2 ≤ ζ2[n], ∀n ∈ N , (44)

(37)–(40).

It is easy to verify that at the optimality of (P7.1), constraint

(‖q[n]‖2 + z2[n])α/2 ≤ ζ2[n] must hold with equality for

any n ∈ N , since otherwise, we can decrease ζ2[n] to

achieve a higher objective value of (P7.1) without violating

this constraint. Notice that problem (P7.1) is still non-convex,

as the objective function is non-concave and the constraints

in (43) are non-convex. To tackle this problem, we adopt the

SCA technique to obtain a locally optimal solution to (P7.1)

in an iterative manner. The key idea of SCA is that given a

local point at each iteration, we approximate the non-concave

objective function (or non-convex constraints) into a concave

objective function (or convex constraints), in order to obtain

an approximate convex optimization problem. By iteratively

solving a sequence of approximate convex problems, we

can obtain an efficient solution to the original non-convex

optimization problem (P7.1).

Specifically, suppose that {q(j)[n], z(j)[n], ζ
(j)
1 [n], ζ

(j)
2 [n]}

corresponds to the local point at the j-th iteration with j ≥
1, where {q(0)[n], z(0)[n], ζ

(0)
1 [n], ζ

(0)
2 [n]} corresponds to the

initial point. In the following, we explain how to approximate

the objective function of (P7.1) and the constraints in (43),

respectively. First, we rewrite the objective function of (P7.1)

as

R̃(ζ1[n], ζ2[n]) = log2 (ζ2[n] + ηuζ1[n])− log2(ζ2[n]). (45)

Note that the objective function in (45) is still non-concave,

as − log2 (ζ2[n]) is non-concave. However, − log2 (ζ2[n])
is convex with respect to {ζ2[n]}. Notice that any convex

function is globally lower-bounded by its first-order Taylor

expansion at any point [45]. Therefore, with given local

point {ζ(j)2 [n]} in the j-th iteration, j ≥ 0, it follows that

R̃ (ζ1[n], ζ2[n]) ≥ R̃lb (ζ1[n], ζ2[n]), where

R̃lb(ζ1[n], ζ2[n]) , log2 (ζ2[n] + ηuζ1[n])− log2(ζ
(j)
2 [n])

− (ζ2[n]− ζ
(j)
2 [n]) log2(e)

ζ
(j)
2 [n]

. (46)

Next, we consider the non-convex constraints in (43). Since

(‖q[n] − wk‖2 + z2[n])α/2 is a convex function with re-

spect to {q[n], z[n]}, we have the following inequalities by

applying the first-order Taylor expansion at any given point

{q(j)[n], z(j)[n]}:

(‖q[n]−wk‖2 + z2[n])α/2 ≥
(

‖q(j)[n]−wk‖2 + z(j)2[n]
)α/2

+ α
(

‖q(j)[n]−wk‖2 + z(j)2[n]
)

α
2 −1

(

(q(j)[n]−wk)
T (q[n]− q(j)[n]) + z(j)[n](z[n]− z(j)[n])

)

,

∀n ∈ N , k ∈ K. (47)

By replacing (‖q[n]−wk‖2 + z2[n])α/2 in (43) as the right-

hand-side (RHS) of (47), we approximate (43) as the following

convex constraints:

ζ1[n] ≤
Γ

β0
((‖q(j)[n]−wk‖2 + z(j)2[n])α/2

+ α(‖q(j)[n]−wk‖2 + z(j)2[n])α/2−1

((q(j)[n]−wk)
T (q[n]− q(j)[n]) + z(j)[n](z[n]− z(j)[n]))),

∀n ∈ N , k ∈ K. (48)

To summarize, by replacing R̃ (ζ1[n], ζ2[n]) in the objective

function as R̃lb (ζ1[n], ζ2[n]) in (46), and replacing the con-

straints in (43) as those in (48), problem (P7.1) is approxi-

mated as the following convex optimization problem (P7.2) at

any local point {q(j)[n], z(j)[n], ζ
(j)
1 [n], ζ

(j)
2 [n]}, which can

be solved via standard convex optimization techniques such

as the interior point method [45], with the optimal solution

denoted as {q(j)∗[n]}, {z(j)∗[n]}, {ζ(j)∗1 [n]} and {ζ(j)∗2 [n]}.

(P7.2) : max
{q[n],z[n],ζ1[n],ζ2[n]}

1

N

N
∑

n=1

R̃lb (ζ1[n], ζ2[n])

s.t. (37), (38), (39), (40), (42), (44), and (48).

