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Abstract— The increasing demand for connectivity and
throughput, despite the spectrum limitations, has triggered a
paradigm shift towards non-orthogonal signal transmissions.
However, the complexity requirements of near-optimal detection
methods for such systems becomes impractical, due to the large
number of mutually interfering streams and to the rank-deficient
or ill-determined nature of the corresponding interference
matrix. This work introduces g-MultiSphere; a generic massively
parallel and near-optimal sphere-decoding-based approach that,
in contrast to prior work, applies to both well- and ill-determined
non-orthogonal systems. We show that g-MultiSphere is the
first approach that can support large uplink multi-user MIMO
systems with numbers of concurrently transmitting users that
exceed the number of receive antennas by a factor of two or more,
while attaining throughput gains of up to 60% and with reduced
complexity requirements in comparison to known approaches.
By eliminating the need for sparse signal transmissions for non-
orthogonal multiple access (NOMA) schemes, g-MultiSphere can
support more users than existing systems with better detection
performance and practical complexity requirements. In compar-
ison to state-of-the-art detectors for NOMA schemes and non-
orthogonal signal waveforms (e.g., SEFDM) g-MultiSphere can
be up to an order of magnitude less complex, and can provide
throughput gains of up to 60%.

Index Terms— Sphere decoding, non-orthogonal-multiple-
access (NOMA), multiple-input-multiple-output (MIMO), paral-
lel processing.

I. INTRODUCTION

THE next generations of communication systems are
expected to provide enhanced throughput and mas-

sive connectivity with low latency requirements. These
requirements have introduced a paradigm shift towards non-
orthogonal transmission schemes. In this context, multi-user
(MU) MIMO systems with aggressive spatial multiplexing
and multicarrier, code-domain non-orthogonal-multiple-access
(NOMA) schemes such as low-density-signature-OFDM
(LDS-OFDM) and sparse-code-multiple-access (SCMA) have
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been of recent research interest [2], [3]. In another
context, non-orthogonal faster-than-Nyquist [4] and spectrally-
efficient-FDM (SEFDM) sacrifice signal orthogonality to
achieve increased throughput and spectral efficiency [5]–[7].

However, to deliver these theoretical gains in practice,
efficient schemes to demultiplex a large number of mutually
interfering streams are necessary. In addition to the high
dimensionality of such a detection problem, the interfer-
ence matrix of recently proposed non-orthogonal transmis-
sion schemes is either ill-determined (e.g., SEFDM) or even
rank-deficient (e.g., LDS-OFDM, power domain NOMA).
To demultiplex the corresponding information streams,
recently proposed NOMA solutions such as LDS-OFDM
and SCMA employ sparse signal transmissions, that enables
efficient detection by means of the Message Passing Algo-
rithm (MPA) [8]. Still, the computation complexity of the
corresponding messages (per iteration) is determined by the
number of mutually interfering streams and the modulation
order. In addition, and as we show in Section V, a high
number of iterations are necessary to obtain accurate soft
information for high order modulation schemes or code-
books. Furthermore, MPA does not apply to non-sparse struc-
tures such as simple power domain-NOMA [9], MIMO or
SEFDM.

For non-sparse signals Sphere Decoding (SD) and its soft-
output versions have been introduced as methods to reduce the
complexity of Max-Log MAP detection [10], [11]. However,
the latency requirements for obtaining exact Max-Log MAP
soft information using depth first SDs [10] are random and
become impractical even for full rank high dimensional sys-
tems. In a similar manner, the complexity of existing approx-
imate fixed latency SD schemes, such as the Soft Fixed
Complexity SD (SFSD) [12] and the K-best list SD [13],
do not scale efficiently for large rank-deficient systems and
their processing complexity becomes impractical. This is
because, in principle, such approaches do not account for the
specific interference matrix realization, but target the worst
case transmission condition. As a result, list based approaches
such as the K-best SD require large K values, and extensive
long sorting operations that compromise their implementation
efficiency.

In SEFDM systems, approximate SD based detection
schemes have been adopted together with tailored preprocess-
ing schemes that mild the complexity increase introduced
by the corresponding ill-conditioned interference matrix.
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In this direction, the Truncated Singular Value Decomposition
(TSVD) [14] has been applied as a preprocessing stage for
approximate SDs. This approach, however, sacrifices optimal-
ity and results in an irreversible performance loss. The hard
SD method together with the iterative preprocessing in [15]
does not sacrifice optimality, but results in impractical com-
plexity requirements for higher bandwidth compression, dense
constellations and/or fading channels. To further improve
the achievable throughput the authors of [16] introduced an
iterative soft detection approach that is of very low complexity
but, as we show in Section V, performs poorly for dense
constellations.

An ideal detection scheme should be generic and applicable
to any kind of non-orthogonal system employing both sparse
and non-sparse signals [17], while efficiently mitigating the
deficient or ill-determined rank nature of the interference
matrix. In addition, such a detection scheme must be of very
low latency and complexity even for a large number of non-
orthogonal streams, to cope with the requirements of state-
of-the-art systems [18]. Still, the processing requirements of
existing detection approaches can easily exceed the capabilities
of traditional processors [19], preventing the practical realiza-
tion of large non-orthogonal systems.

The recently proposed MultiSphere SD framework enables
practical and low latency massively parallel processing for
large MIMO systems [20], [21]. MultiSphere focuses the
available processing power on the most “promising” vector
solutions. To achieve this, a “Metric-of-Promise”(MoP) is
introduced that exploits the MIMO interference matrix to
identify the Relative Position Vectors (RPVs) of the most
promising solutions prior to detection. These RPVs are iden-
tified by an approximate SD tree search that can be realized
by means of a K-best approach with K being the number
of available Processing Elements (PEs) as suggested in [20].
Then, these RPVs are de-mapped to symbols based on their
Euclidean distance to the received vector.

While MultiSphere can efficiently parallelize the large
MIMO detection problem, it is not applicable to rank-deficient,
non-orthogonal systems. G-MultiSphere extends this frame-
work to be applicable to any practical non-orthogonal signal
transmission, even if rank-deficient. To enable sphere decod-
ing in both rank-deficient and ill-determined rank systems,
g-MultiSphere’s preprocessing stage includes a QR decom-
position of a regularized interference matrix. However, due to
this regularization, the probability distribution of the equalized
received observable is no longer Gaussian, which adversely
affects the search for the most promising RPVs. To resolve
this, in Section IV, we introduce a new MoP based on
the actual probability distribution of the equalized received
observable after regularization, which redefines the search for
the most promising RPVs. Due to the high implementation
complexity of this MoP we also introduce an approximate
MoP which favours implementation. We evaluate the validity
of this approximation both analytically and by simulations.

