
Generalized Coordinated Multipoint

(GCoMP)-Enabled NOMA: Outage, Capacity,

and Power Allocation

Yasser Al-Eryani, Ekram Hossain, and Dong In Kim

Abstract

A novel generalized coordinated multi-point transmission (GCoMP)-enabled non-orthogonal multi-

ple access (NOMA) scheme is proposed. In particular, the traditional joint transmission CoMP scheme

is generalized to be applied for all user-equipments (UEs), i.e. both cell-centre and cell-edge users

within the coverage area of cellular base stations (BSs). Furthermore, every BS applies NOMA for

all UEs associated to it using the same frequency sub-band (i.e. all UEs associated to a BS forms

a single NOMA cluster). To evaluate the proposed scheme, we derive a closed-form expression for

the probability of outage for a UE with different orders of BS cooperation. Important insights on the

proposed system are extracted by deriving an approximate (asymptotic) expressions for the probability of

outage and outage capacity. Furthermore, an optimal transmission power allocation scheme that jointly

allocates transmission power fractions from all cooperating BSs to all connected UEs is developed

and investigated for the proposed system. Findings show that NOMA with a large number of UEs is

feasible when the GCoMP technique is used over all UEs within the network coverage area. Also, the

performance degradation caused by a large NOMA cluster size is significantly mitigated by increasing

the number of cooperating BSs. In addition, for given feasible system parameters and a given NOMA

cluster, the lower the available power budget, the higher is the number of BSs that apply NOMA for

their cluster members and the lower the number of BSs that use water-filling for power allocation.

Y. Al-Eryani and E. Hossain are with the Department of Electrical and Computer Engineering at the University of Manitoba,

Canada (Emails: aleryany@myumanitoba.ca, Ekram.Hossain@umanitoba.ca). D. I. Kim is with the School of Information

and Communication Engineering at the Sungkyunkwan University (SKKU), Korea (Email: dikim@skku.ac.kr). The work was

supported by a Discovery Grant form the Natural Sciences and Engineering Research Council of Canada (NSERC) and in part

by the National Research Foundation of Korea (NRF) grant funded by the Korean government under grants 2017R1A2B2003953

and 2014R1A5A1011478.

ar
X

iv
:1

90
1.

10
53

5v
1 

 [
cs

.I
T

] 
 2

9 
Ja

n 
20

19



Index Terms

Non-Orthogonal Multiple Access (NOMA), CoMP (Coordinated Multipoint) Transmission, joint

transmission, outage performance, successive interference cancellation (SIC), transmission power allo-

cation, convex optimization.

I. INTRODUCTION

To mitigate the problems of spectrum scarcity and interference in dense cellular networks, differ-

ent base stations (BSs) can cooperate with each other either by coordinating their transmission

beams (joint scheduling and beamforming) or by serving the same user equipment (UE) using the

same time and frequency resources (joint transmission) [1]. The technique of BS coordination is

referred to as coordinated multipoint (CoMP) transmission [2]. With CoMP transmission, either

multiple BSs cooperate to serve a single cell-edge UE using the same spectrum resources or

they coordinate their transmissions such that inter-cell interference (ICI) is minimized [3]. One

major drawback of Joint Transmission CoMP (JT-CoMP) scheme is the spectrum inefficiency

due to the allocation of frequency resources of multiple BSs to a single UE. This has limited the

application of CoMP for only UEs which do not have any dominant serving BS (i.e. cell-edge

UEs). Nevertheless, it is possible to apply BS cooperation to both cell-edge and cell-centre UEs

in order to boost up the overall transmission rate.

Recently, power-domain non-orthogonal multiple access (NOMA) has emerged as a promising

technology to enhance spectrum efficiency of both uplink and downlink cellular wireless networks

[4]–[6]. With NOMA, at a certain frequency sub-band, signals of multiple users are superimposed

in the power domain such that the received signal for each UE has a distinct power level. At

the NOMA receiver’s end, successive interference cancellation (SIC) is used to cancel signal

components with higher weights than the desired signal (starting from the signal with the

highest weight) [7]. Theoretically speaking, NOMA enhances the spectral efficiency significantly

compared to that of orthogonal multiple access schemes (OMA) at the expense of receiver

complexity and processing delay [8], [9]. Generally, NOMA can be applied either in the uplink

or downlink of a wireless system. In this paper, we focus on downlink NOMA. However, the

concepts and analysis can easily be applied to uplink NOMA.

The ‘marriage’ between CoMP and NOMA introduces an attractive solution to compensate for

the excessive spectrum usage in CoMP [10]. It also makes it possible to generalize the concept



of CoMP of cooperation among BSs to serve all UEs within the network instead of just cell-edge

UEs. Furthermore, the complexity level of NOMA receivers due to the SIC requirement can be

reduced through enhancing the UE’s signal-to-interference-plus-noise ratio (SINR), especially

when a large NOMA-cluster size (e.g. more than two UEs in a cluster) is used.

CoMP-enabled NOMA has been investigated by researchers recently [11]–[13]. In [11], a dis-

tributed power allocation scheme was investigated for cooperating BSs using NOMA. A coor-

dinated superposition coding scheme for a two-BS downlink network was introduced in [12].

In [12], it was shown that joint transmission CoMP with two BSs allows NOMA to provide a

common cell-edge UE with a reasonable transmission rate without sacrificing the rate of cell-

centre UEs. Additionally, a multi-tier NOMA strategy in CoMP network was investigated in [13]

where it was shown that performance enhancement can be achieved in multi-tier CoMP-enabled

NOMA networks when a proper BS selection is performed. Additionally, limited scenarios of

CoMP-enabled NOMA were studied where groups of two UEs are capable of utilizing CoMP-

NOMA techniques simultaneously [14], [15]. Interestingly, all of the previous works in the

literature have restricted the application of CoMP to UEs that are physically located at cell-edge

only. However, cooperating BSs may be used to serve all UEs in their vicinity as long as the

channel quality between these BSs and targeted UEs are acceptable. This generalized cooperation

may be translated into an enhanced SINR per UE at the expense of decreased spectral efficiency.

A. Motivations and Contributions

Even though the concept of CoMP has been very promising, its adoption in cooperative wireless

networks gained momentum due to significant enhancements in network infrastructure (e.g. fast

backhauling based on optical fiber and free-space optical links). Future wireless networks (e.g.

beyond 5G/6G systems) are expected to support virtual massive multiple-input multiple-output

(massive MIMO) communication along with cloud radio access network (C-RAN) technologies

[16]. These should enable very fast and reliable communication among different wireless BSs and

allow an efficient centralized/semi-centralized baseband processing for all BSs with minimum

latency. Additionally, with the proliferation of internet of things (IoT) and massive machine-type

communication (mMTC) services, every wireless device will be connected to one or more wire-

less access networks to be served by multiple BSs, which in turn will be connected to a general

cloud network to access cloud-based services (e.g. edge-computing and caching services). Such



a massive connectivity will require more efficient utilization of the radio spectrum to increase

the number of simultaneously served UEs per frequency band with minimized complexity and

interference. In this context, adoption of NOMA in future networks is motivated by its potentials

to enhance the spectrum efficiency significantly along with the rapid enhancements in antenna

technologies, sophisticated signal processing and SIC algorithms. Motivated by the potentials

of both CoMP and NOMA technologies, we propose, design and analyze a novel generalized

CoMP (GCoMP)-enabled NOMA scheme that allows cooperation among distributed BSs to serve

all UEs within the network coverage area1. The proposed scheme efficiently utilizes both joint

transmission CoMP (JT-CoMP), which is usually used to improve the signal-to-interference-

plus-noise ratio (SINR) of the cell-edge UEs and thus improve fairness in the network at the

cost of using more bandwidth for a UE, and NOMA, that can improve the spectral efficiency.