With the convex optimization problem (P7.2) at hand,

we can obtain an efficient iterative algorithm to solve

(P7.1), explained as follows. In the j-th iteration, the

algorithm solves the convex optimization problem (P7.2)

at the local point {q(j)[n], z(j)[n], ζ
(j)
1 [n], ζ

(j)
2 [n]}, where

{q(j)[n], z(j)[n], ζ
(j)
1 [n], ζ

(j)
2 [n]} corresponds to the optimal

solution to (P7.2) obtained in the (j − 1)-th iteration, i.e.,

q(j)[n] = q(j−1)∗[n], z(j)[n] = z(j−1)∗[n], ζ
(j)
1 [n] =

ζ
(j−1)∗
1 [n], and ζ

(j)
2 [n] = ζ

(j−1)∗
2 [n], ∀n ∈ N . We summarize

this algorithm in Table I as Algorithm 1. Denote the obtained

solution to (P7) as {q∗[n], z∗[n]}. By substituting q∗[n] and

z∗[n] into (36), the corresponding transmit power is p∗[n] =

min(P,min
k∈K

Γ
β0

(

z∗2[n] + ‖q∗[n]−wk‖2
)α/2

), ∀n ∈ N . By

combining {p∗[n]}, {q∗[n]}, and {z∗[n]}, the solution to (P2)

by SCA is finally obtained.

Similarly as in [4], it can be shown that in Algorithm

1, after each iteration j, the objective function of (P7.2)

achieved by {q(j)[n], z(j)[n], ζ
(j)
1 [n], ζ

(j)
2 [n]} is monotonically

non-decreasing. As the optimal value of problem (P7.1) is

upper-bounded by a finite value, it is evident that Algorithm 1

can converge to a locally optimal solution to problem (P7.1)

(and thus (P2)).
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TABLE I
ALGORITHM 1 FOR SOLVING PROBLEM (P7.1)

a) Initialization: Set the initial UAV trajectory as {q(0)[n], z(0)[n]}N
n=1,

ζ
(0)
2 [n] = (‖q(0)[n]‖2 + z(0)2 [n])α/2, ∀n ∈ N , and j = 0.

b) Repeat:

1) Solve problem (P7.2) to obtain the optimal solution as

{q(j)∗ [n]}N
n=1, {z(j)∗ [n]}N

n=1, {ζ
(j)∗
1 [n]}N

n=1, and

{ζ
(j)∗
2 [n]}N

n=1.

2) Update the trajectory as q(j+1)[n] = q(j)∗ [n] and z(j+1)[n] =

z(j)∗[n], ζ
(j+1)
1 [n] = ζ

(j)∗
1 [n], and ζ

(j+1)
2 [n] =

ζ
(j)∗
2 [n], ∀n ∈ N .

3) Update j = j + 1.

c) Until the objective value of (P7.2) converges within a given accuracy or
a maximum number of iterations is reached.

Denote by D the total number of iterations required in

Algorithm 1. In each iteration, the convex optimization prob-

lem (P7.2) is solved via the standard interior-point method

with the complexity of O(N3.5K1.5) [48]. As a result, the

overall complexity of Algorithm 1 is O(DN3.5K1.5), which is

polynomial. Also note that we consider the offline optimization

for the joint trajectory and power design. Thus, Algorithm 1

only needs to be implemented in an offline manner prior to

the UAV flight.

Remark 4.1: In order to efficiently implement Algorithm 1

for solving (P7.2) as well as (P2), we need to properly design

an initial UAV trajectory. Notice that the optimal UAV location

(q⋆, z⋆) to (P1) obtained in Section III is quite efficient for

maximizing the SR’s communication rate while controlling the

interference at the PRs. Therefore, we intuitively design a fly-

hover-fly (FHF) trajectory, where the UAV first flies straightly

from the initial location (q̂I , ẑI) to the optimal UAV location

(q⋆, z⋆), then hovers at this point for a certain time duration,

and finally flies straightly towards the final location (q̂F , ẑF ).
To prolong the hovering duration for improving the SR’s

performance, the UAV should fly at the maximum horizontal

speed V̂H and maximum ascending/descending speed V̂D/V̂A

during the flight (notice that we have z⋆ = Hmin). As a result,

we obtain the flight duration as

Tfly = max(|ẑI − z⋆|/V̂D, ‖q⋆ − q̂I‖/V̂H)

+ max(|ẑF − z⋆|/V̂A, ‖q̂F − q⋆‖/V̂H),

and the hovering duration as T−Tfly. Notice that the proposed

initial trajectory is only applicable when the mission duration

T is no smaller than Tfly. When Tmin ≤ T < Tfly, we instead

use the straight flight as the initial UAV trajectory, in which

the UAV flies directly from the initial location to the final

location at a constant horizontal speed ṼH = ‖q̂F − q̂I‖/T
and a constant vertical speed ṼL = |ẑF − ẑI |/T .