For a large number of mutually interfering streams, and for
soft detection a larger number of candidate solutions needs to
be examined than in the case of hard detection. This is because
the corresponding soft information calculation consists of

multiple constrained hard detection problems [10]. Due to
this, MultiSphere’s preprocessing, that identifies the RPVs, and
has been proposed to be based on the K-best SD, becomes
of high complexity due to the required large K values and
the corresponding sorting operations. To alleviate this prob-
lem, g-MultiSphere introduces a new preprocessing approach
that resolves these bottlenecks. In particular g-MultiSphere
adjusts the K value based on the specific interference matrix
realization. In addition, it avoids the extensive sorting opera-
tions, substantially reducing the preprocessing computational
complexity. Furthermore, in Section IV-D we provide a link
between the complexity required to process a number of
RPVs and the achievable vector-error-rate performance when
processing these RPVs. We also discuss how the complexity
requirements of the proposed approach scale with the number
of mutually interfering information streams for a target vector-
error-rate degradation compared to the uncoded ML vector-
error-rate. At the detection stage, g-MultiSphere employs
an efficient RPV to symbol de-mapping procedure similarly
to [20], which inherits it’s favourable complexity efficiency.
As a result, to the best of our knowledge, g-MultiSphere is
the first massively parallel detection approach that is scal-
able to rank-deficient large MIMO systems while attaining a
processing latency similar to that of highly-suboptimal linear
detectors. Thus, g-MultiSphere enables a generic computa-
tional framework that can be used on any non-orthogonal
transmission scheme. We further emphasize that the proposed
work fills a gap in joint detection of a large number of
mutually interfering information streams, in the case of rank-
deficient or ill-determined interference matrices. In particular,
due to its near-optimal detection performance, the proposed
approach can realize the potential of non-orthogonal wave-
forms such as SEFDM, currently left unexploited.

In Section V we show that even for conventional,
16×16, 16-QAM spatially multiplexed MU-MIMO systems,
g-MultiSphere provides complexity gains of up to 50% com-
pared to the originally proposed MultiSphere, without com-
promising the provided detection performance since it can
better cope with ill-conditioned channel realizations. We also
show that g-MultiSphere can efficiently support more users
than twice the number of receiver antennas in a large multi-
user MIMO environment while providing throughput gains
of up to 60% in comparison to known approaches. This is
achieved by just exploiting the inherent ability of the MIMO
channel to support multiple users, and without applying any
specific NOMA approach or specifically optimized multi-
user codewords. In addition, g-MultiSphere can also achieve
throughput gains of up to 60% in comparison to state-of-the-art
soft detectors for SEFDM transmissions exploring unexploited
capacity gains [6]. In Section V we also show that, when
g-MultiSphere is applied to the detection of sparse LDS-
OFDM signals, it can reduce both complexity and latency
by more than an order of magnitude compared to MPA
while providing improved throughput. By eliminating the need
for sparse signal transmissions as specifically designed for
MPA receiver processing, we show that g-MultiSphere can
support many users per resource element, enabling overloading
factors beyond two with practical complexity requirements.
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In addition, we show that g-MultiSphere’s preprocessing
approach can reduce the corresponding complexity by up to
an order of magnitude, for all the examined non-orthogonal
schemes.

The rest of the paper is structured as follows. In Section II
we introduce a generic model to describe non-orthogonal
systems. In Section III we provide a primer on Sphere-
Decoding-based detection for non-orthogonal systems, and in
Section IV we describe g-MultiSphere; the proposed massively
parallel detection scheme, together with the new MoP and
improved preprocessing method to identify the most promising
vector solutions that substantially reduces the preprocessing
overhead when a large number of processing elements are
utilized. Finally, in Section V we evaluate g-MultiSphere in
comparison to state-of-the-art detection methods when applied
to MU-MIMO, SEFDM and LDS-OFDM systems.

II. GENERIC NON-ORTHOGONAL

TRANSMISSION MODELING

The baseband received signal for a non-orthogonal system
can be given by

y = Hs + w, (1)

where y is the N×1 received vector, s is the M×1 transmitted
symbol vector with elements belonging to a constellation O,
w is the N × 1 additive white Gaussian noise vector with
variance σ2 and H is the interference matrix that differs per
non-orthogonal system. In the rest of this Section we consider
non-orthogonal systems with both single and multiple-antenna
receivers.

Uplink spatially multiplexed MIMO systems: In an uplink
spatially multiplexed MIMO system with M transmit antennas
and N receive antennas, the corresponding N × M MIMO
channel matrix is H MIMO and the N×1 received signal vector
y could be modelled as in (1).

SEFDM systems: An SEFDM [7] block consists of M
complex symbols transmitted within a time period T . Each
of these M complex symbols modulate a Non-Orthogonal
subcarrier. The bandwidth compression factor α is defined as
α = ΔfT , with Δf being the frequency spacing between
subcarriers, and with α = 1 corresponding to an orthogonal
system (e.g., OFDM). Then, the N×1 received vector, consist-
ing of the received signal at each non-orthogonal subcarrier,
is given by

y = BHChFαs + w, (2)

where the M × M fractional IFFT matrix Fα consists of
the entries Fα[k, n] = exp(j2πα(k − 1)(n − 1)/M)/

√
M

for n, k = 1, . . . , M . The M × M matrix Ch is circulant
with its first column being

[
h0 h1 . . . hL−1 0 . . . 0

]T
and

L being equal to the number of channel taps in the time
domain. Matrix B represents an orthonormal base which
spans the SEFDM signal space and could be computed using
a Gram-Schmidt orthonormalisation procedure as in [22].
Consequently, the SEFDM interference matrix is H SEFDM =
BHChFα, which is ill-determined as discussed in [14].