Generalizing JT-CoMP to GCoMP improves the SINR of all users (i.e. cell-edge and cell-centre

users) in the coverage area and when combined with NOMA, it has the potential to significantly

improve the overall spectral efficiency performance. Additionally, it enables the deployment of

large-scale in-band NOMA clusters with a tolerable complexity level for SIC and acceptable

performance. The main contributions of this work can be summarized as follows:

. We propose a novel channel access method referred to as the GCoMP-enabled NOMA and

the corresponding n-th-order clustering scheme GCoMP-NOMA, where n is the number of

cooperating BSs per UE.

. To evaluate the proposed GCoMP-NOMA scheme, utilizing the concepts of order statistics,

we derive a closed-form expression for the downlink outage probability for a UE assuming

independent but non-identically distributed (i.n.d) channel gains.

. In order to extract important insights on the performance of the proposed scheme, we derive

simplified approximate expressions for the asymptotic outage probability and the asymptotic

outage capacity per UE with full-order clustering.

. We design a low-complexity clustering protocol for the GCoMP-enabled NOMA system and

develop an optimal transmission power allocation scheme per NOMA cluster.

The rest of this paper is organized as follows. Section II presents the general system model.

The n-th order clustering protocol for the GCoMP-enabled NOMA is presented in Section III.

1The term ‘GCoMP’ is used to differentiate the proposed cooperative scheme from the conventional CoMP systems in which

nearby BSs cooperate to serve only the cell-edge UEs.



Section IV presents the outage and the outage capacity performance of the proposed system.

The low-complexity clustering scheme and the corresponding power allocation method for the

proposed system are presented in Section V. Numerical results are presented in Section VI,

followed by conclusions in Section VII.

II. SYSTEM MODEL

Consider a downlink wireless network with K BSs and M UEs that are located at fixed locations

within a certain network’s physical area as shown in Fig. 12. All BSs are connected to each other

through a fast backhaul link and have the ability of collaborate with each other at the baseband

and radio levels. This is similar to a C-RAN architecture in which distributed remote radio

heads (RRHs) are connected to a single mega baseband unit (BBU) that has the ability of

jointly processing signals from different RRHs by dealing with distributed RRHs as a virtual

K ×M MIMO system [16]. We also assume that perfect control signaling is possible among

the cooperative BSs and the distributed UEs within their coverage area due to the existence of

fast backhauling links that connect all of the cooperative BSs together.

Fig. 1: Example of the proposed network model.

2Studying the random locations of BSs and UEs is out the scope of this work.



For NOMA, we assume that every BS applies superposition coding in the power domain at every

transmission sub-band (every sub-band has it’s own power budget). Additionally, full channel

state information (CSI) is assumed to be available at all BSs while CSI of every NOMA cluster

is assumed to be available at all UEs of that cluster. A NOMA cluster refers to the set of UEs

served by the same group of cooperating BSs using the same sub-band. The downlink channel

gain between the k-th BS and the m-th UE is denoted by hm,k. We assume that amplitudes

of hm,k are independent but non-identically distributed (i.n.d) and follow complex Gaussian

distribution, i.e. |hm,k|∼ CG(0, σm), where σm,k is the standard deviation of |hm,k|. Thus, the

power gain |hm,k|2 follows an exponential distribution, i.e. |hm,k|2∼ Exp(1/2σ2
m,k). At every

BS, perfect SIC operation is assumed such that interference to every UE that is caused by UEs

within the same NOMA cluster with lower channel gains are perfectly filtered out.

Finally, when compared with a conventional CoMP system, we assume that the frequency reuse

factor is always greater than one (e.g. 3, 7). This assumption is justified by the fact that such

networks would be practical for crowded urban environments in which distributed BSs are close

to each other which will cause severe interference to CoMP cell-centre UEs.

III. GENERALIZED COMP-ENABLED NOMA SCHEME

In this section, we present a clustering scheme for the GCoMP-enabled NOMA system which

is referred to as the n-th order clustering scheme.

A. Proposal of an n-th Order Clustering Scheme

This is a variable order clustering scheme that enables multiple UEs to utilize a single NOMA

sub-band with the help of joint cooperation among several connected BSs within their vicinity.

First, let Ψn,k denote the set of indices of UEs connected to the k-th BS throughout the same

sub-band, where n = 1, . . . , K and k = 1, . . . , K. The clustering order n denotes the number of

BSs connected to every UE at a certain time instant. For example, if a (2-nd)-order clustering

is used, every UE within the network will be connected with two serving BSs. For the moment,

given a certain channel gain matrix of the network H ∈ CM×K , the task is to find the set of UEs

connected to the k-th BS under the n-th order clustering, Ψn,k. Here, H is a matrix containing

channel gains from all BSs to all UEs within the coverage area of the network. Algorithm 1



illustrates the proposed method that is used to find UEs’ clusters for every BS under n-th order

clustering.

Algorithm 1 : n-th Order clustering for GCoMP-enabled M−user NOMA.

Require: H ∈ CM×K , n,K,M

1: Ψi,k = Φ,∀i = 1, . . . , n and k = 1, . . . , K

2: for i = 1 : n do

3: for m = 1 : M do

4: k∗ = maxk(H(m, :))

5: Ψi,k∗ = Ψi,k∗
⋃
{m} and H(m, k∗) = −1

6: end for

7: end for

8: Ψn,k =
⋃n
i=1 Ψi,k, k = 1, . . . , K

9: return Ψn,{1,...,K}

Using the proposed clustering scheme, cooperation among distributed BSs is exploited for all

UEs (both cell-edge and cell-centre UEs) within a certain network coverage area. Additionally,

for a certain sub-band, since every UE is a member of n clusters, NOMA transmission power

coefficients for every cluster must be allocated properly such that the desired received signal

at a certain UE can be extracted through multilevel SIC operations. This can be achieved by

combining NOMA transmission power allocation of all BSs that are sharing the same UEs into

one problem that is solved simultaneously either in a centralized or a distributed manner.

B. NOMA Transmission for the Proposed Scheme

At every NOMA sub-band, the k-th BS will transmit xk =
∑|Ψn,k|

mk=1

√
amk,kPksmk,k, where smk,k

is the message for the m-th UE (mk is the ordered index of the m-th UE in Ψn,k and m is an

arbitrary index for UEs using the same sub-band within a certain network coverage area) with

E [|smk,k|2] = 1, Pk is the overall transmission power budget at the k-th BS (assigned for a certain

sub-band) and amk,k is the NOMA power allocation coefficient from the k-th BS to the m-th

UE with index mk in Ψn,k such that
∑|Ψn,k|

mk=1 amk,k ≤ 1. Generally, the values of the coefficients

amk,k, ∀ mk = 1, . . . , |Ψn,k| and k = 1, . . . , K can be derived optimally by considering joint



optimization problem for all clusters within the network that uses the same sub-band. A practical

technique for optimizing the transmission power coefficients for the proposed GCoMP-enabled

NOMA system will be presented later in this paper.