Remark 4.2: The design principles used in this section are

also applicable to other stochastic channel models such as

Rician fading and probabilistic LoS channels. Similarly as in

the quasi-stationary UAV scenario, we consider the average

rate performance of the considered system. Specifically, in

the objective function of (P2), the achievable rate under the

deterministic LoS channel for each slot n can be replaced

with the SR’s average rate over the same slot. Additionally,

in the IT constraints in (13), the PR’s received interference

power at each slot n is modified as the average interference

power over the same slot. Our proposed solution under the

LoS channel then provides an efficient approximate solution

to this new problem, while such approximations become

more accurate when the K-factor is larger for Rician fading

channel or the LoS probability is higher for probabilistic LoS

channel. Alternatively, we can also introduce a homogenous

approximation to the K-factor or LoS probability by assuming

that they are constant throughout the UAV’s flight in the

stochastic channel models (see e.g., [47]). Accordingly, the

resulting problem has the same form as (P2), for which we

can adopt a similar SCA-based algorithm to obtain a converged

solution.

V. NUMERICAL RESULTS

In this section, we present numerical results to validate the

performance of our proposed joint design of UAV’s maneuver

and transmit power. Unless otherwise stated, we set the noise

power at the SR (including the background interference and

noise) as σ2 = –80 dBm, the reference channel power gain

at the SR as βu = –30 dB, the maximum reference channel

power gain from the UAV to PRs as β0 = –30 dB, the path-

loss exponent as α = 2, and the UAV’s minimum and max-

imum flight altitudes as Hmin = 170 m and Hmax = 220 m

[39], respectively.

A. Quasi-Stationary UAV Scenario

In this subsection, we evaluate the performance of our

proposed optimal solution to (P1) for the quasi-stationary

UAV scenario, as compared to the following two benchmark

schemes.

• Power optimization only: The UAV is placed ex-

actly above the SR with the lowest altitude, i.e.,

(q, z) = (0, 0, Hmin). In this case, analogous to (36),

the UAV’s optimal transmit power is obtained as p̄∗ =
min(P,min

k∈K

Γ
β0
(w2

k +H2
min)

α/2).

• Placement optimization only: The UAV optimizes its

location (q, z) with the maximum transmit power P used,

i.e., p = P . This corresponds to solving problem (P1)

under given p = P , for which the optimal solution can

be obtained by applying the SDR technique, which is

similar as in Section III-B.

First, we consider the case with K = 1 PR with the PR

located at (x1, 0, 0) with x1 ≥ 0. Fig. 2 shows the SR’s

achievable rate versus the distance x1 from the SR to the

PR with Γ = –80 dBm and P = 23 dBm. It is observed

that as the distance x1 from the SR to the PR increases, the

achievable rates by all schemes increase. This is due to the fact

that when the PR is away from the SR, the IT constraint at

the PR becomes less stringent. It is also observed that when

the PR is located very close to the SR (i.e., x1 → 0), the

performance gap between the proposed design and the two

benchmark schemes is negligible. This is because in this case,

the SR’s received signal power is fundamentally limited by the

PR’s IT constraint, thus leading to the comparable performance

for the three schemes. By contrast, as the distance x1 increases,

the performance gap between the proposed and benchmark

schemes is observed to be enlarged.
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Fig. 2. SR’s achievable rate versus the distance from SR to PR with K = 1
PR.
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Fig. 3. SR’s achievable rate versus the IT threshold with K = 1 PR.
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Fig. 4. UAV’s optimal horizontal locations with K = 3 PRs.
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Fig. 5. SR’s achievable rate versus the IT threshold with K = 3 PRs.

Fig. 3 shows the SR’s achievable rate versus the IT threshold

Γ with w1 = (100 m, 0 m) and P = 23 dBm. It is observed

that when Γ is sufficiently large (e.g., Γ ≥ –53 dBm), all

schemes achieve the same rate performance. This is because

in this case, the transmit power constraint dominates the IT

constraints, and thus the three schemes become equivalent.

However, when Γ becomes smaller (e.g., Γ < –53 dBm), our

proposed design is observed to outperform the two benchmark

schemes. In particular, when Γ is sufficiently small (e.g., Γ =
–80 dBm), the SR’s achievable rate by our proposed design is

approximately 20% more than that by the scheme with power

optimization only, and 40% more than that by the scheme

with placement optimization only (as also shown in Fig. 2

more clearly).

Next, we consider the setup with K = 3 PRs as shown in

Fig. 410. Based on Proposition 3.2, the UAV should always

be placed at the lowest altitude with z⋆ = Hmin = 170 m.