LDS-OFDM NOMA systems: In an LDS-OFDM system an
(orthogonal) subcarrier is loaded with the signals of multiple

users which are superimposed. The Ñ ×1 received signal vec-
tor for an LDS-OFDM system where Ñ orthogonal subcarriers
are occupied by M users is given by

y =
[
h1 h2 . . . hM

] ◦ [
g1 g2 . . . gM

]
s + w

(3)

where hl is the frequency domain channel for user l, l ∈
[1, M ] and gl is the “sparse signature vector” for the user
l, which consists of complex entries that define how the
signal is spread over subcarriers [2]. These sparse signature
vectors are selected by predefined codebooks as discussed
in [23]. Therefore, in relation to (1) the interference matrix
is H LDS-OFDM =

[
h1 h2 . . . hM

] ◦ [
g1 g2 . . . gM

]
, and it

is rank-deficient since Ñ < M .
For a receiver equipped with Rx antennas the received

signal vector becomes of length RxÑ and is given by

y =

⎡
⎢⎢⎢⎣

h1,1 h2,1 . . . hM,1

h1,2 h2,2 . . . hM,2

...
...

. . .
...

h1,Rx h2,Rx . . . hM,Rx

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
g1 g2 . . . gM

g1 g2 . . . gM

...
...

. . .
...

g1 g2 . . . gM

⎤
⎥⎥⎥⎦

× s + w, (4)

where hk,Rx is the frequency domain channel for user k for
the Rth

x receive antenna. Therefore the RxN ×M interference
matrix could be expressed as

H LDS-OFDM

=

⎡
⎢⎢⎢⎣

h1,1 h2,1 . . . hM,1

h1,2 h2,2 . . . hM,2

...
...

. . .
...

h1,Rx h2,Rx . . . hM,Rx

⎤
⎥⎥⎥⎦◦

⎡
⎢⎢⎢⎣
g1 g2 . . . gM

g1 g2 . . . gM

...
...

. . .
...

g1 g2 . . . gM

⎤
⎥⎥⎥⎦, (5)

and it is again rank-deficient (RxÑ < M ) for the challenging
scenarios we consider in Section V. We note that in relation
to the general model in (1) N = RxÑ .

III. SPHERE DECODING FOR

NON-ORTHOGONAL SYSTEMS

As discussed in Section II, the interference matrix H
could be ill-determined or rank-deficient. Tikhonov regular-
ization [24] is a proven method for mitigating the effects of
small eigenvalues of an ill-determined rank matrix and has
also been applied to rank-deficient systems [25]. In particular,
instead of performing a QR decomposition on H we employ
the QR decomposition of [26] on the Tikhonov regularised
matrix H̄

H̄ �
[

H
λIM

]
= Q̄R̄ =

[
Q1

Q2

]
R̄, (6)

with the regularisation parameter λ = σ/E|sl|. Where Q̄ is a
(M + N) × M orthonormal matrix with elements Q̄i,l, (i ∈
[1, M+N ] and l ∈ [1, M ]) and R̄ is a M×M upper triangular
matrix.

Then, the “hard” ML estimation problem can be
expressed as

ŝML = arg min
s∈OM

{‖ỹ − R̄s‖2 − λ2‖s‖2}, (7)

where ỹ = QH
1 y is an M × 1 vector.
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Since R̄ is an upper triangular matrix, finding the ML
solution can be translated into a tree search of height M and
branching factor |O|. Each node at level l can be identified
by its partial symbol vector sl = [sl, sl+1, . . . , sM ] which also
determines, the path from the root to that node, as well as from
its partial Euclidean distance (PD) which can be calculated
recursively as d(sl) = d(sl+1)+ e(sl) where e(sl) is the non-
negative cost assigned to each branch,

e(sl) =
(∣∣∣∣∣ỹl −

M∑
k=l

R̄lksl

∣∣∣∣∣
2

+ λ2(Esmax − |sl|2)
)

. (8)

Here, Esmax = max(|sl|2) is the maximum energy of symbols
chosen from the constellation O. Then the ML detection prob-
lem is equivalent to finding the vector s with minimum d(s1).
According to the Schnorr-Euchner (SE) [27] enumeration the
nodes are visited in an ascending order of their e(sl). For
non constant amplitude transmit symbol constellations the
minimization problem in (7) differs from the traditional SD
tree search in [11], [21], [28] due to the λ2(Esmax−|sl|2) term.
As a result, applying the SE enumeration without exhaustively
calculating the PDs of all constellation symbols, and instead by
using simple geometrical properties as in [11], is not anymore
feasible. To cope with this problem, enumeration schemes
similar to [29], [30] could be used. However, these techniques
are highly sequential and unsuitable for parallel processing. In
the rest of the paper we will discuss how we can efficiently
cope with this issue in massively parallel detection approaches.

In practical systems that employ soft channel decoding
approaches like LDPC, soft information is required in the form
of Log Likelihood Ratios (LLRs). The LLR for the jth coded
bit bj is defined as in [10]

L(bj) � ln
(

P [bj = +1|y,H]
P [bj = −1|y,H]

)
. (9)

The computation of LLRs, when the Max-Log approximation
is employed, involves multiple constrained ML searches [10].
In particular, the LLR for the jth coded bit bj could be
expressed as

L(bj) ≈ min
s∈S−1

j

{
1
σ2

‖ỹ − R̄s‖2 +
λ2

σ2
(MEsmax − ‖s‖2)

}

− min
s∈S+1

j

{
1
σ2

‖ỹ − R̄s‖2 +
λ2

σ2
(MEsmax − ‖s‖2)

}

= sign(xj)(DML
j − DML), (10)

where xj is the jth entry of the ML solution’s bit label and
S−1

j , S+1
j are the subsets of possible symbol vectors with

jth bipolar bit set to −1, +1 respectively. Here DML is the
metric of the ML solution and DML

j is the minimum metric
from subset S

x̄j

j for bit j. For a detection approach such as
the proposed, which generates a list of candidate solutions,
the LLRs can be calculated according to Eq. (10) based on
the distance metrics in the list of candidate solutions. If a
DML

j for a particular bit is not found in the list of candidates,
a clipped value can be used instead according to [31].