First, let us define the received signal at the m-th UE that uses a certain sub-band within the

network coverage area as

ym =
∑

∀ i∈Sc,m

hm,ixi +
∑

∀ j∈Snc,m

hm,jxj + nm, (1)

where nm is the additive white Gaussian noise (AWGN) at the input of the m-th UE with

power spectral density (PSD) Nm and Sc,m(Snc,m) is the set contains the indices of BSs serving

(not-serving) the m-th UE. As can be noticed from (1), within a certain cluster set Ψn,k, every

UE is an element of a random set of clusters (beside Ψn,k). Therefore, every UE in Ψn,k will

have a different inter-cell interference component that must be taken into consideration when

establishing power fractions for NOMA transmission. Therefore, let us assume that for the k-th

BS with a cluster set Ψn,k, the set of power gains between the k-th BS and all UEs in Ψn,k

are normalized by inter-cell interference caused to every UE within the cluster and then ordered

in an ascending mode, i.e.
|h1k,k

|2

I1
ICI
≤ . . . ≤ |hmk,k|

2

ImICI
≤ . . .

|h|Ψn,k|k,k|
2

I
|Ψn,k|
ICI

, where ImICI is the NOMA

inter-cluster interference results from the utilization of the same sub-band by other BS and is

defined as ImICI =
∑
∀ i∈Snc,m Φi|hm,i|2 with Φi = Pi

∑|Ψn,i|
ji=1 aji,i

3. Accordingly, for successful

SIC operation at every UE, the transmission power allocation coefficients must be allocated

such that the overall received power of the desired signal has a distinct power level from other

combinations of undesired inter-NOMA interference signals (INI) with a certain power gap that

depends on the sensitivity of the SIC hardware unit. Accordingly, the design of SIC unit at every

UE, which will require a multi-level SIC operation, may be challenging4.

We assume that the power gains between the m-th UE and different serving BSs are ordered

3Remember that
∑|Ψn,i|
ji=1 aji,i = 1, however, we keep it in the analysis to illustrate the operations in the proposed model.

4While the purpose of this part of the work is to give an insight on the performance of multiuser NOMA under the proposed

GCoMP-enabled NOMA model, a practical low-complexity GCoMP-enabled NOMA model will be presented along with the

power allocation method later in this paper.



such that |hm,1|2≥ . . . ≥ |hm,K |2. Hence, the SINR at the input of the m-th UE is given by

γm =

∑n
i=1 Λm

i |hm,i|2
n∑
j=1

∆m
j |hm,j|2︸ ︷︷ ︸
IINI

+
K∑

w=n+1

Φw|hm,w|2︸ ︷︷ ︸
IICI

+ Nm︸︷︷︸
AWGN

, (2)

where Λm
i = ami,iPi, ∆m

j = Pj

(∑|Ψn,j |
lj=m∗+1 alj ,j + Θ

)
, Φw = Pw

∑|Ψn,w|
lw=1 alw,w, m∗ = maxk (mk),

IINI denotes the unfiltered INI component within the same NOMA cluster and Θ is the residual

INI interference caused by the multi-level SIC. The level of SIC is the number of required

demodulation-subtraction operations within the SIC unit of a certain UE. Generally, Θ lies

between Θ = 0 (when a certain UE has an identical ordering rank over all associated clusters)

and Θ =
∑n

j=1

(∑mj+n
lj=mj+1 alj ,j

)
Pj|hm,j|2 (when a certain UE has different ordering over all

associated clusters). However, the value of Θ can be set to zero with a proper sub-optimal design

of the proposed system as will be discussed in the subsequent section.

Under this communication setup, the m-th UE will detect the first m∗ − 1 signals using a first

round of SIC, and then store the signal components that contain it’s desired signal for a next

level of SIC procedure (multi-level SIC is required only when Θ > 0). The available SINR at

the input of the m-th UE when detecting the signal component of the δ-th UE (1 ≤ δ ≤ m∗) is

given by

γδ−→m =

∑n
l=1 Λδ

l
|hm,l|2∑

w=n+1 Φw|hm,w|2+Nm∑n
j=1 ∆δ

j
|hm,j |2∑

w=n+1 Φw|hm,w|2+Nm
+ 1

. (3)

The difference between (2) and (3) appears at Λδ
j = aδ,jPj and ∆δ

j = Pj
∑|Ψn,j |

ij=δ+1 aij ,j and

depends on the number of signals to be decoded and subtracted from the overall received signal.

However, it is clear that γδ−→m is an increasing function of δ.

C. Illustrative Example

To illustrate the main idea behind the GCoMP-enabled NOMA, we present a simple example

with three BSs (K = 3) and eight UEs (M = 8) that operate under 2-nd order clustering (i.e.



n = 2). Let us first assume a single realization of the channel gain matrix H as

(4)HT =


UE1 UE2 UE3 UE4 UE5 UE6 UE7 UE8

BS1 0.9 1 0.45 0.7 0.39 1.2 0.38 0.89

BS2 0.1 0.98 0.35 0.65 0.93 0.72 0.91 0.3

BS3 0.43 0.78 0.21 0.19 0.95 0.31 0.99 0.56

 .

Applying Algorithm 1 to H, the decreasingly ordered cluster elements of Ψ2,1, Ψ2,2 and Ψ2,3

is given in Table I. For example, the received signal at UE1 is given by

TABLE I: Cluster elements under 2-nd-order clustering

Ψ2,1 UE1 UE2 UE3 UE4 UE6 UE8

Ψ2,2 UE2 UE3 UE4 UE5 UE6 UE7

Ψ2,3 UE5 UE7 UE1 UE8 NA NA

y1 =
(√

a1,1P1h1,1 +
√
a1,3P3h1,3

)
s1 +

(√
a8,1P1h1,1 +

√
a8,3P3h1,3

)
s8 +

√
a2,1P1h1,1s2

+
√
a3,1P1h1,1s3 +

√
a4,1P1h1,1s4 +

√
a5,1P1h1,1s5 +

√
a6,1P1h1,1s6 +

√
a7,1P1h1,1s7 +n1.

(5)

To extract s1 from y1, a set of SIC operations has to be conducted such that the overall power

of the desired signal s1 is separated by a certain SIC receiver sensitivity power gap (Ps) from

other undesired signal components. The number of signals to be decoded before extracting s1

will depend on the set of constraints required to extract s2 through s8 at UE2 through UE8.

To further illustrate, let us consider the case of full-order clustering at which every UE will be

connected with all serving BSs in an ascending mode. Accordingly, for the given H, the cluster

sets are given in Table II. Therefore, the received signal at UE1 is given by

TABLE II: Cluster sets under full order clustering

Ψ2,1 UE1 UE2 UE3 UE4 UE6 UE8 UE5 UE7

Ψ2,2 UE2 UE3 UE4 UE5 UE6 UE7 UE1 UE8

Ψ2,3 UE5 UE7 UE1 UE8 UE2 UE3 UE4 UE6



(6)

y1 =
(√

a1,1P1h1,1 +
√
a1,2P2h1,2 +

√
a1,3P3h1,3

)
s1

+
(√

a2,1P1h1,1 +
√
a2,2P2h1,2 +

√
a2,3P3h1,3

)
s2

+
(√

a3,1P1h1,1 +
√
a3,2P2h1,2 +

√
a3,3P3h1,3

)
s3

+
(√

a4,1P1h1,1 +
√
a4,2P2h1,2 +

√
a4,3P3h1,3

)
s4

+
(√

a5,1P1h1,1 +
√
a5,2P2h1,2 +

√
a5,3P3h1,3

)
s5

+
(√

a6,1P1h1,1 +
√
a6,2P2h1,2 +

√
a6,3P3h1,3

)
s6

+
(√

a7,1P1h1,1 +
√
a7,2P2h1,2 +

√
a7,3P3h1,3

)
s7

+
(√

a8,1P1h1,1 +
√
a8,2P2h1,2 +

√
a8,3P3h1,3

)
s8 + n1.