Therefore, for simplicity, only the optimized horizontal loca-

tions are shown in Fig. 4. It is observed that when the UAV’s

maximum transmit power P increases and/or the IT threshold

Γ decreases, the UAV needs to move further away from the

PRs, so as to meet the interference constraints at the PRs.

Fig. 5 shows the SR’s achievable rate versus the IT threshold

10Note that our proposed SDR-based solution is applicable to any locations
of PRs. In Fig. 4, we consider that the PRs are all located at the same side
of the SR, only for the purpose of showing the impacts of Γ and P on the
UAV’s optimal location.
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1.1
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1.35

1.4

Fig. 6. SR’s achievable rate of the proposed design versus the number of
PRs K .

Γ with P = 23 dBm. Similar observations can be made as in

Fig. 3, where the performance gains over the two benchmark

schemes are more significant with smaller values of Γ.

Furthermore, Fig. 6 shows the SR’s achievable rate of the

proposed design versus the number of PRs, K . For each

K , we randomly generate the PRs’ locations in an area

of 200 × 200 m2. The results are obtained by averaging

over 100 random realizations, where we set Γ = –90 dBm

and P = 23 dBm. It is observed that as K increases, the

SR’s achievable rate is non-increasing. This is because as K
increases, the number of IT constraints increases, thus making
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Fig. 7. UAV’s horizontal trajectories.
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Fig. 8. UAV’s flight altitudes over time.
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Fig. 9. UAV’s horizontal and vertical speeds over time.
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Fig. 10. UAV’s transmit powers over time.

the feasibility region of (P1) smaller. As a result, the SR’s

achievable rate may decrease.

B. Mobile UAV Scenario

In this subsection, we evaluate the performance of our

proposed solution to (P2) under the mobile UAV scenario.

Unless otherwise stated, we assume that there are K =
10 ground PRs distributed in a 2D area of 2 × 2 km2,

as shown in Fig. 7. The speed limits for the UAV are

set according to DJI’s Inspire 2 drones [42], i.e., V̂H =
26 m/s, V̂A = 6 m/s and V̂D = 4 m/s. The UAV’s ini-

tial and final locations are set as (–950 m, 1000 m, 170 m)

and (1000 m, –1000 m, 170 m), respectively. In this case, the

UAV’s minimum flight duration is Tmin = 107 s.

Figs. 7 and 8 show the UAV’s horizontal locations and flight

altitudes over time by the proposed design, under different

values of P and Γ with the communication duration set as

T = 200 s. Figs. 9 and 10 show the corresponding UAV’s

flying speeds and the optimized transmit powers over time,

respectively. It is observed that when Γ = –50 dBm and

P = 20 dBm, the UAV flies simply following its initial

FHF trajectory, along which the UAV always stays at the

minimum altitude and transmits with the full power P . This

is consistent with Proposition 3.1, which shows that when the

maximum transmit power P is sufficiently small and/or the

IT threshold Γ is sufficiently large, the UAV should stay at

the minimum altitude and transmit with the maximum power.

However, when Γ decreases and P increases in the case

of Γ = –70 dBm and P = 23 dBm, the UAV trajectory

is observed to deviate from the initial FHF trajectory. In

particular, when the UAV approaches PRs 1–4 and PRs 7–

10 (at time instants t = 18 s, t = 48 s, t = 152 s, t = 162 s,

t = 178 s and t = 190 s, respectively), it increases the flight

altitude and reduces transmit power, in order to meet the IT

constraint at the nearest PR. Notice that this observation is also

consistent with Proposition 3.1 and Remark 3.1, which reveals

that the UAV should increase its altitude to maximize the

cognitive communication rate when it moves closer to some

PRs than the SR. Furthermore, it is observed that the UAV

hovers above a point closer to the SR than all PRs at the lowest

altitude for a certain period of time to take advantage of the

favorable communication channel with the SR for enhancing

the SR’s achievable rate. This is consistent with Proposition

3.2.

Finally, Fig. 11 shows the SR’s average achievable rate by

the proposed design with Γ = –80 dBm and P = 23 dBm, as

compared to the following two benchmark schemes.

• Joint 2D trajectory and power optimization: The UAV

jointly optimizes its 2D trajectory {q[n]} and transmit

power {p[n]}, where the flight altitude is fixed as its

minimum flight altitude. This corresponds to solving

problem (P2) under given z[n] = Hmin, ∀n ∈ N .

• Power optimization with proposed initial trajectory:

The UAV sets its trajectory as the proposed initial trajec-

tory, as given in Remark 4.1. Under this trajectory, the

UAV optimizes its power allocation based on (36).