IV. G-MULTISPHERE’S DESIGN

Originally, the MultiSphere [20] framework targeted the ML
problem in full rank MIMO systems. MultiSphere focuses
the available processing power on the most “promising” SD
tree paths to constitute the transmitted symbol vector. This is
achieved by a (prior to the detection stage) preprocessing stage
that, based on the specific channel realization, identifies the
most promising tree paths to include the transmitted symbol
vector. The likelihood of each tree path to constitute the
transmitted symbol vector is characterized by a metric of
promise (MoP) M that is a function of the specific channel
realization and not of the received symbol. Still, the originally
proposed MoP cannot be applied to non-orthogonal systems
since it does not account for the effect of interference matrix
regularization that is required in ill-determined non-orthogonal
systems. By using this MoP, MultiSphere identifies the most
promising tree paths by an approximate K-best SD tree search
with K = NPE being the maximum number of examined
candidate solutions as suggested in [20]. However, a much
larger number of tree paths (e.g., candidate solutions) needs
to be processed in parallel in “soft” detection systems than in
“hard” detection systems, due to the corresponding multiple
constrained ML searches (see Section III). Then, the originally
proposed K-best-based preprocessing (with NPE being equal
to the number of examined tree paths) can become impractical
since it requires long sorting operations of the order of
O(NPE |O|log{NPE |O|}) and metric calculations of the order
of O(NPE |O|) per SD level. The preprocessing stage of
MultiSphere finds the most promising tree paths by means
of ordered distances to the received observable. Then, during
the detection stage, when the actual signal is received, these
tree paths need to be de-mapped to actual symbol vectors,
in order to calculate the LLRs by employing Eq. (10). For
this, MultiSphere applies an efficient procedure to de-map
those paths onto actual symbols which avoids exhaustively
calculating the corresponding distances for all symbols and
sorting them.

In this Section we show how MultiSphere can be
extended to ill-determined non-orthogonal systems. In par-
ticular, in Section IV-A a new MoP to [20] is derived for
generic non-orthogonal systems that utilize the regularized QR
decomposition introduced in Section III. Then, in Section IV-
B, we introduce a novel efficient preprocessing module which
identifies the most promising tree paths (ÑPE ≤ NPE), based
on the specific interference matrix realization, in a computa-
tionally efficient manner while avoiding any sorting operations
as in K-best approaches. Finally, in Section IV-C we show that
MultiSphere’s tree path to symbol de-mapping procedure [20]
can still, be approximately used by g-MultiSphere, despite the
modified metric introduced in (8).

A. G-MultiSphere’s MoPs

Similar to [20], a tree path is described by means of its
ordered (in terms of PDs) position of its nodes to the received
observable by an M×1 relative position vector (RPV) k, with
integer elements kl (l ∈ [1, M ] and kl ∈ [1, |O|]). Then, for the
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corresponding tree path, the node at level l is the kth
l closest

node to the received observable ỹl.
Due to the regularization of the interference matrix,

the received vector ỹ includes a residual self-interference term
that together with the noise [26] they form an effective noise
term

w̄ = QH
1 w − λQH

2 s. (11)

The SD detection is initiated at level M and, therefore,
the corresponding equalized observable is

ŷM = ỹM/R̄M,M = st
M + ŵM , (12)

where st
M is the transmitted symbol at level M , and

ŵM = w̄M/R̄M,M .
We first consider the probability of the symbol with the

pth smallest PD, denoted as xp, being the transmitted symbol
(PM [xp = st

M ]).
For this, we consider the probability of noise being within

the decision boundaries of xp.

PM [xp = st
M ]

≈ P [
√

d̃M (p) ≤ |ŵM | <

√
d̃M (p + 1)]

= P [
√

d̃M (p) ≤ |ŵM |] − P [
√

d̃M (p + 1) < |ŵM |], (13)

where the the pth smallest PD is denoted as d̃M (p). Here
PM [xp = st

M ] has been simplified by employing the CDF
properties [32]. Then, the considered probability (PM [xp =
st

M ]) can be bounded by

PM [xp = st
M ] ≤ P [

√
d̃M (p) ≤ |ŵM |]

=
∑

s∈OM

P
[√

d̃M (p) ≤ |ŵM |
∣∣∣s]P [s]. (14)

Since ŵM is a function of two random variables, we consider
the joint probability distribution of w and s. Then, ŵM

can be considered to be Gaussian distributed with mean
of

∑M
l=1 Q̄H

M+l,Mλsl/R̄M,M that is a function of s. There-

fore, the distribution of probability P
[√

d̃M (p) ≤ |ŵM |
∣∣∣s]

can be modelled as a Rician CDF with mean μM (s) =
|∑M

l=1 Q̄H
M+l,Mλsl/R̄M,M | and a variance of σ̃2

M = σ2(1 −∑M
l=1 Q̄H

M+l,M Q̄M+l,M )/|R̄M,M |2. Therefore PM [xp = st
M ]

can be expressed as

∑
s∈OM

P
[√

d̃M (p) ≤ |ŵM |
∣∣∣s]P [s]

=
1

|O|M
∑

s∈OM

e
− (μM (s)2+d̃M (p))

σ̃2
M

∞∑
q=0

(μM (s)
d̃M (p)

)q

Iq

(μM (s)d̃M (p)
σ̃2

M

)

=
1

|O|M
∑

s∈OM

Q1(
μM (s)
σ̃M

,

√
d̃M (p)

σ̃M
), (15)

where Q1 is a first order Marcum Q-function and Iq is
a modified Bessel function of the first kind [32]. We then
consider the probability of the symbol vector corresponding

to RPV k, which is xk being the transmitted symbol vector
(P [xk = st]). This probability can be bound as

P [xk = st]

=
M∏
l=1

P

⎡
⎣xkl

= st
l

∣∣∣∣
M⋂

q=l+1

xkq = st
q

⎤
⎦ ≤

M∏
l=1

Pl[xkl
= st

l ]

≤
M∏
l=1

1

|O|M
∑

s∈OM

Q1(
μl(s)
σ̃l

,

√
d̃l(p)

σ̃l
) (16)

In [20] it has been shown that the pth smallest squared
distance can be approximated by a linear function (d̃l(p) =
c(p−1)), with c depending on the minimum distance between
constellation points. In particular, c can be determined by a
linear approximation of the sorted squared distance from an
inner constellation point to other constellation points. We note
that, for a constellation with a minimum symbol distance of
two, c can be set to 1.1 as specified in [20]. Now we define
the MoP (M̄(k)) based on the actual CDF in Eq. (15) for
non-orthogonal systems in relation to this probability, which
can be calculated recursively as

M̄(kl)=M̄(kl+1)−ln
{ 1

|O|M
∑

s∈OM

Q1(
μl(s)
σ̃l

,

√
c(kl−1)

σ̃l
)
}
.

(17)

This MoP can be of impractical complexity to compute for
large M or |O| values due to the exhaustive computation of the
Q-functions of the order |O|M that are required to determine
the actual CDF of |ŵM | in (15). Therefore, in the rest of this
paper, we introduce and employ an approximation that favours
implementation, and as we show in Section V, results in a
negligible performance loss. Note that ŵM constitutes of the
two independent random variables w and s.