In order to be able to extract s1 from y1, a set of SIC operations will be conducted. Specifically,

for successful SIC operations, a subset of the following constraints must satisfied:

(7)|Ni −Nj| ≥ Ps, ∀i 6= j, i = 1, . . . , 8 and j = 1, . . . , 8,

where Nm = am,1P1|h1,1|2+am,2P2|h1,2|2+am,3P3|h1,3|2. Note that a set of different constraints

has to be satisfied at every UE and transmission power for NOMA must be allocated such that

all constraints at all UEs are satisfied. Furthermore, the number of SIC operations required at

every UE will depend on it’s overall power level (weight) compared to other distinct signals (the

more the power the fewer will be the number of required SIC operations).

For simplicity of analysis, we adopt a constant power allocation scheme for NOMA under the

assumption of the availability of perfect SIC for the proposed model. In particular, the k-th BS

applies a constant power allocation for its own cluster members served through NOMA based

on the following relation:

(8)aik,k =

 1
2i

i = 1, . . . , |Ψn,k|−1,

a|Ψn,k|−1,k i = |Ψn,k|.

Note that for this constant power allocation scheme, the condition
∑|Ψn,k|

ik=1 aik,k = 1 holds.

Besides, the notion of allocating higher power fractions to NOMA UEs with weaker channel

gains is also satisfied. Note that, the optimal power allocation scheme for a modified practical

GCoMP-enabled NOMA system will be presented in Section V.



IV. OUTAGE AND CAPACITY PERFORMANCE OF THE PROPOSED SCHEME

In this section, a closed-form expression for the outage probability for a UE under the GCoMP-

enabled NOMA scheme is derived. Generally, the m-th UE will be in outage if it fails to success-

fully decode at least one of the m higher weight signal components. This can be mathematically

expressed as5

(9)Pmout = 1− P

(
m⋂
δ=1

Ec
δ−→m

)
,

where Eδ−→m is the event that the m-th UE has failed to decode the δ-th signal component

under a certain performance requirements and Ec
δ−→m is the complement of Eδ−→m. This can be

mathematically expressed as

(10)Eδ−→m
∆
=

 P
(
γδ−→m ≤ γδth

)
δ = 1,

P
(
γδ−→m ≤ γδth | γδ−1−→m ≤ γδ−1

th

)
δ > 1,

where γδth = 2R̄δ − 1. The value R̄δ is the minimum transmission rate required by the δ-th

UE (assuming that every UE has identical ordering over all connected clusters). For simplicity

of analysis, we will assume that all UEs have the same rate requirements, i.e. γδth = γth.

Deriving a closed-form expression for (9) is possible, however, the final expression is found

to be complicated and difficult to be programmed. To simplify the analysis, we first calculate

the average inter-cell interference at the m-th UE and substitute it into (3). Theorem 1 defines

the average value of ImICI of the proposed GCoMP-enabled NOMA scheme.

Theorem 1. The average inter-cell interference at the m-th UE under the GCoMP-enabled

NOMA scheme is given by

(11)ĪmICI =

{1,2,...,K}∑
in+1,...,iK

K∏
l=n+1

λm,il∑l
d=n+1 λm,id +

∑n
q=1 λm,iq

(
K∑

w=n+1

w∑w
q=n+1 λm,iq +

∑n
q=1 λm,iq

)
,

where λm,w = 1/2Φwσm,w and {in+1, . . . , iK} are distinct indices that take values from {1, . . . , K}.

Proof. See Appendix A.

5Here, we have assumed that the higher levels of SIC operations are conducted ideally such that Θ is set to zero. This is an

assumption that complies with the practical design of the proposed system as will be shown later in this paper.



Remark: Theorem 1 considers only the ordering of BSs with respect to (w.r.t) any arbitrary

UE at Ψn,{1,...,K}. This is true since ĪmICI is constant for every UE even when the m-th UE is

decoding the δ-th UE’s signal (δ < m∗).

Substituting ĪmICI into (3), the outage probability of (9) can be expressed as

Pm
out = P

(
n∑
i=1

zm,i ≤
γthP

maxδ (Λδ − γth∆δ)

)
, (12)

where zm,i ∼ Exp(αm,i), αm,i =
(
Īminter +Nm

)
/2Pσ2

m,i and we have assumed that all BSs

are transmitting using the same maximum transmission power budget, i.e. Pk = P, ∀ k =

1, . . . , K. Additionally, the maximum value of
(
Λδ − γth∆

δ
)

changes at every time slot based

on the instantaneous CSI and the NOMA transmission power allocation method. Accordingly,

the probability of outage of the m-th UE under the GCoMP-enabled NOMA scheme is defined

in Theorem 2.

Theorem 2. The probability of outage of the m-th UE under the (n-th)-order clustering of the

GCoMP-enabled NOMA scheme is given by

(13)P(n)
out =

Ω∑
m=1

∑
Sm

m∏
l=1

F (n)
γκl

(
γ
′

th

) Ω∏
q=m+1

[
1− F (n)

γκq

(
γ
′

th

)]
,

where the summation extends over all permutations (κ1, . . . , κΩ) of 1, . . . ,Ω for which κ1 <

· · · < κm, κm+1 < · · · < κΩ and Ω = maxk|Ψn,k| such that {Ψn,k|m ∈ Ψn,k}. The CDF F
(n)
γκ (γ)

is given by

F (n)
γκ (γ) =

{1,2,...,K}∑
i1,...,in

J1(κ, i)

 n∑
t1=1

ηκt1
ρκt1

(
1− e−ρ

κ
t1
γ
)
−

K−n∑
h1=1

(−1)h1

{n,...,K}∑
j1≤...≤jh1

n∑
t2=1

ηκt2
ρκt2

(
1− e−ρ

κ
t2
γ
) ,
(14)

where J1(κ, i) =
(∏n

q=1

ακ,iq
q

)
, γ

′
th =

γthP

maxδ(Λδ−γth∆δ)
and ηκt1 , ρκt1 , ηκt2 and ρκt2 are defined in

Appendix B.

Proof. See Appendix B.

Remark: The effect of cooperation among BSs within GCoMP-enabled NOMA scheme appears

in terms of the increased SINR and decreased ImICI per UE. However, a better performance



enhancement can be done by optimizing NOMA coefficients for all BSs simultaneously as one

matrix, as will be discussed in a subsequent section.

One particular case of significant importance is that when all BSs within a certain geographical

area cooperate to serve a set of UEs in their vicinity using the same sub-band. This can be

considered as a full-order clustering of the proposed scheme, i.e. n = K. Corollary 1 presents a

simpler expression of this particular scenario under the assumption of independent and identically

distributed (i.i.d) channel gains.