From Fig. 11, it is observed that as the flight duration T
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Fig. 11. SR’s average achievable rate versus the flight duration T .

increases, the average achievable rates by all the three schemes

increase. This is because for all cases with adaptive trajectory

design, the UAV in general stays longer close to the SR

when T increases, leading to a better channel condition on

average and thus a higher average achievable rate. It is also

observed that the proposed joint 3D trajectory and power

design outperforms its 2D counterpart. This is because in the

proposed design, the UAV can adjust its altitude more freely to

control the co-channel interference, especially when the UAV

is close to the PRs. This is consistent with our observations

in Remark 3.1 and validates the importance of 3D trajectory

design with altitude control.

VI. CONCLUDING REMARKS

This paper studied a new spectrum sharing scenario for

UAV-to-ground communications, where a cognitive/secondary

UAV transmitter communicates with a ground SR, in the pres-

ence of co-channel primary terrestrial wireless communication

links. We exploited the UAV’s 3D mobility to improve the cog-

nitive communication rate performance under two scenarios

of quasi-stationary and mobile UAVs, respectively. For both

scenarios, we proposed efficient algorithms to obtain high-

quality solutions to the joint UAV maneuver and power control

optimization problems. It was shown via simulations that

the proposed designs with joint 3D placement/trajectory and

power control optimization significantly outperform bench-

mark schemes without such a joint design or with only 2D

optimization. Due to the space limitation, there are other

important issues that remain unaddressed yet in this paper,

which are discussed in the following to motivate future work.

• This paper considered the offline UAV maneuver design

by assuming that the UAV perfectly knows the channel

parameters in advance. Such offline design, however,

may lead to sub-optimal performance in real-time imple-

mentation. This is because the deterministic LoS chan-

nel (or even stochastic channels) model may mismatch

with realistic radio propagation environments, due to the

unevenly distributed obstacles (such as buildings and

trees) around. How to optimize UAV maneuver based

on the actual channel is thus an important problem to

be tackled in future work. In this case, a promising

solution is by using the radio map technique [49] to

obtain the location-dependent channel knowledge offline,

or adopting reinforcement learning to adapt the UAV

maneuver to the actual channel in real time. Accordingly,

our proposed solutions based on the a-priori known LoS

channel model can not only provide a performance upper

bound for practical maneuver design, but also serve as an

initial input for the online design.

• This paper considered the basic setup with one UAV and

one SR. In practice, there may exist multiple coexisting

SRs and UAVs within the same network. In the case with

one UAV communicating with multiple SRs, the UAV

needs to properly schedule its transmission to the mul-

tiple SRs based on the adopted multiple access scheme

(e.g., time division multiple access (TDMA), orthogonal

frequency division multiple access (OFDMA), or non-

orthogonal multiple-access (NOMA)). How to jointly

design the UAV maneuver, SRs’ scheduling and resource

allocation is an interesting problem worth pursuing in

future work. Furthermore, when there are multiple UAVs,

the co-channel interference from UAVs to SRs becomes

a new issue to be dealt with. For instance, these UAVs

can jointly design their maneuvers and power allocations

to maximize their weighted sum rates, while ensuring

that their caused aggregate interference power at each

PR does not exceed the prescribed IT constraint. More-

over, different SRs may use the coordinated multi-point

(CoMP) technique to jointly decode the messages from

multiple UAVs for better mitigating or even utilizing the

strong co-channel A2G interference. These problems are

worthy of more in-depth investigation in future work.

APPENDIX

A. Proof of Proposition 3.1

First, we recast constraint (17) as p̂ ≤ Γ̂
β̂0
(z2 + ‖q −

wk̃(q)‖2). Obviously, at least one of the constraints (15) and

(17) must be tight at the optimality of (P3). Notice that
Γ̂

β̂0
(H2

min + ‖q − wk̃(q)‖2) ≤ Γ̂

β̂0
(z2 + ‖q − wk̃(q)‖2) ≤

Γ̂
β̂0
(H2

max + ‖q −wk̃(q)‖2) due to Hmin ≤ z ≤ Hmax. Based

on this, we consider the following three cases to obtain the

optimal solution to (P3).

If p̂ > Γ̂

β̂0
(H2

max+ ‖q−wk̃(q)‖2), then only constraint (17)

is tight at the optimality of (P3), and thus we have

p̂(q) =
Γ̂

β̂0

(z2 + ‖q −wk̃(q)‖2). (49)

The corresponding objective value of (P3) is expressed as

f(z) =
Γ̂

β̂0

‖q −wk̃(q)‖2 + z2

‖q‖+ z2
. (50)

Then, we consider the following three cases to obtain the

maximum value of f(z).