ŵM =

∑M
l=1 Q̄H

l,Mwl

R̄M,M
+

∑M
l=1 Q̄H

M+l,Mλst
l

R̄M,M
(18)

The first term in the right hand side of (18) has a Gaussian
distribution with zero mean and variance σ2(1 − ∑M

l=1

Q̄H
M+l,M Q̄M+l,M )/|R̄M,M |2. According to the central limit

theorem, the second term tends to become Gaussian with zero
mean and variance σ2(

∑M
l=1 Q̄H

M+l,M Q̄M+l,M )/|R̄M,M |2 for
large M values. Then the CDF of |ŵM | can be considered
as a sum of Gaussian distributed random variables, and the

probability P [
√

d̃M (p) ≤ |ŵM |] can be approximated by a
Rayleigh CDF as

P [
√

d̃M (p) ≤ |ŵM |] ≈ e−
d̃M (p)|R̄M,M |2

σ2 (19)

This approximation has been validated by simulating the CDF
of |w̄M | for the high dimensional systems considered in
Section V and the SNRs of interest (See Fig. 5). Based on
this approximate CDF, we define the simplified MoP (M(k))
for non-orthogonal systems as

M(k) =
M∑
l=1

c(kl − 1)|R̄ll|2
σ2

≤ −ln{P [xk = st]}. (20)



1232 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 2, FEBRUARY 2020

Therefore the tree paths are visited according to this upper
bound of their probabilistic likelihood. The MoPs could be
calculated recursively by

M(kl) = M(kl+1) +
c(kl − 1)|R̄l,l|2

σ2
, (21)

where kl is again the partial RPV and M(kl) is the partial
MoP of k at level l. Assuming the term c|R̄l,l|2/σ2 is precom-
puted, this MoP calculation consists only of an addition and
a real integer multiplication in contrast to the computationally
intensive MoP in Eq. (17) based on the exact CDF. For the rest
of this paper this MoP definition is applied unless otherwise
denoted.

B. G-MultiSphere’s Preprocessing Stage

The purpose of the preprocessing stage is to identify the
most promising RPVs.

To reduce the search space of the preprocessing stage
we consider a probabilistic threshold for the MoPs that
determines the number of required RPVs ÑPE . The number
of required RPVs (ÑPE ≤ NPE) depend on the specific
interference matrix realization and correspond to the number
of required PEs.

In particular, based on the bound of (20), we will ignore
candidate solutions (i.e., prune nodes) with an upper bound
of prior probability of being correct smaller than a predefined
threshold (Pth). To achieve this we only consider the ÑPE

RPVs that satisfy

M(k) ≤ −ln{Pth} = Mth. (22)

We note that Pth is a design parameter. As we discuss in
Section IV-D Pth is related to the probability of including the
correct solution in the examined ÑPE RPVs. As we further
analyze in Section IV-D, Pth can determine how closely we
can approach the ML vector-error-rate.

Since the recursive structure of the MoP calculation in (21)
resembles that of an SD, the search for RPVs translates into
a tree search. Therefore the RPVs with the smallest MoPs are
identified by a K-Best SD-like tree search where each node
at level l is characterized by a partial RPV kl and a partial
MoP M(kl) similar to the description in Section III. However,
as we will explain later, our approach results in a different
ÑPE value per tree level and does not require any sorting
operations.

The selection of the most promising RPVs starts at the
highest tree level. Then, the tree nodes are visited in the
ascending order of their kM indices and all the nodes with
a partial MoP larger than Mth are pruned. For each of the
survived nodes at level M , the child node with the smallest
partial MoP is expanded first. At level M − 1 the expanded
nodes are visited in an ascending order of their parent’s partial
MoPs and all those with a partial MoP larger than Mth are
pruned. The approach continues with expanding the child node
with the second partial MoP for each of the survived nodes
at level M . Those nodes with partial MoPs larger than Mth

are also pruned. The node expansion continues until either all

Algorithm 1 Pseudocode for the Preprocessing Stage to
Identify the RPVs
1: Inputs:R̄, M , |O|
2: l←M where l denotes the current level
3: P is the M × ÑPE RPV matrix which stores the ÑPE RPVs. The

elements of P are integers taking values from 1 to |O|
4: while l > 1 do
5: for n← 1, |O| do
6: for j ← 1, ÑPE do
7: Expand the nth child node of jth parent node in current P and

compute its partial MoP.
8: if Partial MoP ≤Mth then
9: Update rows M to l−1 of new RPV matrix P with the selected

RPV.
10: end if
11: end for
12: if Number of selected RPVs ≥ NPE then
13: break
14: end if
15: end for
16: l← l− 1
17: end while
18: Output: P

Fig. 1. Tree path selection example.

nodes at level M − 1 are examined or until when the number
of non-pruned nodes reaches NPE . Then, the same procedure
is applied for the rest of the tree levels. An example of the
proposed MoP identification method is shown in Fig. 1. The
process starts at level M .

First, we compare the partial MoPs of all nodes with the
probabilistic threshold Mth. Where the fourth node (kM = 4)
is pruned since we assume that the corresponding partial MoP
exceeds the probabilistic threshold. Then, only three partial
RPVs (kM = 1, 2, 3) remain as survivors for the next level
(level M − 1). At level M − 1, the first child node for
each survived node is expanded. Then, all expanded nodes
are selected since their MoPs are within the threshold. Next,
the second child node for each of the survived nodes at
level M is expanded. In this case, the second child node of
the third parent node (partial RPV kM−1 = [2, 3]T ) is not
selected since we assume that its partial metric exceeds Mth.
Subsequently, the third child node for each of the survived
nodes at level M is expanded, and those with partial MoPs
larger than Mth are again pruned. Since all other nodes at
level M − 1 have been pruned, the process will continue by
expanding the first child node of these survived nodes (partial
RPVs kM−1 = [1, 1]T , [1, 2]T , [2, 1]T , [2, 2]T , [1, 3]T ).