Corollary 1. Under full-order clustering (n = K) with i.i.d channel gains, the probability of

outage of the GCoMP-enabled NOMA scheme given in Theorem 2 reduces to

(15)P
(K)
out =

M∑
m=1

(
M

m

)
γ(K,αγth′ )

m
(

1− γ(K,αγ
′

th)
)Q

,

where α = N/2Pσ2 (ĪICI = 0), Q = M−m, γ(x, y) is the normalized lower incomplete gamma

function [17, Eq. 6.5.2] and Γ(x) is the gamma function.

Proof. This Corollary can easily be proven by repeating the same procedure of Theorem 2

under the given assumptions.

Furthermore, to get more insights about the performance of the proposed system in terms of

the diversity order and coding gain, Corollary 2 presents an approximate expression of the

probability of outage of the m-th UE under full-order clustering at the high SINR regime.

Corollary 2. Under full-order clustering with i.i.d channel gains and high SINR regime (γ̄ −→

∞), the probability of outage of the GCoMP-enabled NOMA scheme can be expressed as

P
(K)
out ≈

((
KΓ(K)

M(γ
′
th)

K

)1/K

γ̄

)−K
, (16)

where γ̄ = 2Pσ2/N .

Proof. This can be proven by utilizing the series representation of γ
(
K,αγ

′
th

)
in [17, Eq. 6.5.29],

substituting in (15), and then taking the first term (the dominant term).

Remarks:



• At high SINR, P (K)
out ≈ (Gcγ̄)−Gd , where Gc and Gd are the coding gain and diversity order,

respectively [18]. Accordingly, under full-order clustering we have Gc =
(
KΓ(K)/M(γ

′
th)

K
)1/K

and Gd = K.

• It can be noticed from Corollary 2 that, besides γ′th, the outage performance of the system

is significantly affected by the number of NOMA UEs used per cluster (M ) in terms of the

decreased coding gain. This negative impact caused by increasing the NOMA cluster size

can be significantly annihilated by increasing K (when K −→∞, Gc approaches 1).

Outage Capacity: We evaluate the achievable transmission rate per UE of the proposed GCoMP-

enabled NOMA. However, a closed-form expression of the ergodic capacity of the proposed

system is found to be very complicated and does not carry any significant insights. Nevertheless,

we evaluate the so called ε-outage capacity under the high SINR regime, where ε is the maximum

allowable outage to achieve a capacity of Cε [19].

Proposition 1. Under full-order clustering with i.i.d channel gains and high SINR regime (γ̄ −→

∞), the ε-outage capacity for a UE under GCoMP-enabled NOMA is approximated by

Cε ≈ log2

(
1 +

K

√
εKΓ(K)

M
γ̄

)
. (17)

Proof. This can be directly proven by using the definition of ε-outage capacity in [19] and

utilizing the approximate outage expression from Corollary 2.

V. POWER ALLOCATION SCHEME FOR GCOMP-ENABLED NOMA

In this section, a practical clustering protocol for GCoMP-enabled NOMA scheme is presented

and an optimal transmission power allocation model for the proposed system is developed.

A. A Low-Complexity Full-Order Clustering Scheme

The exact model discussed in Section II is considered as the optimal scheme for GCoMP-enabled

NOMA. However, this model assumes that any UE may have a different ordering w.r.t different

serving BSs. This will result in a relatively high complexity at a NOMA receiver since, in

the worst case scenario (i.e. different ordering for every UE at all BSs), the set of constraints

for successful SIC operation will increase significantly which will be reflected negatively in

the SIC unit design. Another issue of the optimal GCoMP-enabled NOMA is that it requires a



complicated scheduling algorithm that first assigns the set of signals to be decoded at every power

level and then allocates power fractions for these signals. This should be conducted considering

the received signals of all UEs.

To solve this problem, we propose that every UE has the same ordering over all related clusters.

This can be achieved by defining a global channel-quality-based metric for every UE that takes

all links between every UE and all connected BSs into consideration. For simplicity of the

following analysis, we will focus on the model of full-order clustering (i.e. n = K) in which

all BSs cooperate to serve a set of M UEs simultaneously. Algorithm 2 shows the proposed

sub-optimal clustering protocol that finds a single cluster which contains the M UEs served by

K BSs.

Algorithm 2 : Sub-optimal K-th order clustering for GCoMP-enabled NOMA.

Require: H ∈ CM×K , K,M

1: h(K)(m) =
∑K

k=1|H(m, k)|2,∀ m = 1, . . . ,M

2: ΨK = Φ

3: for i = 1 : M do

4: m∗ = minm (hK)

5: ΨK = ΨK

⋃
{m∗} and hK(m∗) =∞

6: end for

7: return Ψn,{1,...,K}

The main idea of this method is to produce a ‘global’ cluster vector that contains the ordered

indices of the entire set of M UEs. Specifically, the norm of the gain vector of any arbitrary

UE and all connected BSs is utilized as the global ordering metric to find the cluster members.

After finding ΨK , the goal now is to formulate and solve the optimization problem to determine

the transmission power coefficients (am,k,∀ m = 1, . . .M and k = 1, . . . K) for the transmitted

power from all cooperating BSs to the set of UEs in ΨK . Based on the proposed system model, the

norm metric of the UEs will be ordered such that ||H(1, [1, . . . , K])||2 ≤ ||H(2, [1, . . . , K])||2 ≤

. . . ≤ ||H(M, [1, . . . , K])||2. Note that when lower order clustering is used (i.e. n < K), the link

quality of the m-th UE should be divided by the ĪmICI. Accordingly, the optimization problem



can be formulated as

J : max
am,k

M∑
m=1

log2

1 +

∑K
k=1 am,kγm,k∑K

k=1

(∑M
j=m+1 aj,k

)
γm,k + 1


Subject to:

C1 : log2

1 +

∑K
k=1 am,kγm,k∑K

k=1

(∑M
j=m+1 aj,k

)
γm,k + 1

 ≥ Rm, ∀m

C2 :
K∑
k=1

(
aδl,k −

l∑
i=δl+1

ai,k

)
γl,k ≥ Ps,

C3 :
M∑
m=1

am,k ≤ 1, ∀ k = 1, . . . , K,

∀ δl = 1, . . . , l − 1 and l = 2, . . . ,M,

(18)

where γm,k = PK |hm,k|2/Nm, Rm is the minimum required normalized transmission rate for

a UE and is represented by the condition C1, C2 refers to the set of
∑M

l=2(l − 1) = M(M−1)
2

conditions required for successful SIC operation with receiver sensitivity of Ps, and C3 represents

the set of M conditions related to the maximum power budget per BS. The optimization problem

J in (18) is a multiuser sum-rate maximization problem in an interference-limited environment.

In general, these type of problems are non-convex due to the existence of dependent variables

at the denominator of the SINR, which creates a sort of random convex-concave isolation of the

objective function. However, by the introduction of NOMA condition to these type of problems

(e.g. set of constraints given by C2), the convexity status of the overall objective function changes.

Lemma 1 states the convexity status of the problem in (18).

Lemma 1. Given the proposed GCoMP-enabled NOMA scheme, the optimization problem J

formulated in (18), which maximizes the normalized sum-rate of M NOMA UEs per cluster, is

a convex problem.