• In Case 1 (i.e., ‖q−wk̃(q)‖ < ‖q‖), it can be verified that

f(z) monotonically increases with z ∈ [Hmin, Hmax],
and thus we have z∗(q) = Hmax. By substituting this

into (49), we have p̂∗(q) = Γ̂
β̂0
(‖q −wk̃(q)‖2 +H2

max).

• In Case 2 (i.e., ‖q‖ < ‖q−wk̃(q)‖), it can be verified that

f(z) monotonically decreases with z ∈ [Hmin, Hmax],
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and thus we have z∗(q) = Hmin. By substituting this

into (49), we have p̂∗(q) = Γ̂
β̂0
(‖q −wk̃(q)‖2 +H2

min).

• In Case 3 (i.e., ‖q‖ = ‖q − wk̃(q)‖), we have f(z) =

Γ̂/β̂0, which is regardless of the UAV’s flight altitude z.

Thus, the optimal flight altitude z∗(q) can be an arbitrary

value within the interval [Hmin, Hmax]. By substituting

this into (49), we have p̂∗(q) = Γ̂

β̂0
(z∗2(q) + ‖q −

wk̃(q)‖2).

If p̂ < Γ̂

β̂0
(H2

min + ‖q − wk̃(q)‖2), then only the power

constraint (15) is tight at the optimality of (P3). Thus, the

UAV can be placed at the lowest altitude and transmit at the

maximum power to maximize the received power at the SR,

i.e., p̂∗(q) = P and z∗(q) = Hmin.

Finally, if Γ̂

β̂0
(‖q − wk̃(q)‖2 + H2

min) < p̂ < Γ̂

β̂0
(‖q −

wk̃(q)‖2 + H2
max), it follows that constraint (17) must be

tight at the optimality of (P3), since otherwise we can de-

crease the UAV’s altitude and/or increase the UAV’s transmit

power to increase the SR’s achievable rate, without violating

the PR’s IT constraint. Therefore, we still have p̂(q) in

(49) and f(z) in (50). By substituting (49) into the power

constraint (15), we have z ≤
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖2. With

Γ̂
β̂0
(‖q−wk̃(q)‖2 +H2

min) < p̂ < Γ̂
β̂0
(‖q−wk̃(q)‖2 +H2

max),

it follows that Hmin <
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖2 < Hmax.

Thus, we can obtain Hmin ≤ z ≤
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖

2. Next,

by checking the monotonicity of f(z) (similarly as the case

with P̂ > Γ̂

β̂0
(H2

max + ‖q − wk̃(q)‖2)), we can obtain the

following results:

• In Case 1 (i.e., ‖q − wk̃(q)‖ < ‖q‖), z∗(q) =
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖2 and p̂∗(q) = p̂.

• In Case 2 (i.e., ‖q‖ < ‖q −wk̃(q)‖), z∗(q) = Hmin and

p̂∗(q) = Γ̂

β̂0
(‖q −wk̃(q)‖2 +H2

min).

• In Case 3 (i.e., ‖q‖ = ‖q−wk̃(q)‖), z∗(q) is an arbitrary

value within the interval [Hmin,
√

β̂0p̂

Γ̂
− ‖q −wk̃(q)‖2],

and p̂∗(q) = Γ̂
β̂0
(z∗2(q) + ‖q −wk̃(q)‖2)

By combining all the results above and with some manipula-

tion, this proposition is proved.

B. Proof of Lemma 3.1

First, we define p1 , Γ̂
β̂0
(min
k∈K

‖wk‖2 + H2
min), which

denotes the maximally allowable value of p̂ for IT constraints

(14) to be feasible, in the case when the UAV is located exactly

above the SR at (0, 0, Hmin). Notice that if p̂ is sufficiently

low with p̂ ≤ p1, the UAV can be placed above the SR at

the lowest altitude. Then Lemma 3.1 holds accordingly. As a

result, it only remains to consider the case with p̂ > p1, for

which we can prove Lemma 3.1 by contradiction. Specifically,

suppose that, at the optimal solution, the UAV is placed

closer to a PR k ∈ K than the SR with ‖q⋆ − wk‖ <
‖q⋆‖, ∀k ∈ K. By combining constraints (15) and (17), we

have p̂⋆ ≤ min(p̂, Γ̂
β̂0
(‖q⋆ − wk‖2 + z2)), ∀k ∈ K, and the

corresponding objective value of (P1.1) can be obtained as

ξ1 ≤
min(p̂, Γ̂

β̂0
(‖q⋆ −wk‖2 + z2))

‖q⋆‖2 + z2

≤ Γ̂

β̂0

‖q⋆ −wk‖2 + z2

‖q⋆‖2 + z2
, ξ2, ∀k ∈ K.