C. G-MultiSphere’s De-Mapping

The preprocessing stage identifies a list of the most promis-
ing paths (RPVs) by means of ordered distances to the received
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Fig. 2. Approximate pre-ordering for 16QAM. Here ŷl is depicted by the
pentagon.

point ŷl, where

ŷl = (ỹl −
nt∑

j=l+1

R̄l,jsj)R̄−1
ll . (23)

During the detection stage we need to de-map these nodes
onto actual symbols to calculate the LLRs by employing
Eq. (10). This would traditionally require exhaustively calcu-
lating the corresponding distances for all symbols and sorting
them, that would result in a substantial complexity overhead.
Instead, MultiSphere [28] introduced a symbol mapping of
two-dimensional zigzag coordinates. Then, an approximate
symbol ordering relative to ŷl (The pentagon in Fig. 2), could
be predefined as a sequence of these two-dimensional zigzag
coordinates [28]. Following the same principles we utilize the
same preordering introduced in [28]. In Fig. 2 we describe
the employed preordering. The zigzag coordinates in Fig. 2
could be identified based on the sectors containing the real
and imaginary parts of ŷl. We note, that based on (8), the
actual ordering should take place based on the corresponding
partial distance e(sl) and not on the distance from the received
symbol. This is because (8) also contains a term related to
the energy of the constellation symbol (sl) in addition to the
distance from the received symbol. However, this is feasible
since the second part in (8) has been modelled in as additional
noise (see Eq. (11)) at the preprocessing stage.

D. Discussion on g-MultiSphere’s Performance

In this Subsection we provide a link between the complexity
required to process ÑPE RPVs and the provided vector-error-
rate performance when processing ÑPE RPVs. In addition,
we discuss how the complexity requirements of the pro-
posed approach scale with the number of mutually interfering
information streams for a target vector-error-rate degradation
compared to the uncoded ML vector-error-rate.

Based on the description in Section IV-A, we can approxi-
mate the probability P [st /∈ S] of not having the transmitted
symbol vector in the examined set of ÑPE RPVs by

P [st /∈ S]=1−
ÑPE∑
k=1

P [xk =st] ≈ 1−(1−e−M(ÑPE)) = Pth,

(24)

where M(ÑPE) is the Ñ th
PE largest MoP corresponding to

the least probable solution in the examined set. According to

Fig. 3. The number of ÑPE RPVs required to be examined as in Eq. (24)
for a considered Pth probability, in the case of M ×M MIMO. An SNR
of 12 dB is assumed for |O| = 16 and an SNR of 7 dB is assumed for
|O| = 4.

Fig. 4. The uncoded vector-error-rate performance of g-MultiSphere with
several Pth values for a 4 QAM 8×8 MIMO system.

the selection criteria for RPVs in Eq. (22) the probability
e−M(ÑPE) is equal to Pth. In Fig. 3, we show how the
number of ÑPE RPVs required to be examined to approach
a Pth = 0.01 probability scale with respect to M and |O|.
We note that the tree paths required to be examined by g-
MultiSphere is much smaller than that theoretically required
by the FSD. For an example, FSD requires the processing
of 4096 tree paths for |O| = 16 and for M = 10, .., 16 to
achieve same diversity as ML detection [33]. These gains are
also consistent with the coded comparisons in Section V.

In addition we can link the achievable error-rate by g-
MultiSphere, from processing ÑPE RPVs, to ML error-rate.
Therefore, we relate P [st /∈ S] to the error probability
of g-MultiSphere. In particular the error probability can be
expressed as

P [ŝ �= st] = P [ŝ �= st ∩ st ∈ S] + P [ŝ �= st ∩ st /∈ S], (25)

where S is the set of tree paths or RPVs examined by
g-MultiSphere and ŝ is its symbol estimate. The first part
P [ŝ �= st ∩ st ∈ S] corresponds to an ML error event. This
can be simplified by considering the ML error probability as
P [ŝ �= st ∩ st ∈ S] ≤ P [ŝML �= st]. Therefore the error
probability becomes

P [ŝ �= st] ≤ P [ŝML �= st] + P [st /∈ S], (26)

As we illustrate in Fig. 4, Pth determines how closely we
can approach ML vector-error-rate. We note that Pth = 0.01
provides a good performance complexity trade-off and the
corresponding performance degradation is negligible in coded
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Fig. 5. The CDF of |w̄M | in comparison to the Rayleigh approximation for
various system dimensions at a 3dB SNR.

systems due to the coding gain. Therefore Pth = 0.01 is
considered in Section V.

In the previous paragraphs we have analyzed the achievable
vector-error-rate when processing ÑPE PEs. Here we provide
the processing complexity requirements per PE, and therefore
the complexity required to achieve a given vector-error-rate.
The number of multiplications required by g-MultiSphere at
each PE is same as that of SFSD. In particular, g-MultiSphere
requires 3ÑPEM(1 + (M + 1)/2) real multiplications. The
number of multiplications per PE has been obtained in a
similar manner to [12]. We note that, there is also an additional
implementation overhead for the RPV-to-symbol de-mapping
(Section IV-C), that has been shown in [20] to be low. Since
the detection stage of g-MultiSphere shares the same structure
with the original MultiSphere, the implementation evaluation
of [20] generally applies also to g-MultiSphere.

V. SIMULATION EVALUATION

In this Section we first validate the approximations of
the probability distributions discussed in Section IV-A. Then,
we evaluate the performance of g-MultiSphere in three
promising non-orthogonal transmission schemes. In particular,
we consider spatially-multiplexed MIMO, SEFDM and LDS-
OFDM (Section II). We compare both the complexity and
the error-rate performance of the g-MultiSphere scheme with
state-of-the-art detection methods for each non-orthogonal
transmission scheme. In addition, to evaluate the efficiency of
our proposed preprocessing stage (Section IV-B) we compare
its complexity and provided performance with the original
preprocessing approach introduced in [28].

A. Exact and Approximate MoP Evaluation

In this Section we validate the approximations of the
probability distributions and evaluate the Bit Error Rate
(BER) performance corresponding to the MoPs introduced in
Section IV-A. As we verify in Fig. 5, the CDF of |w̄M | (See
Eq. (18)) approaches the Rayleigh CDF approximation in (19)
when at least one of the parameters M or |O| is of high value.
In Fig. 6 we evaluate the BER performance of g-MultiSphere
with the MoPs introduced in Section IV-A, and in particular for
the aforementioned actual and approximate probability distrib-
utions. As we discuss in Fig. 5, the CDF approximation results
in a larger error for low M or |O| values. Here, we consider

Fig. 6. BER performance of g-MultiSphere when employing the MoP based
on the actual CDF (17) in comparison to the MoP based on the approximate
CDF (21) for a 4 QAM 6×6 MIMO system.