Proof. See Appendix C.

Due to the convexity of problem (18), a closed-form expression for optimal transmission power

fractions {am,k}k=1,...,K
m=1,...,M can be derived using the Lagrangian multipliers method as follows. For

the simplicity of analysis, we will illustrate the derivation of problem J at (18) with relatively

small system parameters (M = 3 and K = 2); however, the same procedure can be used to



generalize the solution for any set of parameters. The Lagrangian function of problem J in (18)

can then be written as

(19)

L (a,η,µ, τ ) =
3∑

m=1

log2

1 +

∑2
k=1 am,kγm,k∑2

k=1

(∑3
j=m+1 aj,k

)
γm,k + 1


+

3∑
m=1

ηm

[
2∑

k=1

(
am,k − γmth

3∑
j=m+1

aj,k

)
γm,k − γmth

]

+ µ1

[
Ps −

2∑
k=1

(a1,k − a2,k) γ2,k

]

+
3∑
i=2

µi

[
Ps −

2∑
k=1

(
ai−1,k −

3∑
j=i

aj,k

)
γ3,k

]
+

2∑
k=1

τk

[
1−

3∑
m=1

am,k

]
,

where a = {ai,j}j=1,2
i=1,2,3, and η ≥ 0, µ ≥ 0 and τ ≥ 0 are the Lagrange multipliers corresponding

to C1, C2, and C3, respectively. Further discussion on the solution of Problem J in (18) is given

in Appendix D.

Finally, it is important to mention that for the proposed GCoMP-enabled NOMA scheme, in

practical scenarios, the set of cooperating BSs may not be able to provide every UE within their

cluster with its minimum rate requirement due to the power budget limitations on different BSs

(infeasible problem). In such cases, the UE with the minimum norm metric (w.r.t. all connected

BSs) will be removed from its current NOMA cluster and join another cluster that uses a different

sub-band (with different or the same set of cooperating BSs).

VI. NUMERICAL RESULTS

In this section, we provide some numerical results to discuss the performance of the proposed

scheme under different system parameters, and then present illustrative results on the proposed

NOMA transmission power allocation scheme. Each value is obtained via 2× 106 Monte-Carlo

simulation runs. For simplicity, we study only the case where all channel gains are i.i.d. Table

III presents the main network parameters used to obtain the simulation and analytical results.

A. Outage and Capacity Analysis

In this section, we present results on the outage and capacity performance of the proposed

scheme. We first start by evaluating the performance gain of the proposed GCoMP scheme



TABLE III: Simulation Parameters

Parameter Value

AWGN PSD per UE −169 dBm/Hz

Transmit power budget at a BS, P Variable

SIC sensitivity, Ps 1 dBm

SINR threshold per UE, γth 15 dBm

Target SINR outage probability, ε 10−5

compared to that of conventional CoMP system (considering both orthogonal multiple access

[OMA] and NOMA paradigms). Fig. 3 shows the average spectral efficiency per UE with different

cooperation and multiple acces scenarios. It can be noticed from this figure that with OMA,

70 75 80 85 90 95 100

45

50

55

60

65

70

75

Fig. 2: Average spectral efficiency with different cooperation and multiple acces scenarios.

a slight enhancement can be achieved when moving from CoMP into its generalized version

(GCoMP) when K = 2. However, more significant enhancement can be achieved for higher K.

Additionally, the GCoMP-NOMA system has been found to achieve the best performance for

all power range while the performance of CoMP-NOMA scheme lies between those of GCoMP-

NOMA and GCoMP-OMA for relatively low power levels. The performance of CoMP-NOMA

has been observed to degrade significantly as the maximum transmission power budget per BS

increases due to interference caused by the non-cooperating BSs to the cell-centre UEs in other



cells. Note that to simulate CoMP-NOMA scheme and compare it with the other schemes in

a fair manner, we have assumed that the interference power from the non-cooperating BSs to

be 10−3 times the overall transmission power which takes into consideration the high distances

between cell-centre UEs and other cells in a typical JT-CoMP scheme.

To evaluate the n-th order clustering scheme, Fig. 3 shows the probability of outage of the

proposed system under different clustering levels versus the maximum transmission power budget

per BS. It can be noticed from Fig. 3 that the outage performance is enhanced significantly when
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Fig. 3: P(n)
out versus P for different clustering order n.

the clustering order increases. When many BSs, e.g. K = 5 are transmitting in the same cluster

sub-band while the clustering order is low, the outage performance deteriorates. For example,

a total service blockage occurs at K = 5 and n = 1. However, when the clustering order n is

relatively close to the number of cooperating BSs (K), the interference on different UEs caused

by non-serving BSs becomes tolerable.

It is also important to investigate the effect of increasing the number of UEs per single NOMA

cluster on the overall outage performance. Fig. 4 shows the outage probability for a UE versus

the maximum transmission power budget per BS under full-order clustering. It can be noticed

that when only one BS is serving a set of NOMA UEs, increasing the NOMA cluster size will

cause a significant degradation in system coding gain (i.e. the outage performance curve shifts to
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Fig. 4: P(n)
out versus P for different number of UEs M .

the right). This is because, as M increases, the average number of interfering signal components

with lower weights than the desired signal will increase. This degradation prevents the potential

use of NOMA access scheme in its conventional form (one serving BS) at the massive scale.

To compensate for the performance degradation caused by large NOMA cluster size, the number

of serving BSs per cluster may be increased as in the proposed n-th order clustering scheme.

Fig. 5 shows the outage probability for a UE versus the maximum power budget per BS under

different number of serving BSs and with a relatively large cluster size (M = 8). It can be

noticed that a large number of NOMA clusters can co-exist in the same spectrum band when

the number of cooperating BSs (K) increases.

Finally, Fig. 6 shows the ε-outage capacity (Cε) versus transmission power P for different number

of cooperating APs. As was concluded from (17), increasing K exponentially annihilates the

negative effect caused by the large number of NOMA UEs using the same sub-band.

B. Power Allocation

In this section, we study the spectral efficiency of the simplified GCoMP-enabled NOMA

scheme with optimal transmission power allocation. Additionally, the performance of the pro-
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out versus P for different number of UEs M .
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Fig. 6: Cε versus P for different number of BSs K.

posed GCoMP-enabled NOMA is compared with its OMA counterparts. The optimal solution

is obtained by solving the KKT conditions derived in Eqs. 1 in Appendix D for every channel

realization and then selecting the set of feasible solutions (when transmission power budget



is adequate to fulfill all the constraints of the optimization problem J in (18). The channel

realization here is assumed to follow i.i.d fading distribution with unity variance. For a given

transmission power budget value, the overall spectral efficiency is calculated by averaging the

accumulated sum-rate produced from realizations with feasible solutions for that power budget.

Additionally, the minimum power rate for every UE is considered as the achievable rate for the

same UE using OMA with GCoMP.

Fig. 7 shows the optimized spectral efficiency (sum-rate) versus the maximum transmission power

budget of GCoMP network layout with both multiple access schemes (NOMA and OMA). As

Fig. 7: Sum rate versus P under optimal transmission power allocation.

can be noticed here, the sum-rate of the GCoMP-enabled NOMA scheme with K = 2 and M = 3

is superior to that of GCoMP with OMA scheme. However, the spectral efficiency enhancement

decreases as the maximum transmission power budget increases.