Due to ‖q⋆−wk‖ < ‖q⋆‖, ∀k ∈ K, it follows that ξ1 ≤ ξ2 <
Γ̂/β̂0. Next, it is easy to verify that (q, z, p) = (0, Hmin, p1) is

a feasible solution to (P1) (i.e., the UAV hovers right above the

SR at the lowest altitude). The corresponding objective value

of (P1.1) can be obtained as ξ3 = Γ̂
β̂0

mink∈K ‖wk‖
2+H2

min

H2
min

. It

is evident that ξ3 > Γ̂/β̂0 > ξ2 ≥ ξ1, which contradicts the

optimality of q⋆. Therefore, this lemma is proved.

C. Proof of Proposition 3.3

Suppose that the optimal solution to problem (P4.3) is

denoted by p̂⋆, τ⋆, and S⋆. Then we construct the following

problem:

(P4.5): max
E,S

E

s.t. Tr(BkS) ≥ E, ∀k ∈ K, (51)

Tr(AS) ≤ p̂⋆

τ⋆
−H2

min, (52)

Tr(CS) = 1, (53)

S � 0. (54)

It is evident that problem (P4.5) and problem (P4.3) have the

same optimal solution of S. Therefore, S⋆ is also optimal

for (P4.5). Hence, to prove this proposition, we only need

to show that when the K PRs are located at the same side

of the SR, we have rank(S⋆) = 1 for problem (P4.5). Notice

that (P4.5) is a convex SDP and satisfies the Slater’s condition.

Therefore, strong duality holds between problem (P4.5) and its

dual problem. Let γk ≥ 0, ∀k ∈ K, λ ≥ 0, and µ denote the

dual variables associated with the constraints in (51), (52), and

(53), respectively. Then the Lagrangian of (P4.5) is expressed

as

L(E,S, λ, {γk}, µ,G)

=

(

1−
∑

k∈K

γk

)

E − λ

(

H2
min −

p̂⋆

τ⋆

)

+ µ+ Tr(GS),

(55)

where G = −λA−µC+
∑

k∈K γkBk. Accordingly, the dual

problem of (P4.5) is given by

(D4.5) min
λ≥0,{γk≥0},µ

− λ

(

H2
min −

p̂⋆

τ⋆

)

+ µ

s.t. G � 0, (56)
∑

k∈K

γk = 1. (57)

Denote the optimal solution of (D4.5) as λ⋆, γ⋆
k , ∀k ∈ K, and

µ⋆. Accordingly, the resultant G⋆ can be explicitly expressed

as

G
⋆ =











∑

k∈K

γ⋆
k − λ⋆ 0 −

∑

k∈K

γ⋆
kxk

0
∑

k∈K

γ⋆
k − λ⋆ −

∑

k∈K

γ⋆
kyk

−
∑

k∈K

γ⋆
kxk −

∑

k∈K

γ⋆
kyk −µ⋆ +

∑

k∈K

(γ⋆
k(x

2
k + y2

k))











.
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Then the optimal solution to (P4.5) and (D4.5) should sat-

isfy the complementary slackness condition Tr(G⋆S⋆) = 0,

or equivalently, G⋆S⋆ = 0. Therefore, in order to show

rank(S⋆) ≤ 1, we only need to show that rank(G⋆) ≥ 2.

Towards this end, in the following we show that
∑

k∈K γ⋆
k−

λ⋆ 6= 0 must hold by contradiction. Suppose that
∑

k∈K γ⋆
k −

λ⋆ = 0. Then we have

G
⋆ =











0 0 −
∑

k∈K

γ⋆
kxk

0 0 −
∑

k∈K

γ⋆
kyk

−
∑

k∈K

γ⋆
kxk −

∑

k∈K

γ⋆
kyk −µ⋆ +

∑

k∈K

(γ⋆
k(x

2
k + y2

k))











.

Denote by d an eigenvalue of the matrix G⋆. Then, we have

det(G⋆ − dI) = 0, which leads to

d
(

−d2 + ǫ2d+ ǫ1
)

= 0, (58)

where ǫ1 =
(
∑

k∈K γ⋆
kxk

)2
+
(
∑

k∈K γ⋆
kyk
)2

, and ǫ2 = −µ⋆+
∑

k∈K

(

γ⋆
k

(

x2
k + y2k

))

. Due to the fact that γ⋆
k ≥ 0, ∀k ∈ K,

∑

k∈K γ⋆
k = 1, and all PRs are located at the same side of

the SR (e.g., xk ≥ 0, ∀k ∈ K, and there exists at least one

PR k̄ ∈ K with xk̄ > 0, among the four possible cases), we

have ǫ1 > 0. Therefore, there must exist a positive root to

equation (58), i.e., the matrix G⋆ has a positive eigenvalue.