Fig. 7. Soft detection BER performance of g-MultiSphere in comparison
with existing methods for a 16 QAM 16×16 MIMO system and several code
rates.

the lowest M and |O| values of our evaluated scenarios to
account for the worst case effect of this approximation on
the BER performance of g-MultiSphere. Fig. 6 shows the
BER performance of g-MultiSphere when employing the MoP
based on the actual CDF (17) in comparison to the MoP
based on the approximate CDF (21) for a 4 QAM 6×6 MIMO
system. We note that, the performance degradation due to the
CDF approximation is negligible. Furthermore, as we discuss
in Section IV-A, the exact MoP (17) based on the actual
CDF requires an exhaustive computation of the Q-functions
of the order |O|M . In contrast, the approximate MoP (21)
based on the approximate CDF only requires an addition and
a real integer multiplication. Therefore, we only focus on the
approximate MoP (21) based on the approximate CDF in the
rest of this paper.

B. Massively Parallel Regularized MIMO Detection

In this Section we evaluate and compare g-MultiSphere with
state-of-the-art MIMO detectors, both in traditional (N ≥ M )
and overloaded (N < M ) MIMO systems. In Fig. 7 we com-
pare the BER performance and the complexity requirements
in terms of visited nodes of g-MultiSphere with the soft-fixed-
complexity-sphere-decoder (SFSD) [12], as well as with the
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Fig. 8. The achievable throughput of g-MultiSphere, SFSD, soft K- best
generalized SD and zero-forcing as the number of users transmitting to a
16-antenna base station increase at an 15 dB average SNR per user. The
employed modulation order is chosen from 4, 16, 64 and code rate from 1/2,
2/3, 3/4, 5/6 to maximize throughput.

Fig. 9. The complexity requirements of g-MultiSphere, SFSD, soft K- best
Generalized SD and zero-forcing to achieve the throughput depicted in Fig. 8.

approximate soft-extension of the recently proposed Multi-
Sphere [28] that uses an unregularized, sorted QR decom-
position. To the best of our knowledge these are the most
efficient massively parallelizable detection approaches that
could apply to large non-orthogonal systems. The processing
complexity per visited node is similar for both the SFSD and
g-MultiSphere as discussed in Section IV-D. Therefore, we use
the number of visited nodes as a metric for our complexity
comparisons. A 16 QAM modulated 16×16 MIMO-OFDM
system is assumed with 52 active subcarriers where each sub-
channel between a transmit-receive antenna pair is modelled
as a 4 tap i.i.d Rayleigh channel and 1944 block length LDPC
codes are employed as in the 802.11 standard. As we show
in Fig. 7, g-MultiSphere achieves a similar BER to SFSD
with 1/8th of the visited nodes, and these gains are consis-
tent for different code rates. Fig. 7 also shows that despite
the introduction of self-interference, the regularized sorted
QR decomposition together with the proposed preprocessing
results in a significant BER performance improvement. This
is because the regularization can better cope with the ill-
conditioned channel realizations.

In contrast to traditional MultiSphere, g-MultiSphere can
also function in highly overloaded scenarios where the number
of transmitting users is much higher than the available base
station antennas. In Fig. 8 and Fig. 9, we investigate such
scenarios. As we show in Fig. 8, g-MultiSphere can support
number of users beyond twice the receiver antennas while pro-

Fig. 10. a) The complexity of g-MultiSphere’s preprocessing (Section IV-B)
in comparison with MultiSphere’s preprocessing ( [28]), and b) the cor-
responding BER performance for the considered MIMO system with
NPE = 512.

viding two times the throughput of zero-forcing with 12 users.
In addition, while supporting 36 users, g-MultiSphere can pro-
vide throughput gains of 60% in comparison to a K-best based
generalized SD [25] when K is such that both approaches have
similar complexity requirements. These complexity require-
ments are shown in Fig. 9 for all evaluated systems in terms of
real multiplications per user. Still, it is significant to note that
in contrast to the other approaches, K-best SDs would require
additional computationally extensive sorting operations, that
have not been considered in Fig. 9. We note that unlike
g-MultiSphere, SFSD cannot focus the available processing
power on the most promising tree paths, which results both in
high complexity requirements and lower throughput.

In Fig. 10a we compare the preprocessing complexity of
g-MultiSphere with the K-best based approach initially intro-
duced in [28]. The tree path selection procedure of the pro-
posed preprocessing requires only O(ÑPE |O|) comparisons
that can be executed in parallel, as discussed in Section IV-B
in detail. This procedure replaces sorting and results in more
than an order of magnitude complexity savings compared to
a K-best approach for the NPE values used in Fig. 10a.
To account both for MoP calculations and the required sort-
ing operations, here the comparisons are shown in terms of
arithmetic operations. As we also show in Fig. 10b these
complexity gains come with insignificant BER performance
degradation.

C. Massively Parallel Regularized SEFDM Detection

Here we evaluate and compare g-MultiSphere with existing
near-optimal SEFDM detectors. We consider both uncoded
transmission with hard detection and coded transmission with
soft detection.

In Fig. 11 we compare the uncoded hard detection BER
of g-MultiSphere with K-best SDs for a 16 subcarrier system
with α = 0.67. The proposed method can approach ML error
performance with 1/5th of the complexity of state-of-the-art
K-best SDs. Again, the additional complexity of the sorting
operations required for the traditional K-best SDs has not
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Fig. 11. Hard detection BER performance of g-MultiSphere in comparison
with existing methods for a 16 QAM 16 subcarrier uncoded SEFDM system
in AWGN channels and α = 0.67. An NPE = 48 maximum number of
allocated PEs is assumed for g-MultiSphere.

Fig. 12. Hard detection BER performance of g-MultiSphere in comparison
with existing methods for a 16 QAM 64 subcarrier uncoded SEFDM system
in AWGN channels.

been considered in the complexity comparisons of Fig. 11.
In Fig. 12 we compare the BER of g-MultiSphere with TSVD-
FSD [14], ID-FSD [15] and a GSD based Regularized FSD
for 64 subcarrier systems. As shown in Fig. 12 g-MultiSphere
can achieve a similar BER to existing FSDs with 1/8th of the
complexity when α = 0.65.

Fig. 13 shows the soft detection complexity requirements
(in terms of visited nodes) and the BER performance of
g-MultiSphere compared to SFSD, soft K-best SD [12], [13]
and the soft FFT detector of [16], for 16 subcarrier systems
with α = 0.67 and 0.6. It can be seen that g-MultiSphere’s
complexity gains increase when the overlap between subcar-
riers increases (when the value of parameter α decreases)
and g-MultiSphere can be up to an order of magnitude less
complex than the state-of-the-art when α = 0.6.