To study the performance of UEs individually, Fig. 8 shows the spectral efficiency per UE under

optimal transmission power allocation. Note that the UEs are ordered in an ascending mode

from the least norm UE to the highest norm UE. It can be noticed that a UE with a higher

norm always yields a larger spectral efficiency compared to the one with a lower norm. This is

because power allocation for NOMA is based on inverse water-filling method until all UEs are



Fig. 8: UE rate versus P under optimal transmission power allocation.

provided with minimum rate requirements, and then water-filling is utilized. In particular, we

notice that, the smaller the power budget per BS, the larger is the number of BSs which apply

power allocation to the cluster members for NOMA, and the higher the power budget, the smaller

is the number of BSs which apply power allocation to meet the requirements of NOMA (i.e.

most of the BSs then use the ordinary water-filling power allocation). Note that increasing the

value of the desired SIC receiver sensitivity Ps will decrease the number of feasible solutions for

every channel realization, and hence, increases the processing time during real-time operation.

VII. CONCLUSION

A novel generalized CoMP-enabled NOMA scheme has been proposed and evaluated. In partic-

ular, the traditional joint-transmission CoMP scheme has been generalized to be applied for all

users (i.e. cell-centre as well as cell-edge users) within the coverage area of a wireless network.

Furthermore, every base station has been assumed to apply a multi-user NOMA scheme for

all users associated to it. To evaluate the proposed scheme, the closed-form expressions for the

probability of outage and outage capacity per user with different orders of BS cooperation have

been derived. To reduce the complexity of the proposed system, a low-complexity full order



clustering protocol has been designed for the generalized CoMP-enabled NOMA system where

the optimal transmission power allocation method has been obtained. Findings show that it is

possible to deploy NOMA with a large number of users per sub-band and tolerable complexity

as long as the number of cooperating base stations is comparable to the number of NOMA

users. Possible extensions of this work would include an evaluation of the effect of imperfect

CSI and synchronization on the system performance as well as a comprehensive evaluation and

implementation of the SIC methods for the proposed scheme.

APPENDIX A

First, let us define ImICI =
∑K

w=n+1 Φw|hm,w|2=
∑K

w=n+1 ym,w, where Ym,w ∼ Exp (λm,w) and

λm,w = 1/2Φwσ
2
m,w. Using the theory of order statistics, the PDF of ImICI can be defined as

(1)

fImICI
(ym,n+1, . . . , ym,K) =

{1,2,...,K}∑
in+1,...,iK

fYm,in+1
(ym,n+1) . . . fYm,iK (ym,K)

×
n∏
j=1

(
1− FYm,ij (ym,n+1)

)

=

{1,2,...,K}∑
in+1,...,iK

K∏
l=n+1

λm,ile
−λm,ilym,l

n∏
j=1

e−λm,ij ym,n+1 ,

where ym,K ≤ . . . ≤ ym,n+1 and {i1, . . . , iK} are distinct indices that take values from {1, . . . , K}.

Accordingly, the value of ĪICI can be defined as

(2)
ĪmICI =

{1,2,...,K}∑
in+1,...,iK

∫ ∞
0

∫ ∞
ym,K

. . .

∫ ∞
ym,n+2

K∑
i=n+1

ym,i

×
K∏

l=n+1

λm,ile
−λm,ilyl

n∏
j=1

λm,ile
−λm,ij ym,n+1d . . . dym,K .

Due to the dependence between y′is, this integral cannot be changed into a product of independent

integrals. Therefore, ĪmICI can be rewritten as

(3)ĪmICI =

{1,2,...,K}∑
in+1,...,iK

∫ ∞
0

. . .

∫ ∞
0

K−n∑
w=1

wxw ×

(
K∏

j=n+1

λije
(
∑j
q=n+1 λm,iq+

∑n
k=1 λm,ik)xj

)
. . . dxK−n,



where we have used Sukhatme transformation of random variables (rv)s such that xi = ym,n+i−

ym,n+i+1 and xn = ym,K represent an independent random variables [20]. Due to the indepen-

dence among xs, (3) can be easily changed into a sum of a product of one-dimensional integral.

Hence, we obtain (11).

APPENDIX B

In (12), we have two types of ordering to be considered. The first one is the ordering of BSs w.r.t

the m-th UE. The second ordering is the ordering of the m-th UE w.r.t all clusters it belongs

to. First, we will consider the ordering of the BSs connected to the m-th UE. Accordingly, the

PDF of zm can be defined as

(1)
fZm(zm,1, . . . , zm,n) =

{1,2,...,K}∑
i1,...,in

fZm,i1 (zm,1) . . . fZm,in (zm,n)
K∏

j=n+1

FZm,ij (yn)

=

{1,2,...,K}∑
i1,...,in

n∏
l=1

αm,ile
−αm,ilzm,l

K∏
j=n+1

(
1− e−αm,ij zm,n

)
.

Utilizing the Sukhatme transformation, the MGF of Zm is given by

(2)MZm(s) =

{1,2,...,K}∑
i1,...,in

 n∏
q=1

αm,iq∑q
r=1 αm,ir − qs

−
K−n∑
h1=1

(−1)h1

{n,...,K}∑
j1≤...≤jh1

n∏
d=1

αm,id

C
m(h1,i,j)
d − ds

 ,
where, {j1, . . . , jh1} are distinct ordered indices taking values from {n, . . . ,K} and Cm(h1,i,j)

d is

defined as

Cm
d(h1,i,j)

=


∑d

r=1 αm,ir d ∈ [1, · · · , n− 1]∑d
r=1 αm,ir +

∑h1

l=1 αm,jl d = n

. To obtain the PDF fZm(z), it is convenient to express (2) as a partial fraction expression.

Specifically,

(3)MZm(s) =

{1,2,...,K}∑
i1,...,in

(
n∏
q=1

αm,iq
q

) n∑
t1=1

ηmt1
ρmt1 − s

−
K−n∑
h1=1

(−1)h1

{n,...,K}∑
j1≤...≤jh1

n∑
t2=1

ηmt2
ρmt2 − s

 ,
where ρmt1 =

∑t1
r=1 αm,ir/t1, ρmt2 = Cm

t2
(h1, i, j)/t2, ηmt1 =

∏n
k=1,k 6=t1

(
ρmk − ρmt1

)−1 and ηmt2 =∏n
k=1,k 6=t2

(
ρmk − ρmt2

)−1. Note that (3) is valid only under the assumption that all ρmt1 (and ρmt2 )



are distinct (the i.n.d case). Upon finding the Laplace transform LZm(x) = MZm(−x) and using

the theory of inverse Laplace transform, the PDF of Zm (denoted by fZm(z)) is then given by

(4)fZm(z) =

{1,2,...,K}∑
i1,...,in

J1(m, i)

 n∑
t1=1

ηmt1 e
−ρmt1z −

K−n∑
h1=1

(−1)h1

{n,...,K}∑
j1≤...≤jh1

n∑
t2=1

ηmt2 e
−ρmt2z

 ,
where J1(m, i) =

(∏n
q=1

αm,iq
q

)
. Now, we consider the ordering of the m-th UE within the

cluster of its best serving BS. By utilizing the CDF expression of the m-th order statistics for

the set of i.n.d rvs given in [21, Eq. 5.2.1], the outage probability of the proposed system is

given as in Theorem 2.