This contradicts G � 0 in (56). Hence,
∑

k∈K γ⋆
k − λ⋆ must

be non-zero.

With
∑

k∈K γ⋆
k − λ⋆ 6= 0, it is easy to show that

rank(G⋆) ≥ 2 via some simple elementary transformation.

Based on G⋆S⋆ = 0, it thus follows that rank(S⋆) ≤ 1.

Thus, Proposition 3.3 is proved.

D. Proof of Lemma 3.2

Without loss of generality, we denote q = aq̂ with a ≥ 0
and ‖q̂‖ = 1. Accordingly, problem (P5) can be re-expressed

as

(P5.2): max
p̂,q̂,a≥0

p̂

H2
min + a2

(59)

s.t.
β̂0p̂

H2
min + ‖aq̂ −w1‖2

≤ Γ̂, (60)

‖q̂‖ = 1, (61)

(15).

Under any given feasible p̂, optimizing a and q̂ in (P5.2) is

equivalent to solving

(P5.3): min
q̂,a≥0

a

s.t. ‖aq̂ −w1‖2 ≥
β̂0p̂

Γ̂
−H2

min, (62)

‖q̂‖ = 1. (63)

On one hand, if

√

β̂0p̂

Γ̂
−H2

min ≤ ‖w1‖, then it is easy

to verify that a = 0 is the optimal solution to (P5.3).

Thus, Lemma 3.2 directly follows. On the other hand, if
√

β̂0p̂

Γ̂
−H2

min > ‖w1‖, then a = 0 becomes infeasible and

constraint (62) should be tight. In this case, constraint (62)

can be rewritten as a2‖q̂ − w1/a‖2 = β̂0p̂/Γ̂ − H2
min. As

a consequence, a is minimized only when q̂ is chosen such

that ‖q̂ − w1/a‖ is maximized. As a result, q̂ = − w1

‖w1‖

must hold. By substituting q̂ = − w1

‖w1‖
into q = aq̂, we

have q = −a w1

‖w1‖
with a > 0. By combining the two cases,

Lemma 3.2 is proved.

E. Proof of Proposition 3.4

First, we consider a relaxed problem of (P5.1) with the

maximum transmit power constraint p̂ ≤ p̂ ignored, denoted

as (P5.4). It is evident that with the optimal solution to (P5.4),

the IT constraint (30) must be tight, and thus we have

p̃ =
Γ̂

β̂0

(

(a+ ‖w1‖)2 +H2
min

)

. (64)

By substituting the above into the objective function of (P5.4),

it can be recast as φ(a) = ((a+‖w1‖)2+H2
min)/(a

2+H2
min).

By checking the first-order derivative of φ(a) with respect to

a, the optimal a can be obtained as ã⋆, as given in (32). By

substituting this into (64), we have p̃⋆ given in (31).

Next, we consider the problem (P5.1) with the maximum

transmit power constraint p̂ ≤ p̂ considered. We prove this

proposition by considering the following three cases, respec-

tively.

If p̂ > p̃⋆, the optimal solution to problem (P5.4) is also

feasible to problem (P5.1). As the objective value of (P5.4)

serves as an upper bound on that of (P5.1), it follows that

such a solution is also optimal to (P5.1).

If p̂ < p1, it is evident that the UAV should hover exactly

above the SR at the minimum altitude and transmit at the

maximum power to maximize the received power at the SR,

with the PR’s IT constraint satisfied. Therefore, we have p̂⋆ =
p̂ and a⋆ = 0 in this case.

If p1 ≤ p̂ ≤ p̃⋆, the IT constraint (30) must be tight

at the optimality, since otherwise we can always move the

UAV closer to the SR and/or increase the UAV’s transmit

power to increase the SR’s achievable rate, without violating

the PR’s IT constraint. Therefore, we have p̂ = p̃ in (64),

or equivalently, a =
√

β̂0p̂/Γ̂−H2
min − ‖w1‖. Given this,

the objective function of (P5.1) can be recast as φ̂(p̂) =

p̂/(β̂0p̂/Γ̂ + ‖w1‖2 − 2‖w1‖
√

β̂0p̂/Γ̂−H2
min). It is easy to

verify that φ̂(p̂) monotonically increases with p̂ ∈ [0, p̂]. Thus,

we have p̂⋆ = p̂ and a⋆ =
√

β̂0p̂/Γ̂−H2
min − ‖w1‖.

By combining the above three cases, Proposition 3.4 is

proved.
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