To the best of our knowledge, g-MultiSphere is the first
approach that can realize throughput trades consistent to what
is expected from theory. This is shown in Fig. 14 where
adaptive modulation and coding is assumed. It can also be
shown that the Soft FFT detector of [16] benefits from a
low detection complexity but it requires iterations with the
channel decoder, resulting in a higher processing latency
than g-MultiSphere. G-MultiSphere can achieve throughput

Fig. 13. Soft detection BER performance of g-MultiSphere in comparison
with existing methods for a 16 QAM 16 subcarrier SEFDM system with
NPE = 128. Rayleigh fading channels and 1/2 rate LDPC codes are
assumed.

Fig. 14. The achievable throughput of g-MultiSphere in comparison to
the state-of-the-art. Each method chooses the modulation scheme and code
rate combination that maximizes throughput. An SNR of 17dB is assumed.
An NPE = 256 maximum number of allocated PEs is assumed for
g-MultiSphere.

Fig. 15. a) Complexity of g-MultiSphere’s preprocessing in comparison to
MultiSphere’s K-best approach, b) The corresponding BER performance, for
16 subcarrier SEFDM systems with α = 0.67 and NPE = 128.

gains of up to 60% in comparison to Soft FFT detection.
Fig. 15a shows the complexity savings of g-MultiSphere’s
preprocessing in comparison to MultiSphere’s K-best approach
for the SEFDM system considered in Fig. 13. The proposed
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Fig. 16. Soft-Output BER performance of proposed method in comparison
with Message Passing Algorithm (Rayleigh fading channels with 1/2 rate
LDPC coding). 6 users employing 16 point codebooks as in [23] and
4 subcarriers are assumed.

Fig. 17. The achievable throughput of g-MultiSphere in comparison to the
state-of-the-art for LDS-OFDM in Rayleigh fading channels. Each method
chooses the modulation scheme and code rate combination to maximize
throughput. The number of assumed receiver antennas are indicated next to
the overloading factor. Sparse codebooks are assumed at a SNR of 17dB. The
codebook size and the code rate is indicated above the bar.

preprocessing reduces complexity by an order of magnitude
while the corresponding performance loss is small.

D. Massively Parallel LDS-OFDM Detection

In Fig. 16 we compare g-MultiSphere with Max-Log MPA
for a LDS-OFDM sytem where 6 users employ 4 subcarri-
ers. The sparse signature matrix and the codebooks of [23]
have been adopted. It can been seen that for this scenario,
g-MultiSphere can provide an SNR gain of 1.5 dB compared
to traditional MPA. For this signature matrix and interfering
users the computational complexity of MPA is of N |O|3 per
iteration, while g-MultiSphere requires only a PD calculation
per visited node similarly to SFSD [12]. In particular, and
as shown in Fig. 16, g-MultiSphere requires 5832 complex
multiplications [12] while MPA requires 16384 complex mul-
tiplications per iteration, resulting in more than an order of
magnitude reduction in overall complexity. In addition and in
contrast to MPA, g-MultiSphere requires only one iteration
and therefore it has a detection latency similar to that of the
highly sub-optimal linear detection approaches.

G-MultiSphere can consistently exploit the throughput gains
at highly overloaded scenarios as shown in Fig. 17 with gains
of up to 35% in comparison to MPA. Here we consider the
overloading factor as the ratio of the number of users to

Fig. 18. The complexity requirements of g-MultiSphere in comparison to
MPA with five iterations for the throughput results in Fig. 17. Here only the
number of multiplications are considered as in [12] since they dominate the
complexity.

Fig. 19. Soft-Output BER performance of g-MultiSphere in comparison to
existing methods for 4 point codebooks in Rayleigh fading channels. 6 users
and 4 subcarriers are assumed for the overloading factor of 1.5 and 8 users are
assumed for the overloading factor of 2 with each subcarrier simply occupied
by 2 users. Sparse codebooks as in [23] are assumed.

Fig. 20. a) Complexity of g-MultiSphere’s preprocessing in comparison to
MultiSphere’s K-Best approach, b) the corresponding BER performance, for
a 6 user LDS-OFDM systems employing 16 point codebooks.

the resource elements (M/Ñ ). In Fig. 18, we show that the
complexity savings of g-MultiSphere are higher for higher
overloading factors with reductions of more than an order of
magnitude.

The proposed approach does not require sparse interfer-
ence matrices ( [23]) that are specifically designed for MPA
receiver processing. In Fig. 19, we show that, for the same
overall transmission rate, a g-MultiSphere based-scheme, with
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an overloading factor of 2 can support a larger number
of users (8 instead of 6) and still provide an improved
BER performance. As we show in Fig. 19, despite these
gains, the detection complexity for this g-MultiSphere based-
scheme is much lower than for sparse signal spreading due
to the low dimensionality of the corresponding detection
problem.

In Fig. 20a we compare the complexity savings of the
g-MultiSphere’s preprocessing in comparison to MultiSphere’s
K-best approach for a 6 user LDS-OFDM system employing
16 point codebooks. As we show in Fig. 20b the BER perfor-
mance loss is negligible for an order of magnitude reduction
in preprocessing complexity. Furthermore, the complexity of
the method is adaptive to the SNR and channel.

VI. CONCLUSION

In this work we present g-MultiSphere; a massively par-
allel and near-optimal detection approach applicable to both
well- and ill-determined non-orthogonal systems. The pro-
posed approach can consistently provide substantial through-
put gains in comparison to the existing detection approaches
for MIMO, SEFDM and LDS-OFDM NOMA systems, with
reduced complexity requirements. In particular, g-MultiSphere
can efficiently support users more than twice the number of
receiver antennas in a large multi-user MIMO environment
while providing throughput gains of up to 60% in comparison
to known approaches. By eliminating the need for sparse signal
transmissions for NOMA schemes as specifically designed
for MPA receiver processing, we show that g-MultiSphere
can enable overloading factors beyond two with practical
complexity and processing latency requirements. Due to this
flexibility, g-MultiSphere can efficiently utilize the multiple
access channel providing throughput gains while increasing
the number of supported devices. In addition, g-MultiSphere
can exploit the theoretical throughput gains of SEFDM
systems.
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