APPENDIX C

To proof the convexity of the problem in (18), we need to first prove that the objective function

is concave and then show that all constraints represents an affine transformation of dependent

variables. It is apparent that the objective function (let us denote it as Rs) is twice differentiable

for all dependent variables (am,k). However, due to the two-dimensional nature of dependent

variables (functions of m and k), finding the Hessian matrix of the partial second derivative

even for the most simplified model (M = 2 & K = 2) would be very lengthy and tedious.

Therefore, we use an intuitive method to proof the concavity of Rs.

The objective function at (18) can be rewritten as

(1)Rs =
M∑
m=1

log2 (θ1(m) + 1)︸ ︷︷ ︸
f1(m)

+ log2

(
1

θ2(m) + 1

)
︸ ︷︷ ︸

f2(m)

 ,

where θ1(m) =
∑K

k=1

(
am,k +

∑M
j=m+1 aj,k

)
γm,k and θ2(m) =

∑K
k=1

(∑M
j=m+1 aj,k

)
γm,k. It

is apparent that f1(f2) is a monotonically increasing (decreasing) function of θ1(m) (θ2(m))

with f1 being a strictly concave function and f2 being a strictly convex function (logarithmic

functions). Additionally, due to the set of constraints C2, the overall value of θ1(m) will be

always strictly greater than that of θ2(m) and any increase in θ2(m) will result in a higher

increase in θ1(m). Accordingly, the degree of convexity of f2(m) will be always greater that

the degree of concavity of f1(m) which will make the summation f1(m) + f2(m) to be always

strictly convex (for all ai,j, i = 1, . . . ,M and j = 1, . . . , K). Finally, since Rs represents a



positive linear sum of convex functions, Rs is a convex function as well. Note that without the

constraints C2, the problem in (18) will be neither convex nor concave. Nevertheless, a global

optimal point for such non-convex problem can be found using the ‘MAPEL’ algorithm [22].

Now, we need to prove that the constraints C1 through C3 represent affine constraints. It is

apparent that the constraints C2 and C3 represent affine functions for all ai,j . Additionally, the

constraints C1 can be rewritten as
∑K

k=1 am,kγm,k − γmth
(

1 +
∑K

k=1

(∑M
j=m+1 aj,k

)
γm,k

)
≥ 0,

where γmth = 2Rm − 1, which represent an affine function as well. Hence, Theorem 2 is proved.

APPENDIX D

Since the problem J in (18) is convex with affine constraints, then the Karush-Kuhn-Tucker

(KKT) conditions can be given by taking the partial derivative of (19) w.r.t. {am,k}k=1,2
m=1,2,3,

{ηm}m=1,2,3, µ1, {µi}i=1,2 and {τk}k=1,2 as follows:

(1a)
∂L
∂a1,1

=
γ1,1∑2

k=1

(∑3
j=1 a

∗
j,k

)
γ1,k + 1

+ η∗1γ1,1 − µ∗1γ2,1 − µ∗2γ3,1 − τ ∗1 ≤ 0,

(1b)
∂L
∂a1,2

=
γ1,2∑2

k=1

(∑3
j=1 a

∗
j,k

)
γ1,k + 1

+ η∗1γ1,2 − µ∗1γ2,2 − µ∗2γ3,2 − τ ∗2 ≤ 0,

(1c)

∂L
∂a2,1

=
−γ1,1

(∑2
k=1 a

∗
1,kγ1,k

)(∑2
k=1

[∑3
i=1 a

∗
i,k

]
γ1,k + 1

) (∑2
k=1

[∑3
j=2 a

∗
j,kγ1,k

]
+ 1
)

+
γ2,1∑2

k=1

(∑3
j=2 a

∗
j,k

)
γ2,k + 1

− η∗1γ1
thγ1,1

+ η∗2γ2,1 + µ∗1γ2,1 + µ∗2γ3,1 − µ∗3γ3,1 − τ ∗1 ≤ 0,

(1d)

∂L
∂a2,2

=
−γ1,2

(∑2
k=1 a

∗
1,kγ1,k

)(∑2
k=1

[∑3
i=1 a

∗
i,k

]
γ1,k + 1

) (∑2
k=1

[∑3
j=2 a

∗
j,kγ1,k

]
+ 1
)

+
γ2,2∑2

k=1

(∑3
j=2 a

∗
j,k

)
γ2,k + 1

− η∗1γ1
thγ1,2

+ η∗2γ2,2 + µ∗1γ2,2 + µ∗2γ3,2 − µ∗3γ3,2 − τ ∗2 ≤ 0,



(1e)

∂L
∂a3,1

=
−γ1,1

(∑2
k=1 a

∗
1,kγ1,k

)(∑2
k=1

[∑3
i=1 a

∗
i,k

]
γ1,k + 1

) (∑2
k=1

[∑3
j=2 a

∗
j,kγ1,k

]
+ 1
)

+
−γ2,1

(∑2
k=1 a

∗
2,kγ2,k

)(∑2
k=2

[∑3
j=2 a

∗
j,k

]
γ2,k + 1

) (∑2
k=1 a

∗
3,kγ2,k + 1

)
+

γ3,1∑2
k=1 a

∗
3,kγ3,k + 1

− η∗2γ2,1 + η∗3γ3,1 − µ∗3γ3,1 − τ ∗1 ≤ 0,

(1f)

∂L
∂a3,2

=
−γ1,2

(∑2
k=1 a

∗
1,kγ1,k

)(∑2
k=1

[∑3
i=1 a

∗
i,k

]
γ1,k + 1

) (∑2
k=1

[∑3
j=2 a

∗
j,kγ1,k

]
+ 1
)

+
−γ2,2

(∑2
k=1 a

∗
2,kγ2,k

)(∑2
k=2

[∑3
j=2 a

∗
j,k

]
γ2,k + 1

) (∑2
k=1 a

∗
3,kγ2,k + 1

)
+

γ3,2∑2
k=1 a

∗
3,kγ3,k + 1

− η∗2γ2,2 + η∗3γ3,2 − µ∗3γ3,2 − τ ∗2 ≤ 0,

(1g)
∂L
∂ηq

=
2∑

k=1

(
a∗q,k − γ

q
th

3∑
j=q+1

a∗j,k

)
γq,k − γqth ≥ 0,

(1h)
∂L
∂µ1

= Ps −
2∑

k=1

(
a∗1,k − a∗2,k

)
γ2,k ≥ 0,

(1i)
∂L
∂µd

= Ps −
2∑

k=1

(
a∗d−1,k −

3∑
l=d

a∗l,k

)
γ3,k ≥ 0,

(1j)
∂L
∂τv

= 1−
3∑

m=1

a∗m,v ≥ 0,

where q = 1, 2, 3, d = 2, 3 and v = 1, 2. The set of points {a∗m,k}
k=1,2
m=1,2,3 ≥ 0, {η∗m}m=1,2,3 ≥ 0,

µ∗1 ≥ 0, {µ∗i }i=1,2 ≥ 0 and {τ ∗k}k=1,2 ≥ 0 that satisfy conditions (1) are both the primal and

dual optimal solutions for problem J in (18). Since the set of equations (1) are differentiable,

we may utilize one of the numerical methods used for solving a set of differentiable non-linear

equations such as Newton or Broyden methods.
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